
M A N N I N G

Jon P Smith

www.allitebooks.com

http://www.allitebooks.org

Key topics covered in this book: the primary chapter covering each topic is listed first.
Key figures that go with the topic are also listed.

Topics Chapters Key figures

Setting up EF Core 1, 2, 6, 7, 8, 5 1.4, 1.5, 2.6

Query the database 2, 5, 10 2.5, 2.9,

Create, update, delete 3, 5, 7, 10 3.1, 3.2, 3.3, 3.4

Business logic 4, 5, 10 4.2, 5.1, 5.4

ASP.NET Core 5, 2 5.1, 5.4

Dependency injection 5, 14, 15 5.2, 5.3

Async/await 5, 12 5.8, 5.9, 5.10

Configure non-relational 6 6.1, 6.2

Configure relationships 7, 8 7.1, 7.2, 7.3, 7.4

Configure table mappings 7 7.10, 7.11

Concurrency issues 8, 13 8.3, 8.4, 8.5, 8.6, 8.7

How EF Core works inside 1, 9, 14 1.6, 1.8, 1.10, 9.1

Design patterns 10, 4, 12 5.1, 10.1, 10.5, 10.6, 14.1, 14.2

Domain-driven design 10, 4 4.2, 10.5, 10.6

Database migrations 11, 5 11.1, 11.2, 11.3, 11.4, 11.5, 11.6

Performance tuning 12, 13, 14 12.1, 11.2, 11.4, 13.7, 14.5

Different databases 14

Data validation 6, 4, 10 10.7

Unit testing 15 15.2

LINQ language Appendix A, 2 A.2, A.1

Application’s DbContext
property access

A series of LINQ and/or
EF Core commands

An execute
command

context.Books.Where(p => p.Title.StartsWith(”Quantum”).ToList()

An example of an Entity Framework Core database query

 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

Entity Framework Core in Action

 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

Entity Framework Core
in Action

JON P SMITH

MANN I NG
Shelter Island

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

Development editor:	 Marina Michaels
	Technical development editor:	 Mike Shepard

Copy editor:	 Sharon Wilkey
Proofreader:	 Elizabeth Martin

Technical proofreader:	 Julien Pohie
Typesetter:	 Happenstance Type-O-Rama

Cover designer:	 Marija Tudor

ISBN 9781617294563
Printed in the United States of America
1  2  3  4  5  6  7  8  9  10 – DP – 23  22  21  20  19  18

v

brief contents
Part 1	 Getting started... 1

1	 ■	 Introduction to Entity FrameworkCore  3
2	 ■	 Querying the database  27
3	 ■	 Changing the database content  57
4	 ■	 Using EF Core in business logic  88
5	 ■	 Using EF Core in ASP.NET Core web applications  115

Part 2	 Entity Framework in depth.....................................145
6	 ■	 Configuring nonrelational properties  147
7	 ■	 Configuring relationships  174
8	 ■	� Configuring advanced features and

handling concurrency conflicts  206
9	 ■	 Going deeper into the DbContext  238

Part 3	 �Using Entity Framework Core in real-world
applications...269

10	 ■	 Useful software patterns for EF Core applications  271
11	 ■	 Handling database migrations  300
12	 ■	 EF Core performance tuning  332
13	 ■	 A worked example of performance tuning  358
14	 ■	 Different database types and EF Core services  390
15	 ■	 Unit testing EF Core applications  421

vii

contents
preface  xxi
acknowledgments  xxiii
about this book  xxv
about the author  xxx
about the cover illustration  xxxi

Part 1	 Getting started..1

	 1	 Introduction to Entity FrameworkCore  3
	1.1	 What you’ll learn from this book  4

	1.2	 My “lightbulb moment” with Entity Framework  5

	1.3	 Some words for existing EF6.x developers  6

	1.4	 An overview of EF Core  7
The downsides of O/RMs  7

	1.5	 What about NoSQL?  8

	1.6	 Your first EF Core application  8
What you need to install  9  ■  Creating your
own .NET Core console app with EF Core  9

	1.7	 The database that MyFirstEfCoreApp will access  12

	1.8	 Setting up the MyFirstEfCoreApp application  13
The classes that map to the database—Book and
Author   13  ■  The application’s DbContext  14

viiiviii ﻿CONTENTS

	1.9	 Looking under the hood of EF Core  15
Modeling the database  15  ■  Reading data from the
database  17  ■  Updating the database  19

	1.10	 Should you use EF Core in your next project?  22
Latest generation  23  ■  Multiplatform and open source  23 
Rapid development  23  ■  Well supported  24  ■  Access to
NuGet libraries  24  ■  Fully featured O/RM  24  ■  Stable
library  24  ■  Always high-performance  25

	1.11	 When should you not use EF Core?  25

	 2	Querying the database  27
	2.1	 Setting the scene—our book-selling site  28

The book app’s relational database  28  ■  Other relationship types
not covered in this chapter  30  ■  The final database showing all the
tables   30  ■  The classes that EF Core maps to the database  32

	2.2	 Creating the application’s DbContext   33
Defining the application’s DbContext: EfCoreContext  33  ■  Creating
an instance of the application’s DbContext  34  ■  Creating a database
for your own application  35

	2.3	 Understanding database queries  37
Application’s DbContext property access  37  ■  A series of
LINQ/EF Core commands  37  ■  The execute command  38

	2.4	 Loading related data  38
Eager loading: loading relationships with the primary entity
class  38  ■  Explicit loading: loading relationships after the
primary entity class  40  ■  Select loading: loading specific parts
of primary entity class and any relationships  41

	2.5	 Using client vs. server evaluation: moving part of your
query into software  43

Creating the display string of a book’s authors   43 
Understanding the limitations of client vs. server evaluation  44

	2.6	 Building complex queries  45
Building the book list query by using select loading  45 
Introducing the architecture of the book app  49

	 ix	 ix﻿CONTENTS

	2.7	 Adding sorting, filtering, and paging  50
Sorting books by price, publication date, and customer
ratings  50  ■  Filtering books by publication year and
customer ratings  51  ■  Paging the books in the list  54

	2.8	 Putting it all together: combining query objects  54

	 3	 Changing the database content  57
	3.1	 Introducing EF Core’s entity State  58

	3.2	 Creating new rows in a table   58
Creating a single entity on its own  59  ■  Creating a
book with a review  60

	3.3	 Updating database rows   63
Handling disconnected updates in a web application  65

	3.4	 Handling relationships in updates  70
Principal and dependent relationships  70  ■  Updating
one-to-one relationships—adding a PriceOffer to a book  72 
Updating one-to-many relationships—adding a review to a
book  75  ■  Updating many-to-many relationships—changing
a book’s authors  79  ■  Advanced feature—updating relationships
via foreign keys  82

	3.5	 Deleting entities  82
Using a soft delete—using model-level query filters to “hide”
entities  83  ■  Deleting a dependent-only entity—no
relationships  84  ■  Deleting a principal entity that has
relationships  84

	 4	Using EF Core in business logic  88
	4.1	 Why is business logic so different from other code?   89

	4.2	 Our business need—processing an order for books   90
The business rules that you need to implement  90

	4.3	 Using a design pattern to help implement business
logic  91

Five guidelines for building business logic that uses EF Core  91

xx ﻿CONTENTS

	4.4	 Implementing the business logic for processing an
order  93

Guideline 1: Business logic has first call on defining the database
tructure  94  ■  Guideline 2: Business logic should have no
distractions  94  ■  Guideline 3: Business logic should think it’s
working on in-memory data  96  ■  Guideline 4: Isolate the database
access code into a separate project  98  ■  Guideline 5: Business
logic shouldn’t call EF Core’s SaveChanges   100  ■  Putting it all
together—calling the order-processing business logic  101  ■  Any
disadvantages of this business logic pattern?  103

	4.5	 Placing an order on the book app  104

	4.6	 Adding extra features to your business logic handling  105
Validating the data that you write to the database  105  ■  Using
transactions to daisy-chain a sequence of business logic code  109

	 5	Using EF Core in ASP.NET Core web applications  115
	5.1	 Introducing ASP.NET Core  116

	5.2	 Understanding the architecture of the book app  116

	5.3	 Understanding dependency injection  117
Why you need to learn about DI in ASP.NET Core  118  ■  A basic
example of dependency injection in ASP.NET Core  118  ■  The
lifetime of a service created by DI  119

	5.4	 Making the application’s DbContext available via DI  120
Providing information on the database’s location  120  ■  Registering
your application’s DbContext with the DI provider  122

	5.5	 Calling your database access code from ASP.NET Core  123
A summary of how ASP.NET Core works and the terms it
uses  123  ■  Where does the EF Core code live in the book
app?   123

	5.6	 Implementing the book list query page  125

	5.7	 Implementing your database methods as a DI service  127
Registering your class as a DI service  128  ■  Injecting
ChangePubDateService into the ASP.NET action method  128 
Improving registering your database access classes as services  129

	5.8	 Deploying an ASP.NET Core application with a
database   131

Knowing where the database is on the web server  132  ■  Creating
and migrating the database  132

	 xi	 xi﻿CONTENTS

	5.9	 Using EF Core’s Migrate to change the
database structure   133

Updating your production database  133  ■  Having your
application migrate your database on startup  134

	5.10	 Using async/await for better scalability  137
Why async/await is useful in a web application using EF
Core  137  ■  Where should you use async/await with database
accesses?  138  ■  Changing over to async/await versions of
EF Core commands  138

	5.11	 Running parallel tasks: how to provide the
DbContext  139

Other ways of obtaining a new instance of the application’s
DbContext  142

Part 2	 Entity Framework in depth...................... 145

	 6	 Configuring nonrelational properties  147
	6.1	 Three ways of configuring EF Core  148

	6.2	 A worked example of configuring EF Core  149

	6.3	 Configuring By Convention   151
Conventions for entity classes  152  ■  Conventions for parameters in
an entity class  152  ■  Conventions for name, type, and size  152 

By Convention, the nullability of a property is based on .NET type  153 

An EF Core naming convention identifies primary keys  153

	6.4	 Configuring via Data Annotations  154
System.ComponentModel.DataAnnotations   154  ■  System
.ComponentModel.DataAnnotations.Schema  155

	6.5	 Configuring via the Fluent API  155
A better way to structure your Fluent API commands  155

	6.6	 Excluding properties and classes from the database  157
Excluding a class or property via Data Annotations  158 

Excluding a class or property via the Fluent API  158

	6.7	 Configuring model-level query filters  159

	6.8	 Setting database column type, size, and nullability  159

	6.9	 The different ways of configuring the primary key  160
Configuring a primary key via Data Annotations  160 
Configuring a primary key via the Fluent API  161

xiixii ﻿CONTENTS

	6.10	 Adding indexes to database columns  161

	6.11	 Configuring the naming on the database side  162
Configuring table names   162  ■  Configuring the schema name,
and schema groupings  163  ■  Configuring the database column
names in a table  163

	6.12	 Using specific database-provider Fluent API
commands  164

	6.13	 Recommendations for using EF Core’s
configuration  165

Use By Convention configuration first—its quick and
easy  165  ■  Use validation Data Annotations wherever
possible  165  ■  Use the Fluent API for anything else  166

	6.14	 Shadow properties—hide column data inside EF Core  166
Configuring shadow properties  166  ■  Accessing shadow
properties  167

	6.15	 Backing fields—controlling access to data in an
entity class  168

Creating a simple backing field accessed by a read/
write property  168  ■  Configuring backing fields  171

7 Configuring relationships  174
	7.1	 Defining some relationship terms  175

	7.2	 What navigational properties do you need?  176

	7.3	 Configuring relationships  176

	7.4	 Configuring relationships By Convention  177
What makes a class an entity class?  177  ■  An example of an
entity class with navigational properties  178  ■  How EF Core
finds foreign keys By Convention  178  ■  Nullability of foreign
keys—required or optional relationships  180  ■  Foreign keys—what
happens if you leave them out?  180  ■  When does By Convention
configuration not work?  181

	7.5	 Configuring relationships by using Data
Annotations  182

The ForeignKey Data Annotation  182  ■  The InverseProperty Data
Annotation  183

	 xiii	 xiii﻿CONTENTS

	7.6	 Fluent API relationship configuration commands  184
Creating a one-to-one relationship  184  ■  Creating a one-to-many
relationship   187  ■  Creating a many-to-many relationship   188

	7.7	 Additional methods available in Fluent API
relationships  189

OnDelete—changing the delete action of a dependent
entity  189  ■  IsRequired—defining the nullability of the foreign
key   191  ■  HasPrincipalKey—using an alternate unique
key  193  ■  Less-used options in Fluent API relationships   195

	7.8	 Alternative ways of mapping entities
to database tables  195

Owned types—adding a normal class into an entity
class  195  ■  Table per hierarchy—placing inherited classes into one
table  199  ■  Table splitting—mapping multiple entity classes
to the same table  203

	 8	 �Configuring advanced features and handling concurrency
conflicts  206

	8.1	 Advanced feature—using backing fields
with relationships  207

The problem—the book app performance is too slow  207  ■  Our
solution—IEnumerable<Review> property
and a backing field  207

	8.2	 DbFunction—using user-defined functions
with EF Core  209

Configuring a scalar user-defined function  210  ■  Adding your
UDF code to the database  212  ■  Using a registered scalar UDF in
your database queries  213

	8.3	 Computed column—a dynamically calculated
column value  213

	8.4	 Setting a default value for a database column  215
Adding a constant as a default constraint   216  ■  Adding an SQL
fragment as a default constraint  217  ■  Creating a value generator
to generate a default value dynamically  217

	8.5	 Sequences—providing numbers in a strict order  219

xivxiv ﻿CONTENTS

	8.6	 Marking database-generated properties  220
Marking a column that’s generated on an addition or
update  220  ■  Marking a column’s value as set on insert of a new
row  221  ■  Marking a column as “normal”  222

	8.7	 Handling simultaneous updates—concurrency
conflicts  222

Why do concurrency conflicts matter?  223  ■  EF Core’s
concurrency conflict–handling features  224  ■  Handling a
DbUpdateConcurrencyException  230  ■  The disconnected
concurrent update issue  233

	 9	Going deeper into the DbContext  238
	9.1	 Overview of the DbContext class’s properties  239

	9.2	 Understanding how EF Core tracks changes  239

	9.3	 Details on every command that changes an
entity’s State  240

The Add command--inserting a new row in the
database   241  ■  The Remove command—deleting a row from
the database   243  ■  Modifying a tracked entity—EF Core’s
DetectChanges  244  ■  INotifyPropertyChanged entities—a different
way of tracking changes  246  ■  The Update method—telling EF
Core that everything has changed  248  ■  The Attach method—
changing an untracked entity into a tracked entity  250  ■  Setting
the State of an entity directly  251  ■  TrackGraph—handling
disconnected updates with relationships  252

	9.4	 Using ChangeTracker to detect changes  254

	9.5	 Using raw SQL commands in EF Core  256
FromSql—adding raw SQL to an EF Core
query   257  ■  ExecuteSqlCommand—executing a
nonquery command  258  ■  Reload—useful after an
ExecuteSqlCommand   259  ■  GetDbConnection—calling database
access commands   260

	9.6	 Using Context.Model to access EF Core’s view
of the database  261

Using the Model property to build a fast database wipe method  261

	9.7	 Handling database connection problems  264
Handling database transactions with EF Core’s execution
strategy   264  ■  Altering or writing your own execution strategy  265

	 xv	 xv﻿CONTENTS

Part 3	� Using Entity Framework Core in
real-world applications....................... 269

	 10	Useful software patterns for EF Core applications  271
	10.1	 Another look at the separation-of-concerns

principle  272

	10.2	 Using patterns to speed development of database
access  273

	10.3	 Speed up query development—use a LINQ mapper  274

	10.4	 Domain-driven-design database repository  278
Example Book DDD entity and repository  280  ■  How the DDD
design changes the business logic design  284  ■  Impressions from
building this DDD design  287

	10.5	 Is the Repository pattern useful with Entity
Framework?   289

Some forms of Repository patterns to avoid  289

	10.6	 Splitting a database across multiple DbContexts  290
Creating DbContexts that contain only a subset of entities/
tables  290  ■  Passing data between bounded contexts  292

	10.7	 Data validation and error-handling patterns  293
Data validation to your entity classes makes for better
error feedback  293  ■  Business logic should contain checks and
return a list of all errors  294  ■  Catching database server errors and
providing user-friendly feedback  295

	 11	Handling database migrations  300
	11.1	 Part 1—EF Core methods to change the

database schema  301
A view of what databases need updating  301

	11.2	 Code-first: using EF Core’s migrations   302
Stage 1: creating a migration—building the code for
migration   303  ■  Stage 2: applying migrations—updating
a database schema  308  ■  Undoing a migration—Remove-
Migration or update command  311

	11.3	 Database-first: creating a DbContext from a database  312
How to alter or edit the output from the scaffold command  314 
The limitations of the reverse-engineering feature  317

xvixvi ﻿CONTENTS

	11.4	 SQL-first: using SQL change scripts to change the
schema  318

Using an SQL comparison tool to build an SQL change
script  320  ■  Using EfSchemaCompare to check your SQL
matches EF Core’s model  321

	11.5	 Part 2—Issues around a database schema change  322
Applying nonbreaking changes while the current app is
running  323  ■  Applying breaking database changes by stopping
the application  324  ■  Handling breaking database changes when
you can’t stop the app  328

	 12	 EF Core performance tuning  332
	12.1	 Part 1—Deciding which performance issues to fix  333

“Don’t performance tune too early” doesn’t mean you stop
thinking  333  ■  How do you decide what’s slow and needs
performance tuning?  334  ■  The cost of finding and fixing
performance issues  335

	12.2	 Part 2—Techniques for diagnosing a performance
issue  336

Stage 1: get a good overview—measuring the user’s experience  337 
Stage 2: find all the database code involved in the feature you’re
tuning  338  ■  Stage 3: inspecting the SQL code to find poor
performance   338  ■  Techniques for finding database scalability
issues  341

	12.3	 Part 3—Techniques for fixing performance issues  341

	12.4	 Using good patterns makes your application
perform well  342

Using Select loading to load only the columns you
need  342  ■  Using paging and/or filtering of searches to reduce the
rows you load  343  ■  A warning that using lazy loading will affect
database performance  343  ■  Always adding the AsNoTracking
method to read-only queries  344  ■  Using the async version of EF
Core commands to improve scalability  344  ■  Ensuring that your
database access code is isolated/decoupled  344

	12.5	 Performance antipatterns—database access  345
Not minimizing the number of calls to the database  345  ■  Calling
SaveChanges multiple times  346  ■  Allowing too much of
a data query to be moved into the software side  347  ■  Not
replacing suboptimal SQL translations with user-defined

	 xvii	 xvii﻿CONTENTS

functions  348  ■  Not precompiling queries that are used
frequently  350  ■  Expecting EF Core to build the best SQL database
commands  351  ■  Not using the Find method when an entity might
be already loaded  351  ■  Missing indexes from a property that you
want to search on  352  ■  Mismatching column data types  352

	12.6	 Performance antipatterns—software  352
Making DetectChanges work too hard  352  ■  Startup issue: using
one large DbContext  353

	12.7	 Performance patterns—scalability of database
accesses  354

Using pooling to reduce the cost of a new application’s
DbContext  354  ■  Async/await—adding scalability, with small
effect on speed  355  ■  Helping your database scalability by making
your queries simple   356  ■  Picking the right architecture for
applications that need high scalability  356

	 13	 A worked example of performance tuning  358
	13.1	 Part 1a—Making sure a single query performs well  359

Analyzing the book list query to see potential performance
issues  359  ■  Turning the book’s Votes display into a
client-side calculation  361

	13.2	 Part 1b—Improving the query by adding a
DbFunction  363

Looking at the updated query  365  ■  Ensuring that the query
sorting and filtering are performing well  366

	13.3	 Part 2—Converting EF Core commands to SQL
queries  368

Introducing Dapper  368  ■  Rewriting MapBookToDto and
associated EF queries using Dapper  369

13.4	 Part 3—Modifying the database to increase
performance  373

Creating an ActualPrice property—changing the promotion
process  373  ■  Caching the book review values, and not letting them
get out-of-date   376  ■  Calculating AuthorsString when a book is
first created  383  ■  Analyzing the changes—Is the performance
gain worth the effort?  384

13.5	 Comparing parts 1a, 1b, 2, and 3  386

13.6	 Database scalability—what can you do to improve that?  388

xviiixviii ﻿CONTENTS

	 14	Different database types and EF Core services  390
14.1	 What differences do other database server types

bring?  391
Creating an instance of the application’s DbContext for
MySQL  392  ■  What you have to do to convert the SQL Server
application to MySQL  393  ■  Looking at other database server
types and differences  394  ■  Summarizing EF Core’s ability to work
with multiple database types  395

14.2	 Developing a CQRS architecture application
with EF Core  396

Implementation of a two-database CQRS architecture
application  397  ■  How the parts of the CQRS solution interact
with each other   399  ■  Finding book view changes—Part 1,
finding the correct state and key  403  ■  Finding the book view
changes—Part 2, building the correct State  405  ■  Why the CQRS
solution is less likely to have out-of-date cached values  408  ■  Is the
two-database CQRS architecture worth the effort?  409

14.3	 Accessing and changing EF Core services  413
Accessing an EF Core service to help in your own
application  413  ■  Replacing an EF Core service with your own
modified service  414

14.4	 Accessing command-line tools from software  416
How to access EF Core design-time services  417  ■  How to use
design-time services to build the EfSchemaCompare tool  418

	 15	Unit testing EF Core applications  421
15.1	 Introduction—our unit test setup  422

The test environment—the xUnit unit test library  423  ■  A library
I’ve created to help with unit testing EF Core applications  424

15.2	 Simulating the database when testing EF Core
applications  425

The options you have for simulating the database  425  ■  Choosing
between an in-memory or real database for unit testing  426

15.3	 Getting your application’s DbContext ready
for unit testing  427

The application’s DbContext options are provided via its
constructor  427  ■  Setting an application’s DbContext
options via OnConfiguring   428

	 xix	 xix﻿CONTENTS

15.4	 Simulating a database—using an in-memory
database   430

15.5	 Using a real database in your unit tests  432
How to set up a real database for unit testing  432  ■  Running unit
tests in parallel—uniquely named databases  433  ■  Tips on how
to speed up the database creation stage of a unit test  435  ■  How to
handle databases in which you’ve added extra SQL code  438

15.6	 Unit testing a disconnected state update properly  439

15.7	 Mocking a database repository pattern  441

15.8	 Capturing EF Core logging information in unit
testing  443

Using logging to help you build SQL change scripts  446

15.9	 Using the EfSchemaCompare tool in your unit tests  447
Features and options for the EfSchemaCompare tool  449

	 appendix A	 A brief introduction to LINQ  451

	 appendix B	 Early information on EF Core version 2.1  461

		 index  471

xxi

preface
Any software developer should be used to having to learn new libraries or languages,
but for me, it’s been a bit extreme. I stopped coding in 1988 when I went into technical
management, and I didn’t come back to coding until 2009—that’s a 21-year gap. To say
that the landscape had changed is an understatement; I felt like a child on Christmas
morning with so many lovely presents I couldn’t take it all in.

I made all the rookie mistakes at the beginning, like thinking object-oriented pro-
gramming was about using inheritance, which it isn’t. But I learned the new syntax, new
tools (wow!), and reveled in the amount of information I could get online. I chose to
focus on Microsoft’s stack, mainly because of the wealth of documentation available.
That was a good choice at the time, but now with .NET Core and its open source, multi-
platform approach, it turns out to be an excellent choice.

The first applications I worked on in 2009 were ones that optimized and displayed
healthcare needs geographically, especially around where to locate treatment centers.
That required complex math (which my wife provided) and serious database work. I
went through ADO.NET, LINQ to SQL, and then in 2013 I swapped to Entity Frame-
work (EF), when EF 5 supported SQL’s spatial (geographical) types.

Over the intervening years, I used EF a lot and have come to know EF6.x well. I’ve
written extensively on EF in my own blog (www.thereformedprogrammer.net/) and
on the Simple Talk site (www.simple-talk.com/author/jon-smith/). It turns out I
like taking complex software ideas and trying to make them easy for other people to
understand. So, when Manning Publications approached me to write a book on Entity
Framework Core (EF Core), I said yes.

Entity Framework Core in Action covers all the features of EF Core 2.0, with plenty of
examples and lots of code you can run. I’ve also included numerous patterns and

www.thereformedprogrammer.net/
www.simple-talk.com/author/jon-smith/

xxiixxii PREFACE﻿

practices to help you build robust and refactorable code. The book ends with an entire
section, “Using Entity Framework Core in real-world applications,” which shows my
focus on building and shipping real applications. And I have not one, but two, chap-
ters on performance tuning EF Core because your users/clients won’t accept a slow
application.

Some of the most pleasurable chapters to write were ones where I solved a technical
problem, such as the best way to handle business logic (chapter 4), or performance
tuning an application (chapters 13 and 14). These needed a combination of technical
knowledge and insight into what business/development problem I was trying to solve. I
also present the pros and cons of each approach I use, as I don’t believe there is “silver
bullet” answer in software—just a range of compromises that we as developers need to
consider when choosing how to implement something.

xxiii

acknowledgments
While I did most of the work on the book, I had a lot of help along the way and I want
to say thank you to all those who helped.

My wife, Dr. Honora Smith, is not only my first line of proofreading but is the person
who got me back into programming. I love her to bits. A special mention to my great
friend JC for his help and support too.

Manning Publications has been magnificent, with a robust and comprehensive pro-
cess that is thorough (and hard work), but results in an excellent end product. The
team is great, and I’m going to list the significant people in chronological order, start-
ing with Nicole Butterfield, Brian Sawyer, Marjan Bace, Rebecca Rinehart, Bert Bates,
Marina Michaels, Candace Gillhoolley, Ivan Martinović , Christopher Kaufmann, Ana
Romac, and many others who helped with production of the book.

I want to single out Marina Michaels and Mike Shepard, who were my development
editor and technical development editor, respectively. Both Marina and Mike reviewed
each chapter as I wrote them; their quick feedback helped me to refine my approach
early on and made the book much more readable. Thanks also to Andrew Lock, author
of ASP.NET Core in Action ; it was great to compare notes with another author who was
writing a book at the same time as I.

I would also like to thank Julien Pohie, technical proofreader, and the reviewers
of the book: Alberto Acerbis, Anne Epstein, Ernesto Cardenas, Evan Wallace, Foster
Haines, Jeffrey Smith, Mauro Quercioli, Philip Taffet, Rahul Rai, Rami Abdelwa-
hed, Raushan Jha, Ronald Tischliar, Sebastian Rogers, Stephen Byrne, Tanya Wilke,
and Thomas Overby Hansen. Special thanks to the Microsoft people who reviewed the
book: Rowan Miller, Diego Vega, Arthur Vickers, and Tom Dykstra; plus Paul Middleton
and Erik Ejlskov Jensen, who are both open source providers to the EF Core project.

xxivxxiv ﻿ACKNOWLEDGMENTS

Finally, to the whole EF Core team for their work on a great library, plus putting up
with the issues I kept posting in the EF Core’s GitHub issues page. And a thank you to
Rick Anderson at Microsoft for his input over the years and help on getting my articles
out to a wider audience.

xxv

about this book
Entity Framework Core in Action is about how to write EF Core database code quickly,
correctly, and ultimately, for fast performance. To help with the “quick, correct, fast”
aspects, I include a lot of examples with plenty of tips and techniques. And along the
way, I throw in quite a bit on how EF Core works on the inside, because that will help
you when things don’t work the way you think they should.

The Microsoft documentation is good but doesn’t have room for detailed examples.
In this book, I try to give you at least one example of each feature I cover, and you’ll
often find unit tests in the Git repo (see the “About the code” section for links) that test
a feature in multiple ways. Sometimes reading a unit test can convey what’s happening
much more quickly than reading the text in the book can, so consider the unit tests as a
useful resource.

Who should read this book
Entity Framework Core in Action is aimed at both software developers who’ve never before
used EF and seasoned EF6.x developers, plus anyone else who wants to know what
EF Core is capable of. I assume you’re familiar with .NET development with C# and
that you have at least some idea of what a relational database is. You don’t need to be
a C# expert, but if you’re new to C#, you might find some of the code hard to read,
as I don’t explain C#. But I do provide an appendix on LINQ (Language Integrated
Query) in case you haven’t seen LINQ before.

How this book is organized
I’ve tried to build a path that starts with the basics (part 1), goes deep into the details
(part 2), and ends with useful tools and techniques (part 3). I try not to assume you’ll

xxvixxvi ﻿ABOUT THIS BOOK

read the book cover to cover, especially the reference section in part 2, but at least
skim-reading the first five chapters will help you understand the basics that I use later
in the book.

Part 1: Getting started

¡	Chapter 1 introduces EF Core with a super-simple console application so you can
see all the parts of EF Core in action. I also provide an overview of how EF Core
works and why you might like to use it.

¡	Chapter 2 looks at querying (reading data from) the database. I cover the rela-
tionships between data stored in the database and how you can load that related
data by using EF Core.

¡	Chapter 3 moves on to changing the data in a database: adding new data, updat-
ing existing data, and deleting data from a database.

¡	Chapter 4 looks at how to build robust business logic that uses EF Core to access
the database. Business logic is the name given to code that implements business
rules or workflow that’s specific to the business problem your application solves.

¡	Chapter 5 is about building an ASP.NET Core application that uses EF Core. It
pulls together the code developed in chapters 2 to 4 to make a web application. I
also talk about deploying the web application and accessing the hosted database.

Part 2: Entity Framework Core in Depth

¡	Chapter 6 covers the configuration of nonrelational properties—properties that
hold a value, such as int, string, DateTime, and so on.

¡	Chapter 7 covers the configuration of relationships—the links between classes,
such as a Book class linking to one or more Author classes. It also includes special
mapping techniques, such as mapping multiple classes to one table.

¡	Chapter 8 looks at advanced mapping features and the whole area of detecting
and handling concurrency conflicts.

¡	Chapter 9 digs deep into how EF Core’s DbContext works, with a blow-by-blow
view of what the various methods and properties do inside your application’s
DbContext.

Part 3: Using Entity Framework Core in real-world applications

¡	Chapter 10 is a compendium of tools, patterns and techniques that can make
your EF Core quicker to develop and/or more robust. I also look at using EF
Core in a domain-driven design approach.

¡	Chapter 11 covers all the ways you can change the database structure when using
EF Core. It also looks at the issues that arise when you need to change the struc-
ture of a database that’s being used by a live application.

¡	Chapter 12 lists all the issues that could affect the performance of your database
accesses, and what to do about them.

	 xxvii	 xxvii﻿ ﻿ABOUT THIS BOOK

¡	Chapter 13 is a worked example of performance tuning an EF Core application. I
take the book app, developed in part 1, and apply three levels of performance tuning.

¡	Chapter 14 starts with what happens if you change the database type. It then looks
at another application architecture that can help performance of some business
applications. It ends with accessing and modifying EF Core’s internal services.

¡	Chapter 15 is all about unit-testing applications that use EF Core. I’ve also cre-
ated a NuGet package that you can use to help in your own unit testing.

Appendixes

¡	Appendix A introduces the LINQ language that EF Core uses. This is useful for those
who are unfamiliar with LINQ, or anybody who wants a quick refresh on LINQ.

¡	Appendix B provides preliminary information on the EF Core 2.1 release, with
links to Microsoft’s documentation.

NOTE   I have added notes about EF Core 2.1 features to chapters throughout
the book. These point out areas where the 2.1 release offers new options over
what EF Core 2.0 has.

About the code
I feel I really know something only if I’ve written code to use that function or feature,
which is why every chapter has its own Git branch, or sometimes a branch per chap-
ter section, in the repo found at https://github.com/JonPSmith/EfCoreInAction.
See the “Where’s the code” section of the Readme file in the Git repo for more infor-
mation at https://github.com/JonPSmith/EfCoreInAction/blob/master/README
.md#wheres-the-code.

Chapters 1 and 2 include sidebars on how to download and run the sample code
locally. As you look at each chapter, you can select a different Git branch to access the
code specifically for that chapter. Also, look out for the associated unit tests, grouped by
chapter and feature.

NOTE   Chapter 15, which is about unit testing, has its own Git repo at https://
github.com/JonPSmith/EfCore.TestSupport. I made this separate because it
contains tools and features that will help you with unit testing. You can also
install the NuGet package called EfCore.TestSupport into your test project to
use the features I describe in chapter 15.

To write your own code, or run the code from the Git repo, you will need the following:

1	 A development environment
¡	Visual Studio 2017 (VS 2017) is the recommended version of Visual Studio for

.NET Core development. A community version of Visual Studio 2017 is available
that’s free for individuals or small companies; see www.visualstudio.com/vs/
compare/. You should ensure that you have VS 2017 version 15.7.1 or above to

https://github.com/JonPSmith/EfCoreInAction
https://github.com/JonPSmith/EfCoreInAction/blob/master/README.md#wheres-the-code
https://github.com/JonPSmith/EfCoreInAction/blob/master/README.md#wheres-the-code
https://github.com/JonPSmith/EfCore.TestSupport
https://github.com/JonPSmith/EfCore.TestSupport

xxviiixxviii ﻿ ﻿ABOUT THIS BOOK

pick up the latest version of NuGet. Older versions of NuGet have a problem; see
https://stackoverflow.com/a/45946273/1434764.

¡	Visual Studio Code, which is a newer, lighter, open source development envi-
ronment that runs on Windows, Mac, and Linux, and is free is another possibil-
ity. See http://code.visualstudio.com/. I’ve set up the .vscode directory in each
branch to correctly build, test, and run the code.

2	 The .NET Core SDK

NOTE   The Git repo assumes .NET Core 2.0, but I have updated a few branches
to .NET Core 2.1—see https://github.com/JonPSmith/EfCoreInAction#net
-core-21-examples.

¡	If you install VS 2017 and include the .NET Core Cross-Platform Development
feature, found under the Other Toolsets section, during the install workloads
stage, then that will install the .NET Core.

¡	Alternatively, if you’re using Visual Studio Code, you need to download and install
the .NET Core SDK for your development environment. See www.microsoft
.com/net/download/core.

If you’re in a hurry to see the example book-selling site (referred to in the book as
the book app), a live version is at http://efcoreinaction.com/ (chapter 13 version) and
http://cqrsravendb.efcoreinaction.com/ (chapter 14 CQRS version). These sites don’t
allow changes to the data other than you “buying a book” (no money changes hands,
but then again, I don’t send you a book!). But if you download the code and run the
book app locally, various add, update, or delete commands will become available to you.

Code conventions
The code samples in this book, and their output, appear in a fixed-width font and
are often accompanied by annotations. The code samples are deliberately kept as sim-
ple as possible, because they aren’t intended to be reusable parts that can be plugged
into your code. Instead, the code samples are stripped down so that you can focus on
the principle being illustrated.

This book contains many examples of source code, both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

http://code.visualstudio.com/
https://github.com/JonPSmith/EfCoreInAction#net-core-21-examples
https://github.com/JonPSmith/EfCoreInAction#net-core-21-examples
www.microsoft.com/net/download/core
www.microsoft.com/net/download/core
http://efcoreinaction.com/
http://cqrsravendb.efcoreinaction.com/

	 xxix	 xxix﻿ ﻿ABOUT THIS BOOK

Source code for the examples in this book is available for download from the Git
repo at https://github.com/JonPSmith/EfCoreInAction.

Book forum
The purchase of Entity Framework Core in Action includes free access to a private web
forum run by Manning Publications, where you can make comments about the book,
ask technical questions, and receive help from the author and from other users. To
access the forum and subscribe to it, point your web browser to https://www.manning.
com/books/entity-framework-core-in-action. This page provides information about
how to get on the forum when you’re registered and what kind of help is available. You
can learn more about Manning’s forums and the rules of conduct at https://forums.
manning.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the author,
whose contribution to the book’s forum remains voluntary (and unpaid). We suggest
that you try asking him some challenging questions, lest his interest strays! The book
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Online resources
Here are useful links to the Microsoft documentation and code:

¡	Microsoft’s EF Core documentation: https://docs.microsoft.com/en-us/ef/
core/index

¡	The EF Core roadmap: https://github.com/aspnet/EntityFrameworkCore/
wiki/roadmap

¡	The EF Core code: https://github.com/aspnet/EntityFrameworkCore
¡	ASP.NET Core, working with EF Core: https://docs.microsoft.com/en-us/

aspnet/core/data/
¡	Stack Overflow EF Core tag: [entity-framework-core] https://stackoverflow.com

https://docs.microsoft.com/en-us/ef/core/index
https://docs.microsoft.com/en-us/ef/core/index
https://github.com/aspnet/EntityFrameworkCore/wiki/roadmap
https://github.com/aspnet/EntityFrameworkCore/wiki/roadmap
https://github.com/aspnet/EntityFrameworkCore
https://docs.microsoft.com/en-us/aspnet/core/data/
https://docs.microsoft.com/en-us/aspnet/core/data/
https://stackoverflow.com

xxx

about the author
Jon P Smith is a full-stack developer focused on the .NET stack
covering the full range of features from database access, web/mobile
applications, and front-end JavaScript libraries. Jon has designed
and built several web applications, all with him as the lead developer.
Jon writes articles on a range of topics, mainly about EF, ASP.NET,
and React.js. He works as an independent principal developer/
consultant.

xxxi

about the cover illustration
The figure on the cover of Entity Framework Core in Action is captioned “The Wife of a Franc
Merchant.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of
Different Nations, Ancient and Modern (four volumes), London, published between 1757
and 1772. The title page states that these are hand-colored copperplate engravings,
heightened with gum arabic.

Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was
an English cartographer who was the leading map supplier of his day. He engraved and
printed maps for government and other official entities and produced a wide range of
commercial maps and atlases, especially of North America. His work as a map maker
sparked an interest in local dress customs of the lands he surveyed and mapped, which
are brilliantly displayed in this collection. Fascination with faraway lands and travel for
pleasure were relatively new phenomena in the late 18th century, and collections such
as this one were popular, introducing both the tourist as well as the armchair traveler to
the inhabitants of other countries.

The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness
and individuality of the world’s nations some 200 years ago. Dress codes have changed
since then, and the diversity by region and country, so rich at the time, has faded away.
It’s now often hard to tell the inhabitants of one continent from another. Perhaps, try-
ing to view it optimistically, we’ ve traded a cultural and visual diversity for a more varied
personal life—or a more varied and interesting intellectual and technical life.

At a time when it’s difficult to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers based
on the rich diversity of regional life of two centuries ago, brought back to life by Jeffreys’
pictures.

Part 1

Getting started

Data is everywhere, growing by petabytes per year, and a lot of it is stored in
databases. Millions of applications are also out there—half a million new mobile
applications in 2016 alone—and most of them need to access data in databases.
And I haven’t started on the Internet of Things yet. So it shouldn’t be a surprise
that Gartner says, “Global IT Spending to Reach $3.5 Trillion in 2017” (www
.gartner.com/newsroom/id/3482917).

The good news for you is that your skills will be in demand. But the bad news
is that the pressure to develop applications quickly is unrelenting. This book is
about one tool that you can use to write database access code quickly: Microsoft’s
Entity Framework Core (EF Core). EF Core provides an object-oriented way to
access relational databases, and in EF Core 2 nonrelational (NoSQL) databases,
in the .NET environment. The cool thing about EF Core, and the other .NET
Core libraries, is that they can run on Windows, Linux, and Apple platforms.

In part 1, I get you into the code straightaway. In chapter 1, you’ll build a
super-simple console application, and by the end of chapter 5, we’ll have covered
enough for you to build a web application that accesses a database. Chapters 2 and
3 explain the reading and writing of data to a relational database, respectively, and
chapter 4 covers writing business logic, the business rules specific to each appli-
cation. In chapter 5, you’ll pull it all together by using Microsoft’s ASP.NET Core
web framework to build an example book-selling site, which you can try on a live
site at http://efcoreinaction.com/.

You’ll have a lot of learning in part 1, even though I skip over a few topics,
mainly by relying on a lot of EF Core’s default settings. Nevertheless, part 1 should
give you a good understanding of what EF Core can do, with later parts growing
your knowledge with extra EF Core features, more detail on how you can config-
ure EF Core, and chapters devoted to specific areas such as performance tuning.

http://www.gartner.com/newsroom/id/3482917
http://www.gartner.com/newsroom/id/3482917
http://efcoreinaction.com/

3

1Introduction to
Entity FrameworkCore

This chapter covers
¡	Understanding the anatomy of an EF Core

application

¡	Accessing and updating a database with
EF Core

¡	Exploring a real-world EF Core application

¡	Deciding whether to use EF Core in your
application

Entity Framework Core, or EF Core, is a library that allows software developers to access
databases. There are many ways to build such a library, but EF Core is designed as an
object-relational mapper (O/RM). O/RMs work by mapping between the two worlds:
the relational database with its own API, and the object-oriented software world of
classes and software code. EF Core’s main strength is allowing software developers
to write database access code quickly.

EF Core, which Microsoft released in 2016, is multiplatform-capable: it can run on
Windows, Linux, and Apple. It does this as part of the .NET Core initiative, hence the
Core part of the EF Core name. (But EF Core can be used with the existing .NET Frame-
work too—see the note in section 1.10.5.) EF Core, ASP.NET Core (a web server-side

4 Chapter 1  Introduction to Entity FrameworkCore

application), and .NET Core are also all open source, each with an active issues page for
interacting with development teams.

EF Core isn’t the first version of Entity Framework; an existing, non-Core, Entity
Framework library is known as EF6.x. EF Core starts with years of experience built into it
via feedback from these previous versions, 4 to 6.x. It has kept the same type of interface
as EF6.x but has major changes underneath, such as the ability to handle nonrelational
databases, which EF6.x wasn’t designed to do. As a previous user of EF5 and EF6.x, I can
see where EF Core has been improved, as well as where it’s still missing features of the
old EF6.x library that I liked (although those features are on the roadmap).

This book is intended for both software developers who’ve never used Entity Frame-
work and seasoned EF6.x developers, plus anyone who wants to know what EF Core is
capable of. I do assume that you’re familiar with .NET development with C# and that
you have at least some idea of what relational databases are. I don’t assume you know
how to write Structured Query Language (SQL), the language used by a majority of
relational databases, because EF Core can do most of that for you. But I do show the
SQL that EF Core produces, because it helps you understand what’s going on; using
some of the EF Core advanced features requires you to have SQL knowledge, but the
book provides plenty of diagrams to help you along the way.

TIP   If you don’t know a lot about SQL and want to learn more, I suggest the
W3Schools online resource: www.w3schools.com/sql/sql_intro.asp. The SQL
set of commands is vast, and EF Core queries use only a small subset (for exam-
ple, SELECT, WHERE, and INNER JOIN), so that’s a good place to start.

This chapter introduces you to EF Core through the use of a small application that
calls into the EF Core library. You’ll look under the hood to see how EF Core interprets
software commands and accesses the database. Having an overview of what’s happen-
ing inside EF Core will help you as you read through the rest of the book.

1.1	 What you’ll learn from this book
The book is split into three parts. In addition to this chapter, part 1 has four other
chapters that cover:

¡	Querying the database with EF Core
¡	Updating the database with EF Core (creating, updating, and deleting data)
¡	Using EF Core in business logic
¡	Building an ASP.NET Core web application that uses EF Core

By the end of part 1, you should be able to build a .NET application that uses a rela-
tional database. But the way the database is organized is left to EF Core; for instance,
EF Core’s default configuration sets the type and size of the database columns, which
can be a bit wasteful on space.

Part 2 covers how and why you can change the defaults, and looks deeper into some
of the EF Core commands. After part 2, you’ll be able to use EF Core to create a database

http://www.w3schools.com/sql/sql_intro.asp

	 5My “lightbulb moment” with Entity Framework

in exactly the way you want it, or link to an existing database that has a specific schema,
or design. In addition, by using some of EF Core’s advanced features, you can change
the way the database data is exposed inside your .NET application—for instance, con-
trolling software access to data more carefully or building code to automatically track
database changes.

Part 3 is all about improving your skills and making you a better developer, and
debugger, of EF Core applications. I present real-world applications of EF Core, starting
with a range of known patterns and practices that you can use. You’ll read chapters on
unit testing EF Core applications, extending EF Core, and most important, finding and
fixing EF Core performance issues.

1.2	 My “lightbulb moment” with Entity Framework
Before we get into the nitty-gritty, let me tell you one defining moment I had when
using Entity Framework that put me on the road to embracing EF. It was my wife who
got me back into programming after a 21-year gap (that’s a story in itself!).

My wife, Dr. Honora Smith, is a lecturer in mathematics at the University of South-
ampton who specializes in the modeling of healthcare systems, especially focusing on
where to locate health facilities. I had worked with her to build several applications to
do geographic modeling and visualization for the UK National Health Service and work
for South Africa on optimizing HIV/AIDS testing.

At the start of 2013, I decided to build a web application specifically for healthcare
modeling. I used ASP.NET MVC4 and EF5, which had just come out and supported
SQL spatial types that handle geographic data. The project went okay, but it was hard
work. I knew the frontend was going to be hard; it was a single-page application using
Backbone.js, but I was surprised at how long it took me to do the server-side work.

I had applied good software practices and made sure the database and business logic
were matched to the problem space—that of modeling and optimizing the location of
health facilities. That was fine, but I spent an inordinate amount of time writing code to
convert the database entries and business logic into a form suitable to show to the user.
Also, I was using a Repository/Unit of Work pattern to hide EF5 code, and I was contin-
ually having to tweak areas to make the repository work properly.

At the end of a project, I always look back and ask, “Could I have done that better?”
As a software architect, I’m always looking for parts that (a) worked well, (b) were rep-
etitious and should be automated, or (c) had ongoing problems. This time, the list was
as follows:

¡	Worked well—The ServiceLayer, a layer in my application that isolated/adapted
the lower layers of the application from the ASP.NET MVC4 frontend, worked
well. (I introduce this layered architecture in chapter 2.)

¡	Was repetitious—I used ViewModel classes, also known as data transfer objects
(DTOs), to represent the data I needed to show to the user. Using a View-
Model/DTO worked well, but writing the code to copy the database tables to

6 Chapter 1  Introduction to Entity FrameworkCore

the ViewModel/DTO was repetitious and boring. (I also talk about ViewModels/
DTOs in chapter 2.)

¡	Had ongoing problems—The Repository/Unit of Work pattern didn’t work for me.
Ongoing problems occurred throughout the project. (I cover the Repository pat-
tern and alternatives in chapter 10.)

As a result of my review, I built a library called GenericServices (https://github.com/
JonPSmith/GenericServices) to use with EF6.x. This automated the copying of data
between database classes and ViewModels/DTOs and removed the need for a Repos-
itory/Unit of Work pattern. It seemed to be working well, but to stress-test Generic-
Services, I decided to build a frontend over one of Microsoft’s example databases, the
AdventureWorks 2012 Light database. I built the whole application with the help of a
frontend UI library in 10 days!

Entity Framework + the right libraries + the right approach
= very quick development of database access code

The site isn’t that pretty, but that wasn’t the point. My GenericServices library allowed
me to quickly implement a whole range of database Create, Read, Update, and Delete
(CRUD) commands. Definitely a “lightbulb moment,” and I was hooked on EF. You
can find the site at http://complex.samplemvcwebapp.net/.

Since then, I’ve built other libraries, some open source and some private, and used
them on several projects. These libraries significantly speed up the development of
90% of database accesses, leaving me to concentrate on the harder topics, such as build-
ing great frontend interfaces, writing custom business logic to meet the client’s specific
requirements, and performance tuning where necessary.

1.3	 Some words for existing EF6.x developers

TIME-SAVER   If you’re new to Entity Framework, you can skip this section.

If you’re a reader who knows EF6.x, much of EF Core will be familiar to you. To help
you navigate quickly through this book, I’ve added EF6 notes.

EF6   Watch for notes like this throughout the book. They point out the places
where EF Core is different from EF6.x. Also, be sure to look at the summaries at
the end of each chapter. They point out the biggest changes between EF6 and
EF Core in the chapter.

I’ll also give you one tip from my journey of learning EF Core. I know EF6.x well, but
that became a bit of a problem at the start of using EF Core. I was using an EF6.x
approach to problems and didn’t notice that EF Core had new ways to solve them. In
most cases, the approach is similar, but in some areas, it isn’t.

http:// mng.bz/2x0T
http:// mng.bz/2x0T
http://complex.samplemvcwebapp.net/

	 7An overview of EF Core

My advice to you as an existing EF6.x developer is to approach EF Core as a new
library that someone has written to mimic EF6.x, but understand that it works in a dif-
ferent way. That way, you’ll keep your eyes open for the new and different ways of doing
things in EF Core.

1.4	 An overview of EF Core
EF Core can be used as an O/RM that maps between the relational database and the
.NET world of classes and software code. Table 1.1 shows how EF Core maps the two
worlds of the relational database and .NET software.

Table 1.1   EF Core mapping between a database and .NET software

Relational database .NET software

Table .NET class

Table columns Class properties/fields

Rows Elements in .NET collections—for instance, List

Primary keys: unique row A unique class instance

Foreign keys: define a relationship Reference to another class

SQL—for instance, WHERE .NET LINQ—for instance, Where(p => …

1.4.1	 The downsides of O/RMs

Making a good O/RM is complex. Although EF6.x or EF Core can seem easy to use, at
times the EF Core “magic” can catch you by surprise. Let me mention two issues to be
aware of before we dive into how EF Core works.

The first issue is object-relational impedance mismatch. Database servers and object-ori-
ented software use different principles: databases use primary keys to define that a row
is unique, whereas .NET class instances are, by default, considered unique by their ref-
erence. EF Core handles most of this for you, but your nice .NET classes get “polluted”
by these keys, and their values matter. In most cases, EF Core is going to work fine, but
sometimes you need to do things a little differently to a software-only solution to suit the
database. One example you’ll see in chapter 2 is a many-to-many relationship: easy in
C#, but a bit more work in a database.

The second issue is that an O/RM—and especially an O/RM as comprehensive as
EF Core—hides the database so well that you can sometimes forget about what’s going
on underneath. This problem can cause you to write code that works great in your test
application, but performs terribly in the real world when the database is complex and
has many simultaneous users.

8 Chapter 1  Introduction to Entity FrameworkCore

That’s why I spend time in this chapter showing how EF Core works on the inside,
and the SQL it produces. The more you understand about what EF Core is doing, the
better equipped you’ll be to write good EF Core code, and more important, know what
to do when it doesn’t work.

NOTE   Throughout this book, I use a “get it working, but be ready to make it
faster if I need to” approach to using EF Core. EF Core allows me to develop
quickly, but I’m aware that because of EF Core, or my poor use of it, the perfor-
mance of my database access code might not be good enough for a particular
business need. Chapter 5 covers how to isolate your EF Core so you can tune it
with minimal side effects, and chapter 13 shows how to find and improve data-
base code that isn’t fast enough.

1.5	 What about NoSQL?
We can’t talk about relational databases without mentioning nonrelational databases,
also known colloquially as NoSQL (see http://mng.bz/DW63). Both relational and
nonrelational databases have a role in modern applications. I’ve used both SQL Server
(relational database) and Azure Tables (nonrelational database) in the same applica-
tion to handle two business needs.

EF Core is designed to handle both relational and nonrelational databases—a depar-
ture from EF6.x, which was designed around relational databases only. Many of the
principles covered in this book apply to both types of databases, but because relational
databases are inherently much more complex than nonrelational databases, more com-
mands are needed to use relational databases. You’ll see whole chapters dedicated to
commands that are used only in a relational database. Chapter 7, for instance, is all
about modeling database relationships.

EF Core 2.0 will contain a preview database provider for the Azure NoSQL database,
Cosmos DB. The aim is to use this as a learning exercise for handling NoSQL databases,
with a robust solution coming out in EF Core 2.2. More NoSQL database providers are
likely to be written for EF Core over time, either by Microsoft or the writers of NoSQL
databases.

NOTE   In section 14.2, you’ll build an application using both an SQL/relational
database and a NoSQL database in a Command Query Responsibility Segrega-
tion (CQRS) architectural pattern to get a higher-performing application.

1.6	 Your first EF Core application
In this chapter, you’ll start with a simple example so that we can focus on what EF
Core is doing, rather than what the code is doing. For this, you’re going to use a small
console application called MyFirstEfCoreApp, which accesses a simple database. The
MyFirstEfCoreApp application’s job is to list and update books in a supplied database.
Figure 1.1 shows the console output.

http://mng.bz/DW63

	 9Your first EF Core application

List all four books

Update Quantum
Networking book

Commands: 1 (list), u (change url) and e (exit)
> 1
Refactoring by Martin Fowler
 Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler
 Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans
 Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person
 Published on 01-Jan-2057. - no web url given -
> u
New Quantum Networking WebUrl > httqs://entangled.moon
... Saved Changes called.
Refactoring by Martin Fowler
 Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler
 Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans
 Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person
 Published on 01-Jan-2057. httqs://entangled.moon
>

Figure 1.1   The output from the console application you’ll use to look at how EF Core works

This application isn’t going to win any prizes for its interface or complexity, but it’s a
good place to start, especially because I want to show you how EF Core works internally
in order to help you understand what’s going on later in this book.

You can download this example application from the Chapter01 branch of the Git
repo at http://mng.bz/KTjz. You can look at the code and run the application. To do
this, you need software development tools.

1.6.1	 What you need to install

You can use two main development tools to develop a .NET Core application: Visual
Studio 2017 (VS 2017) or Visual Studio Code (VS Code). I describe using VS 2017
for your first application, because it’s slightly easier to use for newcomers to .NET
development.

You need to install Visual Studio 2017 (VS 2017) from www.visualstudio.com. Numer-
ous versions exist, including a free community version, but you need to read the license
to make sure you qualify; see www.visualstudio.com/vs/community/.

When you install VS 2017, make sure you include the .NET Core Cross-Platform
Development feature, which is under the Other Toolsets section during the Install
Workloads stage. This installs .NET Core on your system. Then you’re ready to build a
.NET Core application. See http://mng.bz/2x0T for more information.

1.6.2	 Creating your own .NET Core console app with EF Core

I know many developers like to create their own applications, because building the code
yourself means that you know exactly what’s involved. This section details how to create
the .NET Core console application MyFirstEfCoreApp by using Visual Studio 2017.

http://mng.bz/KTjz
http://www.visualstudio.com
http://www.visualstudio.com/vs/community/
http://mng.bz/2x0T

10 Chapter 1  Introduction to Entity FrameworkCore

Creating a .NET Core console application

The first thing you need to do is create a .NET Core console application. Using VS
2017, here are the steps:

1	 In the top menu of VS 2017, click File > New > Project to open the New Project form.

2	 From the installed templates, select Visual C# > .NET Core > Console App
(.NET Core).

3	 Type in the name of your program (in this case, MyFirstEfCoreApp) and make
sure the location is sensible. By default, VS 2017 will put your application in a
directory ending with \Source\Repos.

4	 Make sure the Create Directory for Solution box is ticked so that your application
has its own folder.

5	 If you want to create a Git repo for this project, make sure the Create New Git
Repository box is selected too. Then click OK.

At this point, you’ve created a console application, and the editor should be in the file
called Program.cs.

TIP   You can find out which level of .NET Core your application is using by
choosing Project > MyFirstEfCoreApp Properties from the main menu; the
Application tab shows the Target Framework.

Adding the EF Core library to your application

You need to install the correct EF Core NuGet library for the database you’re going
to use. For local development, Microsoft.EntityFrameworkCore.SqlServer is the best
choice, because it’ll use the development SQL Server that was installed when you
installed VS 2017.

You can install the NuGet library in various ways. The more visual way is to use the
NuGet Package Manager. The steps are as follows:

1	 In the Solution Explorer, typically on the right-hand side of VS 2017, right-click
the Dependencies line in your console application and select the Manage NuGet
Packages option.

2	 At the top right of the NuGet Package Manager page that appears, click the
Browse link.

3	 In the Search box below the Browse link, type Microsoft.EntityFramework-
Core.SqlServer and then select the NuGet package with that name.

4	 A box appears to the right of the list of NuGet packages with the name
Microsoft.EntityFrameworkCore.SqlServer at the top and an Install button below
it, showing which version will install.

5	 Click the Install button and then accept the license agreements. The package
installs. Installation could take a little while, depending on your internet connec-
tion speed.

	 11Your first EF Core application

Downloading and running the example application from the Git repo
You have two options for downloading and running the MyFirstEfCoreApp console appli-
cation found in the Git repo: either VS 2017 or VS Code. I describe both.

Using Visual Studio 2017, version 15.3.3 or above (VS 2017), follow these steps:

1	 Clone the Git repo. First you need to select the Team Explorer view and select the
Manage Connections tab. In the Local Git Repositories section, click the Clone
button. This opens a form containing an input line saying “Enter the URL of a Git
repo to clone” in which you should input the URL https://github.com/JonPSmith/
EfCoreInAction. The local directory path shown below the URL should update to
end with EfCoreInAction. Now click the Clone button at the bottom of the form.

2	 Select the right branch. After the clone has finished, the list of local Git reposi-
tories should have a new entry called EfCoreInAction. Double-click this, and the
Home tab appears. Currently, the Git repo will be on the master branch, which
doesn’t have any code. You need to select the remotes/origin > Chapter01 branch:
click the Branches button, click the Remotes/Origin drop-down, and select Chap-
ter01. Next, click the Home button. You’ll see a Solution called EfCoreInAction.sln,
which you need to click. That loads the local solution, and you’re ready to run the
application.

3	 Run the application. Go to the Solutions Explorer window, which shows you the
code. Click any of the classes to see the code. If you press F5 (Start Debugging),
the console application will start in a new command-line window. The first line
shows you the commands you can type. Have fun!

Using Visual Studio Code (VS Code), follow these steps:

Note: I assume that you’ve set up VS Code to support C# development.

1	 Clone the Git repo. In the command palette (Ctrl-Shift-P), type Git: Clone. This
presents you with a Repository Url input line, in which you should place the https://
github.com/JonPSmith/EfCoreInAction URL and then press the Return key. You’ll
then see a Parent Directory input line; indicate the directory that will contain the
Git repo and then press the Return key. This clones the Git repo to your local stor-
age, in a directory called EfCoreInAction.

2	 Select the right branch. After the clone, you’ll see a message asking, “Would you
like to open the cloned repository?” Click the Open Repository button to do that.
You should see just a few files in the master branch, but no code. Select the Chap-
ter01 branch by typing Git: Checkout to in the command palette (Ctrl-Shift-P)
and selecting the origin/Chapter01 branch. The files change, and you’ll now have
the code for the MyFirstEfCoreApp console application.

3	 Run the application. I’ve already set up the tasks.json and launch.json files for this
project, so you can press F5 to start debugging. The console application starts in
a new command-line window. The first line shows the commands you can type.
Have fun!

https://github.com/JonPSmith/EfCoreInAction
https://github.com/JonPSmith/EfCoreInAction
https://github.com/JonPSmith/EfCoreInAction
https://github.com/JonPSmith/EfCoreInAction

12 Chapter 1  Introduction to Entity FrameworkCore

1.7	 The database that MyFirstEfCoreApp will access
EF Core is about accessing databases, but where does that database come from? EF
Core gives you two options: EF Core can create it for you, known as code-first, or you can
provide an existing database you built outside EF Core, known as database-first.

EF6    In EF6, you could use an EDMX/database designer to visually design
your database, an option known as design-first. EF Core doesn’t support the
design-first approach, and there are no plans to add it.

In this chapter, we’re going to skip over how I created the database for the MyFirstEf-
CoreApp application and simply assume it exists.

NOTE   In my code, I use a basic EF Core command meant for unit testing to
create the database, because it’s simple and quick. Chapter 2 covers how to get
EF Core to create a database properly, and chapter 11 presents the whole issue
of creating and changing databases.

For this MyFirstEfCoreApp application example, I created a simple database, shown in
figure 1.2, with only two tables:

¡	A Books table holding the book information
¡	An Author table holding the author of each book

NOTE   The Books table name comes from the DbSet<Book> property name of
Books in the application’s DbContext, which I show in figure 1.5. The Author
table name doesn’t have a DbSet<T> property in the application’s DbContext,
so the table defaults to the class name, Author. Section 6.10.1 covers these con-
figuration rules in more detail.

Books

Tables

Columns

BookId

Title
Description
PublishedOn
AuthorId

PK

FK1

Author

AuthorId

Name
WebUrl

PK

Primary keys

Columns

Foreign key

Foreign-key
constraint

Figure 1.2   Our example relational database with two tables: Books and Author

Figure 1.3 shows the content of the database. It holds only four books, the first two of
which have the same author, Martin Fowler.

	 13Setting up the MyFirstEfCoreApp application

Refactoring1

Patterns of Enterprise Ap2

Domain-Driven Design3

Quantum Networking

Improving h

Written in d

Linking bus

Entanged q

08-Jul-1999

15-Nov-2002

30-Aug-2003

01-Jan-20574

1

1

2

3

Martin Fowler1

Eric Evans2

Future Person3

http://ma

http://don

null

Book Title Description AvailableFrom Auth Auth Name WebUrlRows

Figure 1.3   The content of the database, showing four books, two of which have the same author

1.8	 Setting up the MyFirstEfCoreApp application
Having created and set up a .NET Core console application, you can now start writing
EF Core code. You need to write two fundamental parts before creating any database
access code:

1	 The classes that you want EF Core to map to the tables in your database

2	 The application’s DbContext, which is the primary class that you’ll use to config-
ure and access the database

1.8.1	 The classes that map to the database—Book and Author

EF Core maps classes to database tables. Therefore, you need to create a class that will
define the database table, or match a database table if you already have a database. Lots
of rules and configurations exist (covered later in the book), but figure 1.4 gives the
typical format of a class that’s mapped to a database table.

EF Core maps
.NET classes to
database tables.

In this case, the class
Book is mapped to
the table Books.

A class needs a primary key.
We’re using an EF Core naming
convention that tells EF Core
that the property BookId is
the primary key.

The AuthorId foreign key is used in the
database to link a row in the Books table
to a row in the Author table.

The Author property is an EF Core navigational property. EF Core uses this on a save
to see whether the Book has an Author class attached—if so, it sets the foreign key, AuthorId.

Upon loading a Book class, the method Include will fill this property with the Author
class that’s linked to this Book class by using the foreign key, AuthorId.

Books

BookId

Title

Description

PublishedOn

AuthorId

public class Book
{
 public int BookId { get; set; }

 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime PublishedOn { get; set; }

 public int AuthorId { get; set; }

 public Author Author { get; set; }
}

PK

FK1

These properties
are mapped to the

table’s columns.

Figure 1.4   The.NET class Book, on the left, maps to a database table called Books, on the right. This is
a typical way to build your application, with multiple classes that map to database tables.

14 Chapter 1  Introduction to Entity FrameworkCore

Listing 1.1 shows the other class you’ll be using: Author. This has the same structure
as the Book class in figure 1.4, with a primary key that follows the EF Core naming con-
ventions of <ClassName>Id (see section 6.3.15). The Book class has a property called
AuthorId, which EF Core knows is a foreign key because it has the same name as the
Author primary key.

Listing 1.1   The Author class from MyFirstEfCoreApp

public class Author
{
 public int AuthorId { get; set; }
 public string Name { get; set; }
 public string WebUrl { get; set; }
}

1.8.2	 The application’s DbContext

The other important part of the application is its DbContext. This is a class that
you create that inherits from EF Core’s DbContext class. This holds the informa-
tion EF Core needs to configure that database mapping, and is also the class you
use in your code to access the database (see section 1.9.2). Figure 1.5 shows the
application’s DbContext, called AppDbContext, that the MyFirstEfCoreApp console
application uses.

You must have a class that inherits from the EF Core class DbContext. This
class holds the information and configuration for accessing your database.

Our database has a table called Author, but you purposely didn’t create a property for that table.
EF Core finds that table by finding a navigational property of type Author in the Book class.

The database connection string holds
information about the database:
• How to find the database server
• The name of the database
• Authorization to access the database

In a console application, you configure
EF Core’s database options by
overriding the OnConfiguring method.
In this case you tell it you’re using an
SQL Server database by using the
UseSqlServer method.

By creating a property called Books
of type DbSet<Book>, you tell EF Core
that there’s a database table named
Books, and it has the columns and
keys as found in the Book class.

public class AppDbContext : DbContext
{
 private const string ConnectionString =
 @” Server = (local db)\nssql local dv;
 Database=MyFirstEfCoreDb;
 Trusted_Connection=True”;

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 optionsBuilder
 .UseSqlServer(connectionString);
 }

 public DbSet<Book> Books { get; set; }

}

Figure 1.5   Two main parts of the application’s DbContext created for the MyFirstEfCoreApp console
application. First, the setting of the database options to define what type of database to use and where
it can be found. Second, the DbSet<T> property(s) that tell EF Core what classes should be mapped to
the database.

Holds the primary key of the Author row
in the DB. Note that the foreign key in
the Book class has the same name.

	 15Looking under the hood of EF Core

In our small example application, all the decisions on the modeling are done by EF
Core, which works things out by using a set of conventions. You have loads of extra
ways to tell EF Core what the database model is, and these commands can get complex.
It takes both chapter 6 and chapter 7 to cover all the options available to you as a
developer.

Also, you’re using a standard approach to define the database access in a console
application: overriding the OnConfiguring method inside the application’s DbContext
and providing all the information EF Core needs to define the type and location of the
database. The disadvantage of this approach is that it has a fixed connection string,
which makes development and unit testing difficult.

For ASP.NET Core web applications, this is a bigger problem, because you want to
access a local database for testing, and a different hosted database when running in pro-
duction. In chapter 2, as you start building an ASP.NET Core web application, you’ll use
a different approach that allows you to change the database string (see section 2.2.2).

1.9	 Looking under the hood of EF Core
Having built your MyFirstEfCoreApp application, you can now use it to see how an EF
Core library works. The focus isn’t on the application code but on what happens inside
the EF Core library when you read and write data to the database. My aim is to provide
you with a mental model of what happens when a database access code uses EF Core.
This should help as you dig into myriad commands described throughout the rest of
this book.

Do you really need to know how EF Core works inside to use it?
You can use the EF Core library without bothering to learn how it works. But knowing
what’s happening inside EF Core will help you understand why the various commands
work the way they do. You’ll also be better armed when you need to debug your database
access code.

The following pages include lots of explanations and diagrams to show you what hap-
pens inside EF Core. EF Core “hides” the database so that you as a developer can write
database access code easily—which does work well in practice. But, as I stated earlier,
knowing how EF Core works can help you if you want to do something more complex, or
things don’t work the way you expect.

1.9.1	 Modeling the database

Before you can do anything with the database, EF Core must go through a process that
I refer to as modeling the database. This modeling is EF Core’s way of working out what
the database looks like by looking at the classes and other EF Core configuration data.
The resulting model is then used by EF Core in all database accesses.

The modeling process is kicked off the first time you create the application’s DbCon-
text, in this case called AppDbContext (shown in figure 1.5). This has one property,
DbSet<Book>, which is the way that the code accesses the database.

16 Chapter 1  Introduction to Entity FrameworkCore

Figure 1.6 provides an overview of the modeling process, which will help you under-
stand the process EF Core uses to model the database. Later chapters introduce you to
a range of commands that allow you to more precisely configure your database, but for
now you’ll use the default configurations.

1. Looks at all the DbSet properties.

2. Looks at the
 properties in
 the class.

3. Does the same to
 any linked classes.

4. Runs OnModelCreating,
 if present.

5. The final result:
 a model of the
 database.

Your Application

AppDbContext
Class Model the database

1. Look at DbSet<T> properties
2. Look at the class for columns
3. Inspect linked classes
4. Run OnModelCreating method

Properties
 Books : DbSet<Book>
Methods
 void OnModelCreating(...

The EF Core library

Output

Database model (cached)Book
Class
Properties
 BookId : int
 ...

Author
Class
Properties
 AuthorId : int
 ...

AuthorBooks

Figure 1.6   How EF Core models the database

Figure 1.6 shows the modeling steps that EF Core uses on our AppDbContext. The fol-
lowing text gives a more detailed description of the process:

1	 EF Core looks at the application’s DbContext and finds all the public DbSet<T>
properties. From this, it defines the initial name for the one table it finds, Books.

2	 EF Core looks through all the classes referred to in DbSet<T> and looks at its
properties to work out the column names, types, and so forth. It also looks for
special attributes on the class and/or properties that provide extra modeling
information.

3	 EF Core looks for any classes that the DbSet<T> classes refer to. In our case, the
Book class has a reference to the Author class, so EF Core scans that too. It carries
out the same search on the properties of the Author class as it did on the Book
class in step 2. It also takes the class name, Author, as the table name.

4	 For the last input to the modeling process, EF Core runs the virtual method
OnModelCreating inside the application’s DbContext. In this simple application,
you don’t override the OnModelCreating method, but if you did, you could pro-
vide extra information via a fluent API to do more configuration of the modeling.

	 17Looking under the hood of EF Core

5	 EF Core creates an internal model of the database based on all the information
it gathered. This database model is cached so that later accesses will be quicker.
This model is then used when performing all database accesses.

You might have noticed that figure 1.6 shows no database. This is because when EF
Core is building its internal model, it doesn’t look at the database. I emphasize that to
show how important it is to build a good model of the database you want; otherwise,
problems could occur if a mismatch exists between what EF Core thinks the database
looks like and what the actual database is like.

In your application, you may use EF Core to create the database, in which case there’s
no chance of a mismatch. Even so, if you want a good and efficient database, it’s worth
taking care to build a good representation of the database you want in your code so that
the created database performs well. The options for creating, updating, and manag-
ing the database structure are a big topic, which are detailed in chapter 11.

1.9.2	 Reading data from the database

You’re now at the point where you can access the database. Let’s use the list (l) com-
mand, which reads the database and prints the information on the terminal. Figure 1.7
shows the result.

Commands: 1 (list), u (change url) and e (exit)
> 1
Refactoring by Martin Fowler
 Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler
 Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans
 Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person
 Published on 01-Jan-2057. - no web url given -
>

Figure 1.7   Output of the console application when listing the content of the database

The following listing shows the code that’s called to list all the books, with each author,
out to the console.

Listing 1.2   The code to read all the books and output them to the console

public static void ListAll()
{
 using (var db = new AppDbContext())
 {
 foreach (var book in
 db.Books.AsNoTracking()

 .Include(a => a.Author))
 {
 var webUrl = book.Author.WebUrl == null

You create the application’s DbContext
through which all database accesses
are done.

Reads all the books. AsNoTracking
indicates this is a read-only access.

The “include” causes the author
information to be eagerly loaded
with each book. See chapter 2 for
more on this.

18 Chapter 1  Introduction to Entity FrameworkCore

 ? "- no web URL given -"
 : book.Author.WebUrl;
 Console.WriteLine(
 $"{book.Title} by {book.Author.Name}");
 Console.WriteLine(" " +
 "Published on " +
 $"{book.PublishedOn:dd-MMM-yyyy}" +
 $". {webUrl}");
 }
 }
}

EF Core uses Microsoft’s .NET’s Language Integrated Query (LINQ) to carry the com-
mands it wants done, and normal .NET classes to hold the data. Listing 1.2 includes
minimal use of LINQ, but later in the book you’ll see much more complex examples.

NOTE   If you’re not familiar with LINQ, you’ll be at a disadvantage in reading
this book. Appendix A provides a brief introduction to LINQ. Plenty of online
resources are also available; see https://msdn.microsoft.com/en-us/library/
bb308959.aspx.

Two lines of code in bold in listing 1.2 cause the database access. Now let’s see how EF
Core uses that LINQ code to access the database and return the required books with
their authors. Figure 1.8 follows those lines of code down into the EF Core library,
through the database, and back.

Refactoring

LINQ query translation

foreach (var book in
 db.Books
 .AsNoTracking()
 .Include (a => a.Author))

1. Create classes
2. Relationship fixup
3. Tracking snapshot

Instances

Relational
links

Database provider

1

Patterns of Ent2

Domain-Driven3

Quantum Netw

Improving the

Written in dire

Linking busine

Entanged qua

Martin Fowler

Martin Fowler

Eric Evans

Future Person

08-Jul-1999

15-Nov-2002

30-Aug-2003

01-Jan-20574

1

1

2

3

http://martinfo

http://martinfo

http://domainl

null

1

1

2

3

LINQ query
translation

cache

Database
SQL server

Database commands; e.g.,
SELECT
 Books.BookId,
 Books.Title,
 etc. ...

Book Author
Book

Book
Book

Author

Author

BookId Title Description AvailableFrom Auth Auth Name WebUrl

1. The LINQ code is translated
 into SQL and is cached.

3. Because of the .AsNoTracking method,
 no tracking snapshot is made.

2. The data is turned into instances of .NET classes,
 and the relational links are set up appropriately.

All data read in one
command, (Books and
Authors combined)

Figure 1.8   A look inside EF Core as it executes a database query

https://msdn.microsoft.com/en-us/library/bb308959.aspx
https://msdn.microsoft.com/en-us/library/bb308959.aspx

	 19Looking under the hood of EF Core

The process to read data from the database is as follows:

1	 The LINQ query db.Books.AsNoTracking().Include(a => a.Author) accesses
the DbSet<Book> property in the application’s DbContext and adds a .Include
(a => a.Author) at the end to ask that the Author parts of the relationship are
loaded too. This is converted by the database provider into an SQL command to
access the database. The resulting SQL is cached to avoid the cost of retransla-
tion if the same database access is used again.
EF Core tries to be as efficient as possible on database accesses. In this case, it
combines the two tables it needs to read, Books and Author, into one big table so
that it can do the job in one database access. The following listing shows the SQL
created by EF Core and the database provider.

Listing 1.3   SQL command produced to read Books and Author

SELECT [b].[BookId],
[b].[AuthorId],
[b].[Description],
[b].[PublishedOn],
[b].[Title],
[a].[AuthorId],
[a].[Name],
[a].[WebUrl]
FROM [Books] AS [b]
INNER JOIN [Author] AS [a] ON
[b].[AuthorId] = [a].[AuthorId]

2	 After the database provider has read the data, EF Core puts the data through a
process that (a) creates instances of the .NET classes and (b) uses the database
relational links, called foreign keys, to correctly link the .NET classes together by
reference—called a relationship fixup. The result is a set of .NET class instances
linked in the correct way. In this example, two books have the same author, Mar-
tin Fowler, so the Author property of those two books points to one Author class.

3	 Because the code includes the command AsNoTracking, EF Core knows to sup-
press the creation of a tracking snapshot. Tracking snapshots are used for spotting
changes to data; you’ll see this in the example of editing the WebUrl. Because
this is a read-only query, suppressing the tracking snapshot makes the command
faster.

1.9.3	 Updating the database

Now you want to use the second command, update (u), in MyFirstEfCoreApp to update
the WebUrl column in the Author table of the book Quantum Networking. As shown in
figure 1.9, you first list all the books to show that the last book has no author URL
set. You then run the command u, which asks for a new author URL for the last book,
Quantum Networking. You input a new URL of httqs://entangled.moon (it’s a fictitious

20 Chapter 1  Introduction to Entity FrameworkCore

future book, so why not a fictitious URL), and after the update, the command lists all
the books again, showing that the author’s URL has changed (the two ovals show you
the before and after URLs).

No URL set on
the last book

URL set via the
u command

Commands: 1 (list), u (change url) and e (exit)
> 1
Refactoring by Martin Fowler
 Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler
 Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans
 Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person
 Published on 01-Jan-2057. - no web url given -
> u
New Quantum Networking WebUrl > httqs://entangled.moon
... Saved Changes called.
Refactoring by Martin Fowler
 Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler
 Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans
 Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person
 Published on 01-Jan-2057. httqs://entangled.moon
>

Figure 1.9   The book information before and after the WebUrl of the last book’s author is updated

The code for updating the WebUrl of the last book, Quantum Networking, is shown here.

Listing 1.4   The code to update the author’s WebUrl of the book Quantum Networking

public static void ChangeWebUrl()
{
 Console.Write("New Quantum Networking WebUrl > ");
 var newWebUrl = Console.ReadLine();

 using (var db = new AppDbContext())
 {
 var book = db.Books
 .Include(a => a.Author)
 .Single(b => b.Title == "Quantum Networking");

 book.Author.WebUrl = newWebUrl;
 db.SaveChanges();
 Console.WriteLine("... SavedChanges called.");
 }

 ListAll();
}

Reads in from the console the new URL

Makes sure the author information
is eager loaded with the book

Selects only the book
with the title Quantum
Networking

To update the database,
you change the data that
was read in.

SaveChanges tells EF Core to check
for any changes to the data that has
been read in and write out those
changes to the database.

Lists all the book information

	 21Looking under the hood of EF Core

Figure 1.10 shows what is happening inside the EF Core library and follows its prog-
ress. This is a lot more complicated than the previous read example, so let me give you
some pointers on what to look for.

First, the read stage, at the top of the diagram, is similar to the read example and so
should be familiar. In this case, the query loads a specific book, using the book’s title as
the filter. The important change is point 2: that a tracking snapshot is taken of the data.

This change occurs in the update stage, in the bottom half of the diagram. Here you
can see how EF Core compares the loaded data with the tracking snapshot to find the
changes. From this, it sees that only the WebUrl has been updated, and from that it can
create an SQL command to update only that column in the right row.

LINQ query translation

var book = db.Books
 .Include(a => a.Author)
 .Single(b =>
 b.Title == "Quantum Networking");

book =

1. Create classes
2. Relationship fixup
3. Tracking snapshot

Database provider

Quantum Netw Entanged qua Future Person01-Jan-20574 3 null3

LINQ query
translation

cache

Database
SQL server

Database commands, e.g.,
SELECT TOP(2)
 Books.BookId
 etc. ...
WHERE Title = 'Q...

Book Author Book

OK

Author

Database
SQL server

1. Detect changes
2. Start transaction

3. End transaction

book.Author.WebUrl =
 “http://entangled.com”;
db.SaveChanges();

Database provider

BookId Title Description AvailableFrom Auth Auth Name WebUrl

1. The LINQ code is translated
 into SQL commands.

Get book

Update WebUrl

2. A tracking snapshot
 is created to hold
 the original values.

5. SQL command to
 update database is
 created and run.3. The Detect Changes stage

 works out what has changed.

4. A transaction is started.
 Either all changes are
 applied, or none are applied
 if there’s a problem.

Compares tracked classes with
snapshot to find changes.

Database commands, e.g.,
UPDATE Authors
 SET WebUrl = @p0
 WHERE AuthorId = @p1

Figure 1.10   A look inside EF Core as it executes and reads, followed by a database update

22 Chapter 1  Introduction to Entity FrameworkCore

I’ve described most of the steps, but here is a blow-by-blow account of how the author’s
WebUrl column is updated:

1	 The application uses a LINQ query to find a single book with its author infor-
mation. EF Core turns the LINQ query into an SQL command to read the rows
where the Title is Quantum Networking, returning an instance of both the Book
and the Author classes, and checks that only one row was found.

2	 The LINQ query doesn’t include the .AsNoTracking method you had in the pre-
vious read versions, so the query is considered to be a tracked query. Therefore, EF
Core creates a tracking snapshot of the data loaded.

3	 The code then changes the WebUrl property in the Author class of the book.
When SaveChanges is called, the Detect Changes stage compares all the classes
that were returned from a tracked query with the tracking snapshot. From this, it
can detect what has changed—in this case, just the WebUrl property of the Author
class that has a primary key of 3.

4	 As a change is detected, EF Core starts a transaction. Every database update is
done as an atomic unit: if multiple changes to the database occur, they either all
succeed, or they all fail. This is important, because a relational database could get
into a bad state if only part of an update was applied.

5	 The update request is converted by the database provider into an SQL command
that does the update. If the SQL command is successful, the transaction is com-
mitted and the SaveChanges method returns; otherwise, an exception is raised.

1.10	 Should you use EF Core in your next project?
Having given you a quick overview of what EF Core is and how it works, the next ques-
tion is whether you should start using EF Core in your project. For anyone planning
to switch to EF Core, the key question is, “Is EF Core sufficiently superior to the data
access library I currently use to make it worth using for our next project?” A cost is asso-
ciated with learning and adopting any new library, especially complex libraries such as
EF Core, so it’s a valid question.

I’ll give you a detailed answer, but as you can see, I think visually. Figure 1.11 captures
my view of EF Core’s strengths and weaknesses: good things to the right, and not-so-
good to the left. The width of each block shows the time period over which I think that
topic will improve—the wider the block, the longer this will take. It’s only my view, so
don’t take it as the truth, especially if you’re reading this book some time after I wrote
this section. I hope that it at least helps you to think through the issues that affect your
using EF Core in your project.

	 23Should you use EF Core in your next project?

Not so good Neutral Good

EF Core 1.0.0 – Aug 2016
EF Core 2.0.0 – Aug 2017

New releases coming
roughly every six months.

Faster database libraries exist (e.g.,
ADO.NET), but they take a lot more

development effort. You can achieve
good performance with EF Core—

see chapters 12 and 13.

.NET standard 2.0
released Aug 2017

Stable
library

Fully
featured

ORM

Access
NuGet

libraries

Multiplatform
&

open source

Always high
performance

Well
supported

Rapid
development

Latest
generation

Figure 1.11   My view of the strengths and weaknesses of EF Core

Let me give you more details about each of the blocks in figure 1.11, starting with the
good stuff on the right.

1.10.1	 Latest generation

I swapped from Microsoft’s LINQ to SQL O/RM, which I liked, to EF4 because EF was
the future, and no further effort was being put into LINQ to SQL. It’s the same now
for EF Core. It’s where Microsoft is putting its effort, and it’s going to be extended and
well supported for many years. EF Core is much more lightweight and generally faster
than EF6.x, and I think the improvements in its API are good.

If you’re starting a new project, and .NET Core and EF Core have the necessary fea-
tures your project needs, then moving to EF Core means you won’t be left behind.

1.10.2	 Multiplatform and open source

As I said at the start of the chapter, EF Core is multiplatform-capable: you can develop
and run EF Core applications on Windows, Linux, and Apple. EF Core is also open
source, so you have access to the source code and an open list of issues and defects—
see https://github.com/aspnet/EntityFramework/issues.

1.10.3	 Rapid development

In a typical data-driven application, I write a lot of database access code, some of it
complex. I’ve found that EF6.x, and now EF Core, allow me to write data access code
quickly, and in a way that’s easy to understand and refactor. This is one of the main
reasons I use EF.

EF Core also is developer-friendly, and tends to create working queries even if I
didn’t write the most efficient code. Most properly formed LINQ queries work, though
maybe they won’t produce the best-performing SQL—and having a query that works is
a great start. Chapter 12 covers the whole area of performance tuning.

https://github.com/aspnet/EntityFramework/issues

24 Chapter 1  Introduction to Entity FrameworkCore

1.10.4	 Well supported

EF Core has good documentation (https://docs.microsoft.com/en-us/ef/core/index)
and, of course, you now have this book, which brings together the documentation with
deeper explanations and examples, plus patterns and practices to make you a great
developer. Because a large group of EF6.x developers will migrate to EF Core, the inter-
net will be full of blogs on EF Core, and Stack Overflow is likely to have the answers to
your problems already.

The other part of support is the development tools. Microsoft seems to have
changed focus by providing support for multiple platforms, but also has created a
cross-platform development environment that’s free—called Visual Studio Code
(https://code.visualstudio.com/). Microsoft has also made its main development
tool, Visual Studio, free for individual developers and small businesses; the Usage sec-
tion near the bottom of its web page at www.visualstudio.com/vs/community/ details
the terms. That’s a compelling offer.

1.10.5	 Access to NuGet libraries

Although some early difficulties arose with .NET Core 1, the introduction of .NET
Standard 2.0 in August 2017, with its .NET Framework compatibility mode, overcame much
of this, which is what EF Core 2.0 is built on. .NET Standard 2.0 allows (most) existing
NuGet libraries that use earlier .NET versions to be used. The only problem occurs if
the NuGet package uses an incompatible .NET feature, such as System.Reflection.
.NET Standard 2.0 also supports a much bigger range of system methods, which makes
it easier to convert a package to .NET Standard 2.0.

NOTE   If you want to stay on .NET 4.x, you can still use EF Core if you upgrade
to .NET 4.6.1 or higher. For more information, see http://mng.bz/sB0y.

1.10.6	 Fully featured O/RM

Entity Framework in general is a feature-rich implementation of an O/RM, and EF
Core continues this trend. It allows you to write complex data access code covering
most of the database features you’ll want to use. As I have moved through ADO.NET,
LINQ to SQL, EF 4 to 6, and now EF Core, I believe this is already a great O/RM.

But, at the time of writing this book, EF Core (version 2.0) still has some features yet
to be added. That’s why the block is so wide in figure 1.11. If you’re a user of EF6.x, you’ll
notice that some features available in EF6.x aren’t yet available in EF Core, but as time
goes on, these will appear. I suggest you look at the Feature Comparison page on the
EF Core docs site, http://mng.bz/ek4D, for the latest on what has been implemented.

1.10.7	 Stable library

When I started writing this book, EF Core wasn’t stable. It had bugs and missing fea-
tures. I found an error on using the year part of a DateTime in the version 1.0.0 release,
along with a whole load of other LINQ translation issues that were fixed in 1.1.0.

https://docs.microsoft.com/en-us/ef/core/index
https://code.visualstudio.com/
http://www.visualstudio.com/vs/community/
http://mng.bz/sB0y
http://mng.bz/ek4D

	 25Summary

By the time you read this, EF Core will be much better, but still changing, albeit at
a much slower rate. If you want something stable, EF6.x is a good O/RM, or there are
other database access technologies. The choice is yours.

1.10.8	 Always high-performance

Ah, the database performance issue. Look, I’m not going to say that EF Core is going to,
out of the box, produce blistering database access performance with beautiful SQL and
fast data ingest. That’s the cost you pay for quick development of your data access code:
all that “magic” inside EF Core can’t be as good as hand-coded SQL, but you might be
surprised how good it can be--see chapter 13

But you can do something about it. In my applications, I find only about 5% to 10%
of my queries are the key ones that need hand-tuning. Chapters 12 and 13 are dedi-
cated to performance tuning, plus part of chapter 14. These show that there’s a lot you
can do to improve the performance of EF Core database accesses.

If you’re worried about EF Core’s performance, I recommend you skim through chap-
ter 13, where you’ll progressively improve the performance of an application. You’ll see
that you can make an EF Core application perform well with little extra effort. I also have
two live demo sites, http://efcoreinaction.com/ and http://cqrsravendb.efcoreinaction
.com/; click the About menu to see how big the databases are.

1.11	 When should you not use EF Core?
I’m obviously pro EF Core, but I won’t use it on a client project unless it makes sense.
So, let’s look at a few blockers that might suggest you don’t use EF Core.

The first one is obvious: Does it support the database you want to use? You can find a
list of supported databases at https://docs.microsoft.com/en-us/ef/core/providers/.

The second factor is the level of performance you need. If you’re writing, say, a small,
RESTful service that needs to be quick and has a small number of database accesses, then
EF Core isn’t a good fit; you could use a fast, but development-time-hungry library because
there isn’t much to write. But if you have a large application, with lots of boring admin
accesses and a few important customer-facing accesses, then a hybrid approach could
work for you (see chapter 13 for an example of a mixed EF Core/Dapper application).

Summary
¡	EF Core is an object-relational mapper (O/RM) that uses Microsoft’s Language

Integrated Query (LINQ) to define database queries and return data into linked
instances of .NET classes.

¡	EF Core is designed to make writing code for accessing a database quick and intu-
itive. This O/RM has plenty of features to match many requirements.

¡	You’ve seen various examples of what’s happening inside EF Core. This will help
you understand what the EF Core commands described in later chapters can do.

http://efcoreinaction.com/
http://cqrsravendb.efcoreinaction.com/
http://cqrsravendb.efcoreinaction.com/
https://docs.microsoft.com/en-us/ef/core/providers/

26 Chapter 1  Introduction to Entity FrameworkCore

¡	There are many good reasons to consider using EF Core: it’s built on a lot of
experience, is well supported, and runs on multiple platforms.

¡	At the time this book was written, EF Core was at version 2.0 with added notes
about the next release, EF Core 2.1. Some features that you might want may not
be out yet, so check the online documentation for the latest state (https://docs.
microsoft.com/en-us/ef/core/index).

For readers who are familiar with EF6.x:

¡	Look for EF6 notes throughout the book. They mark differences between the EF
Core approach and EF6.x’s approach. Also check the summaries at the end of
each chapter, which will point you to the major EF Core changes in that chapter.

¡	Think of EF Core as a new library that someone has written to mimic EF6.x, but
that works in a different way. That will help you spot the EF Core improvements
that change the way you access a database.

¡	EF Core no longer supports the EDMX/database designer approach that earlier
forms of EF used.

https://docs.microsoft.com/en-us/ef/core/index
https://docs.microsoft.com/en-us/ef/core/index

27

2Querying the database

This chapter covers
¡	Modeling three main types of database

relationships

¡	Creating and changing a database via
migration

¡	Defining and creating an application DbContext

¡	Loading related data

¡	Splitting complex queries into subqueries

This chapter is all about using EF Core for reading, called querying, the database.
You’ll create a database that contains the three main types of database relationships
found in EF Core. Along the way, you’ll learn to create and change a database’s
structure via EF Core.

Next you’ll learn how to access a database via EF Core, reading data from the
database tables. You’ll explore the basic format of EF Core queries before looking at
various approaches to loading related data with the main data; for instance, loading
the author with the book from chapter 1.

After learning the ways to load related data, you’ll start to build the more complex
queries needed to make a book-selling site work. This covers sorting, filtering, and

28 Chapter 2  Querying the database

paging, plus approaches to combine each of these separate query commands to create
one composite database query.

2.1	 Setting the scene—our book-selling site
In this chapter, you’ll start building the example book-selling site, referred to as the
book app from now on. This example application provides a good vehicle for looking at
relationships in queries. This section introduces the database, the various classes, and
EF Core parts that the book app needs to access the database.

NOTE   You can see a live site of the book app at http://efcoreinaction.com/.

2.1.1	 The book app’s relational database

Although we could have created a database with all the data about a book, its author(s),
and its reviews in one table, that wouldn’t have worked well in a relational database,
especially because the reviews are variable in length. The norm for relational databases
is to split out any repeated data (for instance, the authors).

We could have arranged the various parts of the book data in the database in several
ways, but for this example the database has one of each of the main types of relation-
ships you can have in EF Core. These three types are:

¡	One-to-one relationship: PriceOffer to a Book
¡	One-to-many relationship: Reviews to a Book
¡	Many-to-many relationship: Books to Authors

One-to-one relationship: PriceOffer to a Book

A book can have a promotional price applied to it. This is done with an optional row in
the PriceOffer, which is an example of a one-to-one (technically, it’s a one-to-zero-or-
one relationship, but EF Core handles this the same way); see figure 2.1.

Books

One-to-zero-or-one relationship

The PriceOffers table has a
foreign key that links to the
Books table’s primary key.

EF Core uses its conventions to detect that
this is a one-to-one relationship. It therefore
adds a unique index to the foreign key to
ensure that there can only be one per book.

Foreign key

BookId

Title

Description

... etc.

PK

PriceOffers

1

0..1

PriceOfferId

NewPrice

PromotionalText

BookIdFK1

PK

Primary key

Figure 2.1   The one-to-one relationship between a Book and an optional PriceOffer

http://efcoreinaction.com/

	 29Setting the scene—our book-selling site

To calculate the final price of the book, you need to check for a row in the PriceOffer
table that’s linked via a foreign key to the book. If such a row is found, the NewPrice
would supersede the price for the original book, and the PromotionalText will be
shown onscreen; for instance:

$40 $30 Our summertime price special, for this week only!

One-to-many relationship: reviews to a Book

You want to allow customers to review a book; they can give a book a star rating and
optionally leave a comment. Because a book may have no reviews or many (unlimited)
reviews, you need to create a table to hold that data. In this example, you’ll call the
table Review. The Books table has a one-to-many relationship to the Review table, as
shown in figure 2.2.

Books

One-to-many relationship

The Review table is linked to
the Books table via the
foreign key called BookId

Foreign key

BookId

Title

Description

PublishedOn

... etc.

PK

Review

1

0..*

ReviewId

VoterName

NumStars

Comment

BookIdFK1

PK

Primary key

Figure 2.2   The one-to-many relationship between a book and its zero-to-many reviews

In the Summary display, you need to count the number of reviews and work out the
average star rating, to show a summary. For instance, here’s a typical onscreen display
you might produce from this one-to-many relationship:

Votes 4.5 by 2 customers

Many-to-many relationship: books to authors

Books can be written by one or more authors, and an author may write one or more
books. You therefore need a table called Books holding the books data, and another
table called Authors holding the authors. The link between the Books and Authors tables
is called a many-to-many relationship, which needs a linking table (see figure 2.3).

30 Chapter 2  Querying the database

Books

Many-to-many relationship

This table uses the foreign keys as the primary keys. Because primary keys must be
unique, this ensures that only one link can exist between a book and an author.

BookId

Title

Description

PublishedOn

... etc.

PK

Authors

1 0..* 10..*
AuthorId

Name

PK

BookAuthor

The BookAuthor table is the key to creating the many-to-many
relationship and is known as a linking table.

BookId

AuthorId

Order

PK, FK1

PK, FK2

Figure 2.3   The three tables involved in creating the many-to-many relationship between the Books table
and the Authors table

The typical onscreen display from this relationship would look like this:
by Dino Esposito, Andrea Saltarello

EF6   In EF6.x you can define a many-to-many relationship without needing to
define a linking class (for instance, the BookAuthor class in figure 2.3). EF6.x
then creates a hidden linking table for you. In EF Core, you have to create that
linking table yourself.

2.1.2	 Other relationship types not covered in this chapter

In EF Core, you can include a class in the application’s DbContext that inherits from
another class in the application’s DbContext. For instance, you could’ve defined the
PriceOffer class as inheriting the Book class. That would have achieved a similar
result to the one-to-one relationship shown previously. EF Core can provide this via the
table-per-hierarchy (TPH) configuration, covered in chapter 7.

Another relationship type is hierarchical: a set of data items that are related to each
other by hierarchical relationships. A typical example is an Employee class that has a
relationship pointing to the employee’s manager, who in turn is an employee. EF Core
uses the same approaches as one-to-one and one-to-many to provide hierarchical rela-
tionships, and I talk more about this type of relationship in chapter 7, where I explain
how to configure them.

2.1.3	 The final database showing all the tables

Figure 2.4 shows the book app’s database that you’ll be using for the examples in this
chapter and in chapter 3. It contains all the tables already described, including the full
definition of all the columns in the Books table.

NOTE   The database diagram uses the same layout and terms as in the first
chapter, where PK means primary key, and FK means foreign key.

	 31Setting the scene—our book-selling site

Books

Many-to-many relationship

One-to-many relationship

One-to-one-or-zero
relationship

BookId

Title

Description

PublishedOn

Publisher

Price

ImageUrl

SoftDeleted

PK

Authors

1 0..* 10..*
AuthorId

Name

PK

Review

ReviewId

VoterName

NumStars

Comment

BookIdFK1

PK

PriceOffers

PriceOfferId

NewPrice

PromotionalText

BookIdFK1

PK

BookAuthor

BookId

AuthorId

Order

PK, FK1

PK, FK2

1 0..*

0..1

1

Figure 2.4   The complete relational database schema for the book app, showing all the tables and their
columns

To help you make sense of this database, figure 2.5 shows the onscreen output of the
list of books, but focusing on just one book. As you can see, the book app needs to
access every table in the database to build the book list. Later, I show you this same
book display, but with the query that supplies each element.

From Books table

From Books table

From Authors table
(via BookAuthor
inking table)

From Review table

From PriceOffers table

Figure 2.5   A listing of a single book showing which database table provides each part of the information

TIP   You can see a live site running the book app code at http://efcoreinaction
.com/. This might help you understand the rest of this chapter.

http://efcoreinaction.com/
http://efcoreinaction.com/

32 Chapter 2  Querying the database

Downloading and running the example application from the Git repo
If you want to download the book app code and run it locally, follow the steps defined in
the sidebar with the same name as this in section 1.6.2. The only change you need to
make is to use the Chapter02 branch instead of Chapter01. The book app is ready to
compile and run either from Visual Studio 2017 or in Visual Studio Code.

Each chapter has its own branch, so you as you go through the book, you can switch
branches to get the appropriate code of the book app at each stage of the development.

2.1.4	 The classes that EF Core maps to the database

I’ve created five .NET classes to map onto the five tables in the database. They’re called
Book, PriceOffer, Review, Author, and BookAuthor for the many-to-many-linking table.

These classes are referred to as entity classes to show that they’re mapped by EF Core
to the database. From the software point of view, there’s nothing special about entity
classes. They’re normal .NET classes, sometimes referred to as plain old CLR objects
(POCOs). The term entity class identifies the class as one that EF Core has mapped to
the database.

The primary entity class is the Book class, shown in the following listing. You can see
it refers to a single PriceOffer class, a collection of Review classes, and finally a collec-
tion of BookAuthor classes, which link the book data to one or more Author classes that
contain the author’s name.

Listing 2.1   The Book class, which is mapped to the Books table in the database

public class Book
{
 public int BookId { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime PublishedOn { get; set; }
 public string Publisher { get; set; }
 public decimal Price { get; set; }
 /// <summary>
 /// Holds the url to get the image of the book
 /// </summary>
 public string ImageUrl { get; set; }

 //---
 //relationships

 public PriceOffer Promotion { get; set; }
 public ICollection<Review> Reviews { get; set; }
 public ICollection<BookAuthor>
 AuthorsLink { get; set; }
}

The Book class contains the
main book information.

We use EF Core’s “By Convention”
configuration to define the primary key
of this entity class. This means we use
<ClassName>Id, and because the
property is of type int, EF Core assumes
that the database will use the SQL
IDENTITY command to create a unique
key when a new row is added.

Link to the optional one-to-
one PriceOffer relationship

There can be zero to many
reviews of the book.

Provides a link to the many-to-
many linking table that links the
Book to its Author classes

	 33Creating the application’s DbContext

For simplicity, we use EF Core’s By Convention configuration approach to model the
database. We use EF Core By Convention naming for the properties that hold the pri-
mary key and foreign keys in each for the entity classes. In addition, the .NET type of
the navigational properties, such as ICollection<Review> Reviews, defines what sort
of relationship I want. For instance, because the Reviews property is of the .NET type
ICollection<Review>, the relationship is a one-to-many relationship. Chapters 6 and
7 describe the other approaches for configuring the EF Core database model.

What happens if you have an existing database that you want to access?
The examples in this book show how to define and create a database via EF Core. I do
that because that’s the most complex situation—where you need to understand all the
configuration options.

But if you have an existing database that you want to access, that’s much easier,
because EF Core can build your application’s DbContext class and all your entity classes
for you. EF Core does this using a feature called reverse-engineering a database, which
is covered in section 11.3.

The other possibility is you don’t want EF Core changing the database structure, but you
want to look after that yourself, via an SQL change script or a database deployment tool,
for instance. I cover that approach in section 11.4.

2.2	 Creating the application’s DbContext
To access the database, you need to do the following:

1	 Define your application’s DbContext, which you do by creating a class and inher-
iting from EF Core’s DbContext class.

2	 Create an instance of that class every time you want to access the database.

All the database queries you’ll see later in this chapter use these steps, which I now
describe in more detail.

2.2.1	 Defining the application’s DbContext: EfCoreContext

The key class you need in order to use EF Core is the application’s DbContext. This is
a class you define by inheriting EF Core’s DbContext and adding various properties to
allow your software to access the database tables. It also contains methods you can over-
ride to access other features in EF Core, such as configuring the database modeling,
and so on. Figure 2.6 gives you an overview of an application DbContext, pointing out
all the important parts.

34 Chapter 2  Querying the database

This is the name of the DbContext that defines your database.
You will be using this in application to access the database.

Any application DbContext must inherit
from the EF Core’s DbContext class.

These public properties of type
DbSet<T> are mapped by EF Core to
tables in your datebase, using the name
of the property as the table name. You
can query these tables via LINQ methods
on a property.

The classes, such as Book, Author, and
PriceOffer, are entity classes. Their
properties are mapped to columns in
the appropriate database table.

For your ASP.NET Core application, you
need a constructor to set up the
database options. This allows your
application to define what sort of
database it is, and where it’s located.

The OnModelCreating method
contains configuration information
for EF Core. I explain this in
chapters 6 and 7.

public class EfCoreContext : DbContext
{
 public DbSet<Book< Books { get; set; }
 public DbSet<Author: Authors { get; set; }
 public DbSet<PriceOffer> PriceOffers { get; set; }

 public EfCoreContext (
 DbContextOptions<EfCoreContext> options)
 : base(options) {}

 protected override void
 OnModelCreating (ModelBuilder modelBuilder)
 {
 //... code left out
 }
}

Figure 2.6   The main parts of an application’s DbContext

One point to note about figure 2.6 is that your application’s DbContext doesn’t include
DbSet<T> properties for your Review entity class and the BookAuthor linking entity
class. This is because both entity classes are accessed only via the Book class, as you’ll
see later.

NOTE   I skip over configuring the database modeling, done in the OnModel-
Creating method in the application’s DbContext. Chapters 6 and 7 cover how
to model the database in detail.

2.2.2	 Creating an instance of the application’s DbContext

Chapter 1 showed you how to set up the application’s DbContext by overriding its
OnConfiguring method. The downside of that approach is that the connection string
is fixed. In this chapter, you’ll use another approach, because we want to use a differ-
ent database for development and unit testing. You’ll use a method that provides that
via the application’s DbContext constructor.

NOTE   Chapter 15 covers unit testing of an application that uses EF Core.

Listing 2.2 provides the options for the database at the time you create the application
DbContext, called EfCoreContext. To be honest, this listing is based on what I use in
my unit testing, because it has the benefit of showing you the component parts. Chap-
ter 5, which is about using EF Core in an ASP.NET Core application, presents a more

	 35Creating the application’s DbContext

powerful way to create the application’s DbContext, by using a feature called depen-
dency injection.

Listing 2.2   Creating an instance of the application’s DbContext to access the database

const string connection =
 "Data Source=(localdb)\\mssqllocaldb;"+
 "Database=EfCoreInActionDb.Chapter02;"+
 "Integrated Security=True;";
var optionsBuilder =
 new DbContextOptionsBuilder
 <EfCoreContext>();

optionsBuilder.UseSqlServer(connection);
var options = optionsBuilder.Options;

using (var context = new EfCoreContext(options))
{

 var bookCount = context.Books.Count();
 //... etc.

At the end of this listing, you create an instance of EfCoreContext inside a using state-
ment. That’s because DbContext has an IDisposable interface and therefore should
be disposed after you’ve used it. So, from now on, if you see a variable called context,
it was created using the code in listing 2.2 or a similar approach.

2.2.3	 Creating a database for your own application

There are a few ways to create a database using EF Core, but the normal way is to use
EF Core’s migrations feature. This uses your application’s DbContext and the entity
classes, like the ones I’ve just described, as the model for the database structure. The
Add-Migration command first models your database and then, using that model,
builds commands to create a database that fits that model.

TIP    If you’re running this example application downloaded from the Git
repo that goes with this book, you don’t need to use the Migrate commands
that follow. The code uses the context.Database.EnsureCreated command
to create the database. This is less flexible than Migrate, but it doesn’t require
you to type any commands.

Besides handling creating the database, the great thing about migrations is that they
can update the database with any changes you make in the software. If you change your
entity classes or any of your application’s DbContext configuration, the Add-Migration
command will build a set of commands to update the existing database.

The connection string, with its format
dictated by the sort of database provider
and hosting you’re using

You need an EF Core DbContextOptionsBuilder<>
instance to be able to set the options you need.

You’re accessing an SQL
Server database and using
the UseSqlServer method
from the Microsoft
.EntityFrameworkCore
.SqlServer library, and this
method needs the database
connection string.This creates the all-important

EfCoreContext using the options you’ve
set up. You use a using statement

because the DbContext is disposable.
Uses the DbContext to find out the
number of books in the database

36 Chapter 2  Querying the database

To use the migration feature, you need to install one extra EF Core NuGet library
called Microsoft.EntityFrameworkCore.Tools to your application startup project. This
allows you to use the Migrate commands in the Visual Studio Package Manager Con-
sole (PMC). Here are the ones you need:

¡	Add-Migration MyMigrationName—This creates a set of commands that will
migrate the database from its current state to a state that matches your applica-
tion’s DbContext and the entity classes at the time that you run your command.
The MyMigrationName shown in the command is the name that will be used for
the migration.

¡	Update-Database—This applies the commands created by the Add-Migration
command to your database. If no database exists, Update-Database will create
one. If a database already exists, the command checks to see whether that data-
base has this database migration applied to it; if any database migrations are miss-
ing, this command will apply them to the database.

NOTE   You can also use EF Core’s command-line interface (CLI) to run these
commands (see http://mng.bz/454w). Chapter 11 lists both the VS 2017 and
CLI versions of the migration commands. In addition, .NET 2.1 will introduce
global tools, which will allow you to call these commands via normal command
line functions.

An alternative to using the Update-Database command is to call the context.Data-
base.Migrate method in the startup code of your application. This approach is espe-
cially useful for an ASP.NET Core web application that’s hosted; chapter 5 covers this
option, including some of its limitations.

NOTE   Although EF Core’s migrate feature is useful, it doesn’t cover all types
of database structure changes. Also, for some projects, the database will be
defined and managed outside EF Core, which means you can’t use EF Core’s
migrate feature. Chapter 11 explores options available for database migration,
as well as their pros and cons.

What to do if your application uses multiple projects

If your application has a separate project for the application’s DbContext from the
main startup application (as the book app does), the Add-Migration command is a
little more complex.

In the book app, the application’s DbContext is in a project called DataLayer, and
the ASP.NET Core application is in a project called EfCoreInAction (I describe why
later in this chapter). To add an EF Core migration, the Add-Migration commands
would be as follows:

Add-Migration Chapter02 -Project DataLayer -StartupProject
➥ EfCoreInAction

You also need to provide a way for the migrations to create a correcting config-
ured instance of your application’s DbContext. The book app’s DbContext, called

http://mng.bz/454w

	 37Understanding database queries

EfCoreContext, has no parameterless constructor, so the Add-Migration command
will fail. To deal with this potential problem, the Add-Migration command looks for
a class that implements the IDesignTimeDbContextFactory<T> interface. This allows
you to provide a class that will create a correctly configured instance of your applica-
tion’s DbContext so that the Add-Migration command will work, which is what we did
in the example application. See http://mng.bz/7tYR for more details.

2.3	 Understanding database queries
Now you can start looking at how to query a database by using EF Core. Figure 2.7
shows an example EF Core database query, with the three main parts of the query
highlighted.

Application’s DbContext
property access

A series of LINQ and/or
EF Core commands

An execute
command

context.Books.Where(p => p.Title.StartsWith("Quantum").ToList()

Figure 2.7   The three parts of an EF Core database query, with example code

TIME-SAVER   If you’re familiar with EF and/or LINQ, you can skip this section.

The command shown in figure 2.7 consists of several methods, one after the other.
This is known as a fluent interface. Fluent interfaces like this flow logically and intui-
tively, making them easy to read. The three parts of this command are described next,
in turn.

2.3.1	 Application’s DbContext property access

The first part of the command is something that’s connected, via EF Core, to the data-
base. The most common way to refer to a database table is via a DbSet<T> property in
the application’s DbContext, shown in figure 2.7.

You’ll use this DbContext property access throughout this chapter, but later chapters
introduce other ways to get to a class or property. The basic idea is the same: you need to
start with something that’s connected to the database via EF Core.

2.3.2	 A series of LINQ/EF Core commands

The major part of the command is a set of LINQ and/or EF Core methods that create
the type of query you need. The LINQ query can range from nothing to very compli-
cated. This chapter starts with simple examples of queries, but by the end of this chap-
ter, you’ll be learning how to build complex queries.

NOTE    If you’re not familiar with LINQ, you’ll be at a disadvantage in reading
this book. Appendix A gives you a brief overview of LINQ. Plenty of online
resources also are available; see https://msdn.microsoft.com/en-us/library/
bb308959.aspx.

http://mng.bz/7tYR
https://msdn.microsoft.com/en-us/library/bb308959.aspx
https://msdn.microsoft.com/en-us/library/bb308959.aspx

38 Chapter 2  Querying the database

2.3.3	 The execute command

The last part of the command reveals something about LINQ. Until a final execute
command is applied at the end of the sequence of LINQ commands, the LINQ is held
as a series of commands; it hasn’t been executed on the data yet. EF Core can translate
each command in the LINQ query into the correct commands to use for the database
you’re using. In EF Core, a query is executed against the database when

¡	It’s enumerated by a foreach statement.
¡	It’s enumerated by a collection operation such as ToArray, ToDictionary,

ToList, ToListAsync, and so forth.
¡	LINQ operators such as First or Any are specified in the outermost part of the

query.
¡	You use certain EF Core commands, such as Load, which you’ll use in the explicit

loading of a relationship later in this chapter.

2.4	 Loading related data
I’ve shown you the Book entity class, which has links to three other entity classes:
PriceOffer, Review, and BookAuthor. I now want to explain how you, as a developer,
can access the data behind these relationships. You can load data in three ways: eager
loading, explicit loading, select loading, and lazy loading (in EF Core 2.1).

But before I cover these approaches, you need to be aware that EF Core won’t load
any relationships in an entity class unless you ask it to. If you load a Book class, each of the
relationship properties in the Book entity class (Promotion, Reviews, and AuthorsLink)
will be null by default.

This default behavior of not loading relationships is correct, because it means that
EF Core minimizes the database accesses. If you want to load a relationship, you need
to add code to tell EF Core to do that. The next sections describe the three approaches,
with their pros and cons, to get EF Core to load a relationship.

2.4.1	 Eager loading: loading relationships with the primary entity class

The first approach to loading related data is eager loading. Eager loading entails telling
EF Core to load the relationship in the same query that loads the primary entity class.
Eager loading is specified via two fluent methods, Include and ThenInclude. The next
listing shows the loading of the first row of the Books table as an instance of the Book
entity class, and the eager loading of the single relationship, Reviews.

Listing 2.3   Eager loading of first book with the corresponding Reviews relationship

var book = context.Books
 .Include(r => r.Reviews)
 .First();

Gets a collection of reviews, which may
be an empty collection

Takes the first book

	 39Loading related data

If you look at the SQL command that this EF Core query creates, shown in the follow-
ing snippet, you’ll see two SQL commands. The first loads the first row in the Books
table. The second loads the reviews, where the foreign key, BookId, has the same value
as the first Books row primary key.

-- First SQL command to get the first row in the Books table
SELECT TOP(1)
 [r].[BookId], [r].[Description], [r].[ImageUrl],
 [r].[Price], [r].[PublishedOn], [r].[Publisher],
 [r].[Title]
FROM [Books] AS [r]
ORDER BY [r].[BookId]
-- Second SQL command to get the reviews for this book
SELECT [r0].[ReviewId], [r0].[BookId],
 [r0].[Comment], [r0].[NumStars], [r0].[VoterName]
FROM [Review] AS [r0]
INNER JOIN (
 SELECT DISTINCT TOP(1) [r].[BookId]
 FROM [Books] AS [r]
 ORDER BY [r].[BookId]
) AS [r1] ON [r0].[BookId] = [r1].[BookId]
ORDER BY [r1].[BookId]

EF6    Eager loading in EF Core is similar to that in EF6.x, but with improved syn-
tax and a different SQL implementation. First, syntax: EF6.x doesn’t have a Then-
Include method, so you have to use Select (for example, Books.Include(p =>
p.AuthorLink.Select(q => q.Author). Second, SQL implementation: EF6.x
would try to load all the data in one query, including collections. This can be
inefficient. EF Core loads collections in a separate query; you can see this in the
preceding SQL snippet.

Now let’s look at a more complex example. The following listing shows a query to get
the first book, with eager loading of all its relationships—in this case, AuthorsLink and
the second-level Author table, the Reviews, and the optional Promotion table.

Listing 2.4   Eager loading of the Book class and all of the related data

var book = context.Books
 .Include(r => r.AuthorsLink)
 .ThenInclude(r => r.Author)

 .Include(r => r.Reviews)
 .Include(r => r.Promotion)
 .First();

The listing shows the use of the eager-loading method Include to get the AuthorsLink
relationship. This is a first-level relationship, a relationship referred to directly from
the entity class you’re loading. That Include is followed by ThenInclude to load the

The first Include gets a
collection of BookAuthor.

Gets the next link—in this
case, the link to the author

Gets a collection of reviews,
which may be an empty collection

Loads any optional PriceOffer class, if
one is assigned

Takes the first book

40 Chapter 2  Querying the database

second-level relationship, in this case the Author table at the other end of the linking
table, BookAuthor. This pattern, Include followed by a ThenInclude, is the standard
way of accessing relationships that go deeper than a first-level relationship. You can go
to any depth with multiple ThenIncludes, one after the other.

If the relationship doesn’t exist (for example, the optional PriceOffer class pointed
to by the Promotion property in the Book class), Include doesn’t fail; it simply doesn’t
load anything, or in the case of collections, it returns an empty collection (a valid collec-
tion but with zero entries). This applies to ThenInclude as well. If the previous Include
or ThenInclude was empty, subsequent ThenIncludes are ignored.

Eager loading has the advantage that EF Core will load all the data referred to by
the Include and ThenInclude in an efficient manner, using a minimum of database
accesses, called database round-trips. I find this type of loading useful in relational updates
in which I need to update an existing relationship; chapter 3 covers this topic. I also find
eager loading useful in business logic, and chapter 4 covers this in much more detail.

The downside is that eager loading loads all the data, when sometimes you don’t
need part of it. For instance, the book list display doesn’t need the book description,
which could be quite large.

NOTE   In EF Core 2.0, a warning is logged if you use an Include method in a
query and it’s not needed. For instance, you don’t need the Include because
only the BookId is returned: context.Books.Include(b => b.Promotion).
Where(b => b.Promotion.NewPrice > 10).Select(b => b.BookId). The
EF Core team has added this warning because unnecessary use of the Include
method is common, and the warning helps people understand where the
method is and isn’t needed.

2.4.2	 Explicit loading: loading relationships after the primary entity class

The second approach to loading data is explicit loading; after you’ve loaded the primary
entity class, you can explicitly load any other relationships you want. This listing shows
a series of commands that first load the book and then use explicit-loading commands
to read all the relationships.

Listing 2.5   Explicit loading of the Book class and related data

var book = context.Books.First();
context.Entry(book)
 .Collection(c => c.AuthorsLink).Load();
foreach (var authorLink in book.AuthorsLink)
{
 context.Entry(authorLink)
 .Reference(r => r.Author).Load();
}

Reads in the first book on its own

Explicitly loads the
linking table, BookAuthor

To load all the possible authors,
the code has to loop through all the
BookAuthor entries and load each
linked Author class.

	 41Loading related data

context.Entry(book)
 .Collection(c => c.Reviews).Load();
context.Entry(book)
 .Reference(r => r.Promotion).Load();

Explicit loading has an extra command that allows a query to be applied to the relation-
ship, rather than just loading it. Listing 2.6 shows use of the explicit-loading method
Query to obtain the count of the number of reviews and to load all the star ratings of
each review. You can use any standard LINQ command after the Query method; for
instance, Where, OrderBy, and so forth.

Listing 2.6   Explicit loading of the Book class with refined set of related data

var book = context.Books.First();
var numReviews = context.Entry(book)
 .Collection(c => c.Reviews)
 .Query().Count();
var starRatings = context.Entry(book)
 .Collection(c => c.Reviews)
 .Query().Select(x => x.NumStars)
 .ToList();

The advantage of explicit loading is that you can load a relationship of an entity class
later. I’ve found this useful when using a library that loads only the primary entity class
and I need one of its relationships. Explicit loading can also be useful if you need that
related data only in some circumstances. You might also find explicit loading useful in
complex business logic, because you can leave the job of loading the specific relation-
ships to the parts of the business logic that need it.

The downside of explicit loading is more database round-trips, which can be ineffi-
cient. If you know up front the data you need, eager loading the data is usually more
efficient because it takes fewer database round-trips to load the relationships.

2.4.3	 Select loading: loading specific parts of primary entity class
and any relationships

The third approach to loading data is to use the LINQ Select method to specifically
pick out the data you want, which I call select loading. Listing 2.7 shows the use of the
Select method to select a few standard properties from the Book class and execute
specific code inside the query to get the count of customer reviews for this book.

Loads all the reviews

Loads the optional PriceOffer class

Reads in the first book on its own

Executes a query to count
reviews for this book

Executes a query to get all
the star ratings for the book

42 Chapter 2  Querying the database

Listing 2.7   Select of the Book class picking specific properties and one calculation

var result = context.Books
 .Select(p => new
 {
 p.Title,
 p.Price,
 NumReviews
 = p.Reviews.Count,
 }
).First();

The advantage of the select query approach is that only the data you need is loaded,
which can be more efficient if you don’t need all the data. For listing 2.7, only one SQL
SELECT command is required to get all that data, which is also efficient in terms of data-
base round-trips. EF Core turns the p.Reviews.Count part of the query into an SQL
command, so that count is done inside the database, as you can see in the following
snippet of the SQL created by EF Core:

SELECT TOP(1) [p].[Title], [p].[Price], (
 SELECT COUNT(*)
 FROM [Review] AS [r0]
 WHERE [p].[BookId] = [r0].[BookId]
)
FROM [Books] AS [p]

The downside to the select-loading approach is that you need to write code for each
property/calculation you want. In section 10.3 I show a way you can automate this.

NOTE    You’ll see a much more complex select-loading example later in this
chapter, as you’ll use this type of loading to build the book list query for the
book app.

Lazy loading: coming in EF Core version 2.1
I can’t write this section without mentioning lazy loading. This EF6.x feature allows you
to mark a property as virtual, and the database access occurs only when you read that
property. Lazy loading will be added to EF Core in version 2.1, and you can find the early
information available on lazy loading in appendix B, which covers all the major changes
planned for the EF Core 2.1 release.

The proponents of lazy loading say that it’s easy to use because you don’t need the appli-
cation’s DbContext when you read the property. The downside of lazy loading is that it
requires more database accesses to lazy load data, which can make your queries slow.
The approach described in this chapter for building queries removes the need for lazy
loading and can therefore produce better-performing database access.

Uses the LINQ Select keyword and creates
an anonymous type to hold the resultsSimple copies of a

couple of properties

Runs a query that counts the number of
reviews

	 43Using client vs. server evaluation: moving part of your query into software

2.5	 Using client vs. server evaluation: moving part of your
query into software
All the queries you’ve seen so far are ones that EF Core can convert to commands
that can be run on the database server. But EF Core has a feature called client vs. server
evaluation, which allows you to include methods in your query that can’t be run on the
database—for example, on relational databases, methods that EF Core can’t convert to
SQL commands. EF Core runs these non-server-runnable commands after the data has
come back from the database. Let me show you an example of where client vs. server
evaluation is useful and then a diagram to illustrate what’s happening inside EF Core
to make client vs. server evaluation work.

EF6:   Client vs. server evaluation is a new feature in EF Core, and a useful
one too.

2.5.1	 Creating the display string of a book’s authors

For the list display of the books on the book app, you need to (a) extract all the author’s
names, in order, from the Authors table and (b) turn them into one string with com-
mas between each name. Here’s an example that loads two properties, BookId and
Title, in the normal manner, and a third property, AuthorsString, which uses client
vs. server evaluation.

Listing 2.8   Select query that includes a non-SQL command, string.Join

var book = context.Books
 .Select(p => new
 {
 p.BookId,
 p.Title,
 AuthorsString = string.Join(", ",
 p.AuthorsLink
 .OrderBy(q => q.Order)
 .Select(q => q.Author.Name)),
 }
).First();

Running this code on a book that has two authors, Jack and Jill, would cause
AuthorsString to contain Jack, Jill, and the BookId; and Title would be set to the
value of the corresponding columns in the Books table.

Figure 2.8 shows how listing 2.8 would be processed through four stages. I want to focus
on stage 3, where EF Core runs the client-side code that it couldn’t convert into SQL.

These parts of the select
can be converted to SQL
and run on the server.

string.Join is executed on
the client in software.

44 Chapter 2  Querying the database

Database

context.Books
 .Select(p => new
{
 ...etc.

BookId: 1
Title: "Went up the hill"
AuthorsString: "Jack, Jill"

string.Join(", ",
 new []{"Jack, Jill"))

"Jack"
"Jill"

1
"Went up the hill"

"Jack, Jill"

2. Runs SQL commands
 and returns the data

1. EF Core translates query into
 • Commands that can be run on the database server
 • Code that has to be run client-side in software

4. EF Core creates the class and sets
 the properties to the returned data.

3. Runs nondatabase commands
 in software.

Can run on database server

Can’t run on database server

SQL server

My application code

Client vs. Server evaluation

EF Core

Translate
query

Figure 2.8   Some parts of the query are converted to SQL and run in the SQL server, and another part,
in this case string.Join, has to be done client-side by EF Core before the combined result is handed
back to the application code.

The client vs. server evaluation feature allows you, as a developer, to create complex
queries, and EF Core will optimize the query to run as much as it can on the database
server. But if a method in your query can’t be run on the database server, the query
won’t fail. Instead, EF Core will apply that method after SQL Server has done its part.

The example in listing 2.8 is fairly simple, and the possibilities are endless. But there
are a few things to watch out for.

2.5.2	 Understanding the limitations of client vs. server evaluation

The client vs. server evaluation feature is a useful addition to EF. But, as with all pow-
erful features, it’s best to understand what’s going on so you can use it in the right way.

First, the obvious thing is that the method you provide is run on every entity (row)
you read from the database. If you have 10,000 rows in the database and don’t filter/
limit what’s loaded, then, in addition to having an SQL command that takes a long
time, your processor will spend a long time running your method 10,000 times.

The second point is subtler: the client vs. server evaluation feature blurs the lines
between what’s run in the database and what’s run in the client. It’s possible to cre-
ate a query that works, but it’s slower than it could be because it has to use client-side

	 45Building complex queries

evaluation. To give you some context, in EF6.x this form of mixed client/server query
would have failed because EF6.x didn’t support it. Therefore, you were forced to
change your code—often by changing the query to better suit the database. Now your
query may work, but perform worse than one that EF Core can directly convert into
SQL commands.

One extreme example of the problem is that client vs. server evaluation allows you
to sort on a client-side evaluated property, which means the sorting is done in the client
rather than in the database server. I tried this by replacing the First command with
.Sort(p => p. AuthorsString) in listing 2.8 and returning a list of books. In that case,
EF Core produces SQL code that reads all the books, then reads each row individually,
twice, which is definitely not optimal.

Even so, my experiments with client vs. server evaluation showed that EF Core is
quite intelligent and builds an optimal SQL query for all the sensible cases I gave it, so
maybe this isn’t such a big worry. I suggest you use it and performance-tune later (see
chapters 12 and 13 on finding issues and improving database performance).

TIP   You can use EF Core’s logging to identify possible bad-performing client
vs. server queries. EF Core will log a warning on the first use of a client vs. server
query that could have an adverse effect on performance of the SQL commands
it produces. Also, you can configure logging to throw an exception on client vs.
server query warnings; for more information, see http://mng.bz/0644.

2.6	 Building complex queries
Having covered the basics of querying the database, let’s look at examples that are
more common in real applications. You’re going to build a query to list all the books in
the book app, with a range of features including sorting, filtering, and paging.

2.6.1	 Building the book list query by using select loading

You could build the book display by using eager loading: you’d load all the data, and
then in the code you’d combine the authors, calculate the price, calculate the average
votes, and so on. The problem with that approach is that the book list query includes
sorting options (such as on price) and filtering options (for instance, showing only
books with four or more customer star ratings).

With eager loading, you could load all the books into memory, and then sort or filter
them. For this chapter’s book app, which has 50-ish books, that would work, but I don’t
think that approach would work for Amazon! The better solution is for the values to be
calculated inside SQL Server so that sorting and filtering can be done before the data is
returned to the application.

Although you could add sorting and filtering methods in front of eager loading (or
explicit loading), in this example, you’ll use a select-loading approach, combining all the
individual queries into one big select query. This select precedes the sorting, filtering,
and paging parts of the query. That way, EF Core knows, via the select query, how to load
each part of the query and can therefore use any property in the LINQ select in an SQL
ORDER BY (sort) or SQL WHERE (filter) clause as it needs to.

http://mng.bz/0644

46 Chapter 2  Querying the database

NOTE   You’ll use client vs. server evaluation to get the string containing the
author(s) of the book. That excludes, for performance reasons, that property
from being used in an SQL sort or filter command.

Before I show you the select query that loads the book data, let’s go back to the book
list display of Quantum Networking from the beginning of this chapter. But this time,
figure 2.9 shows each individual LINQ query needed to get each piece of data.

context.Books.Select(p =>
string.Join(", ",
 p.AuthorsLink
 .OrderBy(q => q.Order)
 .Select(q => q.Author.Name)))

context.Books.Select(p =>
 p.Reviews.Select(q =>
 (double?)q.NumStars)
 .Average())

context.Books.Select(p =>
 p.Promotion == null
 ? p.Price : p.Promotion.NewPrice)

context.Books.Select(
 p => p.Title)

context.Books.Select(
 p => p.reviews.Count)

context.Books.Select(
 p => p.Price)

context.Books.Select(p =>
 p.Promotion == null
 ? null : p.Promotion.PromotionalText)

Figure 2.9   Each individual query needed to build the book list display, with each part of the query that’s
used to provide the value needed for that part of the book display

This diagram is complicated because the queries needed to get all the data are compli-
cated. With this diagram in mind, let’s look at how to build the book select query.

You start with the class you’re going to put the data in. This type of class, which
exists only to bring together the exact data you want, is referred to in various ways. In
ASP.NET, it is referred to as a ViewModel, but that term also has other connotations
and uses. I therefore refer to this type of class as a DTO. Listing 2.9 shows you the
DTO class, BookListDto.

DEFINITION   Data transfer object (DTO) describes “an object that carries data
between processes” (Wikipedia) or an “object that is used to encapsulate data,
and send it from one subsystem of an application to another” (Stack Overflow
answer). This book’s use of the term is closer to the Stack Overflow answer.

	 47Building complex queries

Listing 2.9   The DTO BookListDto

public class BookListDto
{
 public int BookId { get; set; }
 public string Title { get; set; }
 public DateTime PublishedOn { get; set; }
 public decimal Price { get; set; }
 public decimal
 ActualPrice { get; set; }
 public string
 PromotionPromotionalText { get; set; }
 public string AuthorsOrdered { get; set; }

 public int ReviewsCount { get; set; }
 public double?
 ReviewsAverageVotes { get; set; }
}

To work with EF Core’s select loading, the class that’s going to receive the data must
have a default constructor (it can be created without needing to provide any prop-
erties to the constructor), the class must not be static, and the properties must have
public setters.

Next, you’ll build a select query that fills in every property in BoolListDto. Because
you want to use this with other query parts, such as sort, filter, and paging, you’ll use
the IQueryable<T> type to create a method called MapBookToDto that takes in IQuery-
able<Book> and returns IQueryable<BookListDto>. The following listing shows this
method and, as you can see, the LINQ Select pulls together all the individual queries
you saw in figure 2.9.

Listing 2.10   The Select query to fill BookListDto

public static IQueryable<BookListDto>
 MapBookToDto(this IQueryable<Book> books)
{
 return books.Select(p => new BookListDto
 {
 BookId = p.BookId,
 Title = p.Title,
 Price = p.Price,
 PublishedOn = p.PublishedOn,
 ActualPrice = p.Promotion == null
 ? p.Price
 : p.Promotion.NewPrice,

You need the primary key if the customer
clicks the entry to buy the book.

Although the publish date isn’t
shown, you’ll want to sort by it,
so you have to include it.

Normal price

Selling price—either the normal
price or the promotional
.NewPrice if present

Promotional
text to show if
there’s a new

price

String to hold the
comma-delimited list of
authors’ names

Number of people who
reviewed the book

Average of all the votes—
null if no votes

Takes in IQueryable<Book> and
returns IQueryable<BookListDto>

Simple copies of existing
columns in the Books table

Calculates the selling price, which is the
normal price, or the promotion price if
that relationship exists

48 Chapter 2  Querying the database

 PromotionPromotionalText =
 p.Promotion == null
 ? null
 : p.Promotion.PromotionalText,
 AuthorsOrdered = string.Join(", ",
 p.AuthorsLink
 .OrderBy(q => q.Order)
 .Select(q => q.Author.Name)),
 ReviewsCount = p.Reviews.Count,
 ReviewsAverageVotes =
 p.Reviews.Select(y =>
 (double?)y.NumStars).Average()
});
}

NOTE   The individual parts of the Select query in listing 2.10 are the repetitive
code I mention in my lightbulb moment in chapter 1. Chapter 10 introduces
mappers to automate much of this coding, but in part 1, I list all the code in
full so you see the whole picture. Be assured, there’s a way to automate the
select-loading approach of querying that will improve your productivity.

The MapBookToDto method is using the Query Object pattern. This pattern is all about
encapsulating a query, or part of a query, in a method. That way, the query is isolated in
one place, which makes it easier to find, debug, and performance-tune. You’ll use the
Query Object pattern for the sort, filter, and paging parts of the query too.

NOTE    Query objects are useful for building queries such as the book list in this
example, but alternative approaches exist, such as the Repository pattern.
Chapter 10, which covers patterns that can be used with EF Core, provides
more details.

The MapBookToDto method is also what .NET calls an extension method. Extension meth-
ods allow you to chain query objects together. You’ll see this chaining used later, when
you combine each part of the book list query to create the final, composite query.

NOTE   A method can become an extension method if (a) it’s declared in a
static class, (b) the method is static, and (c) the first parameter has the keyword
this in front of it.

Because the MapBookToDto method uses IQueryable<T> for both input and out-
put, the LINQ commands inside the method aren't executed. The input can be the
DbSet<Books> property in the application’s DbContext, or another source of type
IQueryable<Book>. Also, the MapBookToDto method’s output can be fed into a method
that takes IQueryable<BookListDto> and returns IQueryable<BookListDto>, in
which case the LINQ commands are still not executed.

EF Core turns this into a reasonably efficient query. In chapter 13, you’ll work
through a series of performance tuning to make the book list query even faster.

PromotionalText depends on whether a
PriceOffer exists for this book

Obtains an array of authors’ names, in
the right order. You’re using client vs.
server evaluation, because you want the
author names combined into one string.

You need to calculate
the number of reviews.

To get EF Core to turn the LINQ
average into the SQL AVG
command, you need to cast the
NumStars to (double?).

	 49Building complex queries

NOTE    You can see the results of this query by cloning the code from the Git
repo, selecting the Chapter02 branch, and then running the EfCoreInAction
web application locally. A Logs menu feature will show you the SQL used to
load the book list with the specific sorting, filtering, and paging setting you’ve
selected.

2.6.2	 Introducing the architecture of the book app

I’ve waited until this point to talk about the design of the book app, because it should
make more sense now that you’ve created the BookListDto class. At this stage, you
have the entity classes (Book, Author, and so on) that map to the database via EF Core.
You also have a BookListDto class, which holds the data in the form that the presenta-
tion side needs—in this case, an ASP.NET Core web server.

In a simple example application, you might put the entity classes in one folder and
the DTOs in another, and so on. But even in a small application, such as the book app,
this can be confusing because the approach you use with the database is different from
the approach you use when displaying data to the customer. It’s all about separation of
concerns (https://en.wikipedia.org/wiki/Separation_of_concerns).

You could split up the parts of the book app in numerous ways, but we’ll use a com-
mon design called layered architecture. This approach works well for small-to-medium
.NET web applications. Figure 2.10 shows the architecture of the book app for this
chapter.

SQL
server

Data store

Data
access

1. EF Core
classes

2. EF Core
DbContext

Adapters,
e.g.,

BookListDto
and query

objects

ASP.NET
Core
web

application

DataLayer ServiceLayer

Names of the projects in the EfCoreInAction application

EfCoreInAction

HTML
pages

JavaScript
/Ajax

Browser

Figure 2.10   The layered architectural approach for the book app. Separating each part of the code into
discrete projects makes the code easier to find and refactor.

The three large rectangles are .NET projects, with their names at the bottom of the
figure. The classes and code between these three projects are split in the following way:

¡	DataLayer—This layer’s focus is the database access. The entity classes and the
application’s DbContext are in this project. This layer doesn’t know anything
about the layers above it.

https://en.wikipedia.org/wiki/Separation_of_concerns

50 Chapter 2  Querying the database

¡	ServiceLayer—This layer acts as an adapter between the DataLayer and the ASP
.NET Core web application. It does this by using DTOs, query objects, and var-
ious classes to run the commands. The idea is that the frontend ASP.NET Core
layer has so much to do that the ServiceLayer hands it premade data for display.

¡	EfCoreInAction—The focus of this layer, called the presentation layer, is on present-
ing data in a way that’s convenient and applicable to the user. That in itself is a
challenge, which is why we move as much of the database and data adapting out
of the presentation layer. In the book app, you’ll use an ASP.NET Core web appli-
cation mainly serving HTML pages, with a small amount of JavaScript running in
the browser.

Using a layered architecture makes the book app a little more complex to understand,
but it’s one way to build real applications. Using layers also enables you to more easily
know what each bit of the code is supposed to be doing in the associated Git repo,
because the code isn’t all tangled up together.

2.7	 Adding sorting, filtering, and paging
With the project structure out of the way, you can now push on more quickly and build
the remaining query objects to create the final book list display. I’ll start by showing
you a screenshot (figure 2.11) of the book app’s sort, filter, and page controls to give
you an idea of what you’re implementing.

Sorting by: Votes, publication
date, and price up/down

Filtering by: Publication
date and votes

Paging: Page number
and page size

Figure 2.11   The three commands—sorting, filtering, and paging—as shown on the book app’s
homepage

2.7.1	 Sorting books by price, publication date, and customer ratings

Sorting in LINQ is done by the methods OrderBy and OrderByDescending. You create
a query object called OrderBooksBy as an extension method, as shown in listing 2.11.
You’ll see that in addition to the IQueryable<BookListDto> parameter, this method
takes in an enum parameter. This enum defines the type of sort the user wants.

	 51Adding sorting, filtering, and paging

Listing 2.11   The OrderBooksBy query object method

public static IQueryable<BookListDto> OrderBooksBy
 (this IQueryable<BookListDto> books,
 OrderByOptions orderByOptions)
{
 switch (orderByOptions)
 {
 case OrderByOptions.SimpleOrder:
 return books.OrderByDescending(
 x => x.BookId);
 case OrderByOptions.ByVotes:
 return books.OrderByDescending(x =>
 x.ReviewsAverageVotes);
 case OrderByOptions.ByPublicationDate:
 return books.OrderByDescending(
 x => x.PublishedOn);
 case OrderByOptions.ByPriceLowestFirst:
 return books.OrderBy(x => x.ActualPrice);
 case OrderByOptions.ByPriceHigestFirst:
 return books.OrderByDescending(
 x => x.ActualPrice);
 default:
 throw new ArgumentOutOfRangeException(
 nameof(orderByOptions), orderByOptions, null);
 }
}

Calling the OrderBooksBy method returns the original query with the appropriate
LINQ sort command added to the end. You then pass this on to the next query object,
or, if you’ve finished, you call a command to execute the code, such as ToList.

NOTE    Even if the user doesn’t select a sort, you’ll still sort (see the SimpleOrder
switch statement). This is because you’ll be using paging, providing only a page
at a time rather than all the data, and SQL requires the data to be sorted to han-
dle paging. The most efficient sort is on the primary key, so you sort on that.

2.7.2	 Filtering books by publication year and customer ratings

The filtering created for the book app is a bit more complex than the sorting we just
covered. That’s because you get the customer to first select the type of filter they want
and then select the actual filter value. The filter value for Votes is easy: it’s a set of fixed
values (4 or above, 3 or above, and so on). But to filter by Date, you need to find the
dates of the publications to put into the drop-down list.

It’s instructive to look at the code for working out the years that have books, because
it’s a nice example of combining LINQ commands to create the final drop-down list.
Here’s a snippet of code taken from the GetFilterDropDownValues method.

Because of paging, you always need to
sort. You default sort on the primary key,
which is fast.

This orders the book by votes.
Books without any votes (null
return) go at the bottom.

Orders by publication date—
latest books at the top

Orders by actual price, which
takes into account any
promotional price—both
lowest first and highest first

52 Chapter 2  Querying the database

Listing 2.12   The code to produce a list of the years that books are published

var comingSoon = _db.Books.
 Any(x => x.PublishedOn > DateTime.UtcNow);
var nextYear = DateTime.UtcNow.AddYears(1).Year;
var result = _db.Books
 .Select(x => x.PublishedOn.Year
 .Distinct()
 .Where(x => x < nextYear)
 .OrderByDescending(x => x)
 .Select(x => new DropdownTuple
 {
 Value = x.ToString(),
 Text = x.ToString()
 }).ToList();
if (comingSoon)
 result.Insert(0, new DropdownTuple
 {
 Value = BookListDtoFilter.AllBooksNotPublishedString,
 Text = BookListDtoFilter.AllBooksNotPublishedString
 });

return result;

The result of this code is a list of Value/Text pairs holding each year that books are
published, plus a Coming Soon section for books yet to be published. This is turned
into an HTML drop-down list by ASP.NET Core and sent to the browser.

The following listing shows the filter query object called FilterBooksBy. This takes
as an input the Value part of the drop-down list created in listing 2.12, plus whatever
type of filtering the customer has asked for.

Listing 2.13   The FilterBooksBy query object method

public static IQueryable<BookListDto> FilterBooksBy(
 this IQueryable<BookListDto> books,
 BooksFilterBy filterBy, string filterValue)
{
 if (string.IsNullOrEmpty(filterValue))
 return books;

 switch (filterBy)
 {
 case BooksFilterBy.NoFilter:
 return books;
 case BooksFilterBy.ByVotes:
 var filterVote = int.Parse(filterValue);
 return books.Where(x =>
 x.ReviewsAverageVotes > filterVote);
 case BooksFilterBy.ByPublicationYear:

Returns true if a book in the
list isn’t yet published

Gets the next year so you can
filter out all future publications

Gets the year of publication, uses distinct
to have only one of each year, filters out
the future books, and orders with newest
year at the top.

Uses two client/server evaluations
to turn the values into strings

Adds a coming soon filter for all the
future books

The method is given both the type of
filter and the user-selected filter value.

If the filter value isn't set, it
returns IQueryable with no change.

Same for no filter selected—it returns
IQueryable with no change.

The filter by votes is a value
and above; if there are no
reviews for a book, the
ReviewsAverageVotes property
will be null, and the test
always returns false.

	 53Adding sorting, filtering, and paging

 if (filterValue == AllBooksNotPublishedString)
 return books.Where(
 x => x.PublishedOn > DateTime.UtcNow);

 var filterYear = int.Parse(filterValue);
 return books.Where(
 x => x.PublishedOn.Year == filterYear
 && x.PublishedOn <= DateTime.UtcNow);
 default:
 throw new ArgumentOutOfRangeException
 (nameof(filterBy), filterBy, null);
 }
}

Other filtering options—searching text for a specific string

We could’ve created loads of other types of filters/searches of books, and searching by
title is an obvious one. But you want to make sure that the LINQ commands you use to
search a string are executed in the database, because then they’ll perform much better
than loading all the data and filtering in software. The string search commands that
EF Core converts into SQL that can run on the database are shown in table 2.1. Other
string commands will work, but will run in software and therefore will be slow.

Table 2.1. .NET string comparison commands that EF Core can translate into SQL to run on the database

String command Example: these will find a title with the string “The Cat sat on the mat.”

StartsWith var books = context.Books

 .Where(p => p.Title.StartsWith("The"))

 .ToList();

EndsWith var books = context.Books

 .Where(p => p.Title.EndsWith("mat."))

 .ToList();

Contains var books = context.Books

 .Where(p => p.Title.Contains("Cat"))

 .ToList();

NOTE   These are the only string commands that get translated to SQL. Com-
mands such as IndexOf, Substring, and Regex commands would work, but
would use client vs. server evaluation and be run as software.

You can access another SQL command, called LIKE, through the EF.Function.Like
method. This provides a simple pattern-matching approach using _ (underscore) to
match any letter, and % to match zero-to-many characters. The following code snippet

If coming soon was
picked, you return only
books not yet published.

If you have a specific year,
you filter on that. You also
remove future books (in
case the user chose this
year’s date).

54 Chapter 2  Querying the database

would match The Cat sat on the mat. and The dog sat on the step., but not The
rabbit sat on the hutch. because rabbit isn’t three letters long:

var books = context.Books
 .Where(p => EF.Functions.Like(p.Title, "The ___ sat on the %."))
 .ToList();

The other important thing to know is that the case sensitivity of a string search exe-
cuted by SQL commands depends on a setting in the database called collation. If you
create an SQL Server database via EF Core, for instance, the collation will be set to
case-insensitive searches, so searching for Cat would find cat and Cat.

2.7.3	 Paging the books in the list

If you’ve used Google search, you’ve used paging. Google presents the first dozen or so
results, and you can page through the rest. Our book app uses paging, which is simple
to implement by using the LINQ commands’ Skip and Take methods.

Although the other query objects were tied to the BookListDto class because the
LINQ paging commands are so simple, you can create a generic paging query object
that will work with any IQueryable<T> query. This query object is shown in the fol-
lowing listing. The object does rely on getting a page number in the right range, but
another part of the application has to do that anyway in order to show the correct pag-
ing information onscreen.

Listing 2.14   A generic Page query object method

public static IQueryable<T> Page<T>(
 this IQueryable<T> query,
 int pageNumZeroStart, int pageSize)
{
 if (pageSize == 0)
 throw new ArgumentOutOfRangeException
 (nameof(pageSize), "pageSize cannot be zero.");

 if (pageNumZeroStart != 0)
 query = query
 .Skip(pageNumZeroStart * pageSize);

 return query.Take(pageSize);
}

As I said earlier, paging works only if the data is ordered. Otherwise, SQL Server will
throw an exception. That’s because relational databases don’t guarantee the order in
which data is handed back; there’s no default row order in a relational database.

2.8	 Putting it all together: combining query objects
We’ve covered each query object you need to build a book list for the book app. Now
it’s time to see how to combine each of these query objects to create a composite query
to work with the website. The benefit of building a complex query as separate parts is

Skips the correct
number of pages

Takes the number for this page size

	 55Putting it all together: combining query objects

that it makes writing and testing the overall query simpler, because you can test each
part on its own.

Listing 2.15 shows a class called ListBooksService, which has one method, Sort-
FilterPage, which uses all the query objects (select, sort, filter, and page) to build the
composite query. It also needs the application’s DbContext to access the Books prop-
erty, which you provide via the constructor.

TIP   Listing 2.15 highlights in bold the AsNoTracking method. This stops EF
Core from taking a tracking snapshot (see figure 1.6), which makes the query
slightly quicker. You should use the AsNoTracking method in any read-only que-
ries (queries in which you only read the data, but don’t ever update the data).

Listing 2.15   The ListBookService class provides a sorted, filtered, and paged list

public class ListBooksService
{
 private readonly EfCoreContext _context;

 public ListBooksService(EfCoreContext context)
 {
 _context = context;
 }

 public IQueryable<BookListDto> SortFilterPage
 (SortFilterPageOptions options)
 {
 var booksQuery = _context.Books
 .AsNoTracking()
 .MapBookToDto()
 .OrderBooksBy(options.OrderByOptions)
 .FilterBooksBy(options.FilterBy,
 options.FilterValue);

 options.SetupRestOfDto(booksQuery);

 return booksQuery.Page(options.PageNum-1,
 options.PageSize);
 }
}

At you can see, the four query objects—select, sort, filter, and page—are added
in turn (called chaining) to form the final composite query. Note that the options
.SetupRestOfDto(booksQuery) code just before the Page query object sorts out things

Starts by selecting the Books
property in the Application’s
DbContext

Because this is a read-only
query, you add .AsNoTracking.

Uses the Select query object, which will
pick out/calculate the data it needs

Adds the commands to order the
data by using the given options

Adds the commands
to filter the data

This stage sets up the number
of pages and makes sure
PageNum is in the right range.

Applies the paging
commands

56 Chapter 2  Querying the database

such as how many pages there are, ensures that the PageNum is in the right range, and
performs a few other housekeeping items.

Chapter 5 shows how the ListBooksService is called in our ASP.NET Core web
application.

Summary
¡	To access a database in any way via EF Core, you need to define an application

DbContext.
¡	An EF Core query consists of three parts: the application’s DbContext property, a

series of LINQ/EF Core commands, and a command to execute the query.
¡	Using EF Core, you can model three primary database relationships: one-to-one,

one-to-many, and many-to-many. Another is hierarchical, covered in chapter 7.
¡	The classes that EF Core maps to the database are referred to as entity classes. I use

this term to highlight that the class I’m referring to is mapped by EF Core to the
database.

¡	If you load an entity class, it won’t load any of its relationships by default. For
example, querying the Book entity class won’t load its relationship properties
(Reviews, AuthorsLink, and Promotion), but leave them as null.

¡	You can load related data that’s attached to an entity class in four ways: eager
loading, explicit loading, select loading, and lazy loading (which is available in
only EF Core 2.1 onward).

¡	The EF Core feature called client vs. server evaluation allows you to include com-
mands that can’t be converted to SQL commands in your database query. EF
Core extracts these non-SQL commands and executes them after the database
access has finished.

¡	I’ve used the term query object to refer to an encapsulated query, or a section of
a query. These query objects are often built as .NET extension methods, which
means they can easily be chained together, similar to the way LINQ is written.

For readers who are familiar with EF6.x:

¡	Many of the concepts in this chapter are the same as in EF6.x. In some cases (for
instance, eager loading), the EF Core commands have changed slightly, but often
for the better.

¡	Some features in EF6.x, such as automatic many-to-many relationship setup,
are missing from EF Core. Alternatives exist, but you’ll need to write your code
slightly differently than in EF6.x.

¡	EF Core’s client vs. server evaluation feature is new and allows you to write que-
ries that would’ve previously thrown an exception in EF6.x.

57

3Changing the
database content

This chapter covers
¡	Creating a new row in a database table

¡	Updating existing rows in a database table for
two types of applications

¡	Updating entities with one-to-one, one-to-many,
and many-to-many relationships

¡	Deleting single entities, and entities with
relationships, from a database

Chapter 2 covered querying a database. This chapter moves on to changing the
content of a database. Changing data has three distinct parts: creating new rows in
a database table, updating existing rows in a database table, and deleting rows in a
database table, which I cover in that order. Create, update, and delete, along with read
(which is query in EF Core terms) are database terms for what’s happening, and the
foursome is often shortened to CRUD.

You’ll use the same database as in chapter 2, which has the Book, PriceOffer,
Review, BookAuthor, and Author entity classes. These provide a good selection of
property types and relationships that you can use to learn the various issues and
approaches to changing data in a database via EF Core.

58 Chapter 3  Changing the database content

3.1	 Introducing EF Core’s entity State
Before I start describing the methods to add, update, or delete entities, I want to intro-
duce you to EF Core’s entity property, called State. This provides another look under
the hood at the way EF Core does things. You can skip this section, but it can help you
understand what’s going on when you add, update, or delete entities.

When you read in an entity, it’s tracked by EF Core by default. This is known as a
tracked entity, and EF Core holds extra information on the entity.

DEFINITION   Tracked entities are entity instances that have been read in from the
database by using a query that didn’t include the AsNoTracking method. Alter-
natively, after an entity instance has been used as a parameter to EF Core meth-
ods (such as Add, Update, or Delete), it becomes tracked.

For all the tracked entities—all entity instances that EF Core has loaded from the
database without the AsNoTracking method, or all entities to which you’ve applied an
EF Core command such as Add, Update, or Delete—EF Core holds a property called
State. The State of an entity can be obtained using the following EF command:

context.Entry(someEntityInstance).State

Here’s a list of the possible states and what happens if SaveChanges is called:

¡	Added—The entity doesn’t yet exist in the database. SaveChanges inserts it.
¡	Unchanged—The entity exists in the database and hasn’t been modified on the

client. SaveChanges ignores it.
¡	Modified—The entity exists in the database and has been modified on the client.

SaveChanges updates it.
¡	Deleted—The entity exists in the database but should be deleted. SaveChanges

deletes it.
¡	Detached—The entity you provided isn’t tracked. SaveChanges doesn’t see it.

Normally, you don’t look at or alter the State directly. You use the various commands
listed in this chapter to add, update, or delete entities. These commands make sure the
State is set in all the entities involved so that the action you want is done correctly. I
refer to the entity’s State in the rest of the chapter to show you how EF Core decides
what type of change to apply to the database.

3.2	 Creating new rows in a table
Creating new data in a database is about adding (via SQL INSERT) a new row to a table.
For instance, if you want to add a new author to our book app, that would be referred
to as a create operation on the database.

In EF Core terms, creating new data in a database is the simplest of the update oper-
ations. This is because EF Core can take a set of linked entity classes, save them to the
database, and sort out the foreign keys needed to link things together. In this section,
you’ll start with a simple example and then build up to more complex creates.

	 59Creating new rows in a table

3.2.1	 Creating a single entity on its own

Let’s start with an entity class that has no links, which is rare but shows the two steps in
a create operation:

1	 Adding the entity to the application’s DbContext

2	 Calling the application’s DbContext’s SaveChanges method

This listing creates an ExampleEntity entity class and adds a new row to the table that
the entity is mapped to, in this case the ExampleEntities table.

Listing 3.1   An example of creating a single entity

var itemToAdd = new ExampleEntity
{
 MyMessage = "Hello World"
};

context.Add(itemToAdd);
context.SaveChanges();

Because you add the entity instance itemToAdd that wasn’t originally tracked, EF Core
starts to track it and sets its State to Added. After SaveChanges is called, EF Core finds a
tracked entity of type ExampleEntity with a State of Added, so it’s added as a new row
in the database table associated with the ExampleEntity class.

EF6   In EF6.x, you’d need to add the ExampleEntity to a DbSet<ExampleEntity>
property in the application’s DbContext. That approach is still valid, but EF Core
has introduced the shorthand shown in listing 3.1. This applies to the Add,
Remove, Update, and Attach methods (see chapter 9 for more on these last two
commands). EF Core works out which entity you're altering by looking at the type
of the instance you provide.

EF Core creates the SQL command to update an SQL Server–based database.

Listing 3.2   SQL commands created to insert a new row into the SingleEntities table

SET NOCOUNT ON;
INSERT INTO ExampleEntities]
 ([MyMessage]) VALUES (@p0);

SELECT [ExampleEntityId]
FROM [ExampleEntities]
WHERE @@ROWCOUNT = 1 AND
 [ExampleEntityId] = scope_identity();

Uses the Add method to add SingleEntity to the
application’s DbContext. The DbContext determines
the table to add it to, based on its parameter type.

Calls the SaveChanges method
from the application’s DbContext
to update the database

Inserts (creates) a new row in
the ExampleEntities table

Reads back the primary key
in the newly created row

60 Chapter 3  Changing the database content

The second SQL command produced by EF Core reads back the primary key of the
row that was created by the database server. This ensures that the original instance is
updated with the primary key so that the in-memory version of the entity is the same
as the version in the database. That can be useful if you need the primary key in your
code, or in case the same entity will be updated again later.

EF6   In EF6.x, when you call SaveChanges, EF6.x by default will validate the
data by using the standard .NET validation approach: EF6.x looks for data
validation attributes and, if present, runs IValidatableObject.Validate on
entity classes. EF Core doesn’t include this feature. Chapter 4 shows you how to
implement this feature yourself.

3.2.2	 Creating a book with a review

Next, you’ll look at a create that includes relationships—in this case, adding a new
book with a review. Although the code is a bit more complex, the process has the same
steps as our earlier, nonrelational create:

1	 It adds the entity class(es) in some way to EF Core’s tracked entities with the
State of Add.

2	 It calls SaveChanges, which looks at the State of all the tracked entities and runs
the SQL INSERT command for all entities with the State set to Added.

This example uses the book app database with its Books and Review tables. Figure 3.1
shows a partial database diagram of these tables.

Books

One-to-many relationship

A Book entity with one Review

When EF Core writes this new book entity and
its related Review entity to the database, it copies
the Book’s database-generated primary key into
the foreign key in the Review entity.

BookId

Title
Description
... etc.

PK

Review

ReviewId

VoterName
NumStars
Comment
BookId

PK

Figure 3.1   The Books and Review tables. The Review row has a foreign key
that EF Core fills with the primary key value from the new Books row that’s
created.

	 61Creating new rows in a table

In listing 3.3, you create a new Book entity and fill the Reviews collection property
with a single Review entity. You then call the context.Add method, followed by the
SaveChanges method, which writes both entities to the database.

Listing 3.3   Adding a Book entity class also adds any linked entity classes

var book = new Book
{
 Title = "Test Book",
 PublishedOn = DateTime.Today,
 Reviews = new List<Review>()
 {
 new Review
 {
 NumStars = 5,
 Comment = "Great test book!",
 VoterName = "Mr U Test"
 }
 }
};

context.Add(book);
context.SaveChanges();

The thing to note from this is that you add only the Book entity class to the applica-
tion’s DbContext property Books, but the related Review entity class is also written to
the database. This is because EF Core follows all the relational links and finds the other
entity classes.

As you saw in the simple example in listing 3.1, EF Core works out what to do with
the linked entity classes by accessing their EF Core State values. If the linked instances
are new (not already known to EF Core), EF Core will track them and set their State
to New. In all other cases, EF Core will obey the State linked to the entity instance. In
listing 3.3, the Review entity instance isn’t already known to EF Core, so its State is set
to Added. That instance will be INSERTed into the database as a new row.

What happens when SaveChanges returns successfully

After SaveChanges has successfully updated the database, a few things happen. First,
the instances that have been inserted into the database are now tracked by EF Core,
and their State is set to Unchanged.

Creates the book with
the title “Test Book”

Creates a new
collection of reviews

Adds one review
with its content

Uses the Add method to add the book to the
application’s DbContext property, Books

Calls the SaveChanges method from the
application’s DbContext to update the
database. It finds a new Book, which has
a collection containing one new Review,
and it then adds both to the database.

62 Chapter 3  Changing the database content

NOTE    Chapter 1 described EF Core’s internal tracking snapshot copy that
EF Core creates when you don’t include the AsNoTracking method in your
query. Entities loaded this way are known as tracked entities, and EF Core
knows their State.

In this example, because these two entity classes, Book and Review, have primary keys
that are of type int, EF Core by default expects the database to create the primary
keys by using the SQL IDENTITY keyword. Therefore, the SQL commands created by
EF Core return the primary keys, which are copied into the properties mapped to the
database primary key.

Also, EF Core knows about the relationships by the navigational properties in the
entity classes. In listing 3.3, the Book entity’s Reviews collection property has a new
Review entity instance in it. As part of the SaveChanges process, any foreign key will be
set by copying the primary keys into the foreign keys in each of the new relationships.
The entity instance then matches the database. That’s useful in case you want to read
the primary or foreign keys, and EF Core can detect any change you make to the pri-
mary or foreign keys if you call SaveChanges again.

NOTE   Some primary keys, such as GUIDs (globally unique identifiers), are
generated by what EF Core calls a ValueGenerator. These are filled in by the
software and copied to any related foreign keys before the write to the data-
base. Chapter 8 covers the ValueGenerator feature, which allows you to define
key values via software.

Example that has one instance already in the database

The other situation you may need to deal with is creating a new entity containing a nav-
igational property that uses another entity already in the database. If you want to create
a new Book entity that has an Author that already exists in the database, you need to
obtain a tracked instance of the Author entity you want to add to your new Book entity.
Here’s one example.

Listing 3.4   Adding a book with an existing author

var oneBook =
 EfTestData.CreateDummyBookOneAuthor();
context.Add(oneBook);
context.SaveChanges();

var book = new Book
{
 Title = "Test Book",
 PublishedOn = DateTime.Today
};

Creates dummy books for
testing. You create one dummy
book with one Author and add
it to the empty database.

Creates a book in the same way as the
previous example, but sets up its Author

	 63Updating database rows

book.AuthorsLink = new List<BookAuthor>
{
 new BookAuthor
 {
 Book = book,
 Author = oneBook.AuthorsLink
 .First().Author
 }
};

context.Add(book);
context.SaveChanges();

The first four lines use a method to create a Book entity with one Author, linked to
the Book entity via a BookAuthor linking entity. You then create a new Book entity
and add a new BookAuthor linking entity, but instead of creating a new Author entity
instance, you use the Author entity from the first book. The instance assigned to
the Author link has already been written to the database, so it’s tracked. This means
EF Core won’t try to add it again to the database when SaveChanges is called again at
the end of listing 3.4.

To be clear: in this example, you write the first book, with its BookAuthor and
Authors entity classes, by calling SaveChanges (line 4). If you leave out SaveChanges
in line 4, you’d have the same result: only one author would be written to the data-
base. That’s because the author had already been tracked by EF Core because of the
Add of the first book.

3.3	 Updating database rows
Updating a database row is achieved in three stages:

1	 Read the data (database row), possibly with some relationships.

2	 Change one or more properties (database columns).

3	 Write the changes back to the database (update the row).

In this section, you’ll ignore any relationships and focus on the three stages. In the
next section, you’ll learn how to update relationships by adding more commands into
each stage.

Listing 3.5 changes the publication date of an existing book. Through this code, you
can see the standard flow of an update:

1	 You load the entity class(es) you want to change as a tracked entity.

2	 You change the property/properties in your entity class(es).

3	 You call SaveChanges to update the database.

Adds an AuthorBook linking
entity, but reads in an existing
Author from the first book

The same process: adds the new book to the
DbContext Books property and calls SaveChanges

64 Chapter 3  Changing the database content

Listing 3.5   Updating Quantum Networking’s publication date

var book = context.Books
 .Single(p => p.Title == "Quantum Networking");
book.PublishedOn = new DateTime(2058, 1, 1);
context.SaveChanges();

When the SaveChanges method is called, it runs a method called DetectChanges,
which compares the tracking snapshot copy with the copy that it handed to the appli-
cation when the query was originally executed. From this, it decides that only the
PublishedOn property has been changed, and EF Core builds the SQL to update that.

NOTE    Using the tracking snapshot is the normal way that DetectChanges finds
the changed properties. But chapter 8 describes an alternative to the tracking
snapshot, called INotifyPropertyChanging. This is an advanced topic, so I use
the tracked entities approach throughout part 1 of this book.

The following listing shows the two SQL commands that EF Core produces for the
code in listing 3.5. One SQL command finds and loads the Book entity class, and a sec-
ond command updates the PublishedOn column.

Listing 3.6   SQL generated by EF Core for the query and update in listing 3.5

SELECT TOP(2)

 [p].[BookId],
 [p].[Description],
 [p].[ImageUrl],
 [p].[Price],
 [p].[PublishedOn],
 [p].[Publisher],
 [p].[Title]
FROM [Books] AS [p]
WHERE [p].[Title] = N'Quantum Networking'

SET NOCOUNT ON;
UPDATE [Books]
 SET [PublishedOn] = @p0

WHERE [BookId] = @p1;
SELECT @@ROWCOUNT;

Finds the specific book you want to update—our
special book on Quantum Networking

Changes the expected publication
date to year 2058 (it was 2057)

Calls SaveChanges, which includes running a
method called DetectChanges. This spots that
the PublishedOn property has been changed.

Reads up to two rows from the Books table; you
asked for a single item, but this makes sure it
fails if more than one row fits.

The read loads all the
columns in the table.

Your LINQ Where method, which picks
out the correct row by its title

SQL UPDATE command—in
this case, on the Books table

Because EF Core’s DetectChanges method finds
only the PublishedOn property has changed, it can
target that column in the table.

EF Core uses the primary key from the
original book to uniquely select the
row it wants to update.

Sends back the number of rows that were inserted
in this transaction. SaveChanges returns this
integer, but normally you can ignore it.

	 65Updating database rows

3.3.1	 Handling disconnected updates in a web application

As you learned in the previous section, an update is a three-stage process, needing a
read, an update, and a SaveChanges call to all be executed using the same instance of
the application’s DbContext. The problem is that for certain applications, such as web-
sites and RESTful APIs, using the same instance of the application’s DbContext isn’t
possible. In these types of applications an update consists of two stages:

1	 The first stage is an initial read, done in one instance of the application’s DbContext.

2	 The second stage then applies the update using a new instance of the applica-
tion’s DbContext.

In EF Core, this is called a disconnected update, whereas the update example in listing 3.5
is known as a connected update. You can handle a disconnected update in several ways.
The method you should use depends a lot on your application. Here are the two main
ways of handling disconnected updates:

1	 You send only the data you need to update back from the first stage. If you were updat-
ing the published date for a book you would only send back the BookId and the
PublishedOn properties. In the second stage, you use the primary key to reload
the original entity with tracking and update the specific properties you want
to change. In this example, the primary key is the BookId and the property to
update is PublishedOn property of the Book entity (see figure 3.2). When you
call SaveChanges, EF Core can work out which properties you’ve changed and
update only those columns in the database.

2	 You send all the data needed to re-create the entity class back from the first stage. In the sec-
ond stage, you rebuild the entity class, and maybe relationships, by using the data
from the first stage and tell EF Core to update the whole entity (see figure 3.3).
When you call SaveChanges, EF Core will know, because you told it, that it must
update all the columns in the table row(s) affected with the substitute data that
the first stage provided.

NOTE   Another way of handling the partial update of an entity described in
option 1 is by creating a new entity instance and manipulating the State of
each property. Chapter 9 covers this option, when we look at how to alter the
entity’s State in more detail.

That’s a lot of words! Now I’ll give you an example of each approach for handling dis-
connected updates.

Disconnected update, with reload

Figure 3.2 shows an example of a disconnected update in a web application. In this
case, you’re providing a feature to allow an admin user to update the publication date
of a book. The figure shows that you send only the BookId and the PublicationDate
back from the first stage.

66 Chapter 3  Changing the database content

context.Books.Find(BookId);

var book = Context.Books.Find(BookId);
book.PublishedOn = PublishDate;
context.SaveChanges();

Update

Update stage 1 DbContext Update stage 2 DbContext

Disconnect

BookId
PublishDate

Figure 3.2   The two stages in a disconnected update on a website using EF Core. The thick,
dashed line in the middle represents the point where the data held in the application in the
first stage is lost, and the second stage starts with no knowledge of what stage 1 did. Only the
BookId and PublishDate information are returned when the user clicks the Update button
that bridges the gap.

For web applications, the approach of returning only a limited amount of data back to
the web server is a common way of handling EF Core updates. There are several ways
of controlling what data is returned/accepted by the web server. In ASP.NET Core, you
have two attributes, BindRequired and BindNever, that you can apply to properties in a
class to require or stop, respectively, the data being input to the second stage.

A more general approach, and one I prefer, is to use a special class that contains
only properties that should be sent/received. This class is referred to as a DTO or View-
Model. It’s similar in nature to the DTO used in the select-loading query in chapter 2,
but in this case is used not only in the query, but also to receive the specific data you
need back from the user, via a browser.

For our example that updates the publication date, you need three parts. The first
part, a DTO to send/receive the data to/from the user, is shown here.

Listing 3.7   ChangePubDateDto sends data to and receives it from the user

public class ChangePubDateDto
{
 public int BookId { get; set; }

 public string Title { get; set; }

 [DataType(DataType.Date)]
 public DateTime PublishedOn { get; set; }
}

Holds the primary key of the row you want to update.
This makes finding the right row quick and accurate.

You send over the title to show the user, so that
they can be clear about altering the right book.

The property you want to alter. You send out the
current publication date and get back the changed

publication date.

	 67Updating database rows

The Find command
When you want to update a specific entity and you have its primary key, the Find com-
mand is a quick way of loading the entity. This command has two forms:

¡	DbSet’s Find(key(s)); for instance, context.Book.Find(key)
¡	DbContext’s Find<T>(key(s)); for instance, context.Find<Book>(key)

Both Find methods take one key (see listing 3.8) or multiple keys, known as compos-
ite keys (the BookAuthor entity has a composite key, consisting of the BookId and the
AuthorId). The key parameters must be in the same order that the composite key is
defined in. Find returns null if no matching entity with that key is found.

Also, Find checks the current application’s DbContext to see whether the required
entity instance has already been loaded, which can save an access to the database. This
makes the Find methods efficient to use when you want to load only a specific entity.

Second, you need a method to get the initial data for stage 1. Third, you need a method
to receive the data back from the browser and then reload/update the book. This listing
shows the ChangePubDateService class that contains two methods to handle these stages.

Listing 3.8   The ChangePubDateService class to handle the disconnected update

public class ChangePubDateService
{
 private readonly EfCoreContext _context;

 public ChangePubDateService(EfCoreContext context)
 {
 _context = context;
 }

 public ChangePubDateDto GetOriginal(int id)
 {
 return _context.Books
 .Select(p => new ChangePubDateDto
 {
 BookId = p.BookId,
 Title = p.Title,
 PublishedOn = p.PublishedOn
 })
 .Single(k => k.BookId == id);
 }

 public Book UpdateBook(ChangePubDateDto dto)

 {

 var book = _context.Find<Book>(dto.BookId);
 book.PublishedOn = dto.PublishedOn;

Handles the first part of the update by getting the
data from the chosen book to show to the user

A select load query, which
returns only three properties

Uses the primary key to
select the exact row you
want to update

Handles the second part of the update, performing
a selective update of the chosen book

Loads the book. The EF Core Find method is an
efficient way of loading a row by its primary key.

Selective update of just the PublishedOn
property of the loaded book

68 Chapter 3  Changing the database content

 _context.SaveChanges();
 return book;
 }
}

The advantages of this reload update approach is it’s more secure (in our example, send-
ing/returning the price of the book over HTTP would allow someone to alter it) and it’s
faster because of less data. The downside is you have to write code to copy over the specific
properties you want to update. A few tricks to automate this are covered in chapter 10.

NOTE    You can see this code and try updating the publication date on the exam-
ple book app. If you download the code from the Git repo and run it locally,
you’ll see an Admin button on each book. This contains an action called Change
Pub Date, which will step you through this process. You can also see the SQL
commands that EF Core uses to carry out this update via the Logs menu item.

Disconnected update, sending all the data

In some cases, all the data may be sent back, so there’s no reason to reload the original data.
This can happen for simple entity classes, in some RESTful APIs, or process-to-process
communication. A lot depends on how closely the given API format matches the data-
base format and how much you trust the other system.

Figure 3.3 shows an example of a RESTful API in which an external system first que-
ries the system for books with a given title. In the update stage, the external system
sends back an update on the author of the book it received.

1. The external system asks for a book by title,
 with its authors, reviews, and so on.

3. Your application replaces the existing Author
 data with the data from the external system.

GET: myAPI/book/search?title=...

JSON: [{BookId: 4, Title: ...

Read stage

2. The external system sends
 back an author update.

context.Books
 .Where (p =>
p.Title == "Quantum
Networking")
 .Include(...

context.Authors
 .Update(author);
context.SaveChanges();

[
 "AuthorId": 3,
 "Name":
 "Future Person 2",
 "BooksLink":null
}

My RESTful API application External system

PUT: myAPI/authors+JSON

OK

Update stage

Figure 3.3   An example of a disconnected update, in which you replace all of the database information
with the new data. Unlike the previous example, this process doesn’t need to reload the original data
before performing the update.

SaveChanges uses its DetectChanges
method to find out what has changed,

and then updates the database.
Returns the updated book

	 69Updating database rows

Listing 3.9 simulates the RESTful API by having a first stage that reads in the Author
entity class you wish to update and then serializes it into a JSON string (see figure 3.3,
step 2 for what that JSON looks like). You then decode that JSON and use the EF Core
Update command, which replaces all the information in the row defined by the pri-
mary key; in this case, the AuthorId.

Listing 3.9   Simulating an update/replace request from an external system

string json;
using (var context = new EfCoreContext(options))
{
 var author = context.Books
 .Where(p => p.Title == "Quantum Networking")
 .Select(p => p.AuthorsLink.First().Author)
 .Single();
 author.Name = "Future Person 2";
 json = JsonConvert.SerializeObject(author);
}

using (var context = new EfCoreContext(options))
{
 var author = JsonConvert
 .DeserializeObject<Author>(json);

 context.Authors.Update(author);
 context.SaveChanges();

You call the EF Core Update command with the Author entity instance as a parameter,
which marks as modified all the properties of the Author entity. When the SaveChanges
command is called, it’ll update all the columns in the row that have the same primary
key as the entity class.

EF6   The Update command is new in EF Core. In EF6.x, you need to manipu-
late the entity object state directly; for instance, using the command DbContext
.Entry(object).State = EntityState.Modified. Subtle changes in how EF
Core sets the entity state are covered in chapter 9.

The plus side of this approach is that the database update is quicker, because you don’t
have the extra read of the original data. You also don’t have to write code to copy over
the specific properties you want to update, which you did need to do in the previous
approach.

The downside is that more data can be transferred and, unless the API is carefully
designed, it can be difficult to reconcile the data you receive to the data already in the
database. Also, you’re trusting the external system to correctly remember all the data,
especially the primary keys of your system.

Simulates an external system returning a modified
Author entity class as a JSON string

Simulates receiving a JSON string
from an external system and
decoding it into an Author class

Update command, which replaces all the row data
for the given primary key—in this case, AuthorId

Provides a link to the many-to-many linking
table that links to the authors of this book

70 Chapter 3  Changing the database content

NOTE    Listing 3.9 covers only a single class with no relationship, but in many
RESTful APIs and process-to-process communication, a lot of linked data might
be sent over. In the example, the API might expect the whole book with all its
relationships to be sent back only for an update of the author’s name. This gets
complicated, so I cover that in chapter 9, which shows how to manage the state
of each property and introduces EF Core’s TrackGraph method, which helps
handle partial updates of classes with relationships.

3.4	 Handling relationships in updates
Now that we’ve established the three basic steps to updating the database, it’s time to
look at updating relationships between entity classes—for example, adding a new review
to a book. Updating relationships adds another level of complexity to the code, espe-
cially in the disconnected state, which is why I put this content in a separate section.

This section covers updates for the three types of relational linking that EF Core uses
and gives examples of both connected and disconnected updates. In all cases, you’ll use
the Book entity class, which has three relationship links. The following listing shows the
Book entity class, but with the focus on the relationships at the end. (I’ve removed some
nonrelational properties to keep the focus on the relationships.)

Listing 3.10   The Book entity class, showing the relationships to update

public class Book
{
 public int BookId { get; set; }
 //… other nonrelational properties removed for clarity

 //---
 //relationships

 public PriceOffer Promotion { get; set; }
 public ICollection<Review> Reviews { get; set; }
 public ICollection<BookAuthor>
 AuthorsLink { get; set; }
}

3.4.1	 Principal and dependent relationships

The terms principal and dependent are used in EF to define parts of a relationship:

¡	Principal entity—Contains the key property(s) that the dependent relationship
refers to via a foreign key(s)

¡	Dependent entity—Contains the foreign key property(s) that refers to the prin-
cipal entity

Book class contains the
main book information

Link to the optional PriceOffer

Can be zero to many
reviews of the book

Provides a link to the many-to-many
linking table that links to the authors
of this book

	 71Handling relationships in updates

In the book app example, the Book entity class is the principal entity. The PriceOffer,
Review, and BookAuthor entity classes are the dependent entities. I find the terms prin-
cipal and dependent helpful, because they define who’s in charge—the principal entity. I
use these terms throughout the book, where applicable.

NOTE    An entity class can be both a principal and a dependent entity at the
same time. For instance, in a hierarchical relationship of, say, libraries having
books having reviews, the book would be a dependent relationship on the
library entity class.

Can the dependent part of a relationship exist without the principal?
The other aspect of a dependent relationship is whether it can exist on its own. If the
principal relationship is deleted, is there a business case for the dependent relation-
ship to still exist? In many cases, the dependent part of a relationship doesn’t make
sense without the principal relationship. For instance, a book review has no meaning if
the book it links to is deleted.

In a few cases, a dependent relationship should exist even if the principal part is
deleted. Say you want to have a log of all the changes that happen to a book in its life-
time. If you delete a book, you wouldn’t want that set of logs to be deleted too.

The way this is handled in databases is by handling the nullability of the foreign
key. If the foreign key in the dependent relationship is non-nullable, the dependent
relationship can’t exist without the principal. In the example book app database, the
PriceOffer, Review, and BookAuthor entities are all dependent on the principal, Book
entity, so their foreign keys are of type int. If the book is deleted or the link to the book
is removed, the dependent entities will be deleted.

But if you define a class for logging—let’s call it BookLog—you want this to exist even
if the book is deleted. To make this happen, you’d make its BookId foreign key of type
Nullable<int>. Then, if you delete the book that the BookLog entity is linked to, you
could configure that the BookLog’s BookId foreign key would be set to null.

NOTE   In the preceding BookLog example, if you delete a Book entity that a
BookLog is linked to, the default action is to set the BookLog’s foreign key to
null. This is because EF Core defaults to a ClientSetNull setting for the OnDe-
lete property of optional relationships. Section 7.4.4 covers this in more detail.

I mention this now because as we go through updating the relationships, in some
cases a dependent relationship is removed from its principal. I’ll give an example of
replacing all the dependent relationships with new ones, and what happens to the old
relationships we remove depends on the nullability of its foreign key: if the foreign key is
non-nullable, the dependent relationships are deleted, and if the foreign key is nul-
lable, it’s set to null.

I talk more about this and how EF Core handles deletion in section 3.5.

72 Chapter 3  Changing the database content

3.4.2	 Updating one-to-one relationships—adding a PriceOffer to a book

In our example book app database, we have an optional, dependent relationship prop-
erty called Promotion from the Book entity class to the PriceOffer entity class. This
subsection covers how to add a PriceOffer class to an existing book. This listing shows
you the content of the PriceOffer entity class, which links to the Books table via the
foreign key called BookId.

Listing 3.11   PriceOffer entity class, showing the foreign key back to the Book entity

public class PriceOffer
{
 public int PriceOfferId { get; set; }
 public decimal NewPrice { get; set; }
 public string PromotionalText { get; set; }

 //---
 //Relationships

 public int BookId { get; set; }

}

Connected state update

The connected state update assumes you’re using the same context for both the read
and the update. Listing 3.12 shows an example of the code, which has three stages:

1	 Load the Book entity with any existing PriceOffer relationship.

2	 Set the relationship to the new PriceOffer entity you want to apply to this book.

3	 Call SaveChanges to update the database.

Listing 3.12   Adding a new promotional price to an existing book

var book = context.Books
 .Include(p => p.Promotion)
 .First(p => p.Promotion == null);

book.Promotion = new PriceOffer
{
 NewPrice = book.Price / 2,
 PromotionalText = "Half price today!"
};
context.SaveChanges();

PriceOffer, if present, is designed
to override the normal price.

Foreign key back to the book
it should be applied to

You could provide a backward navigational
link from this entity to the Book entity, but
you don’t because there’s no business reason
for having this link. I explain why in section 7.2.

Finds the first book that doesn’t
have an existing promotion

Although the include isn’t needed because you’re
loading something without a Promotion, using the
include is good practice, as you should load any
relationships if you’re going to change a relationship.

Adds a new PriceOffer to this book

The SaveChanges method calls
DetectChanges, which finds that
the Promotion property has
changed, so it adds that entity to
the PriceOffers table.

	 73Handling relationships in updates

As you can see, the update of the relationship is just like the basic update you made to
change the book’s published date. In this case, EF Core has to do extra work because it’s
a relationship. In this case, EF Core creates a new row in the PriceOffers table, which you
can see in the SQL snippet that EF Core produces for the code in listing 3.12:

INSERT INTO [PriceOffers]
 ([BookId], [NewPrice], [PromotionalText])
 VALUES (@p0, @p1, @p2);

Now, what happens if there’s an existing promotion on the book (the Promotion prop-
erty in the Book entity class isn’t null)? That’s why the Include(p => p.Promotion)
command in the query that loaded the Book entity class is so important. Because of that
Include method, EF Core will know there’s an existing PriceOffer assigned to this
book and will delete that before adding the new version.

To be clear, in this case you must use some form of loading of the relationship—
either eager, explicit, select, or lazy loading of the relationship—so EF Core knows about it
before the update. If you don’t and there’s an existing relationship, EF Core in this case
will throw an exception on a duplicate key on the BookId, which EF Core has placed a
unique index on, and another row in the PriceOffers table will have the same value.

Disconnected state update

In the disconnected state, the information to define which book to update and what to
put in the PriceOffer entity class would be passed back from stage 1 to stage 2. That’s
what happened in the update of the book’s publication date (figure 3.2), where the
BookId and the PublishedOn values were fed back.

In the case of adding a promotion to a book, you need to pass in the BookId, which
uniquely defines the book you want, plus the NewPrice and the PromotionalText
values that make up the PriceOffer entity class. The next listing shows you the Change-
PriceOfferService class, which contains the two methods to show the data to the user
and update the promotion on the Book entity class when the user submits a request.

Listing 3.13   ChangePriceOfferService class with a method to handle each stage

public class ChangePriceOfferService
{
 private readonly EfCoreContext _context;

 public Book OrgBook { get; private set; }

 public ChangePriceOfferService(EfCoreContext context)
 {
 _context = context;
 }

 public PriceOffer GetOriginal(int id)
 {
 OrgBook = _context.Books
 .Include(r => r.Promotion)
 .Single(k => k.BookId == id);

Gets a PriceOffer class to
send to the user to update

Loads the book with any
existing Promotion

74 Chapter 3  Changing the database content

 return OrgBook?.Promotion
 ?? new PriceOffer
 {
 BookId = id,
 NewPrice = OrgBook.Price
 };
 }

 public Book UpdateBook(PriceOffer promotion)
 {
 var book = _context.Books
 .Include(r => r.Promotion)
 .Single(k => k.BookId
 == promotion.BookId);
 if (book.Promotion == null)

 {
 book.Promotion = promotion;
 }
 else
 {
 book.Promotion.NewPrice
 = promotion.NewPrice;
 book.Promotion.PromotionalText
 = promotion.PromotionalText;
 }
 _context.SaveChanges();
 return book;
 }
}

This code either updates an existing PriceOffer, or adds a new PriceOffer if none
exists. When SaveChanges is called, it can work out, via EF Core’s DetectChanges
method, what type of update is needed and creates the correct SQL to update the
database.

Alternative way of updating the relationship—creating a new row directly

We’ve approached this update as changing a relationship in the Book entity class, but
you can also approach it as creating/deleting a row in the PriceOffers table. This list-
ing creates a PriceOffer entity (section 3.5 covers deletion).

You return either the existing Promotion for editing, or
create a new one. The important point is to set the BookId,

as you need to pass that through to the second stage.

Handles the second part of the
update, performing a selective
update of the chosen book

Loads the book with any existing
promotion, which is important because
otherwise your new PriceOffer will
clash and throw an error

Checks whether this is an update of an existing
PriceOffer or adds a new PriceOffer

You need to add a new PriceOffer,
so you assign the promotion to
the relational link. EF Core will
see this and add a new row in the
PriceOffer table.

You need to do an update, so
you copy over just the parts
that you want to change. EF
Core will see this update and
produce code to update just
these two columns.

SaveChanges uses its DetectChanges
method, which sees what changes—
either adding a new PriceOffer or
updating an existing one

Returns the
updated book

	 75Handling relationships in updates

Listing 3.14   Creating a PriceOffer row to go with an existing book

var book = context.Books
 .First(p => p.Promotion == null);

//ATTEMPT
context.Add(new PriceOffer
{
 BookId = book.BookId,
 NewPrice = book.Price / 2,
 PromotionalText = "Half price today!"
});
context.SaveChanges();

You should note that previously you didn’t have to set the BookId property in the
PriceOffer entity class, because EF Core did that for you. But when creating a rela-
tionship this way, you do need to set the foreign key. Having done that, if you load the
Book entity class with its Promotion relationship after the previous create code, you’ll
find that the Book has gained a Promotion relationship.

NOTE   The PriceOffer entity class doesn’t have a relational property link back
to the Book class (public Book BookLink {get; set;}). If it did, you could set
the BookLink to the book entity class instead of setting the foreign key. Either
setting the foreign key(s) or setting a relational link back to the principal entity
will tell EF Core to set up the relationship.

The advantage of creating the dependent entity class is that it saves you from need-
ing to reload the principal entity class (in this case, Book) in a disconnected state.
The downside is that EF Core doesn’t help you with the relationships. For instance,
in this case, if there was an existing PriceOffer on the book and you added another,
SaveChanges would fail because you’d have two PriceOffer rows with the same key.

When EF Core can’t help you with the relationships, you need to use the create/
delete approach with care. Sometimes it can make handling a complex relationship
easier, so it’s worth keeping in mind, but I prefer updating the principal entity class’s
relationship in most one-to-one cases.

NOTE   Later in this section, you’ll learn another way of updating relationships
by changing foreign keys.

3.4.3	 Updating one-to-many relationships—adding a review to a book

You’ve learned the basic steps in updating a relationship by looking at a one-to-one rela-
tionship. I’ll move a bit quicker with the remaining relationships, as you’ve seen the basic
pattern. But I’ll also point out some differences around the many side of a relationship.

You find the book that you want to add
the new PriceOffer to. It must not be an
existing PriceOffer.

Adds the new PriceOffer
to the PriceOffers table

Defines the PriceOffer. You must
include the BookId (previously,
EF Core filled that in).

SaveChanges adds the PriceOffer
to the PriceOffers table.

76 Chapter 3  Changing the database content

The one-to-many relationship in the book app database is represented by book
reviews: a user of the site can add a review to a book. There can be any number of
reviews, from none to a lot. This listing shows the Review-dependent entity class, which
links to the Books table via the foreign key called BookId.

Listing 3.15   The Review class, showing the foreign key back to the Book entity class

public class Review
{
 public int ReviewId { get; set; }
 public string VoterName { get; set; }
 public int NumStars { get; set; }
 public string Comment { get; set; }

 //---
 //Relationships

 public int BookId { get; set; }
}

Connected state update

Listing 3.16 adds a new review to a book. This code follows the same pattern as the one-
to-one connected update: load the Book entity class, and the Reviews relationship via
the Include method, but in this case you add the review to the collection. Because you
used the Include method, the Reviews property will either be an empty collection if
there are no reviews, or a collection of the reviews linked to this book.

Listing 3.16   Adding a review to a book in the connected state

var book = context.Books
 .Include(p => p.Reviews)
 .First();

book.Reviews.Add(new Review
{
 VoterName = "Unit Test",
 NumStars = 5,
 Comment = "Great book!"
});
context.SaveChanges();

As with the PriceOffer example, you don’t fill in the foreign key (the BookId prop-
erty) in the review, because EF Core knows the review is being added to a Book entity
class and sets up the foreign key to the right value.

Altering/replacing all the one-to-many relationships

Before moving on to the disconnected state update, I want to consider the case where
you want to alter or replace the whole collection, rather than just add to the collection
as you did with the review.

Holds customer reviews with their ratings

Foreign key holds the key of the
book this review belongs to

Finds the first book and loads it
with any reviews it might have

Adds a new review to this book

SaveChanges calls DetectChanges, which finds that the
Reviews property has changed, and from there finds
the new Review, which it adds to the Review table

	 77Handling relationships in updates

For instance, if the books had categories (say, Software Design, Software Languages,
and so forth), you might allow an admin user to change the categories. One way to
implement this would be to show the current categories in a multiselect list, allow the
admin user to change them, and then replace all the categories on the book with the
new selection.

EF Core makes replacing the whole collection easy. If you assign a new collection to
a one-to-many relationship that has been loaded with tracking (for instance, by using
the Include method), EF Core will replace the whole collection with the new one. If the
items in the collection can be linked to only the principal class (the dependent class has
a non-nullable foreign key), then, by default, EF Core will delete the items that were in
the collection that have been removed.

Next is an example of replacing the whole collection of existing book reviews with a
new collection. The effect is to remove the original reviews and replace them with the
one new review.

Listing 3.17   Replacing a whole collection of reviews with another collection

var book = context.Books
 .Include(p => p.Reviews)
 .Single(p => p.BookId == twoReviewBookId);

book.Reviews = new List<Review>
{
 new Review
 {
 VoterName = "Unit Test",
 NumStars = 5,
 }
};
context.SaveChanges();

Because you’re using test data in the example, you know that the book with primary
key twoReviewBookId has two reviews, and that the book is the only one with reviews;
hence there are only two reviews in the whole database. After the SaveChanges method
is called, the book has only one review, and the two old reviews have been deleted,
meaning that the database now has only one review in it.

Removing a single row is as simple as removing the entity from the list. EF Core will
see the change and delete the row that’s linked to that entity. Similarly, altering the con-
tent of an entity would be found by EF Core, and an update action would be applied to
the database.

The loading of the existing collection is important for these changes: if you don’t
load them, EF Core can’t remove, update, or replace them. The old versions will still be

This include is important; otherwise, EF
Core won’t know about the old reviews.

This book you’re loading
has two reviews.

You completely replace
the whole collection.

SaveChanges, via DetectChanges, knows that the
old collection should be deleted, and the new
collection should be written to the database.

78 Chapter 3  Changing the database content

in the database after the update, because EF Core didn’t know about them at the time
of the update.

Disconnected state update

In the disconnected state, you create an empty Review entity class, but fill in its foreign
key, BookId, with the book the user wants to provide a review for. The user then votes
on the book, and you add that review to the book that they referred to.

The following listing shows the AddReviewService class, which has methods for the
setup and update of the book, to add a new review from a user.

Listing 3.18   Adding a new review to a book in the example book app

public class AddReviewService
{
 private readonly EfCoreContext _context;

 public string BookTitle { get; private set; }

 public AddReviewService(EfCoreContext context)
 {
 _context = context;
 }

 public Review GetBlankReview(int id)
 {
 BookTitle = _context.Books
 .Where(p => p.BookId == id)
 .Select(p => p.Title)
 .Single();
 return new Review
 {
 BookId = id
 };
 }

 public Book AddReviewToBook(Review review)
 {

 var book = _context.Books
 .Include(r => r.Reviews)
 .Single(k => k.BookId
 == review.BookId);
 book.Reviews.Add(review);
 _context.SaveChanges();
 return book;
 }
}

Forms a review to be
filled in by the user

You read the book title to show to the
user when they’re filling in their review.

Creates a review with the
BookId foreign key filled in

Updates the book with
the new review

Loads the correct book by using the value in the
review’s foreign key, and includes any existing
reviews (or empty collection if no reviews yet)

Adds the new review to
the Reviews collection

SaveChanges uses its DetectChanges method, which
sees that the Book Review property has changed. It
then creates a new row in the Review table.

Returns the updated book

	 79Handling relationships in updates

This code has a simpler first part than the previous disconnected state examples because
you’re adding a new review, so you don’t have to load the existing data for the user. But
overall, it takes the same approach that the ChangePriceOfferService class used.

Alternative way of updating the relationship—creating a new row directly

As with the PriceOffer, you can add a one-to-many relationship directly to the data-
base. But again, this means you take on the role of managing the relationship. If
you want to totally replace the reviews collection, for instance, you’d have to delete
all the rows that the reviews linked to the book in question before adding your new
collection.

Adding a row directly to the database has some advantages, because loading all the
one-to-many relationships might turn out to be a lot of data if you have lots of items
and/or they’re big. Therefore, keep this approach in mind if you have performance
issues.

NOTE    My experiments show that not loading the relationship, and then
assigning a new collection to a one-to-many relationship, is equivalent to creat-
ing a new row directly. But I don’t recommend doing this because it’s not the
normal update pattern, and someone else (or even yourself) might come back
later and misread your intentions.

3.4.4	 Updating many-to-many relationships—changing a book’s authors

In EF Core, we talk about many-to-many relationships, but a relational database doesn’t
directly implement many-to-many relationships. Instead, we’re dealing with two one-
to-many relationships, as shown in figure 3.4.

A many-to-many relationship is made
up of two one-to-many relationships

Linking table

Books
One-to-many Many-to-one

BookId

Title
Description
... etc.

PK

Authors

AuthorId

Name

PK

BookAuthor

BookId
AuthorId

Order

PK,FK1
PK, FK2

Figure 3.4   The Book to its Authors many-to-many relationship, which uses a BookAuthor linking table

If you look at the BookAuthor entity class, shown in listing 3.19, you’ll see it has two
properties, BookId and AuthorId. These are foreign keys to the Books table and the
Authors table, respectively. Together they also form the primary key (known as a

80 Chapter 3  Changing the database content

composite key, because it has more than one part to it) for the BookAuthor row. This
has the effect of ensuring that there’s only one link between the Book and the Author.
Chapter 6 covers composite keys in more detail.

Listing 3.19   The BookAuthor entity class that links books to their authors

public class BookAuthor
{
 public int BookId { get; set; }
 public int AuthorId { get; set; }
 public byte Order { get; set; }

 //-----------------------------
 //Relationships

 public Book Book { get; set; }
 public Author Author { get; set; }
}

EF6   In EF6.x, you can define a many-to-many relationship, and EF6.x will cre-
ate a hidden linking table for you and handle all the creation/deletion of the
rows in that table. At the time of writing this book, EF Core doesn’t support
automatic many-to-many relationships. See http://mng.bz/9nD5 to follow the
work on implementing automatic many-to-many linking tables.

The thing to understand is that the BookAuthor entity class is the many side of the
relationship. This listing, which changes the author of one of the books, should
look familiar because it’s similar to the one-to-many update methods I’ve already
explained.

Listing 3.20   Changing the author of Quantum Networking

var book = context.Books
 .Include(p => p.AuthorsLink)
 .Single(p => p.Title == "Quantum Networking");

var newAuthor = context.Authors
 .Single(p => p.Name == "Martin Fowler");

The BookAuthor class is the many-to-
many linking table between the Books
and Authors tables.

The primary key contains both the Book
primary key and the Author primary key.

The order of the authors in a book
matters, so you use this to set the
right order.

Link to the Book side of the relationship

Link to the Author side
of the relationship

Finds the book with title Quantum Networking,
whose current author is Future Person

You then find an existing author,
in this case Martin Fowler.

http://mng.bz/9nD5

	 81Handling relationships in updates

book.AuthorsLink = new List<BookAuthor>
{
 new BookAuthor
 {
 Book = book,
 Author = newAuthor,
 Order = 0
 }
};

context.SaveChanges();

One thing to note is that you load the Book’s AuthorsLink, but you don’t load the cor-
responding BooksLink in the Author entity class. That’s because you’re updating the
AuthorsLink, but not touching the BooksLink. The BooksLink property is dynamically
filled in by EF Core when it’s loaded, so the next time someone loads the Author entity
class and its BooksLink relationship, they’ll see a link to the Quantum Networking book
in that collection.

The change from the other examples is that the original author of Quantum Networking,
Future Person, isn’t deleted when the link to him is removed (Future Person has, in my
test data, written only Quantum Networking). That’s because it’s the one end of a one-to-
many relationship, and these aren’t dependent on the book directly; in fact, the Author
class is a principal entity, with the BookAuthor classes being dependent on it.

What’s deleted is the BookAuthor row that used to link the Quantum Networking book
to its author, Future Person, and a new BookAuthor row is added to link Martin Fowler
to Quantum Networking. (I’m sure Martin Fowler would love to write this book if he’s
around when quantum networking is perfected.)

Alternatively, you could’ve added Martin Fowler as a second author by using the Add
method on the AuthorsLink property in the Book entity class, and adding a new Book-
Author entity class to set up the link between the book and its second author.

Alternative way of updating the relationship—creating a new row directly

Again, you could create/delete a BookAuthor entity class directly, but you’d still need a
tracked instance of both the Book and Author entity classes so it won’t save on database
access. Another simpler approach to building/finding the linking class (for instance,
BookAuthor) is to use the primary keys of the Books and Authors rows, which I explain
next as it’s a useful approach to any disconnected update.

TIP   I’ve written an article about updating many-to-many relationships on my
technical blog site. The article includes an example of updating the relation-
ship by adding a BookAuthor entity. See http://mng.bz/HCp9.

You replace the list of authors,
so Quantum Networking’s
author is Martin Fowler.

SaveChanges calls DetectChanges, which finds that
the AuthorsLink has changed and so deletes the old
ones and replaces them with the new link.

http://mng.bz/HCp9

82 Chapter 3  Changing the database content

3.4.5	 Advanced feature—updating relationships via foreign keys

Up to this point, I’ve shown you how to update relationships by using the entity classes
themselves; for instance, when you added a review to a book, you loaded the Book
entity with all its Reviews. That’s fine, but in a disconnected state, you have to load
the Book and all its Reviews from the book’s primary key that came back from the
browser/RESTful API. In many situations, you can cut out the loading of the entity
classes and set the foreign keys instead.

This applies to most of the disconnected updates I’ve shown before, but let me give
you an example of moving a review from one book to another (I know, not a likely sce-
nario in the real world, but it makes a simple example). The following listing carries out
the update after the user has typed in the request. The code assumes that the ReviewId
of the Review the user wants to change, and new BookId that they want to attach the
review to, are returned in a variable called dto.

Listing 3.21   Updating the foreign key to change a relationship

var reviewToChange = context
 .Find<Review>(dto.ReviewId);
reviewToChange.BookId = dto.NewBookId;
context.SaveChanges();

The benefit of this technique is that you don’t have to load the Book entity class, nor
use an Include command to load all the Reviews associated with this book. In our
example book app, these entities aren’t that big, but in a real application, the principal
and dependent entities could be quite large. In disconnected systems, where we often
send just the primary keys over the disconnect, this can be a useful approach to cut
down on database accesses and hence improve performance.

NOTE   When updating relationships via foreign keys, you may need to access
entities that don’t have a DbSet<T> property in the application’s DbContext, so
how can you read in the data? Listing 3.21 uses the Find<T> method, but if you
need a more complex query, you can access any entity via the Set<T> method;
for instance, context.Set<Review>().Where(p => p.NumVotes > 5).

3.5	 Deleting entities
The final way to change the data in the database is to delete a row from a table. Delet-
ing data is easier than the updates we looked at, but it does have a few points to be
aware of. Before I describe how to delete entities from the database, I want to intro-
duce an approach called soft delete, in which an entity is hidden instead of deleted.

Finds the review that you want to move by using
the primary key returned from the browser

Changes the foreign key in the review to
point to the book it should be linked to

Calls SaveChanges, which finds the foreign key in
the review changed, so it updates that column in
the database

	 83Deleting entities

3.5.1	 Using a soft delete—using model-level query filters to “hide” entities

One school of thought says that you shouldn’t delete anything from a database, but use
a status to hide it, known as a soft delete. (See Udi Dahan’s post, “Don’t Delete—Just
Don’t” at http://udidahan.com/2009/09/01/dont-delete-just-dont/). I think this is a
sensible approach, and EF Core provides a feature called model-level query filters that
allow a soft delete to be simply implemented.

The thinking behind a soft delete is that in real-world applications, data doesn’t stop
being data: it transforms into another state. In the case of our books example, a book
may not still be on sale, but the fact that the book existed isn’t in doubt, so why delete it?
Instead, you set a flag to say the entity is to be hidden in normal queries.

To show you how this works, you’ll add the soft-delete feature to the list of Book enti-
ties. To do so, you need to do two things:

1	 Add a boolean property called SoftDeleted to the Book entity class. If that property is
true, the Book entity instance is soft deleted; it shouldn’t be found in a normal query.

2	 Add a model-level query filter via EF Core fluent configuration commands. The effect of
this is to apply an extra Where filter to any access to the Books table.

Adding the SoftDeleted property in a Book entity instance is straightforward. This
code snippet shows the Book entity class with the SoftDeleted property:

public class Book
{
 //… other properties left out for clarity
 public bool SoftDeleted { get; set; }
}

Adding the model-level query filter to the DbSet<Book>Books property means adding
a fluent configuration command to the application’s DbContext. Chapter 6 covers this
command, but it’s shown in bold in the following listing so you have an idea of what’s
going on.

Listing 3.22   Adding a model-level query filter to the DbSet<Book>Books property

public class EfCoreContext : DbContext
{
 //… Other parts removed for clarity

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {
 //… other configration parts removed for clarity

 modelBuilder.Entity<Book>()
 .HasQueryFilter(p => !p.SoftDeleted);
 }
}

Adds a filter to all accesses to
the Book entities. You can
bypass this filter by using the
IgnoreQueryFilters operator.

http://udidahan.com/2009/09/01/dont-delete-just-dont/

84 Chapter 3  Changing the database content

To soft delete a Book entity, you need to set the SoftDeleted property to true and call
SaveChanges. Then any query on the Book entities will exclude the Book entities that
have the SoftDeleted property set to true.

NOTE   If you want to access all the entities that have a model-level filter, you add
the IgnoreQueryFilters method to the query—or instance, context.Books
.IgnoreQueryFilters(). This bypasses any model-level filter on an entity.
Also, the Find method isn’t affected by a model-level filter.

Now that we’ve covered the soft-delete approach, let’s cover the ways to delete an entity
from the database. We’ll start with a straightforward example and work up to deleting
an entity that has relationships.

3.5.2	 Deleting a dependent-only entity—no relationships

I’ve chosen the PriceOffer entity class to show a basic delete because it’s a dependent
entity. You can therefore delete it without it affecting other entities. This listing finds a
PriceOffer and then deletes it.

Listing 3.23   Removing (deleting) an entity from the database

var promotion = context.PriceOffers
 .First();

context.Remove(promotion);
context.SaveChanges();

Calling the Remove method sets the State of the entity provided as the parameter to
Deleted. Then when you call SaveChanges, EF Core finds the entity marked as Deleted
and creates the correct database commands to delete the appropriate row from the
table the entity referred to (in this case, a row in the PriceOffers table).

The SQL command that EF Core produces for SQL Server is shown in the following
snippet:

SET NOCOUNT ON;
DELETE FROM [PriceOffers]
WHERE [BookId] = @p0;
SELECT @@ROWCOUNT;

3.5.3	 Deleting a principal entity that has relationships

Section 3.3.1 discussed principal and dependent relationships and the nullability of
the foreign key. Relational databases need to keep referential integrity, so if you delete a
row in a table that other rows are pointing to via a foreign key, something has to hap-
pen to stop referential integrity from being lost.

Finds the first PriceOffer

Removes that PriceOffer from the application’s
DbContext. The DbContext works out what to
remove based on its parameter type.

SaveChanges calls DetectChanges, which finds
a tracked PriceOffer entity marked as deleted,
and then deletes it from the database.

	 85Deleting entities

DEFINITION   Referential integrity is a relational database concept indicating that
table relationships must always be consistent. Any foreign-key field must agree
with the primary key referenced by the foreign key (Techopedia).

The following are three ways that you can set a database to keep referential integrity
when you delete a principal entity with dependent entities:

¡	You can tell the database server to delete the dependent entities that rely on the
principal entity. This is known as cascade deletes.

¡	You can tell the database server to set the foreign keys of the dependent entities
to null, if the column allows that.

¡	If neither of those rules are set up, the database server will raise an error if you try
to delete a principal entity with dependent entities.

Deleting a book with its dependent relationships

Here you’re going to delete a Book entity, which is a principal entity with three depen-
dent relationships: Promotion, Reviews, and AuthorsLink. These three dependent
entities can’t exist without the Book entity; they have a foreign key that’s non-nullable
that points to a specific Book row.

By default, EF Core uses cascade deletes for dependent relationships with
non-nullable foreign keys. Cascade deletes make deleting principal entities easier from
the developer’s point of view, because the other two rules need extra code to handle
deleting the dependent entities. But in many business applications, this may not be the
appropriate approach. This chapter uses the cascade delete approach because it’s EF
Core’s default.

With that in mind, let’s see this in action by deleting a book that has relationships
using the default cascade delete setting. This listing loads the Promotion (PriceOffer
entity class) and Reviews relationships with the Book entity class before deleting
that Book.

Listing 3.24   Deleting a book that has three dependent entity classes

var book = context.Books
 .Include(p => p.Promotion)
 .Include(p => p.Reviews)
 .Include(p => p.AuthorsLink)
 .Single(p => p.Title
 == "Quantum Networking");

context.Books.Remove(book);
context.SaveChanges();

The three Includes make sure that the
three dependent relationships are
loaded with the Book.

Finds the Quantum Networking book,
which you know has a promotion, two
reviews, and one BookAuthor link

Deletes that book.
SaveChanges calls DetectChanges, which
finds a tracked Book entity marked as
deleted, and then deletes its dependent
relationships and deletes the book.

86 Chapter 3  Changing the database content

My test data contains a book with the title Quantum Networking, which has one PriceOffer,
two Reviews, and a BookAuthor entity associated with it. The foreign keys of all those
dependent entities I mentioned point to the Quantum Networking book. After the code
in listing 3.24 has run the Book, EF Core deletes the PriceOffer, the two Reviews, and
the single BookAuthor link.

That last statement, indicating that all are deleted by EF Core, is an important point.
Because you put in the three Includes, EF Core knew about the dependent entities
and performed the delete. If you didn’t incorporate the Includes in your code, EF
Core wouldn’t know about the dependent entities and couldn’t delete the three depen-
dent entities. In that case, the problem of keeping referential integrity would fall to
the database server, and its response would depend on how the DELETE ON part of the
foreign-key constraint was set up. Databases created by EF Core would, by default, be set
to use cascade deletes.

Section 7.7.1 shows how to configure the way EF Core handles the deletion of a
dependent entity in a relationship. Sometimes it’s useful to stop a principal entity from
being deleted if a certain dependent entity is linked to it. For instance, in our example
book app, if a customer orders a book, you want to keep that order information even if
the book is no longer for sale. In this case, you change the EF Core’s on-delete action to
Restrict, and remove the ON DELETE CASCADE from the foreign-key constraint in the
database, so that an error will be raised if an attempt is made to delete the book.

NOTE   When deleting a principal entity with a dependent entity that has a nul-
lable foreign key (known as an optional dependent relationship), subtle differences
exist between the way EF Core handles the delete and the way the database
handles the delete. I explain this in section 7.7.1, with a useful table 7.1.

Summary

¡	Entity instances that are tracked have a State, which can be Added, Unchanged,
Modified, or Deleted. This State defines what happens to the entity when
SaveChanges is called.

¡	If you Add an entity that isn’t currently tracked, it will be tracked, and its State
will be set to Added.

¡	You can update a property, or properties, in an entity class by loading the
entity class as a tracked entity, changing the property/properties, and calling
SaveChanges.

¡	Real-world applications use two types of update scenarios—connected and dis-
connected state—that affect the way you perform the update.

¡	EF Core has an Update method, which marks the whole of the entity class as
updated. You can use this when you want to update the entity class and have all
the data already available to you.

	 87Summary

¡	When you’re updating a relationship, you have two options, with different advan-
tages and disadvantages:

¡	You can load the existing relationship with the primary entity and update that
relationship in the primary entity. EF Core will sort things out from there.

¡	You can create, update, or delete the dependent entity directly.
¡	To delete an entity from the database, you use the Remove method, followed by

calling the SaveChanges method.

For EF6.x readers:

¡	The Update method is a welcome new command in EF Core. In EF6.x, you have
to use DbContext.Entry(object).State to achieve that feature.

¡	EF Core provides shorthand for Add, Update, and Remove. You can apply any of
these commands to the context itself; for instance, context.Add(book).

¡	In EF6.x, by default, SaveChanges validates the data before adding or updating
an entity to the database. EF Core doesn’t run any validation on SaveChanges,
but it’s easy to add back (see chapter 4).

¡	EF6.x allows you to define many-to-many relationships directly, and looks after
creating the linking table and managing the rows to make that work. At the time
of writing this book, EF Core doesn’t have that feature, so you need to create the
linking table and manage the adding/removing of rows in that table to imple-
ment a many-to-many relationship.

88

4Using EF Core
in business logic

This chapter covers
¡	Understanding business logic and its use of

EF Core

¡	Using a pattern for building business logic

¡	Working through a business logic example

¡	Adding validation of data before it’s written to
the database

¡	Using transactions to daisy-chain code
sequences

Real-world applications are built to supply a set of services, ranging from holding
a simple list of things on your computer to managing a nuclear reactor. Every real-
world problem has a set of rules, often referred to as business rules, or by the more
generic name domain rules (this book uses business rules).

The code you write to implement a business rule is known as business logic or
domain logic. Because business rules can be complex, the business logic you write can
also be complex. Just think about all the checks and steps that should be done when
you order something online.

	 89Why is business logic so different from other code?

Business logic can range from a simple check of status to massive artificial intelligence
(AI) code, but in nearly all cases, business logic needs access to a database. Although the
approaches in chapters 2 and 3 all come into play, the way you apply those EF Core com-
mands in business logic can be a little different, which is why I’ve written this chapter.

This chapter describes a pattern for handling business logic that compartmentalizes
some of the complexity in order to reduce the load on you, the developer. You’ll also
learn several techniques for writing business logic that uses EF Core to access the data-
base. These techniques range from using software classes for validation to standardizing
your business logic’s interface in order to make frontend code simpler. The overall aim is
to help you quickly write accurate, understandable, and well-performing business logic.

4.1	 Why is business logic so different from other code?
Our CRUD code in chapters 2 and 3 adapted and transformed data as it moved into
and out of the database. Some of that code got a little complex, and I showed you the
Query Object pattern to make a large query more manageable. Convesely, business
logic can reach a whole new level of complexity. Here’s a quote from one of the lead-
ing books on writing business logic:

The heart of software is its ability to solve domain (business)-related problems for its users.
All other features, vital though they may be, support this basic purpose. When the domain
is complex, this is a difficult task, calling for the concentrated effort of talented and skilled
people.

Eric Evans, Domain-Driven Design1

Over the years, I’ve written quite a bit of complex business logic, and I’ve found Eric
Evan’s comment “this is a difficult task” to be true. When I came back to software devel-
opment after a long gap, the first applications I wrote were for geographic modeling
and optimization, which have complex business rules. The business code I wrote ended
up being hundreds of lines long, all intertwined. The code worked, but it was hard to
understand, debug, and maintain.

So, yes, you can write business logic just like any other bit of code, but there’s a case
for a more thought-through approach. Here are a few of the questions you should ask
when writing business logic:

¡	Do you fully understand the business rule you’re implementing?
¡	Are there any edge cases or exceptions that you need to cover?
¡	How can you prove that your implementation is correct?
¡	How easy will it be to change your code if the business rules change?
¡	Will you, or someone else, understand the code if it needs changing later?

1	 Domain-Driven Design: Tackling Complexity in the Heart of Software was published in 2003 by
Addison-Wesley Professional.

4

90 Chapter 4  Using EF Core in business logic

4.2	 Our business need—processing an order for books
Let’s start by describing the business issue that we want to implement. The example
you’ll use is handling a user’s order for books. Figure 4.1 shows the checkout page of
our book app. You’re going to implement the code that runs when the user clicks the
Purchase button.

Figure 4.1   The checkout page of the book app. Clicking Purchase
calls the business logic to create the order.

NOTE    You can try the checkout process on the live site at http://efcoreinaction
.com/. The site uses an HTTP cookie to hold your basket and your identity
(which saves you from having to log in). No money needed—as the Terms and
Conditions says, you aren’t actually going to buy a book.

4.2.1	 The business rules that you need to implement

The following list gives the rules set for this business need. As I’m sure you can imag-
ine, a real order-processing piece of business logic would have a lot more steps, espe-
cially on payment and shipping, but these six rules are enough for this example:

1	 The Terms and Conditions box must be ticked.

2	 An order must include at least one book.

3	 A book must be available for sale, as defined by the price being positive in value.

4	 The price of the book must be copied to the order, because the price could
change later.

5	 The order must remember the person who ordered the books.

6	 Good feedback must be provided to the user so they can fix any problems in the
order.

http://efcoreinaction.com/
http://efcoreinaction.com/

	 91Using a design pattern to help implement business logic

The quality and quantity of the business rules will change with the project. The preceding
rules aren’t bad, but they don’t cover things such as what to do if the book selected by the
user has been removed (unlikely, but possible), nor how to weed out malicious input. This
is where you, as a developer, need to think through the problem and try to anticipate issues.

4.3	 Using a design pattern to help implement business logic
Before you start writing code to process an order, you should describe a pattern that
you’re going to follow. This pattern helps you to write, test, and performance-tune
your business logic. The pattern is based on the domain-driven design (DDD) con-
cepts expounded by Eric Evans, but where the business logic code isn’t inside the
entity classes. This is known as a transactions script or procedural pattern of business logic
because the code is contained in a standalone method.

This procedural pattern is easier to understand and uses the basic EF Core com-
mands you have already seen. But many see the procedural approach as a DDD
antipattern, known as an anemic domain model (see www.martinfowler.com/bliki/Ane-
micDomainModel.html). After you have learned about EF Core’s backing field feature
and the DDD entity pattern, you will extend this approach to a fully DDD design in
section 10.4.2.

This section, and section 10.4, present my interpretation of Eric Evans’ DDD
approach, and plenty of other ways for applying DDD with EF. Although I offer
my approach, which I hope will help some of you, don’t be afraid to look for other
approaches.

4.3.1	 Five guidelines for building business logic that uses EF Core

The following list explains the five guidelines that make up the business logic pattern
you’ll be using in this chapter. Most of the pattern comes from DDD concepts, but some
are the result of writing lots of complex business logic and seeing areas to improve.

1	 The business logic has first call on how the database structure is defined. Because the
problem you’re trying to solve (called the domain model by Eric Evans) is the
heart of the problem, it should define the way the whole application is designed.
Therefore, you try to make the database structure, and the entity classes, match
your business logic data needs as much as you can.

2	 The business logic should have no distractions. Writing the business logic is difficult
enough in itself, so you isolate it from all the other application layers, other than
the entity classes. When you write the business logic, you must think only about
the business problem you’re trying to fix. You leave the task of adapting the data
for presentation to the service layer in your application.

3	 Business logic should think it’s working on in-memory data. This is something Eric
Evans taught me: write your business logic as if the data is in-memory. Of course,
you need to have some load and save parts, but for the core of your business
logic, treat the data, as much as is practical, as if it’s a normal, in-memory class or
collection.

https://www.martinfowler.com/bliki/AnemicDomainModel.html
https://www.martinfowler.com/bliki/AnemicDomainModel.html

92 Chapter 4  Using EF Core in business logic

4	 Isolate the database access code into a separate project. This fairly new rule came out
of writing an e-commerce application with complex pricing and delivery rules.
Before this, I used EF directly in my business logic, but I found that it was hard
to maintain and difficult to performance-tune. Instead, you should use another
project, which is a companion to the business logic, to hold all the database
access code.

5	 The business logic shouldn’t call EF Core’s SaveChanges directly. You should have a class
in the service layer (or a custom library) whose job it is to run the business logic.
If there are no errors, this class calls SaveChanges. The main reason for this rule
is to have control of whether to write out the data, but there are other benefits I’ll
describe later.

Figure 4.2 shows the application structure you’ll create to help you apply these guide-
lines when implementing business logic. In this case, you’ll add two new projects to the
original book app structure described in chapter 2:

¡	The pure business logic project, which holds the business logic classes that
work on the in-memory data provided by its companion business database
access methods.

¡	The business database access project, which provides a companion class for each
pure business logic class that needs database access. Each companion class makes
the pure business logic class think it’s working on an in-memory set of data.

Figure 4.2 has five numbers, with comments, that match the five guidelines listed
previously.

SQL
server

1. The database format
 is defined by the
 business logic.

2. This project contains the
 pure business logic code.
 It has no distractions.

3. The business logic works
on in-memory data.

4. This project isolates all the database
 access that the business logic needs.

5. The service layer is in charge of running
the business logic and calling SaveChanges.

ASP.NET
Core
web
app

Service
layer

Data
access

HTML
pages

Pure
business

logic

Business
database
access

JavaScript
/Ajax

Figure 4.2   The projects inside our book app, with two new projects for handling business logic

	 93Implementing the business logic for processing an order

Does all business logic in an application live in the BizLogic layer?
In real-world applications, especially ones that interact with a human being, you want
the user experience to be as great as possible. As a result, the business logic may move
outside the BizLogic layer into other layers, especially the presentation layer. So, no, all
business logic in an application doesn’t live in the BizLogic layer.

As a developer, I find it useful to separate the distinct parts of the business rules that my
clients present into three types:

¡	Manipulation of a state or data —For instance, creating an order
¡	Validation rules —For instance, checking that a book is available to buy
¡	A sequence or flow —For instance, the steps in processing an order

The manipulation of a state or data is the core business logic. The code for this
manipulation can be complicated and may require a lot of design and programming
effort to write. This chapter focuses on server-side business logic, but with sophisti-
cated frontend JavaScript libraries, some data or state manipulation may move out
to the frontend.

Validation of data is ubiquitous, so you find validation code cropping up in every layer
of your application. In human-facing applications, I generally move the validation as far
forward as possible so that the user gets feedback quickly. But, as you’ll see in the exam-
ples, plenty of extra validation can exist in the business logic.

A sequence or flow is often shown to a human user as a sequence of pages or steps in a
wizard, but backed up by the data manipulations that each stage needs done by some
sort of CRUD and/or business logic.

None of this invalidates the approach of having a specific area in your server-side appli-
cation dedicated to business logic. There’s plenty of complex code to write, and having a
zone where business rules are the number one focus helps you to write better code.

4.4	 Implementing the business logic for processing an order
Now that I’ve described the business need, with its business rules, and the pattern
you’re going to use, you’re ready to write code. The aim is to break the implementa-
tion into smaller steps that focus on specific parts of the problem at hand. You’ll see
how this business logic pattern helps you to focus on each part of the implementation
in turn.

You’re going to implement the code in sections that match the five guidelines listed
in section 4.3.1. At the end, you’ll see how this combined code is called from the ASP
.NET Core application that the book app is using.

94 Chapter 4  Using EF Core in business logic

4.4.1	 Guideline 1: Business logic has first call on defining
the database structure

This guideline says that the design of the database should follow the business needs—
in this case, represented by six business rules. The three rules that are relevant to the
database design are as follows:

¡	An order must include at least one book (implying there can be more).
¡	The price of the book must be copied to the order, because the price could

change later.
¡	The order must remember the person who ordered the books.

From this, you come up with a fairly standard design for an order, with an Order entity
class that has a collection of LineItem entity classes—a one-to-many relationship. The
Order entity class holds the information about the person placing the order, while each
LineItem entity class holds a reference to the book order, how many, and at what price.

Figure 4.3 shows what these two tables, LineItem and Orders, look like in the data-
base. To make the image more understandable, I show the Books table (in gray) that
each LineItem row references.

Different users can buy a book, so there can
be zero to many LineItems linked to a Book.

An Order consists of one
or more LineItems.

Books

BookId

Title
Description
PublishedOn
Publisher
Price
ImageUrl

PK

LineItem

LineItemId

LineNum
NumBooks
BookPrice
BookId
OrderId

FK1
FK2

PK

Orders

OrderId

DateOrderedUtc
CustomerName

PK1 1

0..*
1..*

Figure 4.3   The new LineItem and Orders tables added to allow orders for books to be taken

NOTE   The Orders table name is plural because you added a DbSet<Order>
Orders property to the application’s DbContext, and EF Core, by default, uses
the property name, Orders, as the table name. You haven’t added a property for
the LineItem entity class because it’s accessed via the Order’s relational link. In
that case, EF Core, by default, uses the class name, LineItem, as the table name.

4.4.2	 Guideline 2: Business logic should have no distractions

Now you’re at the heart of the business logic code, and the code here will do most of
the work. It’s going to be the hardest part of the implementation that you write, but
you want to help yourself by cutting off any distractions. That way, you can stay focused
on the problem.

	 95Implementing the business logic for processing an order

You do this by writing the pure business code with reference to only two other parts
of the system: the entity classes shown in figure 4.3, Order, LineItem, and Book, and
your companion class that will handle all the database accesses. Even with this minimi-
zation of scope, you’re still going to break the job into a few parts.

Checking for errors and feeding them back to the user—validation

The business rules contain several checks, such as “The Terms and Conditions box
must be ticked.” And they also say you need to give good feedback to the person, so
that they can fix any problems and complete their purchase. These sorts of checks,
called validation, are common throughout an application.

To help, you’ll create a small abstract class called BizActionErrors, shown in list-
ing 4.1. This provides a common error-handling interface for all your business logic.
This class contains a C# method called AddError that the business logic can call to add
an error, and an immutable list (a list that can’t be changed) called Errors, which holds
all the validation errors found while running the business logic.

You’ll use a class called ValidationResult for storing each error because it’s the
standard way of returning errors with optional, additional information on what exact
property the error was related to. Using the ValidationResult class instead of a simple
string fits in with another validation method you’ll add later in this chapter.

NOTE    You have two main approaches to handling the passing of errors back
up to higher levels. One is to throw an exception when an error occurs, and
the other is to pass back the errors to the caller. Each has its own advantages
and disadvantages; this example uses the second approach—passing the errors
back for the higher level to check.

Listing 4.1   Abstract base class providing error handling for your business logic

public abstract class BizActionErrors
{
 private readonly List<ValidationResult> _errors
 = new List<ValidationResult>();

 public IImmutableList<ValidationResult>
 Errors => _errors.ToImmutableList();

 public bool HasErrors => _errors.Any();

 protected void AddError(string errorMessage,
 params string[] propertyNames)
 {
 _errors.Add(new ValidationResult
 (errorMessage, propertyNames));
 }
}

Abstract class that provides error
handling for business logic

Holds the list of validation
errors privately

Provides a public, immutable
list of errors

Creates a bool HasErrors to
make checking for errors easier

Allows a simple error message,
or an error message with
properties linked to it, to be
added to the errors list.

Validation result has an error message and a
possibly empty list of properties it’s linked to.

96 Chapter 4  Using EF Core in business logic

Using this abstract class means your business logic is easier to write and all your busi-
ness logic has a consistent way of handling errors. The other advantage is that you can
change the way errors are handled internally without having to change any of your
business logic code.

Your business logic for handling an order does a lot of validation; that’s typical for an
order, because it often involves money. Other business logic may not do any tests, but
the base class BizActionErrors will automatically return a HasErrors of false, which
means all business logic can be dealt with in the same way.

4.4.3	 Guideline 3: Business logic should think it’s working on
in-memory data

Now you’ll start on the main class, PlaceOrderAction, that contains the pure business
logic. It relies on the companion class, PlaceOrderDbAccess, to present the data as an
in-memory set (in this case, a dictionary) and to take the created order and write it to
the database. Although you’re not trying to hide the database from the pure business
logic, you do want it to work as if the data were normal .NET classes.

Listing 4.2 shows the PlaceOrderAction class, which inherits the abstract class
BizActionErrors to handle returning error messages to the user. It also uses two meth-
ods that the companion PlaceOrderDbAccess class provides:

¡	FindBooksByIdsWithPriceOffers—Takes the list of BookIds and returns a dic-
tionary with the BookId as the key and the Book entity class as the value (null if
no book found), and any associated PriceOffers

¡	Add—Adds the Order entity class with its LineItem collection to the database

Listing 4.2   PlaceOrderAction class contains build-a-new-order business logic

public class PlaceOrderAction :
 BizActionErrors,
 IBizAction<PlaceOrderInDto,Order>
{
 private readonly IPlaceOrderDbAccess _dbAccess;

 public PlaceOrderAction(IPlaceOrderDbAccess dbAccess)
 {
 _dbAccess = dbAccess;
 }

 public Order Action(PlaceOrderInDto dto)
 {
 if (!dto.AcceptTAndCs)
 {
 AddError(
"You must accept the T&Cs to place an order.");
 return null;
 }

Provides all the error handling
required for the business logic

Makes the business logic conform to a
standard interface for business logic that
has an input and an output

Needs the companion
PlaceOrderDbAccess

class to handle all the
database accesses

The method called by BizRunner
to execute this business logic.

You start with basic
validation.

	 97Implementing the business logic for processing an order

 if (!dto.LineItems.Any())
 {
 AddError("No items in your basket.");
 return null;
 }

 var booksDict =
 _dbAccess.FindBooksByIdsWithPriceOffers
 (dto.LineItems.Select(x => x.BookId));
 var order = new Order
 {
 CustomerName = dto.UserId,
 LineItems =
 FormLineItemsWithErrorChecking
 (dto.LineItems, booksDict)
 };

 if (!HasErrors)
 _dbAccess.Add(order);

 return HasErrors ? null : order;
 }

 private List<LineItem> FormLineItemsWithErrorChecking
 (IEnumerable<OrderLineItem> lineItems,
 IDictionary<int,Book> booksDict)

 {
 var result = new List<LineItem>();
 var i = 1;

 foreach (var lineItem in lineItems)
 {
 if (!booksDict.
 ContainsKey(lineItem.BookId))
 throw new InvalidOperationException
("An order failed because book, " +
 $"id = {lineItem.BookId} was missing.");

 var book = booksDict[lineItem.BookId];
 var bookPrice =
 book.Promotion?.NewPrice ?? book.Price;
 if (bookPrice <= 0)
 AddError(
$"Sorry, the book '{book.Title}' is not for sale.");
 else
 {
 //Valid, so add to the order

You start with basic
validation.

You ask the PlaceOrderDbAccess class to find all the
books you need, with any optional PriceOffers.

Creates the Order entity class.
Calls the private method

FormLineItemsWithErrorChecking,
which creates the LineItems.

Adds the order to the database
only if there are no errors

If there are errors, you return null;
otherwise, you return the order.

Private method handles the
creation of each LineItem entity

class for each book ordered.

Goes through each book type
that the person has ordered

Treats a book being
missing as a system
error and throws an
exception.

Calculates the price at
the time of the order

More validation where
you check that the book
can be sold

98 Chapter 4  Using EF Core in business logic

 result.Add(new LineItem
 {
 BookPrice = bookPrice,
 ChosenBook = book,
 LineNum = (byte)(i++),
 NumBooks = lineItem.NumBooks
 });
 }
 }
 return result;
 }
}

You’ll notice that you add another check that the book selected by the person is still in
the database. This wasn’t in the business rules, but this could occur, especially if malicious
inputs were provided. In this case, you make a distinction between errors that the user
can correct, which are returned by the Errors property, and system errors (in this case, a
book being missing), for which you throw an exception that the system should log.

You may have seen at the top of the class that you apply an interface in the form of
IBizAction<PlaceOrderInDto,Order>. This ensures that this business logic class con-
forms to a standard interface you use across all your business logic. You’ll see this later
when you create a generic class to run and check the business logic.

4.4.4	 Guideline 4: Isolate the database access code into a
separate project

Our guideline says to put all the database access code that the business logic needs
into a separate, companion class. This ensures that the database accesses are all in one
place, which makes testing, refactoring, and performance tuning much easier.

Another benefit that a reader of my blog noted is that this guideline can help if you’re
working with an existing, older database. In this case, the database entities may not be a
good match for the business logic you want to write. If so, you can use the BizDbAccess
methods as an Adapter pattern that converts the older database structure to a form more
easily processed by your business logic.

DEFINITION    The Adapter pattern converts the interface of a class into another
interface that the client expects. This pattern lets classes work together that
couldn’t otherwise do so because of incompatible interfaces. See https://
sourcemaking.com/design_patterns/adapter.

You make sure that your pure business logic, class PlaceOrderAction, and your busi-
ness database access class PlaceOrderDbAccess are in separate projects. That allows
you to exclude any EF Core libraries from the pure business logic project, which ensures
that all database access is done via the companion class, PlaceOrderDbAccess. In my
own projects, I split the entity classes into a separate project from the EF code. Then
my business logic accesses only the project containing the entity classes, and not

All is OK, so now you can
create the LineItem entity
class with the details.

Returns all the LineItems
for this order

https://sourcemaking.com/design_patterns/adapter
https://sourcemaking.com/design_patterns/adapter

	 99Implementing the business logic for processing an order

the project that contains EF Core. For simplicity, the example code holds the entity
classes in the same project as the application’s DbContext. Listing 4.3 shows our
PlaceOrderDbAccess class, which implements two methods to provide the database
accesses that the pure business logic needs:

1	 FindBooksByIdsWithPriceOffers method, which finds and loads the Book entity
class, with any optional PriceOffer.

2	 Add method, which adds the finished Order entity class to the application’s
DbContext property, Orders, so it can be saved to the database after EF Core’s
SaveChanges method is called.

Listing 4.3   PlaceOrderDbAccess, which handles all the database accesses

public class PlaceOrderDbAccess : IPlaceOrderDbAccess
{
 private readonly EfCoreContext _context;

 public PlaceOrderDbAccess(EfCoreContext context)
 {
 _context = context;
 }

 public IDictionary<int, Book>
 FindBooksByIdsWithPriceOffers
 (IEnumerable<int> bookIds)
 {
 return _context.Books
 .Where(x => bookIds.Contains(x.BookId))
 .Include(r => r.Promotion)
 .ToDictionary(key => key.BookId);
 }

 public void Add(Order newOrder)
 {
 _context.Add(newOrder);
 }
}

The PlaceOrderDbAccess class implements an interface called IPlaceOrderDbAccess,
which is how the PlaceOrderAction class accesses this class. In addition to helping with
dependency injection, which is covered in chapter 5, using an interface allows you to
replace the PlaceOrderDbAccess class with a test version, a process called mocking, when
you’re unit testing the PlaceOrderAction class. Section 15.8 covers this in more detail.

BizDbAccess needs the
application’s DbContext
to access the database,
so it’s provided via the
constructor

Finds all the books that
the user wants to buy

BizLogic hands it a collection of BookIds,
which the checkout has provided.

Finds a book, if
present, for each ID

Includes any optional promotion, as the BizLogic
needs that for working out the price

Returns the result as a
dictionary to make it
easier for the BizLogic
to look them up

Adds the new order that the BizLogic built into
the DbContext’s Orders DbSet collection

100 Chapter 4  Using EF Core in business logic

4.4.5	 Guideline 5: Business logic shouldn’t call EF Core’s SaveChanges

The final rule says that the business logic doesn’t call EF Core’s SaveChanges, which
would update the database directly. There are a few reasons for this. First, you consider
the service layer as the main orchestrator of database accesses: it’s in command of what
gets written to the database. Second, the service layer calls SaveChanges only if the
business logic returns no errors.

To help you run your business logic, I’ve built a series of simple classes that I use to
run any business logic; I call these BizRunners. They’re generic classes, able to run busi-
ness logic with different input and output types. Different variants of the BizRunner
can handle different input/output combinations and async methods (chapter 5 covers
async/await with EF Core), plus some with extra features, which are covered later in this
chapter.

Each BizRunner works by defining a generic interface that the business logic
must implement. Your PlaceOrderAction class in the BizLogic project runs an
action that expects a single input parameter of type PlaceOrderInDto and returns
an object of type Order. Therefore, the PlaceOrderAction class implements the
interface as shown in the following listing, but with its input and output types
(IBizAction<PlaceOrderInDto,Order>).

Listing 4.4   The interface that allows the BizRunner to execute business logic

public interface IBizAction<in TIn, out TOut>
{
 IImmutableList<ValidationResult>
 Errors { get; }
 bool HasErrors { get; }
 TOut Action(TIn dto);
}

By having the business logic class implement this interface, the BizRunner knows how
to run that code. The BizRunner itself is small, as you’ll see in the following listing,
which shows that it called RunnerWriteDb<TIn, TOut>. This BizRunner variant is
designed to work with business logic that has an input, provides an output, and writes
to the database.

Listing 4.5   The BizRunner that runs the business logic and returns a result or errors

public class RunnerWriteDb<TIn, TOut>
{
 private readonly IBizAction<TIn, TOut> _actionClass;
 private readonly EfCoreContext _context;

 public IImmutableList<ValidationResult>
 Errors => _actionClass.Errors;
 public bool HasErrors => _actionClass.HasErrors;

BizAction has both a TIn and a TOut

Returns the error information
from the business logic

The action that the
BizRunner will call

Error information from the business logic is
passed back to the user of the BizRunner

	 101Implementing the business logic for processing an order

 public RunnerWriteDb(
 IBizAction<TIn, TOut> actionClass,
 EfCoreContext context)
 {
 _context = context;
 _actionClass = actionClass;
 }

 public TOut RunAction(TIn dataIn)
 {
 var result = _actionClass.Action(dataIn);
 if (!HasErrors)
 _context.SaveChanges();

 return result;
 }
}

The BizRunner pattern hides the business logic and presents a common interface/
API that other classes can use. The caller of the BizRunner doesn’t need to worry about
EF Core, because all the calls to EF Core are in the BizDbAccess code or in the Biz-
Runner. That in itself is reason enough to use it, but, as you’ll see later, this BizRunner
pattern allows you to create other forms of BizRunner that add extra features.

NOTE   You may want to check out an open source library I created, called
EfCore.GenericBizRunner. This library, which is available as a NuGet package,
provides a more sophisticated version of the BizRunner described in this chap-
ter; see https://github.com/JonPSmith/EfCore.GenericBizRunner for more
information.

One important point about the BizRunner is that it should be the only method allowed
to call SaveChanges during the lifetime of the application’s DbContext. Why? Because
some business logic might add/update an entity class before an error is found. To stop
these changes from being written to the database, you’re relying on SaveChanges not
being called at all during the lifetime of the application’s DbContext.

In an ASP.NET application, controlling the lifetime of the application’s DbContext is
fairly easy to manage, because a new instance of the application’s DbContext is created
for each HTTP request. In longer-running applications, this is a problem. In the past,
I’ve avoided this by making the BizRunner create a new, hidden instance of the appli-
cation’s DbContext so that I can be sure no other code is going to call SaveChanges on
that DbContext instance.

4.4.6	 Putting it all together—calling the order-processing business logic

Now that you’ve learned all the parts of the business logic pattern, you’re ready to see
how to call this code. Listing 4.6 shows the PlaceOrderService class in the service
layer, which calls the BizRunner to execute the PlaceOrderAction that does the order
processing. If the business logic is successful, the code clears the checkout cookie and

Handles business logic that conforms to
the IBizAction<TIn, TOut> interface.

Calls RunAction in your service layer, or
in your presentation layer if the data
comes back in the right form

Runs the business
logic you gave it

If there are no errors, it calls
SaveChanges to execute any add,
update, or delete methods.

Returns the result that the
business logic returned

https://github.com/JonPSmith/EfCore.GenericBizRunner

102 Chapter 4  Using EF Core in business logic

returns the Order entity class key, so that a confirmation page can be shown to the user.
If the order fails, it doesn’t clear the checkout cookie, and the checkout page is shown
again, with the error messages, so that the user can correct any problems and retry.

Listing 4.6   The PlaceOrderService class that calls the business logic

public class PlaceOrderService
{

 private readonly CheckoutCookie _checkoutCookie;
 private readonly
 RunnerWriteDb<PlaceOrderInDto, Order> _runner;

 public IImmutableList<ValidationResult>
 Errors => _runner.Errors;

 public PlaceOrderService(
 IRequestCookieCollection cookiesIn,
 IResponseCookies cookiesOut,
 EfCoreContext context)
 {
 _checkoutCookie = new CheckoutCookie(
 cookiesIn, cookiesOut);
 _runner =
 new RunnerWriteDb<PlaceOrderInDto, Order>(
 new PlaceOrderAction(
 new PlaceOrderDbAccess(context)),
 context);
 }

 public int PlaceOrder(bool acceptTAndCs)

 {
 var checkoutService = new CheckoutCookieService(
 _checkoutCookie.GetValue());

 var order = _runner.RunAction(
 new PlaceOrderInDto(acceptTAndCs,
 checkoutService.UserId,
 checkoutService.LineItems));

 if (_runner.HasErrors) return 0;

Handles the checkout cookie. This is a cookie,
but with a specific name and expiry time.

The BizRunner you’ll use to execute
the business logic. It’s of type
RunnerWriteDb<TIn, TOut>.

Holds any errors sent back from the business
logic. The caller can use these to redisplay the
page and show the errors that need fixing.

The constructor needs access to the
cookies, both in and out, and the
application’s DbContext.

Creates a
CheckoutCookie
using the cookie

in/out access parts
from ASP.NET Core

Creates the BizRunner with the business logic,
PlaceOrderAction, that you want to run. PlaceOrderAction

needs PlaceOrderDbAccess when it’s created.

The method you call from the ASP.NET action that’s
called when the user clicks the Purchase button

Encodes/decodes the checkout data into a string
that goes inside the checkout cookie.

You’re ready to run the business logic,
handing it the checkout information in
the format that it needs.

If the business logic has any errors,
you return immediately. The checkout
cookie hasn’t been cleared, so the user
can try again.

	 103Implementing the business logic for processing an order

 //successful, so clear the cookie line items
 checkoutService.ClearAllLineItems();
 _checkoutCookie.AddOrUpdateCookie(
 checkoutService.EncodeForCookie());

 return order.OrderId;
 }
}

In addition to running the business logic, this class acts as an Adapter pattern: it trans-
forms the data from the checkout cookie into a form that the business logic accepts,
and on a successful completion, it extracts the Order primary key, OrderId, to send
back to the ASP.NET Core presentation layer.

This Adapter pattern role is typical of the code that calls the business logic, because
a mismatch often occurs between the presentation layer format and the business logic
format. This mismatch can be small, as in this example, but you’re likely to need to do
some form of adaptation in all but the simplest calls to your business logic. That’s why
my more sophisticated EfCore.GenericBizRunner library has a built-in Adapter pattern
feature.

4.4.7	 Any disadvantages of this business logic pattern?

I find the business logic pattern I’ve described useful, yet I’m aware of a few downsides,
especially for developers who are new to a DDD approach. This section presents some
thoughts to help you evaluate whether this approach is for you.

The first disadvantage is that the pattern is more complicated than just writing a class
with a method that you call to get the job done. This business logic pattern relies on
interfaces and code/libraries such as the BizRunners, and at least four projects in your
solution. For small applications, this can be overkill.

The second disadvantage is, even in medium-sized projects, you can have simple
business logic that may be only 10 lines long. In this case, is it worth creating both the
pure business logic class and the companion data access class? For small business logic
jobs, maybe you should create one class that combines the pure business logic and the
EF Core calls. But be aware: if you do this to cut corners, it can come back and bite you
when you need to refactor.

There’s also a development cost inherent in the business logic pattern’s guideline 2,
the “no distraction” rule. The data that the business logic takes in and returns can be
different from what the caller of the business logic needs. For instance, in our exam-
ple, the checkout data was held in an HTTP cookie; the business logic has no concept
of what a cookie is (nor should it), so the calling method had to convert the cookie
content into the format that the business logic wanted. Therefore, the Adapter pattern
is used a lot in the service layer to transform data between the business logic and the
presentation layer—which is why I included an Adapter pattern feature in the EfCore
.GenericBizRunner library.

The order was placed successfully.
You therefore clear the checkout
cookie of the order parts.

Returns the OrderId, the primary key of the order,
which ASP.NET uses to show a confirmation page
that includes the order details

104 Chapter 4  Using EF Core in business logic

Having listed all these disadvantages, I still find this approach far superior to my earlier
approach of considering business logic as “just another piece of code.” In chapter 10
I further enhance this business logic pattern once you have learned how to apply the
DDD principals to the entity classes themselves. DDD-styled entity classes are “locked
down”; that is, their properties have private setters and all creates/updates are done via
methods inside the entity class. These methods can contain some of your business logic,
which improves the overall robustness of your solution because no one can bypass your
business logic by simply altering properties in the entity class. After you have learned
about the features needed to truly lock down an entity class, I recommend you read
about the business logic enhancements in section 10.4.2.

4.5	 Placing an order on the book app
Now that we’ve covered the business logic for processing an order, the BizRunner, and
the PlaceOrderService that executes the business logic, let’s see how to use these in
the context of the book app. Figure 4.4 shows the process, from the user clicking the
Purchase button through running the business logic and returning a result.

I don’t go into the presentation code in detail here, as this chapter is about using EF
Core in business logic, but I do cover some of this in the next chapter, which is about
using EF Core in ASP.NET Core applications.

public class CheckoutController
{
 public IActionResult PlaceOrder(...)
 {
 ...
 var orderId = service.PlaceOrder(...);

public class PlaceOrderService
{
 public int PlaceOrder(...)
 {
 ...
 var orderId = _runner.RunAction(...);

public class RunnerWriteDb<TIn, TOut>
{
 public TOut RunAction(TIn dataIn)
 {
 ...
 var orderId = _actionClass.Action(...)

Presentation Layer (ASP.NET Core)

1. The customer clicks the Purchase
 button to start the process.

Service Layer

Click

User

2. The PlaceOrder action creates
 PlaceOrderService, giving it
 access to the HTTP cookies.

3. The PlaceOrder service
 asks the BizRunner to
 execute the business
 logic, handing it the data
 from the checkout cookie.

5. The business logic runs
 and returns either a valid
 order or errors.

4. The BizRunner runs
 the business logic as
 requested. If successful,
 it calls SaveChanges to
 update the database.

Figure 4.4   The series of steps, from the user clicking the Purchase button, to the service layer, where the
BizRunner executes the business logic to process the order

	 105Adding extra features to your business logic handling

From the click of the Purchase button in figure 4.4, the ASP.NET Core action,
PlaceOrder, in the CheckoutController is executed. This creates a class called
PlaceOrderService in the service layer, which holds most of the Adapter pattern logic.
The caller provides that class with read/write access to the cookies, as the checkout data
is held in an HTTP cookie on the user’s device.

You’ve already seen the PlaceOrderService class in listing 4.6. Its PlaceOrder
method extracts the checkout data from the HTTP cookie and creates a DTO in the
form that the business logic needs. It then calls the generic BizRunner to run the busi-
ness logic that it needs to execute. When the BizRunner has returned from the business
logic, two routes are possible:

¡	The order was successfully placed—no errors. In this case, the PlaceOrder method clears
the checkout cookie and returns the OrderId of the placed order, so that the ASP.
NET Core code can show a confirmation page with a summary of the order.

¡	The order was unsuccessful—errors present. In this case, the PlaceOrder method
returns immediately to the ASP.NET Core code. That detects that errors occurred
and redisplays the checkout page, and adds the error messages so that the user
can rectify them and try again.

NOTE   You can try the checkout process on the live book app at http://efcore-
inaction.com/ and see the results. To try the error path, don’t tick the Terms
and Conditions (T&C) box.

4.6	 Adding extra features to your business logic handling
This pattern for handling business logic makes it easier to add extra features to your
business logic handling. In this section, you’ll add two features:

¡	Entity class validation to SaveChanges
¡	Transactions that daisy-chain a series of business logic code

These features use EF Core commands that aren’t limited to business logic. Both could
be used in other areas, so you might want to keep these features in mind when you’re
working on your application.

4.6.1	 Validating the data that you write to the database

.NET contains a whole ecosystem to validate data, to check the value of a property
against certain rules (for example, checking that an integer is within the range of 1 to
10, or that a string isn’t longer than 20 characters).

EF6   If you’re scanning for EF6.x changes, read the next paragraph. EF Core’s
SaveChanges doesn’t validate the data before writing to the database, but this
section shows how to add this back.

In the previous version of EF (EF6.x), data that was being added or updated was vali-
dated by default before writing it out to the database. In EF Core, which is aimed at being
lightweight and faster, no validation occurs when adding or updating the database. The
idea is that the validation is often done at the frontend, so why repeat the validation?

http://efcoreinaction.com/
http://efcoreinaction.com/

106 Chapter 4  Using EF Core in business logic

As you’ve seen, the business logic contains lots of validation code, and it’s often
useful to move this into the entity classes as validation checks, especially if the error is
related to a specific property in the entity class. This is another case of breaking a com-
plex set of rules into several component parts.

Listing 4.7 moves the test to check that the book is for sale into the validation code,
rather than having to do it in the business logic. The listing also adds two new validation
checks to show you the various forms that validation checks can take, so that the exam-
ple is comprehensive.

Figure 4.5 shows the LineItem entity class with two types of validation added. The first is
a [Range(min,max)] attribute, known as DataAnnotation, which is added to the LineNum
property. The second validation method to apply is the IValidatableObject interface.
This requires you to add a method called IValidatableObject.Validate, in which you
can write your own validation rules and return errors if those rules are violated.

Listing 4.7   Validation rules applied to the LineNum entity class

public class LineItem : IValidatableObject
{
 public int LineItemId { get; set; }

 [Range(1,5, ErrorMessage =
 "This order is over the limit of 5 books.")]
 public byte LineNum { get; set; }

 public short NumBooks { get; set; }

 public decimal BookPrice { get; set; }

 // relationships

 public int OrderId { get; set; }
 public int BookId { get; set; }

 public Book ChosenBook { get; set; }

 IEnumerable<ValidationResult> IValidatableObject.Validate
 (ValidationContext validationContext)
 {
 var currContext =
 validationContext.GetService(typeof(DbContext));

 if (ChosenBook.Price < 0)
 yield return new ValidationResult(
$"Sorry, the book '{ChosenBook.Title}' is not for sale.");

By applying the IValidatableObject interface, the
validation will call the method the interface defines.

A validation DataAnnotation. Shows
your error message if the LineNum

property isn’t in range.

The method that the IValidatableObject
interface requires you to create

You can access the current DbContext that
this database access is using. In this case,

you don’t use it, but you could, to get better
error feedback information for the user.

Uses the ChosenBook link to look at the date the
book was published. You can also format your own
error message.

Moves the Price
check out of the
business logic

	 107Adding extra features to your business logic handling

 if (NumBooks > 100)
 yield return new ValidationResult(
If you want to order a 100 or more books"+
please phone us on 01234-5678-90",
 new[] { nameof(NumBooks) });
 }
}

I should point out that in the IValidatableObject.Validate method you access a
property outside the LineNum class: the Title of the ChosenBook. You need to be care-
ful when doing this, because you can’t be sure that the relationship isn’t null.
Microsoft says that EF Core will run the internal relationship fixup (see figure 1.6) when
DetectChanges is called, so this is fine when using the validation code in listing 4.8.

NOTE   In addition to using the extensive list of built-in validation attributes,
you can create your own validation attributes by inheriting the Validation-
Attribute class on your own class. See http://mng.bz/9ec for more on the
standard validation attributes that are available and how to use the Valida-
tionAttribute class.

After adding the validation rule code to your LineItem entity class, you need to add a val-
idation stage to EF Core’s SaveChanges method, called SaveChangesWithValidation.
Although the obvious place to put this is inside the application’s DbContext, you’ll create
an extension method instead. This will allow SaveChangesWithValidation to be used
on any DbContext, which means you can copy this class and use it in your application.

The following listing shows this SaveChangesWithValidation extension method,
and listing 4.9 shows the private method ExecuteValidation that SaveChangesWith-
Validation calls to handle the validation.

Listing 4.8   SaveChangesWithValidation added to the application’s DbContext

public static ImmutableList<ValidationResult>

 SaveChangesWithValidation(this DbContext context)
{
 var result = context.ExecuteValidation();

 if (result.Any()) return result;

 context.SaveChanges();

 return result;
}

Tests a property in this class
so you can return that
property with the error

 Returns a list of ValidationResults. If it’s an empty
collection, the data was saved. If it has errors, the

data wasn’t saved.

 Defined as an extension method, which means you
can call it in the same way you call SaveChanges.

Creates a private method to do the
validation, as you need to apply this
in SaveChangesWithValidation and
SaveChangesWithValidationAsync

If there are errors, you return them
immediately and don’t call SaveChanges.

No errors exist, so you’re
going to call SaveChanges.

Returns the empty set of errors, which
tells the caller that everything is OK

http://mng.bz/9ec

108 Chapter 4  Using EF Core in business logic

Listing 4.9   SaveChangesWithValidation calls ExecuteValidation method

private static ImmutableList<ValidationResult>
 ExecuteValidation(this DbContext context)
{
 var result = new List<ValidationResult>();
 foreach (var entry in
 context.ChangeTracker.Entries()
 .Where(e =>
 (e.State == EntityState.Added) ||
 (e.State == EntityState.Modified)))

 {
 var entity = entry.Entity;
 var valProvider = new
 ValidationDbContextServiceProvider(context);

 var valContext = new
 ValidationContext(entity, valProvider, null);
 var entityErrors = new List<ValidationResult>();
 if (!Validator.TryValidateObject(
 entity, valContext, entityErrors, true))
 {
 result.AddRange(entityErrors);
 }
 }
 return result.ToImmutableList();
}

The main code is in the ExecuteValidation method, because you need to use it in sync
and async versions of SaveChangesWithValidation. The call to context.ChangeTracker
.Entries calls the DbContext’s DetectChanges to ensure that all the changes you’ve
made are found before the validation is run. It then looks at all the entities that have
been added or modified (updated) and validates them all.

One piece of code I want to point out is that when you create ValidationContext,
you provide your own class called ValidationDbContextServiceProvider (which can
be found in the Git repo) that implements the IServiceProvider interface. This allows
any entity classes that have the IValidatableObject interface to access the current
DbContext in its Validate method, which could be used to gather better error feed-
back information or do deeper testing.

You design the SaveChangesWithValidation method to return the errors rather
than throw an exception, which is what EF6.x did. You do this to fit in with the business
logic, which returns errors as a list, not an exception. You can create a new BizRun-
ner variant, RunnerWriteDbWithValidation, that uses SaveChangesWithValidation
instead of the normal SaveChanges, and returns errors from the business logic or any
validation errors found when writing to the database. Listing 4.10 shows the BizRunner
class RunnerWriteDbWithValidation.

Calls ChangeTracker.DetectChanges,
which makes sure all your changes to
the tracked entity classes are found.

Filters out only those that need to be
added to, or updates the database

Creates an instance of the class that implements the
IServiceProvider interface, which makes the current

DbContext available in the IValidatableObject.Validate method

Calls method to find
any validation errors

If there are errors, you
add them to the list.

Returns the list of
all the errors found

	 109Adding extra features to your business logic handling

Listing 4.10   BizRunner variant, RunnerWriteDbWithValidation

public class RunnerWriteDbWithValidation<TIn, TOut>
{
 private readonly IBizAction<TIn, TOut> _actionClass;
 private readonly EfCoreContext _context;

 public IImmutableList<ValidationResult>
 Errors { get; private set; }
 public bool HasErrors => Errors.Any();

 public RunnerWriteDbWithValidation(
 IBizAction<TIn, TOut> actionClass,
 EfCoreContext context)
 {
 _context = context;
 _actionClass = actionClass;
 }

 public TOut RunAction(TIn dataIn)
 {
 var result = _actionClass.Action(dataIn);

 Errors = _actionClass.Errors;

 if (!HasErrors)
 {

 Errors =
 _context.SaveChangesWithValidation()
 .ToImmutableList();
 }
 return result;
 }
}

The nice thing about this new variant of the BizRunner pattern is that it has exactly
the same interface as the original, nonvalidating BizRunner. You can substitute
RunnerWriteDbWithValidation<TIn, TOut> for the original BizRunner without needing
to change the business logic or the way that the calling method executes the BizRunner.

In the next section, you’ll produce yet another variant of the BizRunner that can run
multiple business logic classes in such a way that, from the database write point of view,
look like one single business logic method, known as a database atomic unit. This is
possible because of the business logic pattern described at the start of this chapter.

4.6.2	 Using transactions to daisy-chain a sequence of business logic code

As I said earlier, business logic can get complex. When it comes to designing and imple-
menting a large or complex piece of business logic, you have three options:

¡	Option 1 —Write one big method that does everything.

In this version, you need your own Errors
and HasErrors properties, because
errors can come from two sources.

Handles business logic that conforms to
the IBizAction<TIn, TOut> interface.

Calls RunAction in your service layer, or
in your presentation layer if the data
comes back in the right form

Runs the business
logic you gave it

Assigns any errors from the business
logic to your local errors list

If there are no errors, you call
SaveChangesWithValidation to execute
any add, update, or delete methods.

Extracts the error message part of the
ValidationResults and assigns the list to your Errors

Returns the result that the
business logic returned

110 Chapter 4  Using EF Core in business logic

¡	Option 2 —Write a few smaller methods, with one overarching method to run
them in sequence.

¡	Option 3 —Write a few smaller methods and get the system to run them as one unit.

Option 1 isn’t normally a good idea because the method will be so hard to understand
and refactor. It also has problems if parts of the business logic are used elsewhere,
because you could break the DRY (don’t repeat yourself) software principle.

Option 2 can work, but can have problems if later stages rely on database items writ-
ten by earlier stages, because this could break the atomic unit rule mentioned in chap-
ter 1: with multiple changes to the database, either they all succeed, or they all fail.

This leaves option 3, which is possible because of a feature in EF Core (and most rela-
tional databases) called transactions. When EF Core starts a relational database transac-
tion, the database creates an explicit, local transaction. This has two effects. First, any
writes to the database are hidden from other database users until you call the transac-
tion Commit command. Second, if you decide you don’t want the database writes (say,
because the business logic has an error), you can discard all database writes done in the
transaction by calling the transaction RollBack command.

Figure 4.5 shows three separate pieces of business logic being run by a class called
the transactional BizRunner. After each piece of business logic has run, the BizRunner
calls SaveChanges, which means anything it writes is now available for subsequent busi-
ness logic stages via the local transaction. On the final stage, the business logic, Biz 3,
returns errors, which causes the BizRunner to call the RollBack command. This has the
effect of removing any database writes that Biz 1 and Biz 2 did.

1. A special BizRunner runs each business logic class in turn. Each business logic stage
 uses an application DbContext that has an EF Core’s BeginTransaction applied to it.

2. BeginTransaction is called
 at the start. This marks the
 starting point of an explicit,
 local transaction.

3. Each business logic runs as
 normal, with writes to the
 database. BizRunner then calls
 SaveChanges to save each stage’s
 changes to the local transaction.

4. Biz 3 has an error, and
 RollBack is called. This
 removes all the database
 changes done within the
 transaction.

Biz 1

BeginTransaction()

Transactional BizRunner: using one EF Core transaction

Biz 2

SaveChanges()

Biz 3

SaveChanges()

Rollback()

Biz 3Biz 3

Figure 4.5   An example of executing three separate business logic stages under one transaction.
When the last business logic stage returns an error, the other database changes applied by the first two
business logic stages are rolled back.

	 111Adding extra features to your business logic handling

Here’s the code for the new transactional BizRunner, which starts a transaction on the
application’s DbContext before calling any of the business logic.

Listing 4.11   RunnerTransact2WriteDb runs two business logic stages in series

public class RunnerTransact2WriteDb<TIn, TPass, TOut>
 where TOut : class
{
 private readonly IBizAction<TIn, TPass>
 _actionPart1;
 private readonly IBizAction<TPass, TOut>
 _actionPart2;
 private readonly EfCoreContext _context;

 public IImmutableList<ValidationResult>
 Errors { get; private set; }
 public bool HasErrors => Errors.Any();

 public RunnerTransact2WriteDb(
 EfCoreContext context,
 IBizAction<TIn, TPass> actionPart1,
 IBizAction<TPass, TOut> actionPart2)
 {
 _context = context;
 _actionPart1 = actionPart1;
 _actionPart2 = actionPart2;
 }

 public TOut RunAction(TIn dataIn)
 {
 using (var transaction =
 _context.Database.BeginTransaction())
 {
 var passResult = RunPart(
 _actionPart1, dataIn);
 if (HasErrors) return null;
 var result = RunPart(
 _actionPart2, passResult);

 if (!HasErrors)
 {
 transaction.Commit();
 }
 return result;
 }
 }

 private TPartOut RunPart<TPartIn, TPartOut>(
 IBizAction<TPartIn, TPartOut> bizPart,
 TPartIn dataIn)

Generic RunnerTransact2WriteDb takes three
types: the initial input, the class passed from

Part1 to Part2, and the final output.

Because the BizRunner returns null if an error
occurs, you have to say that the TOut type must
be a class.

Defines the generic BizAction
for the two business logic parts

Holds the error information
returned from the last
business logic code that ran

Takes the two instances of
the business logic, and the
application DbContext that
the business logic is using.

You start the transaction on the application’s
DbContext within a using statement. When it
exits the using statement, unless Commit has

been called, it’ll RollBack any changes.

You use a private
method, RunPart,

to run the first
business part.

If errors exist, you return null
(the rollback is handled by the
dispose of the transection).

Because the first part of the business
logic was successful, you run the
second part of the business logic.

If no errors occur, you commit
the transaction to the database.

Returns the result
from the last

business logic

A private method that
handles running each part
of the business logic.

112 Chapter 4  Using EF Core in business logic

 where TPartOut : class
 {
 var result = bizPart.Action(dataIn);
 Errors = bizPart.Errors;
 if (!HasErrors)
 {
 _context.SaveChanges();
 }
 return result;
 }
}

In your RunnerTransact2WriteDb class, you execute each part of the business logic in
turn, and at the end of each execution, you do one of the following:

¡	No errors —You call SaveChanges to save to the transaction any changes the
business logic has run. That save is within a local transaction, so other methods
accessing the database won’t see those changes yet. You then call the next part of
the business logic, if there is one.

¡	Has errors —You copy the errors found by the business logic that just finished to
the BizRunner error list and exit the BizRunner. At that point, the code steps
outside the using clause that holds the transaction, which causes disposal of the
transaction. The disposal will, because no transaction Commit has been called,
cause the transaction to execute its RollBack method, which discards the data-
base writes to the transaction; they’re never written to the database.

If you’ve run all the business logic with no errors, you call the Commit command on the
transaction. This does an atomic update of the database to reflect all the changes to the
database that are contained in the local transaction.

Using the RunnerTransact2WriteDb class

To test the RunnerTransact2WriteDb class, you’ll split the order-processing code you
used earlier into two parts:

¡	PlaceOrderPart1—Creates the Order entity, with no LineItems
¡	PlaceOrderPart2—Adds the LineItems for each book bought to the Order

entity that was created by the PlaceOrderPart1 class

PlaceOrderPart1 and PlaceOrderPart2 are based on the PlaceOrderAction code
you’ve already seen, so I don’t repeat the business code here.

Listing 4.12 shows you the code changes that are required to PlaceOrderService
(shown in listing 4.6) to change over to using the RunnerTransact2WriteDb BizRunner.
The listing focuses on the part that creates and runs the two stages, Part1 and Part2,
with the unchanged parts of the code left out so you can easily see the changes.

Runs the business logic and copies the business
logic’s Errors property to the local Errors property

If the business logic was successful, you call
SaveChanges to apply any add/update/delete
commands to the transaction.

Returns the result
that the business
logic returned

	 113Adding extra features to your business logic handling

Listing 4.12   The PlaceOrderServiceTransact class showing the changed parts

public class PlaceOrderServiceTransact
{
 //… code removed as the same as in listing 4.5

 public PlaceOrderServiceTransact(
 IRequestCookieCollection cookiesIn,
 IResponseCookies cookiesOut,
 EfCoreContext context)
 {
 _checkoutCookie = new CheckoutCookie(
 cookiesIn, cookiesOut);
 _runner = new RunnerTransact2WriteDb

 <PlaceOrderInDto, Part1ToPart2Dto, Order>(
 context,
 new PlaceOrderPart1(
 new PlaceOrderDbAccess(context)),
 new PlaceOrderPart2(
 new PlaceOrderDbAccess(context)));
 }

 public int PlaceOrder(bool tsAndCsAccepted)
 {
 //… code removed as the same as in listing 4.6
 }
}

The important thing to note is that the business logic has no idea whether it’s running
in a transaction. You can use a piece of business logic on its own or as part of a trans-
action. Similarly, listing 4.12 shows that only the caller of transaction-based business
logic, what I call the BizRunner, needs to change. This makes it easy to combine mul-
tiple business logic classes under one transaction without the need to change any of
your business logic code at all.

The advantage of using transactions like this is that you can split up and/or reuse
parts of your business logic while still making these multiple business logic calls look
to your application, especially its database, like one call. I’ve used this approach when I
needed to create and then immediately update a complex, multipart entity. Because
I needed the Update business logic for other cases, I used a transaction to call the Cre-
ate business logic followed by the Update business logic. That saved me development
effort and kept my code DRY.

The disadvantage of this approach is that it adds complexity to the database access.
That might make debugging a little more difficult, or the use of database transactions
could cause a performance issue. These are normally small issues, but you should be
aware of them if you use this approach.

A version of PlaceOrderService, but
using transactions to execute the
business logic in two parts

Creates the BizRunner variant called
RunnerTransact2WriteDb, which runs

the two business logic parts inside a
transaction

The BizRunner needs to know the data types used
for input, passing from part 1 to part 2, and output.

The BizRunner needs the
application’s DbContext.

Provides an instance
of the first part of the
business logic

Provides an instance of
the second part of the
business logic

114 Chapter 4  Using EF Core in business logic

Summary

¡	The term business logic describes code written to implement real-world business
rules. This type of code can be complex and difficult to write.

¡	Various approaches and patterns can make business logic easier to write, test,
and performance-tune.

¡	Isolating the database access part of your business logic into another class/project
can make the pure business logic simpler to write, and helps when performance
tuning.

¡	Creating a standardized interface for your business logic makes calling and run-
ning the business logic much simpler for the frontend.

¡	Sometimes it’s easier to move some of the validation logic into the entity classes
and run the checks when that data is being written to the database.

¡	For business logic that’s complex or being reused, it might be simpler to use
a database transaction to allow a sequence of business logic parts to be run in
sequence, but, from the database point of view, look like one atomic unit.

For readers who are familiar with EF6.x:

¡	Unlike EF6.x, EF Core’s SaveChanges method doesn’t validate data before it’s
written to the database. But it’s easy to implement a method that provides this
feature.

115

5Using EF Core in ASP.NET Core
web applications

This chapter covers
¡	Introduction to using EF Core in ASP.NET Core

¡	Using dependency injection in ASP.NET Core

¡	Accessing the database in ASP.NET Core MVC
actions

¡	Using EF Core migrations to update a database

¡	Using async/await to improve scalability

In this last chapter of part 1, you’ll pull everything together by using ASP.NET Core
to build a real web application. Using ASP.NET Core brings in issues that are out-
side EF Core, such as dependency injection, which I describe later. But they’re nec-
essary if you’re going to use EF Core in this type of application.

This chapter assumes you’ve read chapters 2 to 4, and know about querying and
updating the database and what business logic is. This chapter is about where to place
your database access code and how to call it in a real application. It also covers the specific
issues of using EF Core in an ASP.NET Core application. For that reason, this chapter
includes quite a bit about ASP.NET Core, but it’s all focused on using EF Core well in this
type of application. I end with more general information on the various ways to obtain an
instance of the application’s DbContext for cases such as running parallel tasks.

116 Chapter 5  Using EF Core in ASP.NET Core web applications

5.1	 Introducing ASP.NET Core

TIME-SAVER   If you’re familiar with ASP.NET MVC5, you have a good idea of
what ASP.NET Core is, so you can skip this section.

The ASP.NET Core website, https://docs.microsoft.com/aspnet/core/, states “ASP
.NET Core is a lean and composable framework for building web and cloud applica-
tions. ASP.NET Core is fully open source and available on GitHub. ASP.NET Core is
available on Windows, Mac, and Linux.” This is a good description. I’d add that ASP
.NET Core is mainly about the server-side of web/mobile services: your ASP.NET Core
runs on a server somewhere that’s accessed via HTTP requests.

I’ve been using the precursor of ASP.NET Core, ASP.NET MVC5, for years. I still
have a book on my shelf for MVC3, and I think it’s a good framework, if a bit slow in
performance. Like EF Core, ASP.NET Core is another total rewrite to make it more
modular, multiplatform-capable, and faster (hooray).

TIP    When I first tried ASP.NET Core, I was a bit disappointed with the perfor-
mance. To me, it didn’t feel that much faster than the existing ASP.NET MVC5.
But when I replaced the default logging with my slimmer, in-memory logging,
the book list page was three times faster! So watch out for too much logging
slowing down your application.

As I stated earlier, ASP.NET Core is a web server; its code runs on a host of some kind
and responds to HTTP requests. In general, the handling of an HTTP request splits
into two types:

¡	A request from a browser, where HTML is returned. This is known in ASP.NET
Core as Web UI.

¡	A request from software, where data is returned. This is known in ASP.NET Core
as Web API, or web services.

5.2	 Understanding the architecture of the book app
Chapter 2 presented a diagram of the book app, and chapter 4 extended it with
two more projects to handle the business logic. Figure 5.1 shows you the combined
architecture after chapter 4, with all the projects in the application. As you go
through this chapter, you’ll learn how, and why, we split the database access code
across the various projects. One reason is to make your web application easier to
write, change, and test.

This layered architecture, which creates a single executable containing all the code,
works well with many cloud providers that can spin up more instances of the web applica-
tion if it’s under a heavy load; your host will run multiple copies of a web application
and place a load balancer to spread the load over all the copies. This is known as scale out
on Microsoft Azure and auto scaling on Amazon Web Services (AWS).

https://docs.microsoft.com/aspnet/core/

	 117Understanding dependency injection

SQL
server

Names of the projects in the EfCoreInAction application

ASP.NET
Core
web

application

Adapter and
command
patterns
(DTOs,

query objects
BizRunners,

services)

Data
access

1. EF Core
classes

2. EF Core
DbContext

HTML
pages

Pure
business

logic

Business
database
access

JavaScript
/Ajax

Data store EfCoreInActionServiceLayerBizLogicBizDbAccessDataLayer Browser

Figure 5.1   All the projects in the book app. The arrows show the main routes by which EF Core data moves up
and down the layers.

5.3	 Understanding dependency injection
ASP.NET Core uses dependency injection (DI) extensively, as does .NET Core in general.
You need to understand DI because it’s the method used in ASP.NET Core to get an
instance of the application’s DbContext.

DEFINITION   Dependency injection (DI) is a way to dynamically link together your
application. Normally, you’d write var myClass = new MyClass() to create
a new instance of MyClass. That works, but you’ve hardcoded the creation of
that class, and you can change it only by changing your code. With DI, you
can register your MyClass with a DI provider, using, say, an interface such as
IMyClass. Then, when you need the class, you use IMyClass myClass, and the
DI provider will dynamically create an instance and inject it into the IMyClass
myClass parameter/property.

Using DI has lots of benefits, and here are the main ones:

¡	DI allows your application to dynamically link itself. The DI provider will work
out what classes you need and create them in the right order. For example, if one
of your classes needs the application’s DbContext, the DI can provide it.

¡	Using interfaces and DI together means your application is more loosely coupled;
you can replace a class with another class that matches the same interface. This
is especially useful in unit testing: you can provide a replacement version of the
service with another, simpler class that implements the interface (called mocking
or faking in unit tests).

¡	Other, more advanced features exist, such as using DI to select which class to
return based on certain settings. For instance, if you’re building an e-commerce
application, in development mode you might want to use a dummy credit card
handler instead of the normal credit card system.

118 Chapter 5  Using EF Core in ASP.NET Core web applications

I use DI a lot and I wouldn’t build any real application without it, but I admit it can be
confusing the first time you see it.

NOTE   This section gives you a quick introduction to DI so that you understand
how to use DI with EF Core. If you want more information on DI in ASP.NET
Core, see http://mng.bz/Kv16.

TIME-SAVER   If you’re familiar with DI, you can skip this section.

5.3.1	 Why you need to learn about DI in ASP.NET Core

Chapter 2 showed you how to create an instance of the application’s DbContext by
using the following snippet of code:

const string connection =
 "Data Source=(localdb)\\mssqllocaldb;" +
 "Database=EfCoreInActionDb.Chapter02;" +
 "Integrated Security=True;";
var optionsBuilder =
 new DbContextOptionsBuilder
 <EfCoreContext>();

optionsBuilder.UseSqlServer(connection);
var options = optionsBuilder.Options;

using (var context = new EfCoreContext(options))
{…

That works, but has a few problems. First, you’re going to have to repeat this code for
each database access you make. Second, this code uses a fixed database access string,
which isn’t going to work when you want to deploy your site to a host, because the data-
base location for the hosted database will be different from the database you use for
development.

You can work around these two problems in several ways, such as overriding the
OnConfiguration method in the application’s DbContext (covered in section 5.11.1).
But DI is a better way of handling this, and that’s what ASP.NET Core uses. Using a
slightly different set of commands, you can tell the DI provider how to create your
application’s DbContext, a process called registering a service, and then ask the DI for
an instance of your application’s DbContext anywhere in ASP.NET Core’s system that
supports DI.

5.3.2	 A basic example of dependency injection in ASP.NET Core

Setting up the code to configure the application’s DbContext is a little complicated
and can hide the DI part. My first example of DI in ASP.NET Core, shown in figure 5.2,
uses a simple class called Demo, which you’ll use in an ASP.NET controller. This example
is useful later, when I show you how to use DI to make your code simpler to call.

http://mng.bz/Kv16

	 119Understanding dependency injection

1. You create a class Demo that
 you need in your application
 and add an interface to it.

2. Then you register, via the ConfigureServices method
 in ASP.NET Core’s Startup class, the following:
 a. My class Demo, with the interface IDemo
 b. All the MVC services via a helper, AddMvc

3. When the HomeController is needed by ASP.NET:
 a. The Demo class is created first.
 b. HomeController is created second, with the Demo
 instance fed into the constructor parameter
 IDemo demo.

public class Demo : IDemo
{
 ...
}

public class HomeController
 : Controller
{
 private IDemo _demo;
 public HomeController
 (IDemo demo)
 {
 _demo = demo;
 }
}

public class Startup{
 ...
 public void ConfigureServices(...)
 {
 services.AddTransient<IDemo, Demo>();
 services.AddMvc();
 ...

Figure 5.2   An example of a class called Demo being inserted via DI into a controller’s constructor

Figure 5.2 shows that by registering your IDemo/Demo class with ASP.NET Core’s DI,
you can then access it in your HomeController class. Classes that are registered are
referred to as services.

The rules are that any DI service can be referenced, or injected, in any other DI ser-
vice. In figure 5.2, you register your IDemo/Demo class and call the AddMvc method to
register the ASP.NET Core’s classes—specifically, in this example, the HomeController
class. This allows you to use the IDemo interface in the HomeController’s constructor,
and the DI provides an instance on the Demo class. In DI terms, you use constructor injec-
tion to create an instance of the class that you’ve registered.

You’ll use DI in various ways in this chapter, but the rules and terms just defined will
help you make sense of these later examples.

5.3.3	 The lifetime of a service created by DI

One feature of DI that’s important when talking about EF Core is the lifetime of an
instance created by DI—how long the instance exists before being lost or disposed of.
In our IDemo/Demo example, you registered the instance as transient; every time you ask
for an instance of Demo, it creates a new one. If you want to use your own classes with
DI, you most likely declare them a transient lifetime or, for simple, value-like classes,
you may declare them as singleton (you get the same instance every time).

The application’s DbContext is different. It has its lifetime set to scoped, which means
that however many instances of the application’s DbContext you ask for during one

120 Chapter 5  Using EF Core in ASP.NET Core web applications

HTTP request, you get the same instance. But after that HTTP request ends, that
instance is gone (technically, because DbContext implements IDisposable, it’s dis-
posed of), and you get a new, scoped instance in the next HTTP request. Figure 5.3
shows the three sorts of lifetimes, with a new letter for each new instance.

Singleton: Same instance every time

Transient: new instance every time

Scoped: new instance per HTTP request

DI
request

DI
request

DI
request

DI
request

A

M

X

A

N

X

HTTP request n

A

O

Y

A

P

Y

HTTP request n + 1

Figure 5.3   Instances produced by DI have three types of lifetimes: singleton,
transient, and scoped. This figure shows those three types with four injections for
each, two per HTTP request. The letters represent each instance—if a letter is used
multiple times, it means all those injections are the same instance of the class.

Using a scoped lifetime for the application’s DbContext is critical if you use something
like AJAX with EF Core database accesses (AJAX allows multiple requests within one
HTTP request). For example, if you update a book’s information by using separate
AJAX requests, you want all the AJAX requests to use the same instances of the Book
entities. That way, each AJAX request could apply its changes to the Book entity sepa-
rately, and when the user clicks the Update button, the call to SaveChanges will save all
the changes as one update.

The AJAX example works only because the application’s DbContext has a scoped life-
time, and each AJAX request will get the same application’s DbContext instance, which
holds the tracked entity of the Book instance. Conversely, each HTTP request must have
its own instance of the application’s DbContext, because EF Core’s DbContext isn’t thread
safe (see section 5.11). This is why the application’s DbContext has a scoped lifetime for
each HTTP request, and is one reason why DI is so useful.

5.4	 Making the application’s DbContext available via DI
Now that you understand DI, you’re ready to set up your application’s DbContext as a
service so that you can access it later via DI. This is done at the startup of the ASP.NET
Core web application by registering the application’s DbContext with the DI provider,
using information that tells EF Core what sort of database you’re accessing and where
it’s located.

5.4.1	 Providing information on the database’s location

When developing your application, you’ll want to run it on your development machine,
and access a local database for testing. The type of the database will be defined by the

	 121Making the application’s DbContext available via DI

business need, but the location of the database on your development machine is up to
you and whatever database server you’re using.

For web applications, the location of the database isn’t normally hardcoded into the
application because it’ll change when the web application is moved to its host, where
real users can access it. Therefore, the location and various database configuration set-
tings are typically stored as a connection string. This string is stored in an application setting
file that ASP.NET reads when it starts.

ASP.NET Core has a range of application setting files, but for now you’ll concentrate
on the three standard ones:

¡	appsetting.json —Holds the settings that are common to development and
production

¡	appsettings.Development.json —Holds the settings for the development build
¡	appsettings.Production.json —Holds the settings for the production build (when

the web application is deployed to a host for users to access it)

NOTE   There’s a lot more to application setting files in ASP.NET Core that we
haven’t covered. Please look at the APS.NET Core documentation for a more
complete description.

Typically, the development connection string is stored in the appsettings.Develop-
ment.json file. Listing 5.1 shows a connection string suitable for running an SQL data-
base locally on a windows PC.

NOTE   The Visual Studio 2017 installation includes a feature called SQL Server
Express, which allows you to use SQL Server for development.

Listing 5.1   appsettings.Development.json file with the database connection string

{
 "ConnectionStrings": {
 "DefaultConnection":
"Server=(localdb)\\mssqllocaldb;Database=EfCoreInActionDb
➥;Trusted_Connection=True"
 },
 … other parts removed as not relevant to database access
}

You need to edit your appsettings.Development.json file to add the connection string
for your local, development database. This file may or may not have a Connection-
Strings section, depending on whether you set Authentication to Individual User
Accounts. (The Individual User Accounts option needs its own database, so a connec-
tion string for the authorization database is added by Visual Studio to the appsetting.
json file.) You can call your connection string anything you like; this example uses the
name DefaultConnection in our application.

122 Chapter 5  Using EF Core in ASP.NET Core web applications

5.4.2	 Registering your application’s DbContext with the DI provider

The next step is to register your application’s DbContext with the DI provider at
startup. Any configuration to be done when ASP.NET Core starts up is done in the
aptly named Startup class. This class is executed when the ASP.NET Core application
starts, and contains several methods to set up/configure the web application.

The application’s DbContext for ASP.NET Core has a constructor that takes a
DbContextOptions<T> parameter defining the database options. That way, the data-
base connection string can change when you deploy your web application (see section 5.8).
Just to remind you, here’s what the book app’s DbContext constructor looks like, as
shown in bold in this code snippet:

public class EfCoreContext : DbContext
{
 //… properties removed for clarity

 public EfCoreContext(
 DbContextOptions<EfCoreContext> options)
 : base(options) {}

 //… other code removed for clarity
}

The following listing shows how the application’s DbContext is registered as a service
in an ASP.NET Core application. This is done in the ConfigureServices method in
the Startup class of your ASP.NET Core application, along with all the DI services you
need to register.

Listing 5.2   The ConfigureServices method in the Startup class of ASP.NET Core

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();
 var connection = Configuration
 .GetConnectionString("DefaultConnection");
 services.AddDbContext<EfCoreContext>(
 options => options.UseSqlServer(connection,
 b => b.MigrationsAssembly("DataLayer")));

 //… other service defintions removed
}

The method in ASP.NET
to set up services

Sets up a series of services
to use controllers, etc.

You get the connection string from
the appsettings.json file, which can
be changed when you deploy.

Configures the application’s
DbContext to use SQL Server
and provide the connection

You’re using EF Core’s Add-Migrations
command, so you need to indicate which

project your application’s DbContext is in.

	 123Calling your database access code from ASP.NET Core

Your first step is to get the connection string from the application’s Configuration
class. In ASP.NET Core, the Configuration class is set up during the Startup class
constructor, which reads the appsetting files. Getting the connection string that way
allows you to change the database connection string when you deploy the code to a
host. Section 5.8.1, which is about deploying an ASP.NET Core application that uses a
database, covers how this works.

The second step, making the application’s DbContext available via DI, is done by the
AddDbContext method, which registers the application’s DbContext, EfCoreContext, as
a service. When you use the type EfCoreContext in places where DI intercepts, the DI
provider will run the code inside the AddDbContext method, which creates an instance
of the application’s DbContext; or, if you ask for multiple instances in the same HTTP
request, the DI provider will return the same instance.

You’ll see this in action when you start using the application’s DbContext to do data-
base queries and updates in section 5.6.

5.5	 Calling your database access code from ASP.NET Core
Having configured the application DbContext and registered it as a DI service, you’re
ready to access the database. In these examples, you’re going to run a query to display
the books, and do a database update. You’ll focus on how to execute these methods
from ASP.NET Core; I assume you’ve already grasped how to query and update the
database from the previous chapters.

5.5.1	 A summary of how ASP.NET Core works and the terms it uses

First, a quick summary of how to use ASP.NET Core to implement our book app. To
display the various HTML pages, you’ll use an ASP.NET Core controller, which is the
class that handles delivering HTML pages and Web API (for instance, RESTful data
access). To do this, you’ll create a class called HomeController, which inherits from
ASP.NET Core’s Controller class. This controller provides several HTML pages via
methods, which in ASP.NET Core are known as action methods.

Our book app’s HomeController has an action method called Index, which shows
the book list, and one called About, which gives a summary page about the site. You then
have other controllers to handle checkout, existing orders, admin actions, and so on.

Although you could put all your database access code inside each action method of
each controller, I rarely do that. This is because I use a software design principle called
separation of concerns (SoC), which the next subsection explains.

5.5.2	 Where does the EF Core code live in the book app?

As you learned in section 5.2, our book app is built using a layered architecture, which
is meant to represent an architecture that could be used in a real-world application. In
this section, you’ll see where to place the various pieces of EF Core’s database access
code, and why.

124 Chapter 5  Using EF Core in ASP.NET Core web applications

DEFINITION   Separation of concerns (SoC) is the idea that a software system must
be decomposed into parts that overlap in functionality as little as possible. It’s
linked to two other principles: coupling and cohesion. With coupling, you want
each project in your application to be as self-contained as possible, and with
cohesion, each project in your application should have code that provides similar
or strongly related functions. See http://mng.bz/wHJS for more information.

Figure 5.4 maps where the database access code is located in your application, using the
earlier architecture diagram, figure 5.1. The size of the bubbles relates to the amount
of code you’ll find in each layer. Notice that the ASP.NET Core project and the pure
business logic (BizLogic) project have no EF Core query/update code in them at all.

SQL
server

My business logic EF Core code is
only in this project (see chapter 4)

No EF Core code in ASP.NET, other than
.ToList to execute a query object.

ASP.NET
Core

Service
layer

Data
access HTML

pages

Pure
business

logic

Business
database
access

JavaScript
/Ajax

My CRUD accesses are all
done from the Service layer

Any generic or helper code; e.g.,
paging or validation, goes here.

Generic
database

code
Execute

Business
logic

database
code

Most
CRUD

database
code

Figure 5.4   Locations of the database access code (the EF Core code) in the book app. Separating the EF Core
code in this way makes it easier to find, understand, refactor, and test.

Applying SoC principles has benefits throughout the application. For instance, you
learned about the reason for splitting out the business logic in chapter 4. But in this
chapter, you’ll see the benefits for the ASP.NET Core project.

First, the ASP.NET Core frontend is all about displaying data, and to do that well is a
big task that needs lots of concentration. You’ll therefore use the service layer to handle
both the EF Core commands and the transformation of the database data into a form
that the ASP.NET Core frontend can easily use—often via DTOs, also known as View-
Models in ASP.NET. You can then concentrate on making the best user experience,
rather than thinking about whether you have the database query right.

Second, ASP.NET controllers often have multiple pages/actions (say, one to list
items, one to add a new item, one to edit an item, and so on), each of which would
need its own database code. By moving the database code out to the service layer, you
can create individual classes for each database access rather than have the code spread
throughout a controller.

http://mng.bz/wHJS

	 125Implementing the book list query page

Finally, it’s much easier to unit test your database code if it’s in the service layer
than when it’s in an ASP.NET Core controller. You can test ASP.NET Core controllers,
but testing can get complicated if your code accesses properties such as HtppRequest
(which it does), because it’s hard to replicate some of these features to get your unit test
to work.

5.6	 Implementing the book list query page
Having set the scene, now you’re going to implement the ASP.NET Core part of the list
of books in our book app. To remind you of what the site looks like, figure 5.5 shows a
screenshot of the book app, with the list of books and the local admin update features.

Figure 5.5   The homepage of the book app showing the list of books and the admin features, including
the Change Pub(lication) Date of a book

In chapter 2, you wrote a class called ListBooksService that handled the complexities
of transforming, sorting, filtering, and paging the books to display. You’ll want to use
this class in an ASP.NET Core action called Index in the controller HomeController.
The main issue is that to create an instance of the ListBooksService class, you need
an instance of the application’s DbContext.

The standard way of providing an instance of the application’s DbContext is to add a
constructor in the controller that has the application’s DbContext class as a parameter.
You saw this type of constructor injection in section 5.3.2.

Listing 5.3 shows the start of the ASP.NET Core HomeController, where you’ve
added a constructor and copied the injected EfCoreContext class into a local field that
can be used to create an instance of the BookListService class that you need to list the
books. This uses the same DI approach from section 5.3.2 and figure 5.2, but replaces
the Demo class with the application’s DbContext class, EfCoreContext.

126 Chapter 5  Using EF Core in ASP.NET Core web applications

Listing 5.3   The Index action in the HomeController displays the list of books

public class HomeController : Controller
{
 private readonly EfCoreContext _context;

 public HomeController(EfCoreContext context)
 {
 _context = context;
 }

 public IActionResult Index
 (SortFilterPageOptions options)
 {
 var listService =
 new ListBooksService(_context);

 var bookList = listService
 .SortFilterPage(options)
 .ToList();

 return View(new BookListCombinedDto
 (options, bookList));
 }

After you’ve used the local copy of the application’s DbContext to create your
ListBooksService, you can call its SortFilterPage method. This takes the param-
eters returned from the various controls on the list page and returns an IQuery-
able<BookListDto> result. You then add the ToList method to the end of the result,
which causes EF Core to execute that IQueryable result against the database and
return the list of book information the user has asked for. This is then given to an ASP.
NET Core view to display.

You could’ve had the SortFilterPage method return a List<BookListDto> result,
but that would’ve limited you to using a synchronous database access. As you’ll see in
section 5.10 on async/await, by returning an IQueryable<BookListDto> result, you can
choose to use a normal (synchronous) or an async version of the final command that
executes the query.

The application’s DbContext is
provided by ASP.NET Core via DI.

ASP.NET action, called when the homepage is called
up by the user

The options parameter is filled with
sort, filter, page options via the URL.

ListBooksService is created using the
application’s DbContext from the
private field _context.

The SortFilterPage method is called with
the sort, filter, page options provided.

The ToList() method executes the LINQ commands,
which causes EF Core to translate the LINQ into the
appropriate SQL to access the database and return
the result as a list.

Sends the options (to fill in the controls
at the top of the page) and the list of
BookListDtos to display as an HTML table

	 127Implementing your database methods as a DI service

5.7	 Implementing your database methods as a DI service
Although the constructor injection approach you just used works, there’s another way
to use DI that provides better isolation of the database access code: parameter injection.
In ASP.NET Core, you can arrange for a service to be injected into an action method
via a parameter marked with the attribute [FromServices]. You can provide a specific
service that each action method in your controller needs; this is both more efficient
and simpler to unit test.

To illustrate this, you’re going to use a class called ChangePubDateService that’s in
your service layer to update the publication date of a book. This allows the admin user
to change the publication date of a book, as shown in figure 5.6.

service.GetOriginal(id); service.UpdateBook(dto);

Update

GET: ChangePubDate POST: ChangePubDate

BookId
PublishDate

Figure 5.6   The two stages in changing the publication date of a book. The GET stage
calls the GetOriginal method to show the user the book and its current publication
date. The POST stage then calls the UpdateBook method with the user set date.

You can see that there are two stages to the process. First, you show the admin user the
current publication date and allow them to change it. Second, the update is applied to
the database, and you tell the user that it was successful.

To use parameter injection of your ChangePubDateService class, you need to do two
things:

1	 Register your class, ChangePubDateService, with the DI so it becomes a service
that you can inject by using DI.

2	 Use parameter injection to inject the class instance, ChangePubDate, into the two
ASP.NET action methods that need it (GET and POST).

This approach works well for building ASP.NET Core applications, and I’ve used it
in all my ASP.NET MVC projects for many years. In addition to providing good isola-
tion and making testing easier, this approach also makes the ASP.NET Core controller
action methods much easier to write. You’ll see in section 5.7.2 that the code inside the
ChangePubDate action method is simple and short.

128 Chapter 5  Using EF Core in ASP.NET Core web applications

5.7.1	 Registering your class as a DI service

You can register a class with DI in ASP.NET in numerous ways. The standard way is to
add an IChangePubDateService interface to the class. Technically, you don’t need an
interface, but it’s good practice and can be helpful when unit testing. You also use the
interface in section 5.7.3 to make registering your classes simpler.

The following listing shows the IChangePubDateService interface. Don’t forget that
the ASP.NET Core controller will be dealing with something of type IChangePubDate-
Service, so you need to make sure all the public methods and properties are available
in the interface.

Listing 5.4   The IChangePubDateService interface needed to register the class in DI

public interface IChangePubDateService
{
 ChangePubDateDto GetOriginal(int id);
 Book UpdateBook(ChangePubDateDto dto);
}

You then register this interface/class with the DI service. The default way to do this
in ASP.NET Core is to add a line to the ConfigureServices method in the Startup
class. This listing shows the updated method, with the new code in bold. You add the
ChangePubDateService as a transient, because you want a new version created every
time you ask for it.

Listing 5.5   The ASP.NET Core ConfigureService method in the Startup class

public void ConfigureServices
 (IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();
 var connection = Configuration
 .GetConnectionString("DefaultConnection");
 services.AddDbContext<EfCoreContext>(
 options => options.UseSqlServer(connection,
 b => b.MigrationsAssembly("DataLayer")));

 services.AddTransient
 <IChangePubDateService, ChangePubDateService>();
}

5.7.2	 Injecting ChangePubDateService into the ASP.NET action method

Having set up the ChangePubDateService class as a service that can be injected via DI,
you now need to create an instance in your ASP.NET Core AdminController. The two
GET ASP.NET Core action methods, both called ChangePubDate, need an instance of
the ChangePubDateService class.

Registers the
ChangePubDateService

class as a service, with the
IChangePubDateService

interface as the way to
access it

	 129Implementing your database methods as a DI service

You could provide an instance of the ChangePubDateService class via constructor
injection, as you did with the application’s DbContext, but that approach has a down-
side. AdminController contains several other database update commands, such as add-
ing a review to a book and adding a promotion to a book, and so on. That would mean
you were needlessly creating an instance of ChangePubDateService class when one of
these other commands is being called. The way around this is to use DI parameter injec-
tion into the two specific action methods that need it, ChangePubDate (GET and POST),
so it’s created only if that method is called.

This listing shows the ChangePubDate ASP.NET GET action that’s called when some-
one clicks the Admin > Change Pub Date link. This is when the user wants to change the
publication date.

Listing 5.6   The ChangePubDate action method in AdminController

public IActionResult ChangePubDate
 (int id,
 [FromServices]IChangePubDateService service)
{
 var dto = service.GetOriginal(id);
 return View(dto);
}

Line 3 in this listing is the important one. You’ve used parameter injection to inject, via
DI, an instance of the ChangePubDateService class. The same line is also in the POST
version of the ChangePubDate action.

Note that the ChangePubDateService class needs the EfCoreContext class that’s the
application’s DbContext, in its constructor. That’s fine because DI is recursive; it’ll keep
filling in parameters, or other DI injections, as long as each class that’s needed has been
registered.

NOTE    I’ve changed the AdminController in the Git repo for branch Chap-
ter05 to use parameter injection for every command in that controller. You
can compare this with the same code in the Chapter04 branch, which uses con-
structor injection.

5.7.3	 Improving registering your database access classes as services

Before leaving the topic of DI, I want to introduce a better way of registering your classes
as services via DI. The previous example, in which you made your ChangePubDateService
class into a service, needed you to add code to register that class as a service in ASP.NET

The action called if the user clicks the
Admin > Change Pub Date link

Receives the primary key of the
book that the user wants to change

ASP.NET DI injects the
ChangePubDateService instance

Uses the service to set up a DTO to show the user
Shows the page that allows the

user to edit the publication date

130 Chapter 5  Using EF Core in ASP.NET Core web applications

Core’s ConfigureServices. This works, but it’s time-consuming and error-prone, as
you need to add a line of code to register each class that you want to use as a service.

You can use a more comprehensive DI library, called Autofac (http://docs.autofac.org),
which can enhance ASP.NET Core’s DI feature. I’ve used Autofac for years, and one
command makes my life easier: Autofac’s RegisterAssemblyTypes method. This com-
mand will look through a project, which in .NET is known as an assembly, and register
each class against its interface.

How to upgrade ASP.NET Core’s DI feature with the Autofac NuGet package

Upgrading ASP.NET Core’s DI to Autofac and swapping over to automatic registration
of your classes as services requires three steps:

1	 Install the NuGet package Autofac.Extensions.DependencyInjection in both the
ASP.NET Core project, called EfCoreInAction, and into the ServiceLayer project
in our book app. This is done using the NuGet Package Manager in Visual Studio.

2	 Create a small class in the service layer, called MyAutoFacModule, which contains
the Autofac commands. This will register all your classes in the service layer that
you want to become DI accessible services.

3	 Change over the ConfigureServices method in ASP.NET Core’s Startup class
to using the Autofac DI provider rather than the standard, ASP.NET Core, DI
provider. That allows you to use your MyAutoFacModule class to register all the
classes in your service layer that you want to become services that can be injected
via DI.

The following listing shows your MyAutoFacModule class, which uses Autofac’s
RegisterAssemblyTypes method to scan the service layer assembly and register every
class whose name ends with Service and has an interface.

Listing 5.7   AutoFacModule class tells Autofac how to find the classes to register

public class MyAutoFacModule: Autofac.Module
{
 protected override void Load(
 ContainerBuilder builder)
 {
 builder.RegisterAssemblyTypes(
 GetType().GetTypeInfo().Assembly)
 .Where(c => c.Name.EndsWith("Service"))
 .AsImplementedInterfaces();
 }
}

Creates a class that inherits from
Autofac’s Module class

Overrides the
method load

Uses the Autofac
RegisterAssemblyTypes

Gives it the assembly you’re in,
which will be the service layer

All the database access classes have a name ending
in “Service”, so you only pick those

Registers all those classes
with their interfaces

http://docs.autofac.org

	 131Deploying an ASP.NET Core application with a database

The third step is to replace ASP.NET Core’s built-in DI container with the Autofac DI
provider. This allows you to use Autofac’s more powerful registering services, such as
its RegisterAssemblyTypes method shown in listing 5.7. The following listing shows
the updated class, with code changes in bold. Note that you can remove your hand-
coded registration of your ChangePubDateService, shown in listing 5.5, because
Autofac now finds and registers that service via your MyAutoFacModule class.

Listing 5.8   ConfigureServices method that uses Autofac to register your classes

public IServiceProvider ConfigureServices
 (IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();
 var connection = Configuration
 .GetConnectionString("DefaultConnection");
 services.AddDbContext<EfCoreContext>(
 options => options.UseSqlServer(connection,
 b => b.MigrationsAssembly("DataLayer")));

 // Add Autofac
 var containerBuilder = new ContainerBuilder();
 containerBuilder.RegisterModule
 <ServiceLayer.Utils.MyAutoFacModule>();
 containerBuilder.Populate(services);
 var container = containerBuilder.Build();
 return new AutofacServiceProvider(container);
}

The result of making these changes is that the classes you wanted to create via DI are
now automatically found, rather than needing to hand-code each registration. This is
another way to make development quicker and less error-prone.

5.8	 Deploying an ASP.NET Core application with a database
After developing your ASP.NET Core application with a database, at some point you’ll
want to copy it to a web server so others can use it. This is called deploying your applica-
tion to a host. This section shows how to do this.

NOTE   For more information on ASP.NET Core deployment, I recommend
ASP.NET Core in Action by Andrew Lock (Manning, 2018), or Microsoft’s online doc-
umentation at https://docs.microsoft.com/en-us/aspnet/core/publishing/.

You needed to change the
method’s return type from
void to IServiceProvider.

Creates an Autofac container
builder, which you use to
add all the services to

Uses your MyAutoFacModule class
to register everything that you want
as a service in the ServiceLayer

Needed to add services that were added using a
normal ASP.NET Core service-registering approach,
such as AddMVC and AddDbContext

Builds an Autofac IContainer,
which holds all the services
to be available via DI

Uses this IContainer to create an
alternative DI provider via Autofac

https://docs.microsoft.com/en-us/aspnet/core/publishing/

132 Chapter 5  Using EF Core in ASP.NET Core web applications

5.8.1	 Knowing where the database is on the web server

When you run your ASP.NET Core application locally during development, it accesses
a database server on your development computer. This example uses Visual Studio,
which runs on a Windows computer, and it comes with a local SQL server for devel-
opment that’s available via the reference (localdb)\mssqllocaldb. As explained in
section 5.4.1, the connection string for that database is held in the appsettings.Devel-
opment.json file.

When you deploy your application to a web server, Visual Studio will by default rebuild
your application with the ASPNETCORE_ENVIRONMENT variable set to Production. This
causes your application to try to load the appsetting.json file, followed by the appset-
tings.Production.json file. The appsettings.Production.json file is the place where you,
or the publishing system, put the connection string for your host database.

TIP   At startup, appsettings.Production.json is read last, and will override any
setting with the same name in the appsetting.json file. Therefore, you can put
your development connection string setting in the appsetting.json file if you
want to, but best practice is to put it in the appsettings.Development.json file.

You’ll use Visual Studio’s Publish feature (right-click the ASP.NET Core project in the
Solution Explorer view and select Publish), which allows you to manually set the con-
nection string of your hosted database. When you publish your application, Visual Stu-
dio creates/updates the appsettings.Production.json file with that connection string
you provided, and deploys that file with the application. On startup, the constructor of the
ASP.NET Core’s Startup class will read both files, and the appsettings.Production.json
connection string will be used.

Most Windows hosting systems will provide you with a Visual Studio publish profile
that you can import to the Publish feature. That makes setting up deployment much
easier, as it not only details where the ASP.NET Core application should be written to,
but also provides the connection string for the hosted database.

5.8.2	 Creating and migrating the database

When your application and its database are running on a web server, the control over the
database changes. On your development machine, you can do pretty much anything to
the database, but after you deploy to a web server, the rules can change. Depending on the
host, or your company’s business rules, what you can do to the database will vary.

For example, the live version of our book app is hosted on a cost-effective (cheap!)
shared hosting platform (WebWiz in the UK), and our application can’t create or delete
the database. I’ve also used Microsoft’s Azure cloud system, on which I can delete and
create a database, but creating a database takes a long time.

The simplest approach, which works on all the systems I’ve come across, is to get the
hosting system to create an empty database and then apply the commands to alter the
database structure. The easiest way to do that is via EF Core migrations, which I’m about
to describe, but there are other ways.

	 133Using EF Core’s Migrate to change the database structure

Before I start, I need to warn you that changing the database structure of a web-
site needs to be approached carefully, especially for 24/7 websites that need to keep
working during a database change. Lots of things can go wrong, and the effect could
be lost data or a broken website. This chapter describes EF Core migrations, which is
a good system but has its limitations. Chapter 11 presents ways of handling database
migrations, including more sophisticated techniques, and the pros and cons of each
approach.

5.9	 Using EF Core’s Migrate to change the database structure
This section describes how to use EF Core’s migration feature to update a database.
You can use migrations on both your development machine and your host, but, as
explained in the preceding section, the one that’s the challenge is the database on
your web host.

5.9.1	 Updating your production database

As you may remember from chapter 2, which briefly introduced EF Core migrations,
you can type two commands into Visual Studio’s Package Manager Console (PMC):

¡	Add-Migration—Creates migration code in your application to create/update
your database structure

¡	Update-Database—Applies the migration code to the database referred to by
the application’s DbContext

The first command is fine, but the second command will update only the default data-
base, which is likely to be on your development machine, not your production data-
base. What happens when you want to deploy your web application to some sort of web
host, and the database isn’t at the right level to match the code? There are three ways
to update your production database if you’re using EF Core’s migration feature:

¡	You can have your application check and migrate the database during startup.
¡	You can have a standalone application migrate your database.
¡	You can extract the SQL commands needed to update your database and then

use a tool to apply those SQL commands to your production database.

The simplest is the first option, which I’m going to describe here. It does have limita-
tions—such as it’s not designed to work in multiple-instance web hosting (called scaling out
on Azure). But having the application do the migration is simple and is a good first
step in using EF Core’s migrations in an ASP.NET Core application.

WARNING   Microsoft recommends that you update a production database by using
SQL commands, because that’s the most robust approach. But that approach
requires quite a few steps and tools you may not have on hand, so I cover the sim-
pler Database.Migrate approach. Chapter 11 covers every aspect of database
migrations, including the advantages and limitations of each approach.

134 Chapter 5  Using EF Core in ASP.NET Core web applications

5.9.2	 Having your application migrate your database on startup

The advantage of having your application apply any outstanding database migrations
at startup is you can’t forget to do it: deploying a new application will stop the old
application and then start the new application. By adding code that’s run when the appli-
cation starts, you can call the context.Database.Migrate method, which applies any
missing migrations to the database. Simple, until it goes wrong, which is why I have a
whole chapter dedicated to database migrations that discusses all these issues. But for
now, let’s keep to the simple approach.

Having decided to apply the migration on startup, you need to decide where to call
your migration code. The recommended approach to adding any startup code to an
ASP.NET Core application is to append your code to the end of the BuildWebHost
method in ASP.NET Core’s Program class. By appending your code after the ASP.NET
Core setup has run, you have access to all the services that have been configured.

NOTE   The Program class file, with its public static void Main(string[] args)
method, is the standard way of starting a .NET application.

The best way to do this is to build an extension method holding the EF Core code you
want to run and appending it after the Build method call. The following listing shows
the ASP.NET Core’s Program class with one new line (in bold) added to call your exten-
sion method called MigrateDatabase.

Listing 5.9   ASP.NET Core Program class, including a method to migrate the database

public class Program
{

 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build()
 .MigrateDatabase();
}

The MigrateDatabase method should contain all the code you want to run at startup
in order to migrate, and possibly seed, your database. This listing shows one example
of how you might use this method to migrate your database.

The recommended way to run startup code
is to add it to the end of the BuildWebHost
in the ASP.NET Core Program file.

	 135Using EF Core’s Migrate to change the database structure

Listing 5.10   The MigrateDatabase extension method to migrate the database

public static IWebHost MigrateDatabase
 (this IWebHost webHost)
{
 using (var scope = webHost.Services.CreateScope())
 {
 var services = scope.ServiceProvider;
 using (var context = services
 .GetRequiredService<EfCoreContext>())
 {
 try
 {
 context.Database.Migrate();
 //Possible seed database here
 }
 catch (Exception ex)
 {
 var logger = services
 .GetRequiredService<ILogger<Program>>();
 logger.LogError(ex,
 "An error occurred while migrating the database.");

 throw;
 }
 }
 }

 return webHost;
}

The series of calls at the start of the listing is the recommended way to get a copy of the
application’s DbContext inside the Configure method in the ASP.NET Core Startup
class. This code creates a scoped lifetime instance (see section 5.3.3) of the DbContext
that can be safely used to access the database.

The key commands in listing 5.10, inside the try block (in bold), call EF Core’s
Migrate command. This applies any database migration that exists but hasn’t already
been applied to the database. Optionally, you may want to follow the migration code
with any code to seed the database, which I cover next.

Creates an extension method that takes in
IWebHost and returns IWebHost. You can chain
multiple startup code blocks, each of which can
access the services set up by ASP.NET Core.

Creates a scoped service provider. After the using
block is left, all the services will be unavailable. This
is the recommended way to obtain services outside

an HTTP request.

Creates an instance of the
application’s DbContext that
has a lifetime of only the outer
using statement

Calls EF Core’s Migrate command to apply
any outstanding migrations at startup

You can add a method here to
seed the database if required

If an exception occurs,
you log the information
so you can diagnose it.

Rethrows the exception because you don’t want
the application to carry on if a problem occurs
with migrating the database

Returns the IWebHost so that if there’s additional
code to run at startup, it can be chained behind this
extension

136 Chapter 5  Using EF Core in ASP.NET Core web applications

EF6   The EF Core approach to database setup is different from that of EF6.x.
On first use of the DbContext, EF6.x runs various checks by using database ini-
tializers, whereas EF Core does nothing at all to the database. Therefore, you
need to add your own code to handle migrations. The downside is you need to
write some code, but that gives you total control of what happens.

Setting up initial database content during startup
In addition to migrating the database, you may want to add default data to the database
at the same time, especially if it’s empty. This is called seeding the database and covers
adding initial data to the database, or maybe updating data in an existing database. In
EF Core 2.1 and above you’ll be able to seed via the database migrations route, but for
now you’re going seed via code you call at startup.

In our book app, you want to add a default set of books if there aren’t books already
in the database. To do this, you create an extension method, SeedDatabase, which is shown
in the following listing. This code is added after the call to the Database.Migrate
method in listing 5.10.

Listing 5.11   Our example MigrateAndSeed extension method

public static void SeedDatabase
 (this EfCoreContext context)
{
 if (context.Books.Any()) return;

 context.Books.AddRange(
 EfTestData.CreateFourBooks());
 context.SaveChanges();
}

In this example SeedDatabase method, you check whether any books are in the data-
base and then add them only if it’s empty (for instance, if the database has just been
created). You can do more-complex checks and updates.

If you want to run your seed database method only when a new migration has been
applied, you can use the DbContext method Database.GetPendingMigrations to get
the list of migrations that are about to be applied. You must call GetPendingMigrations
before you execute the Database.Migrate method, because the pending migration is
empty after the Migrate method has finished.

EF6   In EF6.x, the Add-Migration command adds a class called Configuration,
which contains a method called Seed that’s run every time the application
starts. EF Core doesn’t have that class, and you can either use the proce-
dure described in the preceding text or, when EF Core 2.1 is out, use its new
data-seeding feature.

Extension method that takes in
the application’s DbContext

If there are existing books, you
return, as you don’t need to add any.

Database has no books, so you seed it;
in this case, you add the default books.

	 137Using async/await for better scalability

5.10	 Using async/await for better scalability
Async/await is a feature that allows a developer to easily use asynchronous programming,
running tasks in parallel. Async/await is a big topic, but in this section, you’ll look only
at how using async/await can benefit an ASP.NET Core’s application scalability. It does
this by releasing resources while waiting for the database server to carry out the com-
mand(s) that EF Core has asked it to do.

NOTE   If you want to find out more about async/await’s other features, such
as running tasks in parallel, have a look at the Microsoft documentation at
https://msdn.microsoft.com/en-gb/library/mt674882.aspx.

5.10.1	 Why async/await is useful in a web application using EF Core

When EF Core accesses the database, it needs to wait for the database server to run the
commands and return the result. For large datasets and/or complex queries, this can
take hundreds of milliseconds. During that time, a web application is holding onto a
thread from the application’s thread pool. Each access to the web application needs a
thread from the thread pool, and there’s an upper limit.

Using an async/await form of an EF Core command means that during the time that
EF Core is waiting for the database server to respond, it releases its thread for someone
else to use. Figure 5.7 shows two cases. In case A, two users are simultaneously access-
ing the website by using normal synchronous accesses and they clash, so two threads
are needed from the thread pool. In case B, user 1’s access is a long-running database
access that uses an async command to release the thread while it’s waiting for the data-
base. This allows user 2 to reuse the thread that the async command has released while
user 2 is waiting for the database.

User 1

Case B: Using async/awaitCase A: No async/await
Here we see two simultaneous users using
normal, synchronous access. Each needs a
thread, T1 and T2, from thread pool.

The database request is done via an async
command, which releases the thread, while
it’s waiting for the database to return.

Because user 1 has relinquished the thread T1, user 2
can use T1 rather than needing an extra thread.

T1

Request

User 2

T2

Request

User 1

T1 T1

Database request

await ...

User 2

T1

Request

Figure 5.7   Differences in database access. In the normal, synchronous database access in
case A, two threads are needed to handle the two users. In case B, user 1’s database access
is accomplished with an async command, which frees up the thread, T1, making it available for
user 2.

https://msdn.microsoft.com/en-gb/library/mt674882.aspx

138 Chapter 5  Using EF Core in ASP.NET Core web applications

NOTE   You can read a more in-depth explanation of what async/await does in an
ASP.NET web application at https://msdn.microsoft.com/en-gb/magazine/
dn802603.aspx.

The use of async/await improves the scalability of your website: your web server will be
able to handle more concurrent users. The downside is that async/await commands
take longer to execute, because they run more code. A bit of analysis is needed here to
get the right balance of scalability and performance.

5.10.2	 Where should you use async/await with database accesses?

The general advice from Microsoft is to use async methods wherever possible in a
web application because that gives you better scalability. That’s good advice, but you
should be aware that, in general, async EF Core commands take slightly longer than
the equivalent synchronous (sync) commands because of the extra code to handle the
threading.

In summary, the speed difference is small, so sticking to Microsoft’s “always use async
commands in ASP.NET applications” is a good rule. But if your application is lacking in
speed on some commands, you may have a case for swapping to normal, synchronous
database access methods. Chapter 12 covers the trade-off between the scalability and
speed of using async database methods (see section 12.7).

NOTE   I wrote an article some time ago covering, in more detail, async/await and
its features, scalability, and speed issues. You can find it at http://mng.bz/13b6.

5.10.3	 Changing over to async/await versions of EF Core commands

Let me start by showing you a method that calls an async version of an EF Core com-
mand, and then I’ll explain it. Figure 5.8 shows an async method that returns the total
number of books in the database.

The async keyword tells the compiler
that the method is asynchronous and
contains an await.

Asynchronous methods return the type
Task, Task<T>, or other task-like type. In
this case you return a Task<int> because
the result of the method is an int.

By convention, the name of a
method that’s asynchronous
should end with Async.

EF Core has many async
versions of its normal sync
commands. CountAsync
returns the count of rows
in the query.

The await keyword indicates the
point where the method will
wait until the asynchronous
method it calls has returned.

public async Task<int>
 GetNumBooksAsync(
 EfCoreContext context)
{
 return await
 context.Books
 .CountAsync();
}

Figure 5.8   The anatomy of an asynchronous method, highlighting the parts of the code that are
different from a normal synchronous method

https://msdn.microsoft.com/en-gb/magazine/dn802603.aspx
https://msdn.microsoft.com/en-gb/magazine/dn802603.aspx
http://mng.bz/13b6

	 139Running parallel tasks: how to provide the DbContext

EF Core contains an async version of most of its commands, which all have a method
name that ends with the string Async. As you saw in the preceding async method example,
you then need to carry the “async-ness” to the method in which you call the async EF Core
command.

The rule is, after you use an async command, every caller must either be an async
method or should pass on the task directly until it gets to the top-level caller, which must
handle it asynchronously. ASP.NET Core supports async for all the main commands,
such as controller actions, so this isn’t a problem in such an application.

The next listing shows an async version of your Index action method from your
HomeController, with the parts you have to change to make this command use an async
database access, with the async parts in bold.

Listing 5.12   The async Index action method from the HomeController

public async Task<IActionResult> Index
 (SortFilterPageOptions options)
{
 var listService =
 new ListBooksService(_context);

 var bookList = await listService
 .SortFilterPage(options)
 .ToListAsync();

 return View(new BookListCombinedDto
 (options, bookList));
}

Because you design your SortFilterPage method to return IQueryable<T>, it’s simple to
change database access to async by replacing the ToList method with the ToListAsync
method.

TIP    Business logic code is often a good candidate for using async databases’
access methods because their database accesses often contain complex read/
write commands. I’ve created async versions of the BizRunners in case you
need them. You can find them in the service layer in the BizRunners directory
(see http://mng.bz/53Dw).

5.11	 Running parallel tasks: how to provide the DbContext
In some situations, running more than one thread of code is useful. By this, I mean
running a separate task —a parallel set of code that runs “at the same time” as the main
application. I put “at the same time” in quotes because if there’s only one CPU, the two
tasks need to share it.

You have to make the Index action
method async by using the async
keyword, and the returned type has
to be wrapped in a generic task.

You have to await the result of the
ToListAsync method, which is an
async command.

You can change SortFilterPage to async by
replacing .ToList() with .ToListAsync().

http://mng.bz/53Dw

140 Chapter 5  Using EF Core in ASP.NET Core web applications

Parallel tasks are useful in various scenarios. Say you’re accessing multiple, external
sources that you need to wait for before they return a result. By using multiple tasks run-
ning in parallel, you gain performance improvements. In another scenario, you might
have a long-running task, such as processing an order fulfillment. You use parallel tasks
to avoid blocking the normal flow and making your website look slow and unrespon-
sive. Figure 5.9 shows this background task example.

User User

Do other
things

A task that will take a lot
of time but that the user
doesn’t need right now

Background task runs and performs the long-running process

Do other
things

Time

1. The user asks for
 something that will
 take some time to do.

2. The ASP.NET Core action
 starts a background task
 and returns immediately.

3. The task runs at a lower priority, getting a chance
 to run only when the main application is idle.

4. The user can do
 other things and
 isn’t held up.

Figure 5.9   Moving long-running processes to a background task that runs in parallel to the main
website. This makes the website feel more responsive.

Running parallel tasks isn’t specific to ASP.NET Core; it can occur in any application.
But larger web applications often use this feature, so I explain it in this chapter. The
solution I show, which uses DI, might not be relevant in all applications, so I also show
other approaches at the end of this section.

There’re lots of options and features around running tasks that I don’t cover here.
What we’re interested in is, if your background task wants to use EF Core to access the
database, how do you get an instance of the application’s DbContext? DbContext isn’t
thread-safe—you can’t use the same instance in multiple tasks. EF Core will throw an
exception if it finds that the same DbContext instance is used in two tasks. You therefore
need to create unique instances of the application’s DbContext for each task.

In ASP.NET Core, the correct way to get a DbContext is by using a DI scoped service.
This scoped service allows you to create, via DI, a DbContext that’s unique to the task
that you’re running. To do this, you need to do four things:

1	 Get a copy of the DI service provider.

2	 Use the DI service provider to produce a service scope factory.

3	 Use the service scope factory to create a scoped DI service, which you pass to your task.

4	 Inside your task, you use the scoped DI service that was passed to get an instance
of the application’s DbContext.

	 141Running parallel tasks: how to provide the DbContext

The following listing covers step 1. You get the DI service provider via constructor injec-
tion into your AdminController, which is where you want to run two tasks in parallel.

Listing 5.13   Getting an instance of the DI service provider via constructor injection

private readonly IServiceProvider _serviceProvider;

public AdminController(
 IServiceProvider serviceProvider)
{
 _serviceProvider = serviceProvider;
}

In this example, you’re going to run two tasks in parallel. I use this example because
this is something that you may want to do if you were trying to access multiple RESTful
services at the same time: doing that in parallel means it takes only as long as the lon-
gest one, rather than the sum of all the accesses. The following listing shows a simple
example of running two tasks from an ASP.NET Core action method in the AdminCon-
troller, where it can get access to the serviceProvider field.

Listing 5.14   How to run two tasks in parallel that need to access the database

public async Task<IActionResult> RunTaskWait()
{
 var scopeFactory = _serviceProvider
 .GetRequiredService<IServiceScopeFactory>();

 var task1 = MyTask(scopeFactory, 10);
 var task2 = MyTask(scopeFactory, 20);
 var results = await
 Task.WhenAll(task1, task2);

 return View(results);
}

The important point from the code is that you provide ServiceScopeFactory to each
task, so that it can use DI to get an instance of the DbContext (and any other service
that has been registered).

The following listing shows the MyTask method that needs an instance of the applica-
tion’s DbContext because it accesses the database to count the number of books.

Holds a local reference of
the DI service provider

Uses constructor injection to
get the service provider

Copies the instance provided
by DI into your private field

ASP.NET action method that’s going
to run both tasks in parallel

Asks the DI service provider
for a ServiceScopeFactory

Defines two tasks, each given
the ServiceScopeFactory

In this case, you want to wait
until all the tasks have finished.

The Task.WhenAll method runs all the
tasks it has been given in parallel and
returns only when both are finished. It
returns an array of results, one entry
from each task.Returns the results to the user

142 Chapter 5  Using EF Core in ASP.NET Core web applications

Listing 5.15   An example of a task needing an instance of the application’s DbContext

private async Task<int> MyTask
 (IServiceScopeFactory scopeFactory,
 int waitMilliseconds)
{
 using (var serviceScope =
 scopeFactory.CreateScope())
 using (var context =
 serviceScope.ServiceProvider
 .GetService<EfCoreContext>())
 {

 await Task.Delay(waitMilliseconds);
 await context.Books.CountAsync();
 }
}

Here you first create a scoped service, a way to called the DI such that it creates instances
that exist only until the scoped service is disposed of. Once you have the scoped service,
you can call the service provider, which handles the creation of DI services, to get the ser-
vice you want—in this case, the application’s DbContext. After you have that, you can get
on with your code—in this case, asking the database for the number of books by using an
async method, CountAsync, but you could’ve used the synchronous method Count.

5.11.1	 Other ways of obtaining a new instance of the application’s
DbContext

Although DI is the recommended method to get the application’s DbContext, in some
cases, such as a console application, DI may not be configured or available. In these cases,
you have two other options that allow you to obtain an instance of the application’s
DbContext:

¡	Move your configuration of the application’s DbContext by overriding the
OnConfiguring method in the DbContext and placing the code to set up the
DbContext there.

¡	Use the same constructor used for ASP.NET Core and manually inject the data-
base options and connection string. This is what you do in unit tests (see chapter 15).

The downside of both approaches is that they use a fixed connection string, so it always
accesses the same database, which could make deployment to another system difficult
if the database name or options change. The second option, manually providing the
database options, allows you to read in a connection string from a file inside your code.

Another issue to be aware of is that each call will give you a new instance of the appli-
cation’s DbContext. From the discussions of lifetime scopes in section 5.3.3, at times
you might want to have the same instance of the application’s DbContext to ensure that
tracking changes works. You can work around this issue by designing your application
so that one instance of the application’s DbContext is passed between all the code that
needs to collaborate on database updates.

Passes in the service scope factory, which
allows you to create a private scope

You’ve created your own service scope. Services will
last only until the disposal of your service scope.

Now you can ask the service provider to create
a local instance of the application’s DbContext.

Calls a delay to
simulate work Uses the local application’s

DbContext to read the database

	 143Summary

Summary

¡	ASP.NET Core uses dependency injection (DI) to provide the application’s
DbContext. DI is a feature that allows you to dynamically link parts of your appli-
cation by letting DI create class instances as required.

¡	The ConfigureServices method ASP.NET Core Startup class is the place to
configure and register your version of the application’s DbContext by using a
connection string that you place in an ASP.NET Core application setting file.

¡	To get an instance of the application’s DbContext to use with your code via DI,
you can use constructor injection. DI will look at the type of each of the con-
structor’s parameters and attempt to find a service for which it can provide an
instance.

¡	Your database access code can be built as a service and registered with the DI. You
can then inject your services into the ASP.NET Core action methods via param-
eter injection: the DI will find a service that finds the type of an ASP.NET Core
action method’s parameter that’s marked with the attribute [FromServices].

¡	Deploying an ASP.NET Core application that uses a database requires you to
define a database connection string that has the location and name of the data-
base on the host.

¡	EF Core’s migration feature provides one way to change your database if your
entity classes and/or the EF Core configuration changes. The Migrate method
has some limitations when used on cloud hosting sites that run multiple instances
of your web application.

¡	Async/await tasking methods on database access code can make your website
handle more simultaneous users, but performance could suffer, especially on
simple database accesses.

¡	If you want to use parallel tasks, you need to provide a unique, scoped instance of
the application’s DbContext.

For readers who are familiar with EF6.x:

¡	The way you obtain an instance of the application’s DbContext in ASP.NET Core
is via DI.

¡	As compared to EF6.x, EF Core has a different approach to creating the first
instance of a DbContext. EF6.x has database initializers and can run a Seed
method. EF Core has none of these, but leaves you to write the specific code you
want to run at startup.

¡	EF Core migrations don’t create a Configuration class with a Seed method. If you
want to seed the database, you write your own Seed code and call it in the Configure
method in ASP.NET Core’s Startup class, or manually via an admin page.

Part 2

Entity Framework in depth

Part 1 showed how you might build an application by using EF Core. Part 2
covers how to configure EF Core exactly the way you need it, and introduces you
to advanced features that can make your software more efficient in both develop-
ment and performance terms. Part 2 is more of a reference section that covers
each part of EF Core in detail, but hopefully not in a boring way.

Chapter 6 introduces the way that EF Core configures itself when it’s first used
so that you know where and how to apply any of your own EF Core configurations.
The chapter focuses on nonrelational properties, with types such as int, string,
and DateTime. If you need to link to an existing database, this chapter tells you
how to set specific table and column names.

Chapter 7 shows how EF Core finds and configures relationships. EF Core does
a good job of configuring most relationships for you, but it does need help on
some, and you’ll want to configure others because EF Core’s default settings don’t
suit your needs. You’ll also look at handling groups of classes that inherit from
each other and learn useful features of EF Core implementations.

Chapter 8 covers more-advanced configurable features, such as defining com-
puted columns in your database and catching and handling concurrent updates
of the database. You’ll use these features in only certain circumstances, but you
should know they’re there in case you need them.

Chapter 9 looks at methods inside the EF Core’s DbContext class, especially
how SaveChanges works out what to write to the database and how you can influ-
ence that. This chapter covers other diverse topics such as raw SQL access to the
database, database connection resiliency, and the DbContext’s Model property.

147

6Configuring
nonrelational properties

This chapter covers
¡	Configuring EF Core

¡	Focusing on nonrelational properties

¡	Defining the database structure

¡	Using shadow properties and backing fields

This chapter is the first of three that look at configuring EF Core, and it concentrates
on configuring the nonrelational properties in an entity class, known as scalar proper-
ties. Chapter 7 covers configuring relational properties, and chapter 8 covers config-
uring more advanced features, such as DbFunctions, computed columns, and so on.

This chapter starts with an overview of the configuration process that EF Core
runs when the application’s DbContext is used for the first time. You’ll then learn
how to configure the mapping between the .NET classes and their associated data-
base tables, with features such as setting the name, SQL type, and nullability of the
columns in a table.

This chapter also introduces two EF Core features—shadow properties and backing
fields —that enable you to control how the data is exposed to the rest of your non-EF
Core code. For instance, these features allow you to “hide,” or control access to, data

148 Chapter 6  Configuring nonrelational properties

linked to your database. These two features can help you write better, less fragile appli-
cations through better control of the developer’s access to the data held in the entity
class.

6.1	 Three ways of configuring EF Core
Chapter 1 covered how EF Core models the database and presented a figure to show
what EF Core is doing, with the focus on the database. Figure 6.1 has a more detailed
depiction of the configuration process that happens the first time you use the appli-
cation’s DbContext. This figure shows the entire process, with the three configura-
tion approaches: By Convention, Data Annotation, and the Fluent API. This example
focuses on the configuration of scalar properties, but the process is the same for all
configurations of EF Core.

Etc...tcEtc...
RReviewR

1. EF Core looks at each DBSet<T> property, and
 scans each class and any connected class.

2. For each class, it applies
 • By Convention configuration
 • Data Annotations configuration

3. Then it runs the OnModelCreating
 method and applies any Fluent API
 commands you’ve placed there.

Book
Class

Fluent API

By Convention

Data Annotations

Properties
 BookId : int
 ...

NOTE: You can introduce extra entity
classes in your Fluent API commands,
in which case they’re scanned too.

Your entity classes Your application’s DbContext

protected override void
 OnModelCreating(ModelBuilder
 modelBuilder)
{
 modelBuilder.Entity<Book>()
 .Property(x -> x.PublishedOn)
 .HasColumnType("date");

 ModelBuilder.Entity<Book>()
 .Property(x -> x.ImageUrl)
 .IsUnicode(false);
 //etc. ...

public class Book
{
 public int BookId
 { get: set: }

 [Required]
 [MaxLength(256)]
 public string Title
 { get; set; }
 //etc. ...

AppDbContext
Class
Properties
 Books : DbSet<Book>
 Authors : DbSet<Author>
 Etc. ...
Methods
 void OnModelCreating(...

Figure 6.1   When the application’s DbContext is first used, EF Core sets off a process to configure itself
and build a model of the database it’s supposed to access. You can use three approaches to configure EF
Core: By Convention, Data Annotations, and Fluent API. Most real applications need a mixture of all three
approaches to configure EF Core in exactly the way your application needs.

	 149A worked example of configuring EF Core

This list summarizes the three approaches to configuring EF Core:

¡	By Convention —When you follow simple rules on property types and names, EF
Core will autoconfigure many of the software and database features. Using the
By Convention approach is quick and easy, but it can’t handle every eventuality.

¡	Data Annotations —A range of .NET attributes, known as Data Annotations, can be
added to entity classes and/or properties to provide extra configuration infor-
mation. These can also be useful for data validation, covered in chapter 4.

¡	Fluent API —EF Core has a method called OnModelCreating that’s run when the
EF context is first used. You can override this method and add commands, known
as the Fluent API, to provide extra information to EF Core in its modeling stage.
The Fluent API is the most comprehensive form of configuration information,
and some features are available only via the Fluent API.

NOTE   Most real applications need to use all three approaches to configure EF
Core and the database in exactly the way they need. Some configuration fea-
tures are available via two or even all three approaches (for instance, defining
the primary key in an entity class). Section 6.12 gives you my recommendations
on which approach to use for certain features.

6.2	 A worked example of configuring EF Core
For anything beyond a Hello World version of using EF Core, you’re likely to need
some form of Data Annotations or Fluent API configuration. In part 1, you needed to
set up the key for the many-to-many link table. In this chapter, you’ll see an example of
applying the three configuration approaches introduced in section 6.1 to better match
the database to the needs of our book app.

In this example, you’re going to remodel the Book entity class used in chapters 2 to
5 and change the size and type of some of the columns from the defaults that EF Core
uses. These changes make your database smaller, make sorting or searching on some
columns faster, and check that some columns aren’t null. It’s always good practice to
define the correct size, type, and nullability for your database columns based on the
business needs.

To do this, you’ll use a combination of all three configuration approaches. The By
Convention configuration has a major part to play, as it defines the table and column
names, but you’ll add specific Data Annotations and Fluent API configuration methods
to change a few of the columns from the default By Convention settings. Figure 6.2
shows how each configuration approach affects the database table structure. Because
of space limitations, the figure doesn’t show all the Data Annotations and Fluent API
configuration methods applied to the table, but you can see these in listings 6.1 and 6.2,
respectively.

150 Chapter 6  Configuring nonrelational properties

1. The BookId property follows the By
 Convention naming rules and becomes
 the primary key for the Books table.

2. The [Required] annotation sets the Title column
 as NOT NULL, while [MaxLength (256)] sets the
 number of chars in the column.

3. HasColumnType (“date”) sets the
 PublishedOn column type to DATE,
 while the IsUnicode (false) sets
 ImageUrl column type to VARCAR.

OnConfiguring method in DbContext

Fluent API

protected override void
 OnModelCreating(ModelBuilder
 modelBuilder)
{
 modelBuilder.Entity<Book>()
 .Property(x -> x.PublishedOn)
 .HasColumnType("date");

 ModelBuilder.Entity<Book>()
 .Property(x -> x.ImageUrl)
 .IsUnicode(false);
 //etc. ...

SQL code produced by EF Core

CREATE TABLE [dbo].[Books] (
 [BookId] INT
 IDENTITY (1, 1) NOT NULL,
 CONSTRAINT [PK_Books]
 PRIMARY KEY CLUSTERED
 [Title] NVARCHAR (256) NOT NULL,
 [Description] NVARCHAR (MAX) NULL,
 [Price] DECIMAL (9, 2) NOT NULL,
 [Publisher] NVARCHAR (64) NULL,
 [PublishedOn] DATE NOT NULL,
 [ImageUrl] VARCHAR (512) NULL
);

Book entity class

public class Book
{
 public int BookId
 { get: set: }

 [Required]
 [MaxLength(256)]
 public string Title
 [get; set;]
 //etc. ...

Figure 6.2   To configure the Books table in the exact format you want, you must use all three
configuration approaches. A large part is done by convention (all the parts not in bold), but you then use
Data Annotations to set the size and nullability of the Title column, and the Fluent API to change the type
of the PublishedOn and ImageUrl columns.

These changes to the database table are ones you’d want to make in a real project.
Here’s why they’re useful:

¡	Telling EF Core that the Title can’t be null means the database will return an
error if you try to insert/update a book with a null title.

¡	Having fixed-length strings of the right type, 2-byte Unicode or 1-byte ASCII,
makes the database access slightly more efficient and allows an SQL index to be
applied to these fixed-size columns.

DEFINITION   An SQL index is a feature that improves the performance of sorting
and searching. Section 6.10 covers this in more detail.

¡	You don’t need a book Price that could go up to 1016 dollars (the default size), so
you set a precision of 107, which reduces the size of the Price from 8 bytes to its
smallest storage size of 5 bytes.

	 151Configuring By Convention

¡	The same goes for the PublishedOn property: making it hold only the date, which
is all you need, rather than the default datetime2. This reduces the column size
from 8 bytes to 3 bytes, and makes searching and sorting on the PublishedOn
column faster.

This listing shows you the updated Book entity class code, with the new Data Annota-
tions in bold (the Fluent API commands are shown later in the chapter).

Listing 6.1   The Book entity class with added Data Annotations

public class Book
{
 public int BookId { get; set; }

 [Required]
 [MaxLength(256)]
 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime PublishedOn { get; set; }
 [MaxLength(64)]
 public string Publisher { get; set; }
 public decimal Price { get; set; }

 [MaxLength(512)]
 public string ImageUrl { get; set; }
 public bool SoftDeleted { get; set; }

 //---
 //relationships

 public PriceOffer Promotion { get; set; }
 public ICollection<Review> Reviews { get; set; }
 public ICollection<BookAuthor>
 AuthorsLink { get; set; }
}

TIP   You’d normally set the size parameter in the [MaxLength(nn)] attribute
by using a constant so that if you create a DTO, it will use the same constant. If
you change the size of one property, that changes all the associated properties.

Now that you’ve seen an example that uses all three configuration approaches, let’s
explore each approach in detail.

6.3	 Configuring By Convention
By Convention is the default configuration and can be overridden by the other two
approaches, Data Annotations and the Fluent API. The By Convention approach relies
on the developer using the By Convention naming standards and type mappings,
which then allow EF Core to find and configure entity classes and their relationships
as well as define much of the database model. This approach provides a quick way to
configure much of your database mapping, so it’s worth learning.

Tells EF Core that the
string is non-nullable

Defines the size of the string
column in the database

152 Chapter 6  Configuring nonrelational properties

6.3.1	 Conventions for entity classes

Classes that EF Core maps to the database are called entity classes. As stated in chapter 2,
entity classes are normal .NET classes, sometimes referred to as POCOS (plain old
CLR objects). EF Core requires entity classes to have the following features:

¡	The class must be of public access: the keyword public should be before the
class.

¡	The class can’t be a static class, as EF Core must be able to create a new instance
of the class.

¡	The class should have no constructor or should have a parameterless construc-
tor, which can have any accessibly level of access, including private. The class can
be created without any parameters being required.

NOTE   EF Core 2.1 adds a new feature in which an entity class’s constructor
can have parameters. Another EF Core 2.1 new feature, lazy loading, needs a
method provided via the entity class’s constructor. In addition, having a con-
structor with parameters allows you to provide value properties and inject ser-
vices into an entity being read in. Please see appendix B for more information.

6.3.2	 Conventions for parameters in an entity class

By convention, EF Core will look for properties in an entity class that have a public
access, a public getter, and a setter of any access mode (public, internal, protected,
or private). The typical, all-public property is

public int MyProp { get; set; }

Although the all-public property is the norm, in some places having a property with a
more localized access setting (for instance, public int MyProp { get; private set;
}) allows you more control (see section 10.4 for more on this). You can control how
it’s set, via a method in the entity class that also does some checks before setting the
property.

6.3.3	 Conventions for name, type, and size

The rules for name, type, and size of a relational column are the following:

¡	The name of the property is used as the name of the column in the table.
¡	The .NET type is translated by the database provider to the corresponding SQL

type. Many basic .NET types have a one-to-one mapping to a corresponding data-
base type. These basic .NET types are mostly .NET primitive types (for example,
int, bool, and so on), with some special cases (for example, string, DateTime,
Guid).

EF6   One change in the default mapping conventions is that EF Core maps a
.NET DateTime type to SQL datetime2(7), whereas EF6 maps .NET DateTime
to SQL datetime.

	 153Configuring By Convention

6.3.4	 By Convention, the nullability of a property is based on .NET type

In relational databases, NULL represents missing or unknown data. Whether a column
can be NULL is defined by the .NET type:

¡	If the type is string, the column can be NULL, because a string can be null.
¡	Primitive types (for instance, int) or struct types (for instance, DateTime) are, by

default, non-null.
¡	Primitive or struct types can be made nullable by using either the ? suffix (for

instance, int?) or the generic Nullable<T> (for instance, Nullable<int>). In
these cases, the column can be NULL.

Figure 6.3 shows the application of the name, type, size, and nullability conventions
applied to a property.

1. The name of the property is used
 for the name of the table column

2. The .NET type is converted to a default
 SQL type—in this case, nvarchar (Unicode)

4. The .NET type, string, is nullable, so
 the SQL column is made nullable too.

3. For each .NET type, EF Core uses a
 default size—for strings, it’s max.

public string Description {get;set;} [Description] [nvarchar](max) NULL

.NET class property SQL column

Figure 6.3   The application of the By Convention rules to define an SQL column. The type of the property
is converted by the database provider to the equivalent SQL type, whereas the name of the property is
used for the name of the column.

6.3.5	 An EF Core naming convention identifies primary keys

The other rule is about defining the database table’s primary key. The EF Core conven-
tions for designating a primary key are as follows:

¡	EF Core expects one primary-key property (the By Convention approach doesn’t
handle keys made up of multiple properties/columns, called composite keys).

¡	The property is called Id or <class name>id (for instance, BookId).
¡	The type of the property defines what assigns a unique value to the key. Chap-

ter 8 covers key generation. Figure 6.4 is an example of a database-generated
primary key.

154 Chapter 6  Configuring nonrelational properties

This shows the primary-key By Convention mapping between the .NET class and the
SQL column.

3. Because the property follows
 the pattern <ClassName>Id this
 defines the primary key of the table.

1. The name of the property is used
 for the name of the primary key.

2. The .NET int type is one that maps to a
 primary key that the database server
 creates via the SQL IDENTITY keyword.

public int BookId {get;set;} [BookId] [int] IDENTITY(1,1)
 CONSTANT [PK_Books]
 PRIMARY KEY CLUSTERED,

.NET class property SQL column

Figure 6.4   The mapping between the .NET class property BookId and the SQL primary column BookId
using the By Convention approach. The name of the property tells EF Core that this property is the
primary key. Also, the database provider knows that a type of int means it should create a unique value
for each row added to the table.

TIP   Although you have the option of using the short name, Id, for a primary
key, I recommend you use the longer name: <class name> followed by Id (for
instance, BookId). Understanding what’s going on in your code is easier if you
use Where(p => BookId == 1) rather than the shorter Where(p => Id == 1),
especially when you have lots of entity classes.

6.4	 Configuring via Data Annotations
Data Annotations are a specific type of .NET attribute used for validation and database
features. These attributes can be applied to an entity class or property and provide con-
figuration information to EF Core. This section introduces where you can find them
and how they’re typically applied. The Data Annotation attributes that are relevant to
EF Core configuration come from two namespaces.

6.4.1	 System.ComponentModel.DataAnnotations

The attributes in the System.ComponentModel.DataAnnotations namespace are
mainly used for data validation at the frontend, such as ASP.NET, but EF Core uses
some of them for creating the mapping model. Attributes such as [Required] and
[MaxLength] are the main ones, with many of the other Data Annotations having
no effect on EF Core. Figure 6.5 shows how the main attributes, [Required] and
[MaxLength], affect the database column definition.

	 155Configuring via the Fluent API

[Required]

[MaxLength(256)]
public string AuthorName {get;set;}

[AuthorName] [nvarchar](256) NOT NULL

1. The Required attribute says that
 the property/column can’t be NULL.

2. The MaxLength attribute sets the maximum
 size of the property string/column.

.NET class property SQL column

Figure 6.5   The [Required] and [MaxLength] attributes affect the mapping to a database column.
The [Required] attribute indicates that the column shouldn’t be null, and the [MaxLength]
attribute sets the size of the nvarchar.

6.4.2	 System.ComponentModel.DataAnnotations.Schema

The attributes in the System.ComponentModel.DataAnnotations.Schema namespace
are more specific to database configuration, with attributes such as [Table], [Column],
and so on, that set the table name and column name/type, as described in section 6.11.
Other attributes are in this namespace, such as [DatabaseGenerated], which I cover
in chapter 9.

6.5	 Configuring via the Fluent API
The third approach to configuring EF Core, called the Fluent API, is a set of methods
that works on the ModelBuilder class that’s available in the OnModelCreating method
inside your application’s DbContext. The Fluent API provides the most comprehen-
sive list of configuration commands, with many configurations available only via the
Fluent API.

But before defining the Fluent API relationship commands, I want to introduce a
different way of applying the Fluent API to your application’s DbContext.

6.5.1	 A better way to structure your Fluent API commands

You can place all the Fluent API commands inside the OnModelCreating method (as
shown in figure 2.6). But as your application grows, and you need to add more Fluent
API configuration code, this can become unwieldy. The answer is to move the Fluent
API for an entity class into a separate configuration class that’s then called from the
OnModelCreating method. The benefit of this approach is that the Fluent API for an
entity class is all in one place, and not mixed in with Fluent API commands for other
entity classes.

EF Core provides a method to facilitate this in the shape of the IEntityType
Configuration<T> interface. Listing 6.2 shows your new application DbContext,
EfCoreContext, where you move the Fluent API setup of the various classes into separate
configuration classes.

156 Chapter 6  Configuring nonrelational properties

EF6   EF6.x has an EntityTypeConfiguration<T> class you can inherit to
encapsulate the Fluent API configuration for a given entity class. EF Core’s
implementation achieves the same result, but uses an IEntityTypeConfigura-
tion<T> interface that you apply to your configuration class.

Listing 6.2   Application’s DbContext for database with relationships

public class EfCoreContext : DbContext
{
 public DbSet<Book> Books { get; set; }
 public DbSet<Author> Authors { get; set; }
 public DbSet<PriceOffer> PriceOffers { get; set; }
 public DbSet<Order> Orders { get; set; }

 public EfCoreContext(
 DbContextOptions<EfCoreContext> options)
 : base(options) {}

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.ApplyConfiguration(new BookConfig());
 modelBuilder.ApplyConfiguration(new BookAuthorConfig());
 modelBuilder.ApplyConfiguration(new PriceOfferConfig());
 modelBuilder.ApplyConfiguration(new LineItemConfig());
 }
}

The following listing shows an example of a configuration class that implements the
IEntityTypeConfiguration<T> interface. In this example, the configuration class
BookConfig contains the Fluent API methods for the Book entity class.

Listing 6.3   BookConfig extension class configures Book entity class

internal class BookConfig : IEntityTypeConfiguration<Book>
{
 public void Configure
 (EntityTypeBuilder<Book> entity)
 {
 entity.Property(p => p.PublishedOn)
 .HasColumnType("date");

 entity.Property(p => p.Price)
 .HasColumnType("decimal(9,2)");

 entity.Property(x => x.ImageUrl)
 .IsUnicode(false);

 entity.HasIndex(x => x.PublishedOn);

Defines four tables in the
database: Books, Authors,
PriceOffers, and Orders. The
Review and BookAuthor tables
are found via navigational links
from the other tables.

Moves the Fluent API configuration of
various entity classes to separate

configuration classes that implement
the IEntityTypeConfiguration<T>

interface

Convention-based mapping for .NET
DateTime is SQL datetime2. This command
changes the SQL column type to date,
which holds only the date, not the time.

Sets a smaller precision and scale of (9,2)
for the price instead of the default (18,2)

The convention-based mapping for .NET
string is SQL nvarchar (16 bit Unicode).
This command changes the SQL column
type to varchar (8-bit ASCII).

Adds an index to the PublishedOn
property because you sort and filter
on this property

	 157Excluding properties and classes from the database

 //Model-level query filter

 entity
 .HasQueryFilter(p => !p.SoftDeleted);
 }
}

The examples show a typical use of the Fluent API, but please remember that the flu-
ent nature of the API allows chaining of multiple commands, as shown in this code
snippet:

modelBuilder.Entity<Book>()
 .Property(x => x.ImageUrl)
 .IsUnicode(false)
 .HasColumnName("DifferentName")
 .HasMaxLength(123)
 .IsRequired(false);

EF6   The Fluent API works the same in EF6.x, but with substantial changes in
setting up relationships (covered in the next chapter) and subtle changes in
data types, which I mention in the next section. There are also some new com-
mands, described in sections 6.13 and 6.14.

OnModelCreating is called when the application first accesses the application’s DbCon-
text. At that stage, EF Core configures itself by using all three approaches: By Con-
vention, Data Annotations, and any Fluent API you’ve added in the OnModelCreating
method.

What if Data Annotations and the Fluent API say different things?
The Data Annotations and the Fluent API modeling methods always override conven-
tion-based modeling. But what happens if a data annotation and the Fluent API both
provide a mapping of the same property and setting?

I tried setting the SQL type and length of the WebUrl property to different values via Data
Annotations and via the Fluent API. The Fluent API values were used. That isn’t a defini-
tive test, but it makes sense that the Fluent API is the final arbitrator.

Now that you’ve learned about the Data Annotations and Fluent API configuration
approaches, let’s detail the configuration of specific parts of the database model.

6.6	 Excluding properties and classes from the database
Section 6.3.2 describes how EF Core finds properties. But at times you’ll want to
exclude data that you have in your entity classes from being in the database. You might
want to have local data for a calculation used during the lifetime of the class instance,
but you don’t want it saved to the database. You can exclude a class or a property in two
ways: via Data Annotations or via the Fluent API.

Sets a model-level query filter on the Book
entity. By default, a query will exclude Book

entities when the SoftDeleted property is true.

158 Chapter 6  Configuring nonrelational properties

6.6.1	 Excluding a class or property via Data Annotations

EF Core will exclude a property, or a class, that has a [NotMapped] data attribute
applied to it. This shows the application of the [NotMapped] data attribute to both a
property and a class.

Listing 6.4   Excluding three properties, two by using [NotMapped]

public class MyEntityClass
{
 public int MyEntityClassId { get; set; }

 public string NormalProp{ get; set; }

 [NotMapped]
 public string LocalString { get; set; }

 public ExcludeClass LocalClass { get; set; }
}

[NotMapped]
public class ExcludeClass
{
 public int LocalInt { get; set; }
}

6.6.2	 Excluding a class or property via the Fluent API

In addition, you can exclude properties and classes by using the Fluent API configura-
tion command Ignore, as shown in listing 6.5.

NOTE   For simplicity, I show the Fluent API inside the OnModelCreating
method rather than in a separate configuration class.

Listing 6.5   Excluding a property and a class by using the Fluent API

public class ExcludeDbContext : DbContext
{
 public DbSet<MyEntityClass> MyEntities { get; set; }

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<MyEntityClass>()
 .Ignore(b => b.LocalString);

 modelBuilder.Ignore<ExcludeClass>();
 }
}

Included: A normal public property,
with public getter and setter

Excluded: Placing a [NotMapped]
attribute tells EF Core to not map this
property to a column in the database.

Excluded: This class won’t be
included in the database because
the class definition has a
[NotMapped] attribute on it.

Excluded: This class will be excluded
because the class definition has a
[NotMapped] attribute on it.

The Ignore method is used to exclude
the LocalString property in the entity
class, MyEntityClass, from being added
to the database.

A different Ignore method can exclude a
class such that if you have a property in
an entity class of the Ignored type, that
property isn’t added to the database.

	 159Setting database column type, size, and nullability

6.7	 Configuring model-level query filters
Section 3.5.1 used a model-level query filter to provide a soft-delete feature to the Book entity
class: instead of deleting a book, a model-level query filter allows you to “hide” soft-
deleted books. That’s a typical use of model-level query filters, but other uses exist,
such as filtering data based on the user or company ID. The configuration was shown
in chapter 3, but the following listing repeats it (in bold) in case you missed it.

Listing 6.6   Adding a model-level query filter to the DbSet<Book>Books property

public class EfCoreContext : DbContext
{
 //… Other parts removed for clarity

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {
 //… other configration parts removed for clarity

 modelBuilder.Entity<Book>()
 .HasQueryFilter(p => !p.SoftDeleted);
 }
}

6.8	 Setting database column type, size, and nullability
As just described, the convention-based modeling uses default values for the SQL type,
size/precision, and nullability, based on the .NET type. A common requirement is to
manually set one or more of these attributes, either because you’re using an existing
database or for performance or business reasons.

In the introduction to configuring (section 6.3), you worked through an example
that changed the type and size of various columns. Table 6.1 provides a full list of the
commands that are available to do this.

Table 6.1   Setting nullability and SQL type/size for a column

Setting Data annotations Fluent API

Set not null

(Default is nullable)

[Required]
public string MyProp
 { get; set; }

modelBuilder.Entity<MyClass>()
.Property(p => p.MyProp)
 .IsRequired();

Set size (string)

(Default is MAX length)

[MaxLength(123)]
public string MyProp
 { get; set; }

modelBuilder.Entity<MyClass>()
.Property(p => p.MyProp)
 .HasMaxLength(123);

Set string type varchar

(Default is nvarchar)

Not available (other than set-
ting the column data type to
varchar(nnn)—see the follow-
ing EF6 note)

modelBuilder.Entity<MyClass>()
.Property(p => p.MyProp)
 .IsUnicode(false);

Set SQL type/size

(Each type has a default
precision and size)

[Column(DataType =
"decimal(9,2)")]
public decimal Price
 { get; set; }

modelBuilder.Entity<MyClass>()
.Property(p => p.Price)
 .HasColumnType
 ("decimal(9,2)");

Adds a filter to all accesses to the
Book entities. All book queries will
exclude books where the SoftDeleted
property is true.

160 Chapter 6  Configuring nonrelational properties

EF6   EF Core has a slightly different approach to setting the SQL data type
of a column. If you provide the data type, you need to give the whole defi-
nition, both type and length/precision—for instance: [Column(DataType
= "varchar(nnn)")], where nnn is an integer number. In EF6, you can use
[Column(DataType = "varchar")] and then define the length by using [Max-
Length(nnn)], but that doesn’t work in EF Core. See https://github.com/
aspnet/EntityFramework/issues/3985 for more information.

TIP   I recommend using the IsUnicode(false) Fluent API if you wish to make
a string property containing only the single-byte ASCII format (SQL Server
varchar), because using the IsUnicode method allows you to set the string size
separately.

6.9	 The different ways of configuring the primary key
You’ve already seen the By Convention approach of setting up the primary key of an
entity. This covers the normal primary-key setting, one key where the .NET property
defines the name and type. You need to explicitly configure the primary key in two
situations:

¡	When the key name doesn’t fit the By Convention naming schema
¡	When the primary key is made up of more than one property/column, called a

composite key

A many-to-many relationship-linking table is an example of where the By Convention
approach doesn’t work. There are the two alternative approaches to defining primary keys.

NOTE   Chapter 7 deals with configuring foreign keys, because they define rela-
tionships even though they’re of a scalar type.

6.9.1	 Configuring a primary key via Data Annotations

Listing 6.7 shows the BookAuthor linking entity class with the primary composite key
being defined using Data Annotations. Because there’s more than one key, you need
to include the [Column(Order = nn)] attribute to define the order that the properties
appear in the composite primary key.

Listing 6.7   The BookAuthor entity class using Data Annotations to define the key

public class BookAuthor
{
 [Key]
 [Column(Order = 0)]
 public int BookId { get; set; }
 [Key]

[Key] attribute tells EF Core that the
property is a primary key

[Column(Order = nn)] tells EF Core the
order in which the keys should appear in
the composite key. (The numbers are
relative; you could’ve used 100 and 200.)

https://github.com/aspnet/EntityFramework/issues/3985
https://github.com/aspnet/EntityFramework/issues/3985

	 161Adding indexes to database columns

 [Column(Order = 1)]
 public int AuthorId { get; set; }
 public byte Order { get; set; }

 //-----------------------------
 //Relationships

 public Book Book { get; set; }
 public Author Author { get; set; }
}

The [Key] attribute is needed because the By Convention approach can’t handle com-
posite keys. This attribute tells EF Core that property is the primary key, or part of a
composite primary key. The [Column(Order = nn)] attribute is needed to define the
order of the keys in a composite key: in this case, it’s BookId followed by AuthorId. You
need the [Column(Order = nn)] attribute only when you have a composite primary
key.

6.9.2	 Configuring a primary key via the Fluent API

The following listing shows two ways of configuring a key via the Fluent API methods.
The first is a single primary key in the Book entity class and then the composite primary
key, consisting of two columns, in the BookAuthor linking table.

Listing 6.8   Using the Fluent API to configure primary keys on two entity classes

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Book>()
 .HasKey(x => x.BookId);

 modelBuilder.Entity<BookAuthor>()
 .HasKey(x => new {x.BookId, x.AuthorId});

 //… other configuration settings removed
}

Setting the key to BookId in the Book entity class isn’t needed because that’s the By
Convention default. The second composite key can’t be configured By Convention, so
the Fluent API’s HasKey method is used.

6.10	 Adding indexes to database columns
Relational databases have a feature called an index, which provides quicker searching
and sorting of rows based on the column, or columns, in the index. In addition, an
index may have a constraint, which ensures that each entry in the index is unique. For
instance, a primary key is given a unique index to ensure that the primary key is differ-
ent for each row in the table.

Defines a normal,
single-column primary key

Uses an anonymous object to define
two (or more) properties to form a
composite key. The order in which the
properties appear in the anonymous
object defines their order.

162 Chapter 6  Configuring nonrelational properties

You can add an index to a column only via the Fluent API, as shown in table 6.2. An
index will speed up the quick searching and sorting, and adding the unique constraint
will ensure that the column value in each row will be different.

Table 6.2   Adding an index to a column

Action Fluent API

Add index modelBuilder.Entity<MyClass>()
 . HasIndex(p => p.MyProp);

Add index, multiple columns modelBuilder.Entity<Person>()
 . HasIndex(p => new {p.First, p.Surname});

Add named index modelBuilder.Entity<MyClass>()
 . HasIndex(p => p.MyProp)
 . HasName("Index_MyProp");

Add unique index modelBuilder.Entity<MyClass>()
 . HasIndex(p => p.BookISBN)
 .IsUnique();

TIP   Don’t forget, you can chain the Fluent API commands together so you can
mix and match these methods.

6.11	 Configuring the naming on the database side
If you’re building a new database, using the default names for the various parts of
the database is fine. But if you have an existing database, or your database needs to
be accessed by an existing system you can’t change, then you most likely need to use
specific names for the schema name, the table names, and the column names of the
database.

DEFINITION   Schema refers to the organization of data inside a database—the
way the data is organized as tables, columns, constraints, and so on. In some
databases, such as SQL Server, schema is also used to give a namespace to a par-
ticular grouping of data that the database designer uses to partition the data-
base into logical groups.

6.11.1	 Configuring table names

By convention, the name of a table is set either by the name of the DbSet<T> property in
the application’s DbContext, or, if no DbSet<T> property is defined, the table uses the
class name. For example, in the application’s DbContext of our book app, you defined
a DbSet<Book> Books property, so the database table name is set to Books. Conversely,
you haven’t defined a DbSet<T> property for the Review entity class in the application’s
DbContext, so its table name used the class name, and is therefore Review.

	 163Configuring the naming on the database side

If your database has specific table names that don’t fit the By Convention naming
rules—for instance, if the table name can’t be converted to a valid .NET variable name
because it has a space in it—then you can use either Data Annotations or the Fluent API
to specifically set the table name. Table 6.3 summarizes the two approaches to setting
the table name.

Table 6.3   Two ways to explicitly configure a table name for an entity class

Configuring method Example: Setting the table name of the Book class to "XXX"

Data Annotations [Table("XXX")]
public class Book … etc.

Fluent API modelBuilder.Entity<Book>().ToTable("XXX");

6.11.2	 Configuring the schema name, and schema groupings

By convention, the schema name is set by the database provider. This is done because
some databases, such as SQLite and MySQL, don’t support schemas.

In the case of SQL Server, which does support schemas, the default schema name is
dbo. You can change the default schema name only via the Fluent API, using the follow-
ing snippet in the OnModelCreating method of your application’s DbContext:

modelBuilder.HasDefaultSchema("NewSchemaName");

Table 6.4 shows how to set the schema name for a table. You use this if your database
is split into logical groups such as sales, production, accounts, and so on, and a table
needs to be specifically assigned to a schema.

Table 6.4   Setting the schema name on a specific table

Configuring method Example: Setting the schema name "sales" on a table

Data Annotations [Table("SpecialOrder", Schema = "sales")]

class MyClass … etc.

Fluent API modelBuilder.Entity<MyClass>()

 .ToTable("SpecialOrder", schema: "sales");

6.11.3	 Configuring the database column names in a table

By convention, the column in a table has the same name as the property name. If your
database has a name that either can’t be represented as a valid .NET variable name or
doesn’t fit the software usage, you can set the column names by using Data Annota-
tions or the Fluent API. Table 6.5 shows the two approaches to doing that.

164 Chapter 6  Configuring nonrelational properties

Table 6.5   The two ways to configure a column name

Configuring method Example: Setting the column name of the BookId property to SpecialCol

Data Annotations [Column("SpecialCol")]
public int BookId { get; set; }

Fluent API modelBuilder.Entity<MyClass>()
 .Property(b => b.BookId)
 .HasColumnName("SpecialCol");

6.12	 Using specific database-provider Fluent API commands
The Fluent API commands, such as the HasColumnName method, apply to any relational
database provider. But what happens when you want a column name, or a table name,
to have a different name based on the type of database it’s in? The answer is that each
database provider has an extension method that will return true if the database is of
that specific type, which you can use in your Fluent API commands. The SQL Server
database provider, for instance, has a method called IsSqlServer, the SQLite database
provider has a method called IsSqlite, and so on.

The following listing will set the name of the column on the property NormalColumn
to SqliteDatabaseCol if the database is an SQLite one; otherwise, the column will be
set to GenericDatabaseCol.

Listing 6.9   Using database-provider commands to set a column name

protected override void OnModelCreating
 (ModelBuilder modelBuilder)
{
 modelBuilder.Entity<MyEntityClass>()
 .Property(p => p.NormalProp)
 .HasColumnName(
 Database.IsSqlite()
 ? "SqliteDatabaseCol"
 : "GenericDatabaseCol");
 //… other configuration left out

You can use Database.Is<DatabaseName> freely in your Fluent API to affect how the
database is configured. For instance, SQLite doesn’t support computed columns (see
chapter 8 for more on computed columns), so you could “turn off” the computed col-
umn configuration with a simple if (!Database.IsSqlite()) around the Fluent API
that will configure it.

You’re setting a column name, but the
same would work for ToTable.

Each database provider has an extension
called Is<DatabaseName> that returns
true if the database is of that type.

Using the tests, you pick a specific name
for the column if it’s an SQLite database;
otherwise, a generic name for any other
database type.

	 165Recommendations for using EF Core’s configuration

One of the extension methods you’ll find is ForSqlServerIsMemoryOptimized,
which enables an SQL Server 2016 feature that holds an entire table and all its content
in memory to provide better performance. This is an example of a feature unique to
one database server being made available to EF Core via a database provider’s specific
extension method.

6.13	 Recommendations for using EF Core’s configuration
With so many ways to configure EF Core, some of which duplicate each other, it isn’t
always obvious which of the three approaches should be used for each part of the con-
figuration. Here are suggestions on which of the approaches to use for each part of the
configuration of EF Core:

1	 Start by using the By Convention approach wherever possible, because it’s quick
and easy.

2	 Use the validation attributes, for instance MaxLength and Required and so on,
from the Data Annotations approach, as they’re useful for validation.

3	 For everything else, use the Fluent API approach, because it has the most com-
prehensive set of commands.

The following is a more detailed explanation of my recommendations for configuring
EF Core.

6.13.1	 Use By Convention configuration first—its quick and easy

EF Core does a respectable job of configuring most standard properties, so always start
with that. In part 1, you built the whole of this initial database by using the By Conven-
tion approach, apart from the composite key in the BookAuthor many-to-many linking
entity class.

The By Convention approach is quick and easy. You’ll see in the next chapter that
most relationships can be set up purely by using the By Convention naming rules. That
can save you a lot of time.

6.13.2	 Use validation Data Annotations wherever possible

Although you can do things such as limit the size of a string property with either Data
Annotations or the Fluent API, I recommend using Data Annotations for the following
reasons:

¡	Frontend validation can use them. Although EF Core doesn’t validate the entity class
before saving it to the database, other parts of the system may use Data Annota-
tions for validation. For instance, ASP.NET Core uses Data Annotations to vali-
date input, so if you input directly into an entity class, the validation attributes
will be useful. Or if you use separate ASP.NET ViewModel or DTO classes, you
can cut and paste the properties with their validation attributes.

¡	You may want to add validation into EF Core’s SaveChanges. Using data validation to
move checks out of your business logic can make your business logic simpler.

166 Chapter 6  Configuring nonrelational properties

Chapter 4 showed you how to add validation of entity classes when SaveChanges
is called.

¡	Data annotations make great comments. Attributes, what Data Annotations are, are
compile-time constants. They’re easy to see and easy to understand.

6.13.3	 Use the Fluent API for anything else

Typically, I use the Fluent API for setting up the database column mapping (column
name, column data type, and so on) when it differs from the conventional values. You
could use the schema Data Annotations to do that, but I try to hide things like this
inside the OnModelCreating method because they’re a database implementation issue
rather than a software structure issue. That’s more a preference than a rule, so make
your own decision on that.

6.14	 Shadow properties—hide column data inside EF Core

EF6   EF6.x had the concept of shadow properties, but they were only used
internally to handle missing foreign keys. In EF Core, shadow properties
become a proper feature that you can use yourself.

Shadow properties are a way to access database columns, but without having them appear
in the entity class as a property. Shadow properties allow you to “hide” data that you
consider not part of the normal use of the entity class. This is all about good software
practice, where you let upper layers access only the data they need, and you hide any-
thing they don’t need to know about. Let me give you two examples of where you
might use shadow properties.

First, a common need is to track by whom and when data was changed. Maybe it’s
for auditing purposes, or it’s to understand customer behavior. The tracking data
you receive is separate from the primary use of the class, so you may decide to imple-
ment that data by using shadow properties, which can then be picked up outside the
entity class.

Second, when setting up relationships in which you don’t define the foreign-key
properties in your entity class, EF Core must add them to make the relationship work,
and it will do this via shadow properties. The next chapter covers this topic.

6.14.1	 Configuring shadow properties

There’s a By Convention approach to configuring shadow properties, but because this
relates only to relationships, I explain that in the next chapter.

The other method is via the Fluent API. You can introduce a new property by using
the Fluent API method Property<T>. Because you’re setting up a shadow property,
there won’t be a property of that name in the entity class, so you need to use the Fluent
API Property<T> method, which takes a .NET Type and the name of the shadow prop-
erty. The following listing shows the setup of a shadow property called UpdatedOn that’s
of type DateTime.

	 167Shadow properties—hide column data inside EF Core

Listing 6.10   Creating the UpdatedOn shadow property by using the Fluent API

public class Chapter06DbContext : DbContext
{
 …

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<MyEntityClass>()
 .Property<DateTime>("UpdatedOn");
 …
 }
}

The name of the table column it’s mapped to by convention is the same as the name of
the shadow property. You can override this by adding the HasColumnName method on
the end of the property method.

WARNING   If a property of that name already exists in the entity class, the con-
figuration will use that property instead of creating a shadow property.

6.14.2	 Accessing shadow properties

Because the shadow properties don’t map to a class property, you need to access them
directly via EF Core. For this, you have to use the EF Core commands Entity(myEn-
tity).Property("MyPropertyName").CurrentValue, which is a read/write property,
as shown here.

Listing 6.11   Using Entity(inst).Property(name) to set the shadow property

var entity = new MyEntityClass
 { InDatabaseProp = "Hello"};
context.Add(entity);
context.Entry(entity)
 .Property("UpdatedOn").CurrentValue
 = DateTime.Now;
context.SaveChanges();

If you want to read a shadow property in an entity that has been loaded, use the
Entity(entityInstance).Property("propertyName").CurrentValue command. But
you must read the entity as a tracked entity: you should read the entity without the AsNo-
Tracking method being used in the query. This is because the Entity(<entityInstance>)
.Property method uses the tracked entity data inside EF Core to hold the value, as it’s
not held in the entity class instance.

Uses the Property<T> method to
define the shadow property type

Creates an
entity class . . .

 . . . and adds it to the context.
That means it’s now tracked.

Gets the EntityEntry from the
tracked entity data

Uses the Property method to get the
shadow property with read/write access

Sets that property to
the value you wantCalls SaveChanges to save the

MyEntityClass instance, with its normal and
shadow property values, to the database

168 Chapter 6  Configuring nonrelational properties

In LINQ queries, you use another way to access a shadow property by using the
EF.Property command. For instance, you could sort by the UpdatedOn shadow prop-
erty by using the following query snippet, with the EF.Property method in bold:

context.MyEntities
 .OrderBy(b => EF.Property<DateTime>(b, "UpdatedOn"))
 .ToList();

6.15	 Backing fields—controlling access to data in an
entity class

EF6   Backing fields are new in EF Core. They provide a level of control over
access to data that EF6.x users have been after for some time.

As you saw earlier, columns in a database table are normally mapped to an entity class
property with normal getters and setters—public int MyProp { get ; set; }. But
you can also map a private field to your database; this feature is called a backing field,
and it gives you more control over the way database data is read or set by the software.

For instance, if you want to save data to the database in JSON format (json is a string
that holds data in a structured format), but you want higher-level application code to
access only the decoded JSON data, using a backing field with two methods to set/get
the decoded data is an appropriate solution.

As you’ll see, backing fields provide nice ways to control and format your data. This
section introduces backing fields, but we’ll cover other uses in section 8.1 (hiding col-
lection relationships), section 10.4 (DDD pattern), and section 13.4 (worked exam-
ple of performance tuning). But before you learn how to configure backing fields, it’s
worth seeing a few ways you can use them for scalar (nonrelational) properties. Here
are examples:

1	 Using a simple backing field to show the basics of how a backing field works.

2	 Using a backing field to provide a read-only view of a database column.

3	 Using a backing field to hide sensitive data from other layers of the software.

4	 Using a backing field to allow data to be transformed on read or write.

6.15.1	 Creating a simple backing field accessed by a
read/write property

Let’s start with the simplest form of backing fields, in which a property getter/setter
accesses the field. By convention, the column that the backing field is mapped to still
uses the property name, but the data is placed in the private field. The following code
snippet shows you what this looks like:

public class MyClass
{
 private string _myProperty;
 public string MyProperty

	 169Backing fields—controlling access to data in an entity class

 {
 get { return _myProperty; }
 set { _myProperty = value; }
 }
}

This form of backing field doesn’t bring anything particularly different from using a
normal property, but this example shows the concept of a property linked to a private
field.

Creating a read-only column
Creating a read-only column is the most obvious use, although it can also be imple-
mented via a private setting property (see section 6.3.2). If you have a column in the
database that you need to read but you don’t want the software to write, a backing field
is a great solution. In this case, you can create a private field and use a public prop-
erty, with a getter only, to retrieve the value. The following code snippet gives you an
example:

public class MyClass
{
 private string _readOnlyCol;
 public string ReadOnlyCol => _readOnlyCol;
}

Something must set the column property, but as you’ll see later, that can be done via
other EF Core features, such as setting a default value in the database column (covered
in chapter 8) or through some sort of internal database method.

To hide data outside EF Core

Say you want to hide data in a private field and not allow a developer to access it out-
side EF Core. For this example, you’ve deemed for security reasons that a person’s date
of birth can be set, but only their age can be read from the entity class. The following
listing shows how to do this in the Person class by using a private _dateOfBirth field
and then providing a method to set it, and a property to calculate the person’s age.

Listing 6.12   Using a backing field to hide sensitive data from normal access

public class Person
{
 private DateTime _dateOfBirth;

 public void SetDateOfBirth(DateTime dateOfBirth)
 {
 _dateOfBirth = dateOfBirth;
 }

 public int AgeYears =>
 Years(_dateOfBirth, DateTime.Today);

 //Thanks to dana on stackoverflow
 //see http://stackoverflow.com/a/4127477/1434764

The private backing field, which can’t be
directly accessed via normal .NET software

Allows the backing
field to be set

You can access the person’s age,
but not their exact date of birth.

170 Chapter 6  Configuring nonrelational properties

 private static int Years(DateTime start, DateTime end)
 {
 return (end.Year - start.Year - 1) +
 (((end.Month > start.Month) ||
 ((end.Month == start.Month)
 && (end.Day >= start.Day)))
 ? 1 : 0);
 }}

NOTE   In the preceding example, you’d need to use the Fluent API to create a
backing-field-only variable, covered in section 6.15.2.

From the class point of view, the _dateOfBirth field is hidden, but you can still access
the table column via various EF Core commands in the same way that you accessed the
shadow properties—by using the EF.Property method.

The backing field, _dateOfBirth, isn’t totally secure from the developer, but that’s
not the aim. The idea is to remove the data of birth data from the normal properties so
that it doesn’t unintentionally get displayed in any user-visible view.

Where you need to transform the data loaded

At times you need to change/reformat data coming from or going to the database. For
me, a common problem is that when you store a DateTime in a database, it loses the
DateTime’s Kind property, which defines whether the time is based on local time or
UTC (Coordinated Universal Time). This matters because some libraries use the Kind
property in their calculations/formatting, Newtonsoft.Json being one of them. Back-
ing fields provide a way around this problem, as the following code shows:

public class Person
{
 private DateTime _updatedOn ;
 public DateTime UpdatedOn
 {
 get
 {
 return DateTime.SpecifyKind(
 _updatedOn, DateTimeKind.Utc);
 }
 set { _updatedOn = value; }
 }

The type of the backing field and the property must be the same, which limits the
transformations that can be done on the data.

WARNING:   Running a unit test on the previous code shows that if you use the
UpdatedOn property in a LINQ query, EF Core will use the original column, not
the transformed column. That’s helpful in this case, as the performance won’t
be hampered by applying a transform, but in other cases the query might not
yield what you expected. This type of use of backing fields should be used with
caution.

	 171Backing fields—controlling access to data in an entity class

6.15.2	 Configuring backing fields

Having seen backing fields in action, you can configure them By Convention or by
using the Fluent API, but not via Data Annotations. While the By Convention approach
is easy to use, it relies on having a valid property with a matching name, which isn’t the
norm, so you’ll rarely find the By Convention approach useful (other than in EF Core’s
2.1.0 new lazy loading of relationships feature). Therefore, you’ll find that most of your
backing fields will be configured by using the Fluent API. I describe both approaches
for completeness.

Configuring backing fields by convention

If your backing field is linked to a valid property (see section 6.3.2), the field can be
configured by convention. The rules for By Convention configuration are that the pri-
vate field must have one of the following names that match a property in the same
class:

¡	_<property name> (for example, _MyProperty)
¡	_<camel-cased property name > (for example, _myProperty)
¡	m_<property name> (for example, m_MyProperty)
¡	m_<camel-cased property name> (for example, m_myProperty)

DEFINITION   Camel case is a convention in which a variable name starts with a
lowercase letter but uses an uppercase letter to start each subsequent word in
the name—for instance, thisIsCamelCase.

Configuring backing fields via the Fluent API
You have several ways of configuring backing fields via the Fluent API. We’ll start with
the simplest and work up to the more complex. Each example shows you the OnMod-
elCreating method inside the application’s DbContext, with only the field part being
configured.

¡	Setting the name of the backing field —If your backing field name doesn’t follow EF
Core’s conventions, you need to specify the field name via the Fluent API. Here’s
an example:

protected override void OnModelCreating
 (ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Person>()
 .Property(b => b.UpdatedOn)
 .HasField("_differentName");
 …
}

172 Chapter 6  Configuring nonrelational properties

¡	Supplying just the field name —You can provide just the field name. In this case, if
there’s a property with the correct name, by convention EF Core will refer to the
property, and the property name will be used for the database column. Here’s an
example:

protected override void OnModelCreating
 (ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Person>()
 .Property("_dateOfBirth");
 …
}

If no property getter or setter is found, the field will still be mapped to the col-
umn, using its name, which in this example is _dateOfBirth, but that’s most
likely not the name you want for the column. You can set the column name with
the HasColumnName Fluent API method, as shown in section 6.11.3. But the down-
side is that you’d still need to refer to the data in a query by its field name (in this
case, _dateOfBirth), which isn’t that friendly or obvious.

EF Core provides a better method that overcomes this for backing fields that
aren’t attached to a property: you can create a notional property (a named prop-
erty), but it refers to the field instead of a property. The benefit is that you can use
the actual name of the table column (in this case, DateOfBirth), and if you need
to refer to it in a query, you can use the same name (in this case, DateOfBirth).
The following listing shows how to set this up. Note that you need to define the
type because there’s no property called DateOfBirth, so the configuration pro-
cess can’t refer to that property to get the type.

Listing 6.13   Creating a notional property DateOfBirth so it’s easier to access

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Person>()
 .Property<DateTime>("DateOfBirth")
 .HasField("_dateOfBirth");
 …
}

¡	Controlling how the data is loaded —By default, EF will place data in the field when
constructing instances of your entity during a query. But if the entity instance
already exists and EF Core wants to refresh the value (say, when using a com-
mand such as Reload, covered in chapter 9), it uses the property setter if it exists,
or the field if the property doesn’t exist or has no setter.

Creates a notional property called
DateOfBirth, by which you can access
this property via EF Core. This also sets
the column name in the database.

Links it to a backing field _dateOfBirth

	 173Summary

The UsePropertyAccessMode Fluent API method allows you to change which
route EF Core will use to set new data into the backing field/property. In this
next example, you’ve forced all EF Core accesses to always use the field:

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Person>()
 .Property(b => b.UpdatedOn)
 .HasField("_updatedOn")
 .UsePropertyAccessMode(PropertyAccessMode.Field);
 …
}

Setting the access mode to Field tells EF Core to use the field only to get/set data
for the database. This might be useful if you did some form of transformation in
your getters or setters.

Other options are PropertyAccessMode.Property, which always goes through
the property and will throw an exception if it can’t read or write the property, and
PropertyAccessMode.FieldDuringConstruction, which is the default setting
described at the beginning of this subsection.

Summary
¡	The first time you create the application’s DbContext, EF Core configures itself

by using a combination of three approaches: By Convention, Data Annotations,
and the Fluent API.

¡	Use the By Convention approach to set up as much as you can, because it’s simple
and quicker to code.

¡	When the By Convention approach doesn’t fit your needs, data attributes and/or
EF Core’s Fluent API provide extra commands to configure both the way EF Core
maps the entity classes to the database and the way EF Core will handle that data.

¡	Two EF Core features, shadow properties and backing fields, allow you to hide data
from higher levels of your code and/or control access to data in an entity class.

For readers who are familiar with EF6:

¡	The basic process of configuring EF Core is, on the surface, similar to the way
EF6 works. But a significant number of changed or new commands exist.

¡	EF Core can use configuration classes to hold the Fluent API commands for a
given entity class. This provides a similar feature to the EF6.x EntityType
Configuration<T> class, but EF Core uses an IEntityTypeConfiguration<T>
interface instead.

¡	The main configuration commands related to scalar properties are generally the
same, but you should watch out for a few small changes.

¡	EF Core has introduced many extra features not available in EF6. Two new fea-
tures covered in this chapter are shadow properties and backing fields, both of
which are welcome additions to EF.

174

7Configuring relationships

This chapter covers
¡	Configuring relationships using By Convention

¡	Configuring relationships using Data
Annotations

¡	Configuring relationships using Fluent API

¡	Other ways to map entities to database tables

Chapter 6 described how to configure scalar, or nonrelational, properties. This
chapter covers how to configure database relationships. I assume you’ve read at
least the first part of chapter 6, because configuring relationships uses the same
three approaches, By Convention and Data Annotations and the Fluent API, to map
the database relationships.

This chapter covers how EF Core finds and configures relationships between
entity classes, with pointers on how to configure each type of relationship—one-to-
one, one-to-many, and many-to-many—and examples of each. EF Core’s By Con-
vention relationship rules can quickly configure many relationships, but you’ll also
learn about all the Data Annotations and Fluent API configuration options, which
allow you to precisely define the way you want a relationship to behave. You’ll also

	 175Defining some relationship terms

7
look at features that allow you to enhance your relationships with extra keys and alter-
native table-mapping approaches.

7.1	 Defining some relationship terms
This chapter refers to the various parts of a relationship, and you need clear terms so
you know exactly what part of the relationship we’re talking about. Figure 7.1 shows
those terms, using the Book and Review entity classes from our book app. I follow this
figure with a more detailed description so the terms will make sense to you when I use
them in this chapter.

Principal key
(primary key)

Principal key
(primary key)

Principal key
(alternate key)

Navigation property
(collection)

Foreign key Required relationship
(foreign key isn’t nullable)

Book
Class

Principal entity Dependent entity

Properties

 BookId : int
 Title : string
 ... properties removed
 UniqueISBN : string
 Reviews : ICollection<Review>

Review
Class

Properties

 ReviewId : int
 ... properties removed
 BookId : int

Figure 7.1   The Book and Review entity classes show six of the terms used in this chapter to discuss
relationships: principal entity, dependent entity, principal key, navigational property, foreign key, and
required relationship. Not shown is the optional relationship, which is described in section 2.4.4.

To ensure that these terms are clear, here are detailed descriptions:

¡	Principal key—A new term, taken from EF Core’s documentation, that refers to
either the primary key, defined in part 1, or the new alternate key, which has a
unique value per row and isn’t the primary key (see section 7.7.3).

NOTE   Figure 7.1 provides an example of an alternate key called UniqueISBN,
which represents a unique value per entity. (ISBN stands for International
Standard Book Number, which is unique for every book.)

¡	Principal entity —The entity that contains the principal-key property(s), which the
dependent relationship refers to via a foreign key(s) (covered in chapter 3).

¡	Dependent entity —The entity that contains the foreign-key property(s) that refers
to the principal entity (covered in chapter 3).

¡	Navigational property —A new term taken from EF Core’s documentation that
refers to the property containing a single entity class, or collection of entity
classes, which EF Core uses to link entity classes.

¡	Foreign key—Defined in section 2.1.3, this holds the principal-key value(s) of the
database row it’s linked to (or could be null).

176 Chapter 7  Configuring relationships

¡	Required relationship —A relationship in which the foreign key is non-nullable; the
principal entity must exist.

¡	Optional relationship —A relationship in which the foreign key is nullable; the
principal entity can be missing.

NOTE   A principal key and a foreign key can consist of more than one prop-
erty/column. These are called composite keys. You’ve already seen one in sec-
tion 3.4.4, as the BookAuthor many-to-many linking entity class has a composite
primary key consisting of the BookId and the AuthorId.

You’ll see in section 7.4 that EF Core can find and configure most relationships by con-
vention. In some cases, EF Core needs help, but generally, EF Core can find and con-
figure your navigational properties for you if you use the By Convention naming rules.

7.2	 What navigational properties do you need?
Before I describe how to configure relationship types, I want to cover the software
design decisions around how you model a relationship. This is about selecting the best
arrangement of the navigational properties between the entity classes—what do you
want to expose at the software level, and what do you want to hide?

In our book app, the Book entity class has many Review entity classes, and each
Review class is linked, via a foreign key, to one Book. You therefore could have a nav-
igational property of type ICollection<Review> in the Book class, and a navigational
property of type Book in the Review class. In that case, you’d have a fully defined relation-
ship: a relationship with navigational properties at both ends.

But do you need a fully defined relationship? From the software design point of
view, there are two questions about the Book/Review navigational relationships. The
answers to these questions will define which of the navigational relationships you need
to include:

¡	Does the Book entity class need to know about the Review entity classes? I say yes,
because we want to calculate the average review score.

¡	Does the Review entity class need to know about the Book entity class? I say no,
because in this example application we don’t do anything with that relationship.

Our solution is therefore to have only the ICollection<Review> navigational property
in the Book class, which is what figure 7.1 portrays.

7.3	 Configuring relationships
In the same way as in chapter 6, which covered configuring nonrelational properties,
EF Core has three ways to configure relationships. Here are the three approaches for
configuring properties, but focused on relationships:

¡	By Convention —EF Core finds and configures relationships by looking for refer-
ences to classes that have a primary key in them.

	 177Configuring relationships By Convention

¡	Data Annotations —These can be used to mark foreign keys and relationship
references.

¡	Fluent API —This provides the richest set of commands to fully configure any
relationship.

The next three sections detail each of these in turn. As you’ll see, the By Convention
approach can autoconfigure many relationships for you, if you follow its naming stan-
dards. At the other end of the scale, the Fluent API allows you to manually define every
part of a relationship, which can be useful if you have a relationship that falls outside
the By Convention approach.

7.4	 Configuring relationships By Convention
The By Convention approach is a real time-saver when it comes to configuring rela-
tionships. In EF6.x, I used to laboriously define my relationships because I hadn’t fully
understood the power of the By Convention approach when it comes to relationships.
Now that I understand the conventions, I let EF Core set up most of my relationships,
other than the few cases where By Convention doesn’t work (section 7.4.6 lists those
exceptions).

The rules are straightforward, but the ways the property name, type, and nullability
all work together to define a relationship takes a bit of time to absorb. Hopefully, read-
ing this section will save you time when you’re developing your next application that
uses EF Core.

7.4.1	 What makes a class an entity class?

Chapter 2 defined the term entity class as a normal .NET class that has been mapped by
EF Core to the database. Here I want to define how EF Core finds and identifies a class
as an entity class by using the By Convention approach.

Figure 6.1 showed the three ways that EF Core configures itself. The following is a
recap of that process, but now focused on finding the relationships and navigational
properties:

1	 EF Core scans the application’s DbContext, looking for any public DbSet<T>
properties. It assumes the classes, T, in the DbSet<T> properties are entity classes.

2	 EF Core also looks at every public property in the classes found in step 1, and
looks at properties that could be navigational properties. These are all classes
that aren’t defined as being scalar properties by the current database provider
(string is a class, but it’s defined as a scalar property). These classes may appear
as a single link (for instance, public PriceOffer Promotion (get; set; })
or a type that implements the IEnumerable<T> interface (for instance, public
ICollection<Review> Reviews { get; set; }).

178 Chapter 7  Configuring relationships

NOTE   Backing fields and the Fluent API, covered later in this chapter, can also
add entity classes. Section 6.6 shows how you can exclude a class from EF Core’s
mapping.

3	 EF Core then checks that each of these entity classes has a primary key (chapter 6
shows how a primary key is defined). If the class doesn’t have a primary key, and
the class isn’t excluded, then EF Core will throw an exception.

7.4.2	 An example of an entity class with navigational properties

Listing 7.1 shows the entity class Book, which is defined in the application’s DbContext.
In this case, you have a public property of type DbSet<Book>, which passed the “must
have a valid primary key” test in that it has a public property called BookId.

What you’re interested in is how EF Core’s By Convention configuration handles the
three navigational properties at the bottom of the class. As you’ll see in this section, EF
Core can work out which sort of relationship it is by the type of the navigational prop-
erty and the foreign key in the class that the navigational property refers to.

Listing 7.1   The Book entity class, with the relationships at the bottom

public class Book
{
 public int BookId { get; set; }
 //other scalar properties removed as not relevant…

 public PriceOffer Promotion { get; set; }

 public ICollection<BookAuthor>
 AuthorsLink { get; set; }

 public ICollection<Review> Reviews { get; set; }
}

If two navigational properties exist between the two entity classes, the relationship is
known as fully defined, and EF Core can work out By Convention whether it’s a one-to-
one or a one-to-many relationship. If only one navigational property exists, EF Core
can’t be sure, and assumes a one-to-many relationship.

Certain one-to-one relationships may need configuration via the Fluent API if you
have only one navigational property, or you want to change the default By Convention
setting—for example, when deleting an entity class with a relationship.

7.4.3	 How EF Core finds foreign keys By Convention

A foreign key must match the principal key (defined in section 7.1) in type and in name,
but to handle a few scenarios, the foreign-key name matching has three options, shown
in figure 7.2. The figure shows an example of all three options for a foreign-key name

Link to an optional
PriceOffer: one-to-zero-
or-one relationship

Link to one side of the many-to-many
relationship of authors

Link to any reviews for
this book: one-to-many
relationship

	 179Configuring relationships By Convention

using the entity class Review that reference the primary key, BookId, in the entity
class Book.

Review
Class

Properties

 ...
 BookId : int

Option 1 works for
most relationships.
Try this first.

Option 3 is useful for:
• Two or more relationships
 to the same class
• Hierarchical relationships
 with a reference back to
 the class itself

Option 2 is useful if the foreign
key references a short primary
key name, Id.

Review
Class

Properties

 ...
 BookBookId : int

Book
Class

Properties

 BookId : int

Review
Class

Properties

 ...
 Link : Book
 LinkBookId : int

1. <PrincipalKeyName> 2.<Class>
 <PrincipalKeyName>

3.<NavigationPropertyName>
 <PrincipalKeyName>

Figure 7.2   Three options for a foreign key referring to the Book entity class’s primary key. These allow
you to use a unique name for your foreign key, from which EF Core can work out which primary key this
relationship refers to.

Option 1 is used the most; I showed this in figure 7.1. Option 2 is for developers who
use the short, By Convention primary-key name, Id, as it makes the foreign key unique
to the class it’s linking to.

Option 3 helps with specific cases in which you’d get duplicate named properties if
you used option 1. The following listing shows an example of using option 3 to handle a
hierarchical relationship.

Listing 7.2   A hierarchical relationship with an option 3 foreign key

public class Employee
{
 public int EmployeeId { get; set; }

 public string Name { get; set; }

 //------------------------------
 //Relationships

 public int? ManagerEmployeeId { get; set; }
 public Employee Manager { get; set; }
}
/**

The entity class called Employee has a navigational property called Manager that links
to the employee’s manager, who is an employee as well. You can’t use a foreign key of
EmployerId (option 1) because that’s already used for the primary key. You therefore

Foreign key uses the
<navigationalPropertyName>
<PrimaryKeyName> pattern.

180 Chapter 7  Configuring relationships

use option 3, and call the foreign key ManagerEmployeeId by using the navigational
property name at the start.

7.4.4	 Nullability of foreign keys—required or optional relationships

The nullability of the foreign key defines whether the relationship is required (non-nul-
lable foreign key) or optional (nullable foreign key). A required relationship ensures
that relationships exist by ensuring that the foreign key is linked to a valid principal
key. Section 7.6.1 describes an Attendee entity that has a required relationship to a
Ticket entity class.

An optional relationship allows there to be no link between the principal entity and
the dependent entity, by having the foreign-key value(s) set to null. The Manager navi-
gational property in the Employee entity class, shown in listing 7.2, is an example of an
optional relationship, as someone at the top of the business hierarchy won’t have a boss.

The required or optional status of the relationship also affects what happens when
the principal entity is deleted. The default setting of the OnDelete action for each rela-
tionship type is as follows:

¡	For a required relationship, EF Core sets the OnDelete action to Cascade. If the
principal entity is deleted, the dependent entity will be deleted too.

¡	For an optional relationship, EF Core sets the OnDelete action to ClientSetNull.
If the dependent entity is being tracked, the foreign key will be set to null when
the principal entity is deleted. But if the dependent entity isn’t being tracked, the
database settings take over, and the entity is set to Restrict, so the delete will fail
in the database, and an exception will be thrown.

NOTE   The ClientSetNull delete behavior is rather unusual, and section 7.7.1
explains why. That section also describes how to configure the delete behavior
of a relationship.

7.4.5	 Foreign keys—what happens if you leave them out?

If EF Core finds a relationship via a navigational property, or through a relationship
you configured via the Fluent API, it needs a foreign key to set up the relationship in
the relational database. Including foreign keys in your entity classes is good practice.
This gives you better control over the nullability of the foreign key, and access to for-
eign keys can be useful when handling relationships in a disconnected update (see
section 3.3.1).

But if you do leave out a foreign key (on purpose or by accident), EF Core configura-
tion will add a foreign key as a shadow property. Chapter 6 introduced shadow proper-
ties, hidden properties that can be accessed only via specific EF Core commands.

Figure 7.3 shows the By Convention naming of shadow foreign-key properties if
added by EF Core. It’s useful to know the default names, as you can access the shadow
foreign-key properties by using the EF.Property<T>(string) method if you need to
(see section 6.11.2 for more details on accessing shadow properties).

	 181Configuring relationships By Convention

Ticket
Class

Properties
 TicketId : int

The shadow FK
takes the name of
the dependent’s PK.

Because the inverse nav
prop name isn’t contained
in the principal’s PK name,
the shadow FK name is
<inverse-nav-prop-name>
<dependent-Pk-name>.

Because the inverse nav
prop name is contained
in the principal’s PK
name, the shadow FK
takes the name of the
dependent’s PK.

Ticket
Class

Properties
 TicketId : int
 Attend : Attendee

Match No match

Ticket
Class

1. No inverse
 navigational property

2. Inverse navigational
 property, same as

3. Inverse navigational
 property, different

Properties
 TicketId : int
 XXX : Attendee

Attendee
Class

Properties
 AttendeeId : int
 Ticket : Ticket
Shadow FK
 TicketId : int

Attendee
Class

Properties
 AttendeeId : int
 Ticket : Ticket
Shadow FK
 TicketId : int

Attendee
Class

Properties
 AttendeeId : int
 Ticket : Ticket
Shadow FK
 XXXTicketId : int

Figure 7.3   If you don’t provide a foreign key and EF Core deems that one is needed, EF Core will create
a shadow foreign key and use the preceding rules to decide what name to give it. If you want to access
the shadow foreign key yourself, you can find which rule applies and then use it in an EF.Property<T>
method.

The important point to note is that the shadow foreign-key property will be nullable,
which has the effect described in section 7.4.4 on nullability of foreign keys. If this isn’t
what you want, you can alter the shadow property’s nullability by using the Fluent API
IsRequired method, as described in section 7.7.2.

EF6   EF6.x uses a similar approach of adding foreign keys if you left them out
of your entity classes, but in EF6.x you can’t configure the nullability or access
the content. EF Core’s shadow properties make the approach of leaving out
foreign keys more controllable.

7.4.6	 When does By Convention configuration not work?

If you’re going to use the By Convention configuration approach, you need to know
when it’s not going to work, so you can use other means to configure your relationship.
Here’s my list of scenarios that won’t work, with the most common listed first:

¡	You have composite foreign keys (see section 7.6 or section 7.5.1).
¡	You want to create a one-to-one relationship without navigational links going

both ways (see section 7.6.1).
¡	You want to override the default delete behavior setting (see section 7.7.1).

182 Chapter 7  Configuring relationships

¡	You have two navigational properties going to the same class (see section 7.5.2).
¡	You want to define a specific database constraint (see section 7.7.4).

7.5	 Configuring relationships by using Data Annotations
Only two Data Annotations relate to relationships, as most of the navigational con-
figuration is done via the Fluent API. They’re the ForeignKey and InverseProperty
annotations.

7.5.1	 The ForeignKey Data Annotation

The ForeignKey Data Annotation allows you to define the foreign key for a naviga-
tional property in the class. Taking the hierarchical example of the Employee class,
you can use this to define the foreign key for the Manager navigational property. The
following listing shows an updated Employee entity class with a new, shorter foreign-key
name for the Manager navigational property that doesn’t fit the By Convention naming.

Listing 7.3   Using the ForeignKey data annotation to set the foreign-key name

public class Employee
{
 public int EmployeeId { get; set; }

 public string Name { get; set; }

 //------------------------------
 //Relationships

 public int? ManagerId { get; set; }
 [ForeignKey(nameof(ManagerId))]
 public Employee Manager { get; set; }
}

NOTE   You’ve applied the ForeignKey data annotation to the Manager nav-
igational property, giving the name of the foreign key, ManagerId. But the
ForeignKey data annotation also works the other way around. You could’ve
applied the ForeignKey data annotation to the foreign-key property,
ManagerId, giving the name of navigational property, Manager—for instance,
[ForeignKey(nameof(Manager))].

The ForeignKey data annotation takes one parameter, which is a string. This should
hold the name of the foreign-key property. If the foreign key is a composite key (it has
more than one property), these should be comma delimited—for instance, [Foreign-
Key("Property1, Property2")].

TIP   I suggest you use the nameof keyword to provide the property name string.
That’s safer, because if you change the name of the foreign-key property,
nameof will either be updated at the same time, or throw a compile error if you
forgot to change all the references.

Defines which property is the
foreign key for the Manager
navigational property

	 183Configuring relationships by using Data Annotations

7.5.2	 The InverseProperty Data Annotation

The InverseProperty Data Annotation is a rather specialized Data Annotation for use
when you have two navigational properties going to the same class. At that point, EF
Core can’t work out which foreign keys relate to which navigational property. This is
best shown by code, and the following listing gives you an example of the Person entity
class having two lists: one for books owned by the librarian and one for Books out on
loan to a specific person.

Listing 7.4   LibraryBook entity class with two relationships to Person class

public class LibraryBook
{
 public int LibraryBookId { get; set; }

 public string Title { get; set; }

 //-----------------------------------
 //Relationships

 public int LibrarianPersonId { get; set; }
 public Person Librarian { get; set; }

 public int? OnLoanToPersonId { get; set; }
 public Person OnLoanTo { get; set; }
}

The Librarian and the borrower of the book (OnLoanTo navigational property) are
both represented by the Person entity class. The Librarian navigational property
and the OnLoanTo navigational property both link to the same class, and EF Core can’t
set up the navigational linking without help. The InverseProperty Data Annotation
shown in the following listing provides the information to EF Core when it’s configur-
ing the navigational links.

Listing 7.5   The Person entity class, which uses the InverseProperty annotation

public class Person
{
 public int PersonId { get; set; }

 public string Name { get; set; }

 //------------------------------
 //relationships

 [InverseProperty("Librarian")]
 public ICollection<LibraryBook>
 LibrarianBooks { get; set; }

 [InverseProperty("OnLoanTo")]
 public ICollection<LibraryBook>
 BooksBorrowedByMe { get; set; }
}

Links LibrarianBooks to the
Librarian navigational property in
the LibraryBook class

Links the BooksBorrowedByMe list to the
OnLoanTo navigational property in the
LibraryBook class

184 Chapter 7  Configuring relationships

This is one of those configuration options that you rarely use, but if you have this situa-
tion, you must use this, or define the relationship using the Fluent API. Otherwise, EF
Core will throw an exception when it starts, as it can’t work out how to configure the
relationships.

7.6	 Fluent API relationship configuration commands
As I said in section 7.4, you can configure most of your relationships by using EF Core’s
By Convention approach. But if you want to configure a relationship, the Fluent API
has a well-designed set of commands that cover all the possible combinations of rela-
tionships. It also has extra commands to allow you to define other database constraints.
The format for defining a relationship with the Fluent API is shown in figure 7.4. All
Fluent API relationship configuration commands follow this pattern.

public void Configure
 (EntityTypeBuilder<Book> entity)
{
 entity
 .HasMany(p => p.Reviews)

 .WithOne()

 .HasForeignKey(p => p.BookId)

The entity class
you’re configuring

The entity’s
navigational property

Either .HasOne()
or .HasMany()

Either .WithOne()
or .WithMany() Optional navigational

property in linked class

Optional additional configuration, such as
.HasForeignKey, .IsRequired, .OnDelete, and so on

Figure 7.4   The Fluent API allows you to define a relationship between two entity classes. HasOne/
HasMany and WithOne/WithMany are the two main parts, followed by other commands to specify
other parts or set certain features.

EF6   EF Core’s Fluent API command names have changed from EF6 and, for
me, they’re much clearer. Personally I found EF6’s WithRequired and WithRe-
quiredPrincipal/WithRequiredDependent commands a bit confusing,
whereas the EF Core Fluent API commands have a clearer HasOne/HasMany
followed by WithOne/WithMany syntax.

We’ll now define a one-to-one, one-to-many, and many-to-many relationship to illus-
trate the use of these Fluent API relationships.

7.6.1	 Creating a one-to-one relationship

One-to-one relationships can get a little complicated because there are three ways to
build them in a relational database. To understand these options, you’ll look at an
example in which you have attendees (entity class Attendee) at a software convention,
and each attendee has a unique ticket (entity class Ticket).

	 185Fluent API relationship configuration commands

Chapter 3 showed how to create, update, and delete relationships. To recap, here’s a
code snippet showing how to create a one-to-one relationship:

var attendee = new Attendee
{
 Name = "Person1",
 Ticket = new Ticket{ TicketType = TicketTypes.VIP}
};
context.Add(attendee);
context.SaveChanges();

Figure 7.5 shows the three options for building this sort of one-to-one relationship.
The principal entities are at the top of the diagram, and the dependent entities are
at the bottom. Note that option 1 has the Attendee as the dependent entity, whereas
options 2 and 3 have the Ticket at the dependent entity.

Attendee

AttendeeIdPK

Attendee

AttendeeIdPK

Ticket

Option 3
The subclass uses the

Attendee primary key as its
primary key and foreign key.

Option 2
The subclass

holds the foreign key
of the main class.

Option 1
The main class

holds the foreign
key of the subclass.

This is supported by EF
Core 2.1 and

above (see issue #7340).

This is another option, but
cannot handle IsRequired.

This is the standard
approach for EF Core.

TicketIdPK

Ticket

AttendeeIdPK, FK1

Ticket

TicketIdPK

AttendeeIdFK1

Attendee

AttendeeIdPK

TicketIdFK1

Principal entities Dependent entities

Figure 7.5   The three ways of defining a one-to-one relationship in a relational database; comments at
the bottom indicate EF Core’s handling of each approach. The difference between option 1 and option 2
(and 3) is that the order of the two ends of the one-to-one relationship are swapped, which changes which
part can be forced to exist. In option 1, the Attendee must have a Ticket, whereas in options 2 and 3,
the Ticket is optional for the Attendee.

Each option has its own advantages and disadvantages. You should use the one that’s
right for your business need.

Option 1 is the standard approach to building one-to-one relationships, because it
allows you to define that the one-to-one dependent entity is required (it must be pres-
ent). In our example, an exception will be thrown if you try to save an Attendee entity
instance without a unique Ticket attached to it. Figure 7.6 shows option 1 in more
detail.

186 Chapter 7  Configuring relationships

Attendee
The foreign key, TicketId, isn’t nullable. This tells EF Core
that every attendee must have a ticket (IsRequired).

The .WithOne method tells EF Core
to create a unique constraint on the
foreign key, TicketId.

AttendeeId: int
Name: string
TicketId: int

Ticket

TicketId: int
Type: TikType

EF Core Fluent API commands
modelBuilder.Entity<Attendee>()
 .HasOne(p => p.Ticket)
 .WithOne(p => p.Attendee)
 .HasForeignKey<Attendee>
 (p => p.TicketId);

Figure 7.6   The non-nullable foreign key ensures that the principal entity (in this case, Attendee) must
have a dependent, one-to-one entity, Ticket. Also, configuring the relationship as one-to-one ensures
that each dependent entity, Ticket, is unique. Notice the Fluent API on the right has navigational
properties going both ways—each entity has a navigational property going to the other.

With the option 1 one-to-one arrangement, you can make the dependent entity
optional by making the foreign key nullable. Also, in figure 7.6, you can see that the
WithOne method has a parameter that picks out the Attendee navigational prop-
erty in the Ticket entity class that links back to the Attendee entity class. Because
the Attendee class is the dependent part of the relationship, then if you delete the
Attendee entity, the linked Ticket won’t be deleted, because the Ticket is the princi-
pal entity in the relationship.

Options 2 and 3 in figure 7.5 turn the principal/dependent relationship around,
with the Attendee becoming the principal entity in the relationship. This swaps the
required/optional nature of the relationship—now the Attendee can exist without
the Ticket, but the Ticket can’t exist without the Attendee. Figure 7.7 shows this
relationship.

Attendee

By making the Ticket class hold a foreign key of the
Attendee, the principal/dependent entity is flipped.

Now the Attendee is the principal entity and can exist
without a Ticket, and the Ticket is the dependent entity
and can’t exist without the Attendee.

AttendeeId: int
Name: string

Ticket

TicketId: int
AttendeeId: int
Type: TikType

EF Core Fluent API commands
modelBuilder.Entity<Attendee>()
 .HasOne(p => p.Ticket)
 .WithOne(p => p.Attendee)
 .HasForeignKey<Ticket>
 (p => p.AttendeeId);

Figure 7.7   Option 2: The Ticket entity holds the foreign key of the Attendee entity. This changes
which entity is the principal and dependent entity. In this case, the Attendee is now the principal entity,
and the Ticket is the dependent entity.

	 187Fluent API relationship configuration commands

Option 2 can be useful because optional one-to-one relationships, often referred to
as one-to-zero-or-one relationships, are more common. All you’ve done here is think of the
relationship in a different order.

Option 3 is another, more efficient, way to define option 2, with the primary key and
the foreign key combined. I would’ve used this for the PriceOffer entity class in the
book app, but some limitations exist in EF Core 2.0 (see https://github.com/aspnet/
EntityFramework/issues/7340). EF Core 2.1 has fixed those limitations.

7.6.2	 Creating a one-to-many relationship

One-to-many relationships are simpler, because there’s one format: the “many” entities
contain the foreign-key value. Most one-to-many relationships can be defined using
the By Convention approach, but figure 7.8 shows the Fluent API code to create a “one
Book has many Reviews” relationship in the book app.

The Review table is linked to
the Books table via the
foreign key called BookId.

EF Core Fluent API commands

modelBuilder.Entity<Book>()
 .HasMany(p => p.Reviews)
 .WithOne()
 .HasForeignKey(p =>
 p.BookId);

Books

BookId

Title

Description

PublishedOn

... etc.

PK

Review

ReviewId

VoterName

NumStars

Comment

BookIdFK1

PK
1

0..*

Figure 7.8   A one-to-many relationship, in which the foreign key must be in the dependent entity; in this
case, the Review entity class. You can see in the Fluent API on the right that the Book has a collection
navigational property, Reviews, linked to the Review entity classes, but Review doesn’t have a
navigational property back to Book.

In this case, the Review entity class doesn’t have a navigational link back to the Book, so
the WithOne method has no parameter.

NOTE   Listing 3.16 shows how to add a Review to the Book’s one-to-many collec-
tion navigational property, Reviews.

Collections have a couple of features that are worth knowing about. First, you can use
any generic type for a collection that implements the IEnumerable<T> interface, such
as ICollection<T>, Collection<T>, HashSet<T>, List<T>, and so on. IEnumerable<T>
on its own is a special case, as you can’t add to that collection (but see section 8.1 for
one place where this is useful). The point is, for performance reasons, you should
use the simplest generic collection type so that EF Core can instantiate the collection
quickly when using the Include method. That’s why I tend to use ICollection<T>.

NOTE   Internally, EF Core uses HashSet<T> to hold a collection. In some spe-
cific cases with noninitialized backing field collections, you may need to use the
HashSet<T> type as the collection type.

https://github.com/aspnet/EntityFramework/issues/7340
https://github.com/aspnet/EntityFramework/issues/7340

188 Chapter 7  Configuring relationships

Second, although you typically define a collection navigational property with a getter
and a setter (for instance, public ICollection<Review> Reviews { get; set; }),
that isn’t totally necessary. You can provide a getter only if you initialize the backing
field with an empty collection. The following is also valid:

public ICollection<Review> Reviews { get; } = new List<Review>();

Personally, I don’t initialize a collection to an empty list, because the collection will be
null if you load an entity with a collection navigational property without an Include
method to load that collection. Then your code is likely to fail rather than deliver an
empty list when you forget the Include (this is defensive programming). The down-
side of doing this is you need to manually initialize a collection navigational property
in a new entity before you can add entries to it.

7.6.3	 Creating a many-to-many relationship

In EF Core, a many-to-many relationship is made up of two one-to-many relationships.
The many-to-many relationship between a Book entity class and its Author entity classes
consists of the following:

¡	A one-to-many relationship from the Book entity class to the BookAuthor linking
entity class

¡	A one-to-many relationship from the Author entity class to the BookAuthor link-
ing entity class

This listing shows the Fluent API that configures the primary key and then the two one-
to-many relationships for this many-to-many relationship.

Listing 7.6   Configuring a many-to-many relationship via two one-to-many relationships

public static void Configure
 (this EntityTypeBuilder<BookAuthor> entity)
{
 entity.HasKey(p =>
 new { p.BookId, p.AuthorId });

 //-----------------------------
 //Relationships

 entity.HasOne(pt => pt.Book)
 .WithMany(p => p.AuthorsLink)
 .HasForeignKey(pt => pt.BookId);

 entity.HasOne(pt => pt.Author)
 .WithMany(t => t.BooksLink)
 .HasForeignKey(pt => pt.AuthorId);
}

Note that you don’t need to add the Fluent API to configure the two one-to-many rela-
tionships because they follow the By Convention naming and therefore don’t need the

Uses the names of the Book and
Author primary keys to form its
own composite key

Configures the one-to-many
relationship from the Book to
BookAuthor entity class

Configures the one-to-many
relationship from the Author to
the BookAuthor entity class

	 189Additional methods available in Fluent API relationships

Fluent API. The key, however, does need configuring because it doesn’t follow the By
Convention naming.

EF6   EF6.x users need to do a bit more work in EF Core to handle many-to-many
relationships. EF6.x automatically creates the linking table and automates the
adding or removal of entries in the linking table. EF Core may gain the same
many-to-many features that EF6.x has, but there’s no timescale on that.

7.7	 Additional methods available in Fluent API
relationships
In addition to the Fluent API relationship commands, other methods can be added to
the end of the Fluent API methods that define a relationship. In summary, they’re as
follows:

¡	OnDelete—Changes the delete action of a dependent entity (section 7.7.1)
¡	IsRequired—Defines the nullability of the foreign key (section 7.7.2)
¡	HasPrincipalKey—Uses an alternate unique key (section 7.7.3)
¡	HasConstraintName—Sets the foreign-key constraint name and MetaData access

to the relationship data (section 7.7.4)

7.7.1	 OnDelete—changing the delete action of a dependent entity

Section 7.4.4 described the default action on the deletion of a principal entity, which
is based on the nullability of the dependent’s foreign key(s). The OnDelete Fluent API
method allows you to alter what EF Core does when a deletion that affects a dependent
entity happens.

You can add the OnDelete method to the end of a Fluent API relationship configu-
ration. This listing shows the code added in chapter 4 to stop a Book entity from being
deleted if it was referred to in a customer order, via the LineItem entity class.

Listing 7.7   Changing the default OnDelete action on a dependent entity

public static void Configure
 (this EntityTypeBuilder<LineItem> entity)
{
 entity.HasOne(p => p.ChosenBook)
 .WithMany()
 .OnDelete(DeleteBehavior.Restrict);
}

This code causes an exception to be thrown if someone tries to delete a Book entity that
a LineItem’s foreign key links to that Book. You do this because you want a customer’s
order to not be changed. Table 7.1 explains the possible DeleteBehavior settings.

Adds the OnDelete method onto the end of
defining a relationship. Setting it to Restrict
stops the LineItem from being deleted,
hence EF Core will throw an exception if a
Book entity class is deleted and a LineItem
is linked to that specific book.

190 Chapter 7  Configuring relationships

Table 7.1   Delete behaviors available in EF Core. The middle column highlights the delete behavior that
will be used if you don’t apply the OnDelete option.

Name Effect the delete behavior has on the dependent entity Default for

Restrict The delete operation isn’t applied to dependent entities.
The dependent entities remain unchanged. This may
cause the delete to fail, either in EF Core or in the rela-
tional database.

SetNull The dependent entity isn’t deleted, but its foreign-key
property is set to null. If any of the dependent entity for-
eign-key properties aren’t nullable, an exception is thrown
when SaveChanges is called.

ClientSetNull If EF Core is tracking the dependent entity, its foreign key
is set to null and the dependent entity isn’t deleted. But
if EF Core isn’t tracking the dependent entity, the data-
base rules will apply; in a database created by EF Core,
this will be set to Restrict, which will cause the delete
to fail with an exception.

Optional relationships

Cascade The dependent entity is deleted. Required relationships

The ClientSetNull delete behavior is unusual, because it’s the only one in which the
action EF Core takes in software is different from the foreign-key constraint EF Core
sets in the database. Here are the two dissimilar actions that EF Core and the data-
base take on deleting a principal entity with an optional dependent entity and a delete
behavior of ClientSetNull:

¡	EF Core sets the optional dependent-entity foreign key to null, but only if the
optional dependent entity is loaded and being tracked.

¡	The database, if created by EF Core, has a foreign-key constraint of ON DELETE NO
ACTION (SQL Server). If the optional dependent entity isn’t loaded and EF Core
hasn’t set its foreign key to null, the database will return a foreign-key constraint
error.

EF Core sets a dissimilar database setting because the “correct” setting of ON DELETE
SET NULL (SQL Server) can cause a database error when EF Core tries to create the
database (typically, when the database server spots possible cyclic delete paths).

Having a default setting causing an exception on database creation/migration isn’t
that friendly for the developer, so, in EF Core 2.0, the team added the new ClientSetNull
delete behavior. With this behavior, you won’t get an unexpected exception when EF
Core creates/migrates the database for you, but you need to be a bit more careful when
you delete a principal entity that has an optional dependent entity. Listing 7.8 shows the
correct way to delete a principal entity that has an optional dependent entity: by ensur-
ing that the optional dependent entity is tracked.

	 191Additional methods available in Fluent API relationships

Listing 7.8   Deleting a principal entity with an optional dependent entity

var entity = context.DeletePrincipals
 .Include(p => p.DependentDefault)
 .Single(p => p.DeletePrincipalId == 1);
context.Remove(entity);
context.SaveChanges();

Note that if you don’t include the Include method or another way of loading the
optional dependent entity, SaveChanges would throw a DbUpdateException because
the database server will have reported a foreign-key constraint violation.

One way to align EF Core’s approach to an optional relationship with the database
server’s approach is to set the delete behavior to SetNull instead of the default Client-
SetNull. This sets the foreign-key constraint in the database to ON DELETE SET NULL
(SQL Server), which is in line with what EF Core does. Whether or not you load the
optional dependent entity, the outcome of the called SaveChanges will be the same; the
foreign key on the optional dependent entity will be set to null. Be aware that some data-
base servers may return an error on database creation in some circumstances, such as an
optional hierarchical relationship, as shown in listing 7.2. All the other delete behaviors
(Restrict, SetNull, and Cascade) produce a foreign-key constraint that has the same
behavior as EF Core’s software.

NOTE   If you’re managing the database creation/migration outside EF Core,
it’s important to ensure that the relational database foreign-key constraint is in
line with EF Core’s OnDelete setting. Otherwise, you’ll get inconsistent behav-
ior, depending on whether the dependent entity is being tracked.

7.7.2	 IsRequired—defining the nullability of the foreign key

Chapter 6 describes how the Fluent API method IsRequired allows you to set the nul-
lability of a scalar property, such as a string. In a relationship, the same command sets
the nullability of the foreign key, which, as I’ve already said, defines whether the rela-
tionship is required or optional.

The IsRequired method is most useful in shadow properties because EF Core, by
default, makes shadow properties nullable, and the IsRequired method can change
them to non-nullable. Listing 7.9 shows you the Attendee entity class used previously to
show a one-to-one relationship, but showing two other one-to-one relationships that are
using shadow properties for their foreign keys.

Reads in the principal entity

Includes the dependent entity that has the
default delete behavior of ClientSetNull

Sets the principal
entity for deletion

Calls SaveChanges, which, because the
dependent entity is tracked, then sets its
foreign key to null

192 Chapter 7  Configuring relationships

Listing 7.9   The Attendee entity class showing all its relationships

public class Attendee
{
 public int AttendeeId { get; set; }
 public string Name { get; set; }

 public int TicketId { get; set; }
 public Ticket Ticket { get; set; }

 public OptionalTrack Optional { get; set; }
 public RequiredTrack Required { get; set; }
}

The Optional navigational property, which uses a shadow property for its foreign key,
is configured by convention, which means the shadow property is left as a nullable
value. Therefore, it’s optional, and if the Attendee entity is deleted, the Optional-
Track entity isn’t deleted.

For the Required navigational property, the following listing presents the Fluent API
configuration. Here you use the IsRequired method to make the Required one-to-one
navigational property as required; each Attendee entity must have a RequiredTrack
entity assigned to the Required property.

Listing 7.10   The Fluent API configuration of the Attendee entity class

public void Configure
 (EntityTypeBuilder<Attendee> entity)
{
 entity.HasOne(p => p.Ticket)
 .WithOne(p => p.Attendee)
 .HasForeignKey<Attendee>
 (p => p.TicketId)
 .IsRequired();

 entity.HasOne(p => p.Required)
 .WithOne(p => p.Attend)
 .HasForeignKey<Attendee>(
 "MyShadowFk")
 .IsRequired();
}

Foreign key for the one-to-one
relationship, Ticket

One-to-one navigational property
that accesses the Ticket entity

One-to-one navigational property using
a shadow property for the foreign key. By
default, the foreign key is nullable, so the
relationship is optional.

One-to-one navigational property using a shadow
property for the foreign key. You use Fluent API
commands to say that the foreign key isn’t
nullable, so the relationship is required.

 Sets up the one-to-one navigational
relationship, Ticket, which has a foreign
key defined in the Attendee class

Specifies the property that’s the foreign
key. You need to provide the class type, as
the foreign key could be in the principal or
dependent entity class.

Sets up the one-to-one navigational
relationship, Required, which doesn’t
have a foreign key defined

Uses the HasForeignKey<T> method that takes
a string, because it’s a shadow property and can
be referred to only via a name. Note that you use
your own name.

Uses IsRequired to say the foreign
key should not be nullable

	 193Additional methods available in Fluent API relationships

You could’ve left out the configuration of the Ticket navigational property, as this
would be correctly configured with the By Convention rules. You leave it in so you can
compare it with the configuration of the Required navigational property, which uses a
shadow property for its foreign key.

The configuration of the Required navigational property is necessary, because
the IsRequired method changes the shadow foreign-key property from nullable to
non-nullable, which in turn makes the relationship as required.

Type and naming conventions for shadow property foreign keys

Notice how listing 7.10 refers to the shadow foreign-key property: you need to use the
HasForeignKey<T>(string) method. The <T> class tells EF Core where to place the
shadow foreign-key property, which can be either end of the relationship for one-to-
one relationships, or the “many” entity class of a one-to-many relationship.

The string parameter of the HasForeignKey<T>(string) method allows you to
define the shadow foreign-key property name. You can use any name; you don’t need to
stick with the By Convention name listed in figure 7.3. But you need to be careful not to
use a name of any existing property in the entity class you’re targeting, because that can
lead to strange behaviors. (There’s no warning if you do select an existing property, as
you might be trying to define a nonshadow foreign key.)

7.7.3	 HasPrincipalKey—using an alternate unique key

I mentioned the term alternate key at the beginning of this chapter, and said it was a
unique value but isn’t the primary key. I gave an example of an alternate key called
UniqueISBN, which represents a unique key that isn’t the primary key. (Remember,
ISBN stands for International Standard Book Number, which is a unique number for every
book.)

Now let’s look at a different example. You may be aware that the ASP.NET authori-
zation library uses the user’s email address as its UserId, which is unique for each user.
The following listing creates a Person entity class, which uses a normal int primary key,
but you’ll use the UserId as an alternate key when linking to the person’s contact infor-
mation, shown in listing 7.12.

Listing 7.11   Person class, with UserId taken from ASP.NET authorization

public class Person
{
 public int PersonId { get; set; }

 public string Name { get; set; }

 [MaxLength(256)]
 [Required]
 public string UserId { get; set; }
}

The UserId holds the ASP.NET
authorization UserId, which is the
person’s email address and is unique.

194 Chapter 7  Configuring relationships

Listing 7.12   ContactInfo class with EmailAddress as a foreign key

public class ContactInfo
{
 public int ContactInfoId { get; set; }

 public string MobileNumber { get; set; }
 public string LandlineNumber { get; set; }

 [MaxLength(256)]
 [Required]
 public string EmailAddress { get; set; }
}

Figure 7.9 shows the Fluent API configuration commands, which use the alternate key
in the Person entity class as a foreign key in the ContactInfo entity class.

The HasPrincipalKey method places
a unique constraint on the UserId;
it must be unique.

HasPrincipalKey tells EF Core to
use the UserId property as the
key, instead of the normal primary
key, PersonalId.

The HasForeignKey method defines the
EmailAddress property as the foreign key.

ContactInfo

ContactInfoId : int
MobileNumber : string
EmailAddress: string

Person

PersonId: int
Name: string
UserId: string

EF Core Fluent API commands

modelBuilder.Entity<Person>()
 .HasOne(p => p.ContactInfo)
 .WithOne()
 .HasForeignKey<ContactInfo>
 (p => p.EmailAddress)
 .HasPrincipalKey<Person>
 (c => c.UserId);

Figure 7.9   The Fluent API sets up a one-to-one relationship by using the UserId property, which
contains the person’s email address and is unique, as the foreign key to link to the ContactInfo. The
command HasPrincipalKey both defines the UserId property as an alternate key and makes the
foreign-key constraint link between the EmailAddress property in the ContactInfo entity and the
UserId in the Person entity.

Here are a few notes on alternate keys:

¡	You can have composite alternate keys—an alternate key made up of two or more
properties. This is handled in the same way as composite keys, by using an anon-
ymous class. For example, HasPrincipalKey<MyClass>(c => new {c.Part1,
c.Part2}).

¡	Unique keys (see section 6.6) and alternate keys are different, and you should
choose the correct one for your business case. Here are some of the differences:

¡	Unique keys ensure that each entry is unique; they can’t be used in a foreign key.

¡	Unique keys can be null, but alternate keys can’t.

¡	Unique key values can be updated, but alternate keys can’t. (See EF Core issue
#4073 at https://github.com/aspnet/EntityFramework/issues/4073.)

The email address is used as a
foreign key for the Person entity
to link to this contact info.

https://github.com/aspnet/EntityFramework/issues/4073

	 195Alternative ways of mapping entities to database tables

¡	You can define a property as a standalone alternate key by using the Fluent API com-
mand modelBuilder.Entity<Car>().HasAlternateKey(c => c.LicensePlate),
but there isn’t any need to do that, because using the HasPrincipalKey method to
set up a relationship automatically registers the property as an alternate key.

7.7.4	 Less-used options in Fluent API relationships

This section briefly mentions but doesn’t cover in detail two Fluent API commands
that can be used when setting up relationships.

HasConstraintName—setting the foreign-key constraint name

The method HasConstraintName allows you to set the name of the foreign-key con-
straint. This can be useful if you want to catch the exception on foreign-key errors and
use the constraint name to form a more user-friendly error message. Section 10.7.3
shows an example of setting the constraint name so that you can produce user-friendly
error messages out of SQL errors.

MetaData—access to the relationship information

The MetaData property provides access to the relationship data, some of which is read/
write. Much of what the MetaData property exposes can be accessed via specific com-
mands, such as IsRequired, but some parts can be useful. I recommend an article by
an EF Core team member Arthur Vickers on MetaData: http://mng.bz/YfiT.

7.8	 Alternative ways of mapping entities
to database tables
Sometimes it’s useful to not have a one-to-one mapping from an entity class to a data-
base table. Instead of having a relationship between two classes, you might want to
combine both classes into one table. This allows you to load only part of the table when
you use one of the entities, which will improve the query’s performance. EF Core pro-
vides three alternative ways to map classes to the database, each with its own features:

¡	Owned types —This allows a class to be merged into the entity class’s table. Useful
for using normal classes to group data.

¡	Table per hierarchy —This allows a set of inherited classes to be saved into one table;
for instance, classes called Dog, Cat, and Rabbit that inherit from the Animal
class.

¡	Table splitting —This allows multiple entity classes to be mapped to the same
table. Useful when some columns in a table are read more often than all the table
columns.

7.8.1	 Owned types—adding a normal class into an entity class

EF Core has owned types, which allow you to define a class that holds a common group-
ing of data, such as an address or audit data, that you want to use in multiple places

http://mng.bz/YfiT

196 Chapter 7  Configuring relationships

in your database. The owned type class doesn’t have a primary key, so doesn’t have an
identity of its own, but relies on the entity class that “owns” it for its identity. In DDD
terms, owned types are known as value objects.

EF6   EF Core’s owned types are similar to EF6.x’s complex types. The biggest
change is you must specifically configure an owned type, whereas EF6.x con-
siders any class without a primary key to be a complex type (which could cause
bugs). EF Core’s owned types have an extra feature over EF6.x’s implementa-
tion: the data in an owned type can be configured to be saved into a separate,
hidden table.

Here are two ways of using owned types:

¡	The owned type data is held in the same table that the entity class is mapped to.
¡	The owned type data is held in a separate table from the entity class.

Owned type data is held in the same table as the entity class

As an example of an owned type, you’ll create an entity class called OrderInfo that
needs two addresses: BillingAddress and DeliveryAddress. These are provided by
the Address class, as shown in this listing. The Address class is an owned type with no
primary key, as shown at the bottom of the listing.

Listing 7.13   The Address owned type, followed by the OrderInfo entity class

public class OrderInfo
{
 public int OrderInfoId { get; set; }
 public string OrderNumber { get; set; }

 public Address BillingAddress { get; set; }
 public Address DeliveryAddress { get; set; }
}

public class Address
{
 public string NumberAndStreet { get; set; }
 public string City { get; set; }
 public string ZipPostCode { get; set; }
 public string CountryCodeIso2 { get; set; }
}

You tell EF Core that the BillingAddress and the DeliveryAddress properties in the
OrderInfo entity class aren’t relationships, but owned types, through the Fluent API.
Listing 7.14 shows the configuration commands to do that.

The entity class OrderInfo, with a
primary key and two addresses

Two distinct Address classes. The data for
each Address class will be included in the
table that the OrderInfo is mapped to.

An owned type has no primary key and
relies on its “owner” for its identity. This
type of class is referred to as a value
object in DDD.

	 197Alternative ways of mapping entities to database tables

Listing 7.14   The Fluent API to configure the owned types within OrderInfo

public class SplitOwnDbContext: DbContext
{
 public DbSet<OrderInfo> Orders { get; set; }
 //… other code removed for clarity

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 modelBulder.Entity<OrderInfo>()
 .OwnsOne(p => p.BillingAddress);
 modelBulder.Entity<OrderInfo>()
 .OwnsOne(p => p.DeliveryAddress);
 }
}

The result is a table containing the two scalar properties in the OrderInfo entity class,
followed by two sets for Address class properties, one prefixed by BillingAddress_
and another prefixed by DeliveryAddress_. The following listing shows part of the
SQL Server CREATE TABLE command that EF Core produces for the OrderInfo entity
class with the naming convention.

Listing 7.15   The SQL CREATE TABLE command showing the column names

CREATE TABLE [Orders] (
 [OrderInfoId] int NOT NULL IDENTITY,
 [OrderNumber] nvarchar(max) NULL,
 [BillingAddress_City] nvarchar(max) NULL,
 [BillingAddress_CountryCodeIso2] nvarchar(max) NULL,
 [BillingAddress_NumberAndStreet] nvarchar(max) NULL,
 [BillingAddress_ZipPostCode] nvarchar(max) NULL,
 [DeliveryAddress_City] nvarchar(max) NULL,
 [DeliveryAddress_CountryCodeIso2] nvarchar(max) NULL,
 [DeliveryAddress_NumberAndStreet] nvarchar(max) NULL,
 [DeliveryAddress_ZipPostCode] nvarchar(max) NULL,
 CONSTRAINT [PK_Orders] PRIMARY KEY ([OrderInfoId])
);

Using owned types like this can help organize your database. Any common groups of
data can be turned into owned types and added to entity classes. Here are two final
points on owned types held in an entity class:

¡	You must provide all the owned class instances when you create a new instance to
write to the database (for instance, BillingAddress = new Address{…etc.). If
you don’t, SaveChanges will throw an exception.

¡	The owned type properties, such as BillingAddress, are automatically created
and filled with data when you read the entity. There’s no need for an Include
method or any other form of relationship loading.

Selects the owner of the owned type

Uses the OwnsOne method to tell EF
Core that property BillingAddress is an
owned type and the data should be
added to the columns in the table that
the OrderInfo maps to

Repeats the process for the second
property, DeliveryAddress

198 Chapter 7  Configuring relationships

Owned type data is held in a separate table from the entity class

The other way that EF Core can save the data inside an owned type is into a separate
table, rather than the entity class. In this example, you’ll create a User entity class that
has a property called HomeAddress of type Address. In this case, you add a ToTable
method after the OwnsOne method in your configuration code.

Listing 7.16   Configuring the owned table data to be stored in a separate table

public class SplitOwnDbContext: DbContext
{
 public DbSet<OrderInfo> Orders { get; set; }
 //… other code removed for clarity

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 modelBulder.Entity<User>()
 .OwnsOne(p => p.HomeAddress);
 .ToTable("Addresses");
 }
}

EF Core sets up a one-to-one relationship, in which the primary key is also the foreign
key (see section 7.6.1, option 3). And the OnDelete state is set to Cascade so that the
owned type entry of the primary entity, User, is deleted. The database therefore has
two tables, the Users table and the Addresses table.

Listing 7.17   The two tables, Users and Addresses, in the database

CREATE TABLE [Users] (
 [UserId] int NOT NULL IDENTITY,
 [Name] nvarchar(max) NULL,
 CONSTRAINT [PK_Orders] PRIMARY KEY ([UserId])
);
CREATE TABLE [Addresses] (
 [UserId] int NOT NULL IDENTITY,
 [City] nvarchar(max) NULL,
 [CountryCodeIso2] nvarchar(max) NULL,
 [NumberAndStreet] nvarchar(max) NULL,
 [ZipPostCode] nvarchar(max) NULL,
 CONSTRAINT [PK_Orders] PRIMARY KEY ([UserId]),
 CONSTRAINT "FK_Addresses_Users_UserId" FOREIGN KEY ("UserId")
 REFERENCES "Users" ("UserId") ON DELETE CASCADE
);

This use of owned types differs from the first usage, in which the data is stored in the
entity class table, because you can save a User entity instance without an address. But
the same rules apply on querying—the HomeAddress property will be read in on a
query of the User entity, without the need for an Include method.

Adding ToTable to OwnsOne tells EF Core
to store the owned type, Address, in a
separate table, with a primary key equal
to the primary key of the User entity that
was saved to the database.

	 199Alternative ways of mapping entities to database tables

The Addresses table used to hold the HomeAddress data is hidden; you can’t access
it via EF Core. This could be a good thing or a bad thing, depending on your business
needs. But if you want to access the Address part, you can implement the same feature
by using two entity classes with a one-to-one relationship between them.

7.8.2	 Table per hierarchy—placing inherited classes into one table

Table per hierarchy (TPH) stores all the classes that inherit from each other in a single
database table. For instance, if you want to save a payment in a shop, it could be cash
(PaymentCash) or credit card (PaymentCard). Both contain the amount (say, $10),
but the credit card option has extra information; an online transaction receipt for
instance. In this case, TPH uses a single table to store all the versions of the inherited
classes and return the correct entity type, PaymentCash or PaymentCard, depending
on what was saved.

TPH can be configured by convention, which will then combine all the versions of
the inherited classes into one table. This has the benefit of keeping common data in
one table, but accessing that data is a little cumbersome because each inherited type
has its own DbSet<T> property. But by adding the Fluent API, all the inherited classes
can be accessed via one DbSet<T> property, which in our example makes the Payment-
Cash/ PaymentCard example much more useful.

Configuring TPH by convention

To apply the By Convention approach to the PaymentCash/PaymentCard example, you
create a class called PaymentCash and then another class, PaymentCard, which inherits
from PaymentCash classes, as shown in this listing. As you can see, PaymentCard inher-
its from PaymentCash and adds an extra ReceiptCode property.

Listing 7.18   The two classes: PaymentCash and PaymentCard

public class PaymentCash
{
 [Key]
 public int PaymentId { get; set; }
 public decimal Amount { get; set; }
}

//PaymentCredit – inherits from PaymentCash
public class PaymentCard : PaymentCash
{
 public string ReceiptCode { get; set; }
}

Listing 7.19, which uses the By Convention approach, shows your application’s DbCon-
text with two DbSet<T> properties, one for each of the two classes. Because you include
both classes, and PaymentCard inherits from PaymentCash, EF Core will store both
classes in one table.

200 Chapter 7  Configuring relationships

Listing 7.19   The updated application’s DbContext with the two DbSet<T> properties

public class Chapter07DbContext : DbContext
{
 //… other DbSet<T> properties removed

 //Table-per-hierarchy
 public DbSet<PaymentCash> CashPayments { get; set; }
 public DbSet<PaymentCard> CreditPayments { get; set; }

 public Chapter07DbContext(
 DbContextOptions<Chapter07DbContext> options)
 : base(options)
 { }

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 //no configuration needed for PaymentCash or PaymentCard
 }
}

Finally, this listing shows the code that EF Core produces to create the table that will
store both the PaymentCash and PaymentCard entity classes.

Listing 7.20   The SQL produced by EF Core to build the CashPayment table

CREATE TABLE [CashPayments] (
 [PaymentId] int NOT NULL IDENTITY,
 [Amount] decimal(18, 2) NOT NULL,
 [Discriminator] nvarchar(max) NOT NULL,
 [ReceiptCode] nvarchar(max),
 CONSTRAINT [PK_CashPayments]
		 PRIMARY KEY ([PaymentId])
);

As you can see, EF Core has added a Discriminator column, which it uses when return-
ing data to create the correct type of class, PaymentCash or PaymentCard, based on
what was saved. Also, the ReceiptCode column is filled/read only if the class type is
PaymentCard.

Using the Fluent API to improve our TPH example

Although the By Convention approach reduces the number of tables in the database,
you have two separate DbSet<T> properties, and you need to use the right one to find
the payment that was used. Also, you don’t have a common Payment class that you can
use in any other entity classes. But by a bit of rearranging and adding some Fluent API
configuration, you can make this solution much more useful.

The Discriminator column holds the
name of the class; EF Core uses this to
define what sort of data is saved. When
set by convention, this column holds the
name of the class as a string.

The ReceiptCode column is used
only if it’s a PaymentCredit.

	 201Alternative ways of mapping entities to database tables

Figure 7.10 shows the new arrangement. You create a common base class by having
an abstract class called Payment that the PaymentCash and PaymentCard inherit from.
This allows you to use the Payment class in another entity class called SoldIt.

Payment
Abstract class

Properties
 PaymentId : int
 PTypes : PType
 Amount : decimal

SoldIt
Class

Properties
 SoldIt : int
 WhatSold : string
 PaymentId : int
Relationships
 Payment : Payment

Relationship

Foreign Key

PaymentCash
Class

Properties

PaymentCard
Class

Payment is an abstract class, which PaymentCash
and PaymentCard inherit from.

PTypes is an enum
with the values Cash
and Card. You use the
PType property as
the discriminator.

The SoldIt entity class can use the
abstract Payment class for its
relationship. The actual type of the
class assigned to that relationship
will depend on the type of payment
that was used in the sale.

Properties
 Receipt : string

Figure 7.10   By using the Fluent API, you can create a more useful form of the TPH. Here an abstract
class called Payment is used as the base, and this class can be used inside another entity class.
The actual class type placed in the SoldIt payment property will be either PaymentCash or
PaymentCard, depending on what was used when the SoldIt class was created.

This approach is much more useful because you can now place a Payment abstract
class in the SoldIt entity class and get the amount and type of payment, regardless
of whether it’s cash or a card. The PType property tells you the type (the PType prop-
erty is of type PTypes, which is an enum with values Cash or Card), and if you need
the Receipt property in the PaymentCard, you can cast the Payment class to the type
PaymentCard.

In addition to creating the entity classes shown in figure 7.10, you also need to
change the application’s DbContext and add some Fluent API configuration to tell EF
Core about your TPH classes, as they no longer fit the By Convention approach. This
listing shows the application’s DbContext, with the configuration of the Discrimination
column.

Listing 7.21   Changed application’s DbContext with Fluent API configuration added

public class Chapter07DbContext : DbContext
{
 //… other DbSet<T> properties removed
 public DbSet<Payment> Payments { get; set; }

 public DbSet<SoldIt> SoldThings { get; set; }

 public Chapter07DbContext(

Defines the property through
which you can access all the
payments, both PaymentCash
and PaymentCard

List of sold items, with a
required link to Payment

202 Chapter 7  Configuring relationships

 DbContextOptions<Chapter07DbContext> options)
 : base(options)
 { }

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 //… other configuretions removed
 modelBuilder.Entity<Payment>()
 .HasDiscriminator(b => b.PType)
 .HasValue<PaymentCash>(PTypes.Cash)
 .HasValue<PaymentCard>(PTypes.Card);
 }
}

NOTE   This example uses an abstract class as the base class, but you don’t have
to do that. You could just as well keep the original PaymentCash, with the Pay-
mentCard inheriting from that. I wanted to show you that EF Core can handle
an abstract base class.

Accessing TPH entities

Now that you’ve configured a TPH set of classes, let’s cover any differences in CRUD
operations. Most EF database access commands are the same, but a few changes access
the TPH parts of the entities. EF Core does a nice job (as EF6.x did) of handling TPH.

First, the creation of TPH entities is straightforward. You create an instance of the
specific type you need. For instance, the following code snippet creates a PaymentCash
type entity to go with a sale:

var sold = new SoldIt()
{
 WhatSold = "A hat",
 Payment = new PaymentCash {Amount = 12}
};
context.Add(sold);
context.SaveChanges();

EF Core then saves the correct version of data for that type, and sets the discriminator
so it knows the TPH class type of the instance. When you read back the SoldIt entity
you just saved, with an Include to load the Payment navigational property, the type of
the loaded Payment instance will be the correct type (PaymentCash or PaymentCard),
depending on what was used when you wrote it to the database. Also, in this example
the Payment’s property PType, which you set as the discriminator, tells you the type of
payment, Cash or Card.

The HasDiscriminator method identifies the entity
as a TPH and then selects the property PType as the
discriminator for the different types. In this case,
it’s an enum, which you set to be bytes in size.

Sets the discriminator value
for the PaymentCash type

Sets the discriminator value
for the PaymentCard type

	 203Alternative ways of mapping entities to database tables

When querying TPH data, the EF Core OfType<T> method allows you to filter TPH
data to find a specific class. The query context.Payments.OfType<PaymentCard>()
would return only the payments that used a card, for example.

Updating the data inside a TPH entity uses all the normal conventions. But changing
the type of the entity (from PaymentCard to PaymentCash) is possible but difficult. You
need to set the discriminator value in your code and configure the discriminator value’s
AfterSaveBehavior to PropertySaveBehavior.Save.

Listing 7.22   The updated application’s DbContext with the two DbSet<T> properties

public class Chapter07DbContext : DbContext
{
 //… other code removed

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 //… other configuretions removed
 modelBuilder.Entity<Payment>()
 .HasDiscriminator(b => b.PType)
 .HasValue<PaymentCash>(PTypes.Cash)
 .HasValue<PaymentCard>(PTypes.Card);

 entity.Property(p => p.PType)
 .Metadata.AfterSaveBehavior =
 PropertySaveBehavior.Save;
 }
}

NOTE   EF Core 2.1 adds a further small, but useful improvement to THP han-
dling. I list this in section B.2.4.

7.8.3	 Table splitting—mapping multiple entity classes
to the same table

The final feature, called table splitting, allows you to map multiple entities to the same
table. This is useful if you have a large amount of data to store for one entity, but your
normal queries to this entity need only a few columns. It’s like building a Select query
into an entity class; the query will be quicker because you’re loading only a subsection
of the whole entity’s data.

This example has two entity classes, BookSummary and BookDetail, that both map
to a database table called Books. Figure 7.11 shows the result of configuring these two
entity classes as a table split.

To change the type of a TPH entry, you need
to configure the discriminator to be saved,
so your change is saved to the database.

204 Chapter 7  Configuring relationships

The BookSummary entity class maps
to the Books table and defines the first
three columns of that table.

public class BookSummary
{
 public int BookSummaryId
 { get; set; }
 public string Title
 { get; set; }
 public string AuthorString
 { get; set; }
 public BookDetail Details
 { get; set; }
}

CREATE TABLE [Books] (
 [BookSummaryId] int NOT NULL IDENTITY,
 [Title] nvarchar(max) NULL,
 [AuthorsString] nvarchar(max) NULL,

 [Description] nvarchar(max) NULL,
 [Price] decimal(18, 2) NOT NULL,

 CONSTRAINT [PK Book]
 PRIMARY KEY ([BookId])
);

public class BookDetail
{
 public int BookDetailId
 { get; set; }
 public string Description
 { get; set; }
 public decimal Price
 { get; set; }
}

The BookDetail entity class is included in
the BookSummary entity class, and defines
two more columns in the Books table.

Figure 7.11   The result of using the table-splitting feature in EF Core to map two entity classes,
BookSummary and BookDetail, to one table, Books. You do this because a book needs a lot of
information, but most queries need only the BookSummary part. The effect is to build a preselected set
of columns for faster querying.

Here’s the configuration code to achieve this.

Listing 7.23   Configuring a table split between BookSummary and BookDetail

public class SplitOwnDbContext : DbContext
{
 //… other code removed

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<BookSummary>()
 .HasOne(e => e.Details)
 .WithOne()
 .HasForeignKey<BookDetail>
 (e => e.BookDetailId);
 modelBuilder.Entity<BookSummary>()
 .ToTable("Books");

 modelBuilder.Entity<BookDetail>()
 .ToTable("Books");
 }
}

After you’ve configured the two entities as a table split, you can query the BookSummary
entity on its own and get the summary parts. To get the BookDetails part, you can
either query the BookSummary entity and load the Details relationship property at the

Defines the two books as having a
relationship in the same way that you’d
set up a one-to-one relationship

In this case, the HasForeignKey method
must reference the primary key in the
BookDetail entity.

You must map both entity classes to the
Books table. That triggers the table
splitting.

	 205Summary

same time (say, with an Include method) or read just the BookDetails part straight
from the database.

A few points before leaving this topic:

¡	When you create a new entity that’s table-split to be added into the database,
you must define all the parts of the table split. For example, in the case of the
BookSummary and the BookDetails case, BookSummary must have an instance
of the BookDetails entity class assigned to its Details property before you call
SaveChanges.

¡	You can update an individual entity class in a table split individually; you don’t
have to load all the entities involved in a table split to do an update.

¡	You’ve seen a table split to two entity classes, but you can table-split any number
of entity classes.

Summary

¡	If you follow the By Convention naming rules for foreign keys, EF Core can find
and configure most normal relationships.

¡	Two Data Annotations provide a solution to a couple of specific issues around
foreign keys with names that don’t fit the By Convention naming rules.

¡	The Fluent API is the most comprehensive way to configure relationships, and
some features, such as setting the action on deletion of the dependent entity, are
available only via the Fluent API.

¡	EF Core provides three alternative ways to map entity classes to a database table:
owned types, table per hierarchy, and table splitting.

For readers who are familiar with EF6:

¡	The basic process of configuring relationships in EF Core is the same as in EF6.x,
but the Fluent API commands have changed significantly.

¡	EF6.x adds foreign keys if you forget to add them yourself, but they aren’t acces-
sible via normal EF6.x commands. EF Core allows you to access them via shadow
properties.

¡	EF6.x provides a many-to-many relationship directly, but EF Core doesn’t. You
need to use two one-to-many relationships with a linking table in the middle.

¡	EF Core has introduced new features, such as access to shadow properties, alter-
nate keys, and backing fields.

¡	EF Core’s feature called owned types provides similar features to EF6.x’s complex
types.

¡	EF Core’s table-per-hierarchy feature is similar to EF6.x’s table-per-hierarchy
feature.

¡	EF Core’s table-splitting feature is similar to EF6.x’s table-splitting feature.

206

8Configuring advanced features and
handling concurrency conflicts

This chapter covers
¡	Using backing fields with relationships

¡	Using an SQL user-defined function in EF Core

¡	Configuring SQL column properties

¡	Handling concurrency conflicts

This chapter starts with more-advanced approaches to working with a database.
These include a method to “hide” a relationship from outside changes, and various
ways to move calculations into the database. Then we’ll cover several configuration
features that aren’t the normal, run-of-the-mill features, but provide access or con-
trol of columns in the database. Although you won’t use these features every day,
they can be useful in specific circumstances.

The second half of this chapter is about handling multiple, near-simultaneous
updates of the same piece of data in the database; these updates can cause prob-
lems known as concurrency conflicts. By default, EF Core uses an Optimistic Concurrency
pattern, meaning it’ll take the last value that was written to the database. You’ll learn
how to configure just one property/column or a whole entity/table to catch concur-
rency conflicts, and how to capture and then write code to correct the concurrency
conflict.

	 207Advanced feature—using backing fields with relationships

8
8.1	 Advanced feature—using backing fields

with relationships
Chapter 6 introduced backing fields. In summary, with backing fields you can save/
load a private field to the database, which allows you to control access to that value. You
can do the same to a navigational property, which is especially useful for controlling
access to collection navigational properties—the adding or removing of entries to one-
to-many relationships. It’s difficult to describe the benefits of this in a few words, so
I’ll describe a problem and then we’ll solve it with a navigational relationship backing
field.

EF6   Using a backing field for a navigational property is new in EF Core. Back-
ing fields provide a feature that developers who apply DDD principles to the
database will find useful for locking down access to what DDD calls aggregates.

8.1.1	 The problem—the book app performance is too slow

In our book app, the average of the review votes for a Book is found, obviously, by aver-
aging the individual votes in all the reviews associated with the book, referred to as
average votes. This calculation takes time and significantly slows the performance of the
site. You therefore want to precalculate the average vote value for each book.

The problem is, if you precalculate the average votes, you must ensure that no
changes to the database could invalidate the precalculated value. You therefore must
intercept every conceivable way in which the average votes value could be changed. In
this example, you’ll change the Book’s Reviews collection navigational property so that
the developer can’t update it directly, but has to go through your code, which recalcu-
lates the average votes value on every Review addition/removal.

NOTE   This is an example of a navigational backing field and as such doesn’t cover
all the other ways in which the average votes value could be changed, such as
someone changing the rating in a Review entity. In section 13.4.2, which uses
precalculated values to improve performance, you’ll handle all the possible
ways in which the average votes value could become out-of-date.

8.1.2	 Our solution—IEnumerable<Review> property
and a backing field

In this example, our solution is to change the existing Book’s Reviews property from
an ICollection<Review> to an IEnumerable<Review> collection, and “hide” the real
Reviews collection in an EF Core navigational backing field. You’ll then provide two
new methods, AddReview and RemoveReview, to your Book entity class, which a devel-
oper must use to change the Reviews linked to a Book.

The first change is to the Reviews collection:

1	 Change the type of the Reviews collection navigational property from ICollec-
tion<Review> to IEnumerable<Review>. Because IEnumerable<T> doesn’t sup-
port Add/Remove, the developer can’t change this collection directly.

208 Chapter 8  Configuring advanced features and handling concurrency conflicts

2	 Create a backing field of type List<Review> called _reviews, which EF Core will
automatically configure by convention.

3	 With that done, you can add the following parts to the Book entity class:

a	 An AddReview method to add a Review entity to the _reviews backing field.

b	 A RemoveReview method to remove a Review entity from the _reviews back-
ing field.

c	 Finally, both methods, AddReview and RemoveReview, will recalculate the aver-
age vote and place it in a property called CachedVotes.

The following listing shows the altered Book entity class with all the changes.

Listing 8.1   The Book entity class showing the backing field properties

public class Ch07Book
{
 private readonly List<Review> _reviews =
 new List<Review>();

 public int BookId { get; set; }
 public string Title { get; set; }

 public double? CachedVotes { get; private set; }

 public IEnumerable<Review> Reviews => _reviews.ToList();

 public void AddReview(Review review)
 {
 _reviews.Add(review);
 CachedVotes =
 _reviews.Average(x => x.NumStars);
 }

 public void RemoveReview(Review review)
 {
 _reviews.Remove(review);
 CachedVotes = _reviews.Any()
 ? _reviews.Average(x => x.NumStars)
 : (double?)null;
}
}

Adds a backing field, which is a
list, and tells EF Core to use this
for all reads and writes

Holds a recalculated average
of the reviews. It’s read-only,
so it can’t be changed outside
this class.

Returns a copy of the reviews that were loaded. By
taking a copy, no one can alter the list by casting
IEnumerable<T> to List<T>.

Adds a method to allow a new Review to
be added to the _reviews collection

Adds the new review to the backing field
_reviews. This updates the database on
the call to SaveChanges.

Recalculates the average
votes for the book

Adds a method to remove a review
from the _reviews collection

Removes the review from the list. This updates
the database on the call to SaveChanges.

If there are reviews, you recalculate
the average votes for the book.If there are no reviews,

you set the value to null.

	 209DbFunction—using user-defined functions with EF Core

You do need to add some Fluent API configuration to tell EF Core to always read and
write to the _reviews field. (I explain this configration in section 6.14.2.)

Listing 8.2   Configuring the backing field to read/write only to the _reviews field

public static void Configure
 (this EntityTypeBuilder<Ch07Book> entity)
{
 entity.HasKey(p => p.BookId);

 //see https://github.com/aspnet/EntityFramework/issues/6674
 entity.Metadata
 .FindNavigation(nameof(Ch07Book.Reviews))
 .SetPropertyAccessMode
 (PropertyAccessMode.Field);
}

The solution is good, but not foolproof in its current form, with issues around concur-
rent updates and other ways the developer can change NumStars. But the aim of this
example is to show you how backing fields can be used to control access to navigational
properties.

8.2	 DbFunction—using user-defined functions
with EF Core
SQL has a useful feature called user-defined functions (UDFs) that allow you to write SQL
code that will be run in the database server. UDFs are useful because you can move a
calculation from your software into the database, which can be more efficient because
it can access the database directly. EF Core provides a feature called database scalar
function mapping, DbFunction for short, which allows you to reference a UDF in your
database as if it were a local method.

DEFINITION   An SQL user-defined function (UDF) is a routine that accepts param-
eters, performs an action (such as a complex calculation), and returns the
result of that action as a value. The return value can either be a scalar (single)
value or a table, but for database scalar function mapping and computed columns
(see section 8.3), the function must return a scalar value of the correct type.

I think the DbFunction feature is useful, especially when you want to improve the per-
formance of an EF Core query. For instance, in section 13.2, on performance tuning,
you’ll use DbFunction to bring a 60% performance improvement to one part of the
book list query.

Using MetaData for this entity class, you
can access some of the deeper features
of the entity class.

Finds the navigation property by
using the name of the property

Sets the access mode so EF Core will
read/write only to the backing field

210 Chapter 8  Configuring advanced features and handling concurrency conflicts

The steps to using a UDF in EF Core are as follows:

1	 Configuration:

a	 Define a method (must be static in EF Core 2.0, but can be static or an instance
in EF Core 2.1 onward) that has the correct name, input parameters, and out-
put type that matches the definition of your UDF. This acts as a reference to
your UDF.

b	 Declare the method in the application’s DbContext, or in a separate class.

c	 Add the EF Core configuration commands to map your static UDF reference
method to a call to your UDF code in the database.

2	 Database setup: Manually add your UDF code to the database by using some form
of SQL command.

3	 Usage: Now you can use the static UDF reference in a query. EF Core will convert
that method into a call to your UDF code in the database.

With that process in mind, let’s detail the three stages: configuration, database setup,
and usage.

8.2.1	 Configuring a scalar user-defined function

The configuration consists of defining a static method to represent your UDF and then
registering that method with EF Core at configuration time. For this example, you’re
going to produce a UDF, called AverageVotes, that works out the average review votes
for a book. It takes in the primary key of the book you want to calculate for and returns
a nullable double value—null if no reviews exist, or the average value of the review
votes if there are any reviews.

Figure 8.1 shows the method that will represent the AverageVotes UDF in your soft-
ware, with rules for forming this method. Note that the software method should never
actually be called, which is why it throws an exception if it is.

By default, the name of the method
is used as the name of the UDF
(but you can set a different UDF
name via configuration).

This is the return value of your UDF. You need to
pick the correct .NET type to match the SQL type
your UDF returns. Remember too that SQL types
can be NULL under some circumstances.

It’s possible that your query using the scalar UDF could be converted into a
client vs. server evaluation (see section 2.5), which won’t work. This exception
message makes it obvious what has happened so you can fix the query.

The number, type, and order
(but not the names) of the
method parameters must
match the parameters of
your UDF.

public static double?
 AverageVotes
 (int BookId)
{
 throw new NotImplementedException(
 "Called in Client vs. Server evaluation.");

Figure 8.1   An example static method that will represent your UDF inside your EF Core code. The
captions highlight the parts that EF Core will use to map any calls to your UDF code, and the rules that
you need to follow when building your own method to map to your UDF.

	 211DbFunction—using user-defined functions with EF Core

You can register your static UDF representation method with EF Core in one of two
ways: by using either the DbFunction attribute or the Fluent API. You can use the
DbFunction attribute if you place the method representing the UDF inside your appli-
cation’s DbContext. In this example of this approach, the DbFunction attribute and
the static method are in bold.

Listing 8.3   Using a DbFunction attribute with a static method inside DbContext

public class Chapter08EfCoreContext : DbContext
{
 public DbSet<Book> Books { get; set; }
 //… other code removed for clarity

 public Chapter08EfCoreContext(
 DbContextOptions<Chapter08EfCoreContext> options)
 : base(options) {}

 [DbFunction(Schema = "dbo")]
 public static double? AverageVotes(int id)
 {
 throw new NotImplementedException(
 "Called in Client vs. Server evaluation.");
 }

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {
 //… no Fluent API needed
 }
 }

The other approach is to use the Fluent API to register the method as a UDF repre-
sentation. The advantage of this is you can place the method in any class, which makes
sense if you have a lot of UDFs. This listing shows the Fluent API approach for the same
method, AverageVotes, but it’s defined in a class called MyUdfMethods, as shown in
figure 8.1.

Defines the method as being a representation
of your UDF. The DbFunction can be used
without any parameters, but here it’s setting
the schema because EF Core 2.0 didn’t set the
default schema property (fixed in 2.1).

The return value, the method name,
and the number, type, and order of
the method parameters must match
your UDF code.

If your query that uses the
scalar UDF is converted into
a client vs. server evaluation,
this software method will
be executed client-side.
NotImplementedException will
be called if that happens; you
can then decide what you want
to do about it.

If you use DbFunction, you don’t need any
Fluent API to register the static method.

212 Chapter 8  Configuring advanced features and handling concurrency conflicts

Listing 8.4   Registering your static method representing your UDF using Fluent API

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{
 //… other configuration removed for clarity

 modelBuilder.HasDbFunction(
 () => MyUdfMethods.AverageVotes(default(int)))
 .HasSchema("dbo");
}

After you’ve used either of these configuration approaches, EF Core knows how to
access your UDF in a query.

8.2.2	 Adding your UDF code to the database

Before you can use the UDF you’ve configured, you need to get your UDF code into
the database. A UDF is normally a set of SQL commands that run on the database,
so you need to add your UDF code to the database manually. Chapter 11, which is
about database migrations, discusses ways of combining any SQL setup, such as adding
a UDF, into your database migrations.

Next, you’ll work through a simple example, more applicable to unit testing than
production usage, showing what a UDF looks like and how to add it to a database.
This listing uses the EF Core ExecuteSqlCommand command to add the SQL code that
defines the AverageVotes UDF.

Listing 8.5   Adding your UDF to the database via the ExecuteSqlCommand method

public const string UdfAverageVotes =
 nameof(MyUdfMethods.AverageVotes);

context.Database.ExecuteSqlCommand(
 $"CREATE FUNCTION {UdfAverageVotes} (@bookId int)" +
 @" RETURNS float
 AS
 BEGIN

Fluent API is placed inside the
OnModelCreating method inside
your application’s DbContext.

HasDbFunction will register
your static method as the way
to access your UDF.

Adds a call to your static method
representation of your UDF code. The
method isn’t called, but the lambda
function is read to find out the name,
return type, and parameters of the
method.

You can add options. Here you add
HasSchema, as EF Core 2.0 had a
problem of not setting the default
schema property (fixed in 2.1). Other
options, such as HasName, set the name
of the UDF in the database.

Captures the name of the static method that
represents your UDF and uses it as the name
of the UDF you add to the database

Uses EF Core’s ExecuteSqlCommand
method to add the UDF into the database

The SQL code that
follows adds a UDF to an
SQL server database.

	 213Computed column—a dynamically calculated column value

 DECLARE @result AS float
 SELECT @result = AVG(CAST([NumStars] AS float))
 FROM dbo.Review AS r
 WHERE @bookId = r.BookId
 RETURN @result
 END");

This code should be executed when a new database is created. As I said, chapter 11
gives more details on how to do this properly in a production environment.

8.2.3	 Using a registered scalar UDF in your database queries

Having registered the UDF as mapped to your static method, you’re ready to use this in
a database query. You can use this method as a return variable, or as part of the query
filter or sorting. Here’s a code snippet that returns information about a book, includ-
ing the average review votes:

var bookAndVotes = context.Books.Select(x => new Dto
{
 BookId = x.BookId,
 Title = x.Title,
 AveVotes = MyUdfMethods.AverageVotes(x.BookId)
}).ToList();

This produces the following SQL code to run on the database, with the UDF call in
bold:

SELECT [b].[BookId], [b].[Title],
[dbo].AverageVotes([b].[BookId]) AS [AveVotes]
FROM [Books] AS [b]

NOTE   EF Core can calculate the average without using a UDF via the LINQ
command x.Reviews.Average(q => q.NumStars). The calculation of the
average votes is a running theme in this book, so you use it in the AverageVotes
UDF example too.

UDFs can be used in any part of an EF Core query, either as return values, or for sort-
ing or filtering. Here’s another example, where you return only books whose average
review is 2.5 or better:

var books = context.Books
 .Where(x =>
 MyUdfMethods.AverageVotes(x.BookId) >= 2.5)
.ToList();

8.3	 Computed column—a dynamically calculated
column value
Another useful SQL-side feature is a computed column, as it too can move some of
the calculation over to the database. A computed column is a column whose value is cal-
culated when you read the column, possibly by using other columns in the same row.
For instance, the SQL computed column containing [TotalPrice] AS (NumBook *

214 Chapter 8  Configuring advanced features and handling concurrency conflicts

BookPrice) would dynamically calculate the total price for that order. The result can
be returned or used for sorting, filtering, and so on.

EF6   You can use computed columns in EF6.x, but EF6.x can’t create them for
you, so you have to add them via a direct SQL command. EF Core now provides
a configuration method to define computed columns so that when EF Core
creates or migrates a database, it’ll add the computed column.

This example provides another take on the private date-of-birth backing fields in chap-
ter 6, where you wanted to hide the exact date. In this example, you obscure the date
of birth by using a computed column to return just the year of the person’s birth. You
declare the property in the normal way in the class, as shown in the following listing.

Listing 8.6   Person entity class with computed column property YearOfBirth

public class Person
{
 private DateTime _dateOfBirth;

 public int PersonId { get; set; }
 public string Name { get; set; }
 public int YearOfBirth { get; private set; }
 …

Then you need to configure the column. The only way to do this is via the Fluent API.
This listing shows this being done in bold, along with the backing field that the com-
puted column accesses.

Listing 8.7   Configuring a computed column

protected override void OnModelCreating
 (ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Person>()
 .Property<DateTime>("DateOfBirth")
 .HasField("_dateOfBirth")

 modelBuilder.Entity<Person>()
 .Property(p => p.YearOfBirth)
 .HasComputedColumnSql(
 "DatePart(yyyy, [DateOfBirth])");
}

Figure 8.2 shows what happens when you update the Person table. EF Core knows that
the table contains a computed column, so reads the value back after an add or update.

The column that you’ll set
up as computed. You give it
a private setter, as it’s a
read-only property.

Configures the backing field, with
the column name DateOfBirth

Configures the property as a computed
column and provides the SQL code that
the database server will run

	 215Setting a default value for a database column

1. When you add or update a Person
 entity, EF Core knows that the
 YearOfBirth property is a computed
 column, so it reads back that column.

2. When read, the computed column runs the
 function DatePart, which takes the current
 value of the DateOfBirth column to calculate
 the value of the YearOfBirth column.

entity.Name = "Person";
context.SaveChanges();

SET NOCOUNT ON;
UPDATE [Persons] SET [Name] = @p0
WHERE [PersonId] = @p1;
SELECT [YearOfBirth]
FROM [Persons]
WHERE @@ROWCOUNT = 1
 AND [PersonId] = @p1;

C# Code SQL commands created by EF Core

Figure 8.2   Because EF Core knows that YearOfBirth is a computed column, it’ll read back the
value of that column into the entity that took part in an addition or update to the row. When you read a
computed column, the database server runs the SQL code to recalculate the value to return.

Computed columns can be quite useful for several reasons. First, the value of the col-
umn is calculated using the SQL code associated with the column, so the column’s
value is always up-to-date when you access it. Second, some calculations can be done
more efficiently in SQL, such as some string concatenations. You can also call system
or UDFs (see section 8.2), with columns as parameters, which gives you a wide range of
features.

The disadvantage of computed columns is that each read causes a recalculation of
the value. For simple calculations, the compute time will be minimal, but if you call a
UDF that accesses the database, the time taken to read the data from the database can
increase.

8.4	 Setting a default value for a database column
When you first create a .NET type, it has a default value: for an int, it’s 0; for a string,
it’s null, and so on. Sometimes it’s useful to set a different default value for a property;
if you asked someone their favorite color, but they didn’t reply, you could provide the
default string not given instead of the normal null value.

You could set the default value in .NET by using the C# 6.0 autoproperty initializer
feature with code such as this:

 public string Answer { get; set; } = "not given";

EF Core provides three ways to set a default value for database columns, which go
deeper than the C# 6.0 autoproperty initializer feature:

¡	A constant value is added to the column definition, and the database server
applies that when a new row is added.

¡	An SQL fragment (a small, self-contained piece of SQL) is added to the column
definition, and the database server applies that when a new row is added.

¡	A value is dynamically created by your code every time a new entity is added to the
database—the entity’s State is set to Added. This uses EF Core’s ValueGenerator
class.

216 Chapter 8  Configuring advanced features and handling concurrency conflicts

Before exploring the pros and cons of each approach, let’s define a few things that all
the EF Core’s default value-setting methods have in common:

¡	Defaults can be applied to properties, backing fields, and shadow properties.
We’ll use the generic term column to cover all three, because they all end up being
applied to a column in the database.

¡	Default values—such as int, string, DateTime, GUID, and so on—apply only to
scalar (nonrelational) columns.

¡	EF Core will apply a new default value only if the property contains the CLR
default value appropriate to its type (it has the value it was given when it was first
created).

¡	EF Core’s default value methods work at the entity instance level, not the class
level. The defaults won’t be applied until you’ve called SaveChanges, or in the
case of the value generator, when you use the Add command to add the entity.

Just to be clear: default values happen only on new rows added to the database. They
don’t apply to updates. Now you’ll look at the three ways of setting a default value,
starting with the simplest method, HasDefaultValue.

EF6   These three methods for setting a default value are new to EF Core. EF6.x
has no equivalent commands.

8.4.1	 Adding a constant as a default constraint

With EF Core, you can, via the Fluent API only, add a new SQL default constraint to a
column definition in the database. The following code sets a default date of 1 January
2000 to the column DateOfBirth in the SQL table called People:

protected override void OnModelCreating
 (ModelBuilder modelBuilder)
{
 modelBuilder.Entity<DefaultTest>()
 .Property("DateOfBirth")
 .HasDefaultValue(new DateTime(2000,1,1));
 …
}

The SQL code that EF Core produces, if it’s asked to create/migrate an SQL Server
database, looks like the following SQL snippet, with the default constraint in bold:

CREATE TABLE [Defaults] (
 [Id] int NOT NULL IDENTITY,
 -- other columns left out
 [DateOfBirth] datetime2 NOT NULL
 DEFAULT '2000-01-01T00:00:00.000',
 CONSTRAINT [PK_Defaults] PRIMARY KEY ([Id])
);

If the column in a new entity has the CLR default value, EF Core doesn’t provide a value
for that column in the SQL INSERT, which means the database server will apply the
default constraint of the column definition to provide a value to insert in the new row.

	 217Setting a default value for a database column

This feature doesn’t add a lot over using the C# 6.0 autoproperty initializer if the
database is accessed only by EF Core. But if your application, or another application,
uses direct SQL commands, this feature can be useful, as the defaults will apply to any
access to the database. The downside over the C# 6.0 autoproperty initializer is that the
default value is set in the entity class only after the entity has been written to the data-
base, but EF core will read the value back when SaveChanges is called.

8.4.2	 Adding an SQL fragment as a default constraint

The SQL syntax of a default constraint allows the call of a function to get the new
default value, which allows interesting possibilities. For instance, you can call a sys-
tem function that returns the current date/time, which for SQL Server is getdate
or getutcdate. This function is executed at the time that the new row is added to
the table, which means you can automatically capture the exact time that the row was
inserted.

The following code shows you how to configure this using EF Core’s Fluent API:

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<DefaultTest>()
 .Property(x => x.CreatedOn)
 .HasDefaultValueSql("getutcdate()");
 …
}

The SQL commands to create the table look the same as the previous example, where
you provided a constant value, but now it holds the system function surrounded by
brackets. If you want to use this column to track when the row was added, you need to
make sure the .NET property isn’t set by code (it remains at the default value). You do
this by using a property with a private setter. The following code snippet shows a prop-
erty with a private setter and creates a simple tracking value that automatically tells you
when the row was first inserted into the database:

public DateTime CreatedOn {get; private set;}

This is a useful feature. In addition to accessing system functions such as getutcdate,
you can place your own SQL UDFs in a default constraint. There’s a limit to the SQL
commands that you can place—for instance, you can’t reference another column in
the default constraint, but it can provide useful features over the use of the C# 6.0 auto-
property initializer.

8.4.3	 Creating a value generator to generate
a default value dynamically

The third and last method to add a default value isn’t executed in the database, but
inside EF Core’s logic. EF Core allows the class that inherits from the class Value
Generator or ValueGenerator<T> to be configured as a value generator for a property

218 Chapter 8  Configuring advanced features and handling concurrency conflicts

or backing field. This class will be asked for a default value if both of the following
statements are true:

¡	The entity’s State is set to Added; the entity is deemed to be a new entity to be
added to the database.

¡	The property hasn’t already been set; its value is at the .NET type’s default value.

As an example, the next listing shows a simple value generator that creates a unique
string by using the Name property in the entity plus a unique number to create a value
for the property OrderId.

Listing 8.8   A value generator producing a unique string with the Name property

public class OrderIdValueGenerator
 : ValueGenerator<string>
{
 public override bool
 GeneratesTemporaryValues => false;

 public override string Next
 (EntityEntry entry)
 {
 var name = entry.
 Property(nameof(DefaultEntity.Name))
 .CurrentValue;
 var uniqueNum = DateTime.UtcNow.Ticks;
 return $"{name}-{uniqueNum}";
 }
}

This is the code to configure the use of a value generator:

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<DefaultTest>()
 .Property(p => p.OrderId)
 .HasValueGenerator((p, e) =>
 new OrderIdValueGenerator());
 …
}

Note that the value generator’s Next method is called when you Add the entity via
context.Add(newEntity), but before the data is written to the database. Any data-
base-provided values, such as the primary key using SQL IDENTITY, won’t be set when
the Next method is called.

NOTE   There’s a NextAsync version too, if you need to implement an async
version; for instance, if you need to access the database while generating the

Your value generator needs to inherit
from EF Core’s ValueGenerator<T>.

Set this to false if you want
your value to be written to
the database.

Called when you Add the
entity to the DbContext.

Gives you access to the entity that the
value generator creates a value for. You
can access its properties, etc.

Selects the property called
Name and gets its current value

You need to return a value of the type
you’ve defined as T in the inherited
ValueGenerator<T>.

	 219Sequences—providing numbers in a strict order

default value. In that case, you need to use the AddAsync method when adding
the entity to the database.

The value generator is a specialized feature with limited applications, but one that’s
worth knowing about. The next chapter shows you how to intercept writes to the data-
base to add tracking or other information, which is more work but provides more capa-
bilities than the value generator.

8.5	 Sequences—providing numbers in a strict order
Sequences in a database are a way to produce numbers in a strict order with no gaps—
for instance, 1,2,3,4. Key values created by the SQL IDENTITY command aren’t guaran-
teed to be in sequence; for instance, they might go 1,2,10,11. Sequences are useful when
you want a guaranteed known sequence, such as for an order number for purchases.

The way sequences are implemented differs between database servers, but in gen-
eral, a sequence isn’t assigned to a specific table or column, but to a schema. Every time
a column wants a value from the sequence, it asks for it. EF Core can set up a sequence
and then, by using the HasDefaultValueSql method, the value of a column can be set
to the next in the sequence.

The following listing shows an Order entity class that has an OrderNo that uses a
sequence. The HasDefaultValueSql SQL fragment is for an SQL Server database, and
will be different for other database servers.

Listing 8.9   The DbContext with the Fluent API configuration and the Order class

class MyContext : DbContext
{
 public DbSet<Order> Orders { get; set; }

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 modelBuilder.HasSequence<int>(
 "OrderNumbers", "shared")
 .StartsAt(1000)
 .IncrementsBy(5);

 modelBuilder.Entity<Order>()
 .Property(o => o.OrderNo)
 .HasDefaultValueSql(
 "NEXT VALUE FOR shared.OrderNumbers");
 }
}

public class Order
{
 public int OrderId { get; set; }
 public int OrderNo { get; set; }
}

EF6   This is a new feature in EF Core, with no corresponding feature in EF6.

Creates a sequence OrderNumber in the
schema “shared”. If no schema is
provided, it’ll use the default schema.

These are optional, and allow you to
control the sequence start and increment.
The default is start at 1 and increment
by 1.

A column can access the sequence
number via a default constraint. Each
time the NEXT VALUE command is called,
the sequence is incremented. The SQL
shown is for an SQL Server database and
will be different for other database
providers.

220 Chapter 8  Configuring advanced features and handling concurrency conflicts

8.6	 Marking database-generated properties
When working with an existing database, you may need to tell EF Core about specific
columns that are handled differently from what EF Core expects. If your existing data-
base has a computed column that you didn’t set up using EF Core’s Fluent API (see
section 8.2), EF Core needs to be told the column is computed so it handles the col-
umn properly.

I should say straightaway that marking columns in this way isn’t the norm, because
EF can work out the column attributes itself based on the configuration commands
you’ve provided. You don’t need any of the features in this section if you use EF Core to:

¡	Create or migrate the database.
¡	Reverse-engineer your database. (EF Core reads your database schema and gen-

erates your entity classes and application DbContext.)

If you want to use EF Core with an existing database without reverse-engineering
(described in chapter 11), you need to tell EF Core about columns that don’t conform
to its normal conventions. The following sections will teach you how to mark three
types of columns, starting with the most important type:

¡	Generated columns
¡	Columns added on insert
¡	“Normal” columns

EF6   EF6 has the same data annotation for setting the database-generated
properties, but EF Core provides Fluent API versions too.

8.6.1	 Marking a column that’s generated on an addition or update

EF Core needs to know if a column’s value is generated by the database, such as a com-
puted column, if for no other reason than it’s read-only. EF Core can’t “guess” that the
database sets a column’s value, so you need to mark it as such. You can use Data Anno-
tations or the Fluent API.

The data annotation for an add-or-update column is shown in the following code
snippet. Here, EF Core is using the existing DatabaseGeneratedOption.Computed set-
ting. The setting is called Computed because that’s the most likely reason, but there are
other ways that a database column can be updated on adding a new row or updating the
row:

public class PersonWithAddUpdateAttibutes
{
 …

 [DatabaseGenerated(DatabaseGeneratedOption.Computed)]
 public int YearOfBirth { get; set; }
}

	 221Marking database-generated properties

This code snippet uses the Fluent API to set the add-or-update setting to the column:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Person>()
 .Property(p => p.YearOfBirth)
 .ValueGeneratedOnAddOrUpdate();
 …
}

8.6.2	 Marking a column’s value as set on insert of a new row

When a row is first inserted into the database, a column can be given a value in two
common ways:

¡	By some form of key generation, of which SQL’s IDENTITY command is the pri-
mary method. In these cases, the database creates a unique value to place in the
column when a new row is inserted.

¡	Via an SQL default constraint, which provides a default value if no value is given
in the INSERT command.

Taking the key generation case first, I’d say that EF Core normally knows via other
methods whether the key is going to be generated. Section 6.3.5 talked about how EF
Core can find a primary key, or you can define the primary key (section 6.8).

It’s unusual to need to tell EF Core that a column’s value is created via the IDENTITY
command. EF Core requires a primary key of some form, and the database provider can
work out from the key’s type if it’s one that the database server can create a unique value
for. But if you do need to specify that the column value is created by identity, you can use
Data annotations or the Fluent API. This shows the use of Data Annotations:

public class MyClass
{
 public int MyClassId { get; set;}
 …
 [DatabaseGenerated(DatabaseGeneratedOption.Identity)]
 public int SecondaryKey { get; set;}
}

The second example does the same thing, but using the Fluent API. For this, you have
a column with a default constraint, and the Fluent API code to set this is shown in the
following code snippet:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Person>()
 .Property("DateOfBirth")
 .ValueGeneratedOnAdd();

 …
}

222 Chapter 8  Configuring advanced features and handling concurrency conflicts

8.6.3	 Marking a column as “normal”

In the last case, EF Core assumes that the column has some form of key generation
applied to it, but you don’t have/want a key generated. Although this rarely occurs,
one case I know about is a primary key using a GUID, where your software supplies the
value.

DEFINITION   A GUID is a globally unique identifier, a 128-bit integer that can be
used safely anywhere. It makes a good key value in a few cases. In one case,
the software wants to define the key, normally because some other part of the
software needs the key before the row is inserted. In another case, you have
replicated databases with inserts into both/all databases, which makes creating
a unique key more difficult.

Our tests show that if you use a GUID as a primary key, EF Core will automatically
create a GUID value if you don’t supply one (it uses a GUID value generator inside EF
Core). You can turn this off with a data annotation:

public class MyClass
{
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 public GUID MyClassId { get; set;}
 …
}

You can also do this by using the following Fluent API configuration:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<MyClass>()
 .Property("MyClassId")
 .ValueGeneratedNever();
 …
}

8.7	 Handling simultaneous updates—concurrency
conflicts
Concurrency conflicts are a big topic, so let me start by explaining what simultaneous
updates look like before explaining why they can be a problem and how you can han-
dle them. Figure 8.3 shows an example of simultaneous updates to the PublishedOn
column in a database. This happens because of two separate pieces of code running in
parallel, which read the column and then update it.

By default, EF Core uses an Optimistic Concurrency pattern. In figure 8.3, this means
that the first update is lost because it’s overwritten by the second. Although this is often
acceptable, in some cases overwriting someone else’s update is a problem. The next sec-
tions explain unacceptable overwrites, known as concurrency conflicts, and how EF Core
allows you to detect and fix such conflicts.

	 223Handling simultaneous updates—concurrency conflicts

1. The first thread reads the book. The original
 PublishedOn was 1/1/50, and it changes to 1/1/2051.

2. The second thread reads the book and gets the original PublishedOn was 1/1/2050. It
 then changes the PublishedOn date to 1/1/2052, which overwrites the first task’s update.

1. Reads book. Published on = 1/1/2050
 2. Update date to 1/1/2051
 3. SaveChanges This update is overwritten.

1. Reads book. Published on = 1/1/2050
 2. Update date to 1/1/2052
 3. SaveChanges

Time

Optimistic concurrency
means the last write wins.

Figure 8.3   Two pieces of code (say, on a web application) that are running in parallel and make a
near-simultaneous update of the same column (in this case, the publication date of the same book).
By default, EF Core allows the second write to win, and the first write is lost. This is called optimistic
concurrency, but the “last write win” rule may not be useful in all cases.

8.7.1	 Why do concurrency conflicts matter?

If you think about it, a setting can be overwritten anyway. For instance, you could set
the publication date of a book to 1/1/2020, and tomorrow you could change it to
1/1/2040, so why are concurrency conflicts such a big deal?

In some cases concurrent conflicts do matter. For instance, in financial transactions,
you can imagine that the purity and auditing of data is going to be important, so you
might want to guard against concurrency changes. Another concurrent conflict exists
in the example in section 7.10, where you calculated the average book review votes.
In that case, if two people added reviews at the same time, that recalculation would
be incorrect, so you need to detect and fix that conflict if that example is going to be
robust.

Other human-level concurrent conflicts can occur. Instead of two tasks clashing on
updates, two users looking at screens can clash, with the same default result—the sec-
ond person to press the Submit button overwrites the update the first person thought
they had done (section 8.7.4 covers the details).

Sometimes you get around concurrency conflicts by design, by creating applications
such that dangerous concurrent updates can’t happen. For instance, in an e-commerce
website that I designed, I had an order-processing system that used background tasks,
which could’ve caused concurrent conflicts. I got around this potential problem by
designing the order processing to remove the possibility of concurrent updates:

¡	I split the customer order information into an immutable order part that never
changed. This contains data, such as what was ordered and where should it be
sent. After that order was created, it was never changed or deleted.

224 Chapter 8  Configuring advanced features and handling concurrency conflicts

¡	For the changing parts of the order, which was the order status as it moved
through the system, I created a separate table in which I added each new order
status as it occurred, with the date and time (this approach is known as event sourc-
ing). I could then get the latest order status by sorting them by date/time order
and picking the status with the newest date and time.

This design approach meant that I never updated or deleted any order data, so concur-
rent conflicts couldn’t happen. It did make handling a customer change to an order a
bit more complicated, but orders were safe from concurrent conflict issues.

But when concurrent conflicts are an issue, and you can’t design around it, EF Core
provides several features to catch and allow you to correct any concurrent conflicts. EF
Core provides two ways of detecting a concurrent update and, once detected, a way of
getting at all the relevant data so you can implement code to fix the issue.

8.7.2	 EF Core’s concurrency conflict–handling features

EF Core’s concurrency conflict-handling features consist of two ways that EF Core can
detect a concurrency update, activated by adding one of the following to an entity
class:

¡	A concurrency token, to mark a specific property/column in your entity class as one
to check for a concurrency conflict.

¡	A timestamp, which marks a whole entity class/row as one to check for a concur-
rency conflict.

EF6   EF Core concurrency-handling features are the same as in EF6.x, but
reimplemented in EF Core.

In both cases, when SaveChanges is called, EF Core produces database server code to
check updates of any entities that contain concurrency tokens or timestamps. If that
code detects that the concurrency tokens or timestamps have changed since it read
the entity, it throws a DbUpdateConcurrencyException exception. At that point, you
can use EF Core’s features to inspect the differing versions of the data and apply your
custom code to decide which of the concurrent updates wins.

Now you’ll learn how to set up the two approaches, a concurrency token and then a
timestamp, and how EF Core detects the change.

Detecting a concurrent change via concurrency token

The concurrency token approach allows you to configure one or more properties as a
concurrency token. This tells EF Core to check that the current database value is the
same as the value found when the tracked entity was loaded as part of the SQL UPDATE
command sent to the database. That way, the update will fail if the loaded value and
the current database value are different. Figure 8.4 shows an example of marking the
PublishedOn property as a concurrency token, and then a concurrency conflict occurs.

	 225Handling simultaneous updates—concurrency conflicts

1. The first thread reads the book. The original
 PublishedOn was 1/1/50, and it changes to 1/1/2051.

2. The second thread reads the book
 and gets the original PublishedOn
 was 1/1/2050. It then changes the
 PublishedOn date to 1/1/2052.

3. SaveChanges produces an UPDATE command that
 checks that the PublishedOn column value is still
 1/1/2050. This fails because the PublishedOn
 column in the database has changed, so EF Core
 throws a DbUpdateConcurrencyException.

1. Reads book. Published on = 1/1/2050
 2. Update date to 1/1/2051
 3. SaveChanges

1. Reads book. Published on = 1/1/2050
 2. Update date to 1/1/2052
 3. SaveChanges

Time

Concurrency token
applied to the

PublishedOn property

Exception thrown

Figure 8.4   Two pieces of code—say, on a web application—that are running in parallel and make a near-
simultaneous update of the PublishedOn column. Because you’ve marked the PublishedOn property
as a concurrency token, EF Core uses a modified SQL UPDATE command that performs the update only
if the database PublishedOn column is the same as it was when it read in the Book entity. If it isn’t the
same, the UPDATE fails and SaveChanges throws DbUpdateConcurrencyException.

To set this up, you add the ConcurrencyCheck data annotation to the PublishedOn
property in our ConcurrencyBook entity class, shown here. EF Core finds this data
annotation during configuration and marks the property as a concurrency token.

Listing 8.10   The ConcurrencyBook entity class, with a PublishedOn property

public class ConcurrencyBook
{
 public int ConcurrencyBookId { get; set; }
 public string Title { get; set; }

 [ConcurrencyCheck]
 public DateTime PublishedOn { get; set; }

 public ConcurrencyAuthor Author { get; set; }
}

In this case, you’ve used the ConcurrencyCheck data annotation to define the property
as a concurrency token, which has the benefit of making it clear to anyone looking at
the code that the PublishedOn property has special handling. Alternatively, you can
define a concurrency token via the Fluent API.

Listing 8.11   Setting a property as a concurrency token by using the Fluent API

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{

Tells EF Core that the PublishedOn
property is a concurrency token,
which means EF Core will check it
hasn’t changed when you update it

The OnModelCreating method is
where you place the configuration
of the concurrency detection.

226 Chapter 8  Configuring advanced features and handling concurrency conflicts

 modelBuilder.Entity<ConcurrencyBook>()
 .Property(p => p.PublishedOn)
 .IsConcurrencyToken();

 //… other configuration removed
}

Now when the same update is done, as shown at the start of this section on handling
simultaneous updates, the handling of the second update changes. Figure 8.4 shows
that when SaveChanges is called, instead of overwriting the first update, it now detects
that another task has updated the PublishedOn column and throws an exception.

Listing 8.12 simulates a concurrent update by running an SQL command that
changes the PublishedOn column between the EF Core that reads the book and then
updates the book. The SQL command represents another thread of the web applica-
tion, or another application that has access to the same database, updating the Pub-
lishedOn column. In this case, a DbUpdateConcurrencyException exception is thrown
when SaveChanges is called in the last line.

Listing 8.12   Simulating a concurrent update of the PublishedOn column

var firstBook = context.Books.First();

context.Database.ExecuteSqlCommand(
 "UPDATE dbo.Books SET PublishedOn = GETDATE()"+
 " WHERE ConcurrencyBookId = @p0",
 firstBook.ConcurrencyBookId);
firstBook.Title = Guid.NewGuid().ToString();
context.SaveChanges();

The important thing to note is that only the property marked as a concurrency token
is checked. If your SQL-simulated update changed, say, the Title property, which isn’t
marked as a concurrency token, no exception would be thrown.

You can see this in the SQL that EF Core produces to update the Title in this exam-
ple, shown next. The SQL WHERE clause contains not only the primary key of the book to
update, but also the PublishedOn column.

Listing 8.13   SQL code to update Book where PublishedOn is a concurrency token

SET NOCOUNT ON;
UPDATE [Books] SET [Title] = @p0
WHERE [ConcurrencyBookId] = @p1
 AND [PublishedOn] = @p2;
SELECT @@ROWCOUNT;

Defines the PublishedOn property as a
concurrency token, which means EF Core
checks it hasn't changed when writing
out an update

Loads the first book in the
database as a tracked
entity

Simulates another thread/application,
changing the PublishedOn column of the
same book

Changes the title in the
book to cause EF Core to
update the book

This SaveChanges will throw
DbUpdateConcurrencyException.

The test fails if the PublishedOn column
has changed, which stops the update.

Returns the number of rows
updated by this SQL command.

	 227Handling simultaneous updates—concurrency conflicts

When EF Core runs this SQL command, the WHERE clause will find a valid row to update
only if the PublishedOn column hasn’t changed from the value EF Core read in from
the database. EF Core then checks the number of rows that have been updated by
the SQL command. If the number of rows updated is zero, EF Core raises DbUpdate
ConcurrencyException to say that a concurrency conflict exists; EF Core can catch a
concurrency conflict caused by another task either changing the PublishedOn column
or deleting the row, when this task does an update.

The good thing about using a concurrency token is that it works on any database,
because it uses basic commands. The next way of detecting concurrency changes, called
a timestamp by EF Core, relies on a database server-side feature, called Row Version in
SQL server.

Detecting a concurrent change via timestamp

The second way of checking for concurrency conflicts is by using what EF Core calls a
timestamp. This works differently than the concurrency token, as it uses a unique value
provided by the database server that’s changed whenever a row is inserted or updated.
The whole entity is protected against concurrency changes, rather than specific prop-
erties/columns as with the concurrency token.

Figure 8.5 shows that when a row with a property/column marked as a timestamp is
either inserted or updated, the database server will produce a new, unique value for
that column. This has the effect of detecting an update to an entity/row whenever
SaveChanges is called.

1. When the first task calls SaveChanges, the UPDATE
 command causes the database server to set the
 ChangeCheck column to a new, unique value.

2. The second thread reads the
 Author and gets the original
 ChangeCheck of 111.

3. SaveChanges produces an UPDATE command that
 checks that the ChangeCheck column value is
 still 111. This fails because the first task’s UPDATE
 has changed the ChangeCheck value, so EF Core
 throws DbUpdateConcurrencyException.

1. Reads Author. ChangeCheck = 111
 2. Update Name to “Author1”
 3. SaveChanges

1. Reads book. ChangeCheck = 111
 2. Update Name to “Author2”
 3. SaveChanges

Time

Timestamp causes
ChangeCheck property

to get new value on
add or update

Exception thrown

Figure 8.5   Configuring a property as a timestamp means that the corresponding column in the table
must be set to a database server type that will be set to a new, unique value every time an SQL INSERT
or UPDATE command is applied to the row. (If you use EF Core to create your database, the database
provider will ensure the correct column type.) Then, when EF Core does an update, it checks that the
timestamp column has the same value as when the entity was read in. If the value is different, EF Core
will throw an exception.

228 Chapter 8  Configuring advanced features and handling concurrency conflicts

Each database server implements the timestamp feature in a slightly different way. I’m
going to describe how SQL Server implements it, but section 14.1.3 describes some of
the ways other databases handle this feature.

Listing 8.14 adds a ChangeCheck property, which will watch for any updates to the
whole entity, to an entity class called ConcurrencyAuthor. In this case, the ChangeCheck
property has a Timestamp data annotation. This tells EF Core to mark this as a special
column that the database will update with a unique value. In the case of SQL Server, the
database provider will set the column as an SQL Server rowversion; other databases
have different approaches to implementing the TimeStamp column.

Listing 8.14   The ConcurrencyAuthor class, with the ChangeCheck property

public class ConcurrencyAuthor
{
 public int ConcurrencyAuthorId { get; set; }
 public string Name { get; set; }
 [Timestamp]
 public byte[] ChangeCheck { get; set; }
}

Again, you use a data annotation, Timestamp, to mark the ChangeCheck property as a
timestamp. This is my recommended way of configuring this, because it makes it obvi-
ous to anyone looking at the code that there’s special concurrency handling of this
entity. Alternatively, you can use the Fluent API to configure a timestamp.

Listing 8.15   Configuring a timestamp by using the Fluent API

protected override void
 OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<ConcurrencyAuthor>()
 .Property(p => p.ChangeCheck)
 .IsRowVersion();
}

Both configurations create a column in a table that the database server will automat-
ically change whenever there’s an INSERT or UPDATE to that table. For SQL Server
database, the column type is set to ROWVERSION, as seen in the following listing. Other
database servers can use different approaches, but they all provide a new, unique value
on an INSERT or UPDATE.

Listing 8.16   The SQL to create the Authors table, with a ROWVERSION column

CREATE TABLE [dbo].[Authors] (
 [ConcurrencyAuthorId] INT IDENTITY (1, 1),
 [ChangeCheck] ROWVERSION NOT NULL,
 [Name] NVARCHAR (MAX) NULL
);

Marks the ChangeCheck property as a
timestamp. This causes the database
server to mark it as an SQL ROWVERSION,
and EF Core will check this when updating
to see if this has changed.

OnModelCreating is where
you place the configuration of
the concurrency detection.

Defines an extra property called
ChangeCheck that will be changed every
time the row is created/updated. EF Core
checks that it hasn’t changed when it
does an update.

If the table is created by EF Core, it will
set the column type to ROWVERSION if
your property is of type byte[]. This
column’s value will be updated on
each INSERT or UPDATE.

	 229Handling simultaneous updates—concurrency conflicts

You simulate a concurrent change by using the code in listing 8.17. This consists of
three steps:

1	 You use EF Core to read in the Authors row that you want to update.

2	 You use an SQL command to update the Authors table; this simulates another
task updating the same Author that you have just read in. EF Core doesn’t know
anything about this change because raw SQL bypasses EF Core’s tracking snap-
shot feature.

3	 In the last two lines, you update the Author’s name and call SaveChanges, which
will cause a DbUpdateConcurrencyException to be thrown. This is because EF
Core has found that the ChangeCheck column has changed from step 1.

Listing 8.17   Simulating a concurrent update of the ConcurrentAuthor entity

var firstAuthor = context.Authors.First();
context.Database.ExecuteSqlCommand(
 "UPDATE dbo.Authors SET Name = @p0"+
 " WHERE ConcurrencyAuthorId = @p1",
 firstAuthor.Name,
 firstAuthor.ConcurrencyAuthorId);
firstAuthor.Name = "Concurrency Name";
context.SaveChanges();

This code is like the previous case, where you used a concurrency token. The differ-
ence is that the timestamp detects an update of the row via the unique value in the
property/column called ChangeCheck. You can see this in the following listing, where
you show the SQL that EF Core produces to update the row with the check on the time-
stamp property, ChangeCheck.

Listing 8.18   The SQL code to update the author’s name, with ChangeCheck check

SET NOCOUNT ON;
UPDATE [Authors] SET [Name] = @p0
WHERE [ConcurrencyAuthorId] = @p1
 AND [ChangeCheck] = @p2;
SELECT [ChangeCheck]
FROM [Authors]
WHERE @@ROWCOUNT = 1
 AND [ConcurrencyAuthorId] = @p1;

Loads the first author in the
database as a tracked entity

Simulates another thread/application
updating the entity. Nothing is changed,
except the timestamp.

Changes something in the
author to cause EF Core to
do an update to the bookThrows DbUpdateConcurrencyException

The check that the ChangeCheck column
is the same as the value EF Core read in

Because the update will change the
ChangeCheck column, EF Core needs to read
it back so its in-memory copy is correct.

Checks that one row was updated in the
last command. If not, it won’t return the
ChangeCheck value and EF Core will
know that a concurrent change has
taken place.

230 Chapter 8  Configuring advanced features and handling concurrency conflicts

The UPDATE part checks that the ChangeCheck column is the same value as the copy it
found when it first read the entity, and if it is, it executes the update. The second part
returns the new ChangeCheck column that the database server has created after the
current update, but only if the UPDATE was executed. If no value is returned for the
ChangeCheck property, EF Core knows that a concurrency conflict has happened and it
will throw DbUpdateConcurrencyException.

Choosing between the two approaches, concurrency token or timestamp, depends
on your business rules. The concurrency token approach provides a specific protec-
tion of the property/properties you place it on, and will be triggered only if a prop-
erty marked as a concurrency token is changed. The timestamp approach catches any
update to that entity.

8.7.3	 Handling a DbUpdateConcurrencyException

Now that you’ve seen the two ways that EF Core detects a concurrent change, you’re
ready to look at an example of catching DbUpdateConcurrencyException. The way
you write your code to fix a concurrency conflict depends on your business reasons for
capturing it. For that reason, this example is going to show you only how to capture
DbUpdateConcurrencyException, and what data you have available for making your
decisions.

Listing 8.19 shows the method you call after you’ve updated the Book entity with
your change. This method, BookSaveChangesWithChecks, calls SaveChanges and cap-
tures any DbUpdateConcurrencyException exception if one happens and uses another
method called HandleBookConcurrency, where you’ve put the logic to handle a concur-
rency exception on a Book entity.

Listing 8.19   The method you call to save changes that trap concurrency conflicts

public static string BookSaveChangesWithChecks
 (ConcurrencyDbContext context)
{
 string error = null;
 try
 {
 context.SaveChanges();
 }
 catch (DbUpdateConcurrencyException ex)
 {
 var entry = ex.Entries.Single();
 error = HandleBookConcurrency(
 context, entry);
 if (error == null)
 context.SaveChanges();
 }
 return error;
}

Called after the Book entity has
been updated in some way.

Calls SaveChanges within a
try...catch so that you can catch
DbUpdateConcurrencyException if
it occurs

Catches DbUpdateConcurrencyException
and puts in your code to handle it

You expect only one concurrency conflict
entry; if there’s more than one, throws
an exception on the use of Single.

Calls the HandleBookConcurrency method,
which returns null if the error was handled,
or an error message if it wasn’t

If the conflict was handled,
you need to call SaveChanges
to update the Book.

Returns the error message, or null if
there’s no error

	 231Handling simultaneous updates—concurrency conflicts

The BookSaveChangesWithChecks method returns a string, which is null if success-
ful or an error message if it can’t handle this concurrency conflict. (In this example,
you handle an update conflict, but you return an error message on a delete conflict—
see the HandleBookConcurrency method in listing 8.15.) Note that you must call the
SaveChanges method again, but only if you’ve fixed the concurrency problem. Other-
wise, it’ll keep looping around with the same exception.

The HandleBookConcurrency method handles a Book entity update concurrency
conflict. You have at your disposal three versions of the database data, shown in table 8.1.
In this example, you’re looking at the PublishedOn property, which is protected by a
concurrency token. The table columns are in time order, with the newest on the left.
I’ve also highlighted in bold the columns that are different from the version read at the
start of our update code in listing 8.15.

Table 8.1 The three versions of the data when the concurrency update exception occurs

Column names
1. The version you read

before the update
2. What someone else
wrote to the database

3. What you wanted to
write out

ConcurrencyBookId 1 1 1

Title Default Title Default Title Changed title

PublishedOn 2014/1/1 2016/2/8 2014/1/1

The following listing shows the content of your HandleBookConcurrency method
used in the listing 8.19. The code names some of the variables starting with version1,
version2, or version3. These correspond to the three versions of the data, as listed in
table 8.1.

Listing 8.20   Handling a concurrent update on the book

private static string HandleBookConcurrency(
 ConcurrencyDbContext context,
 EntityEntry entry)
{
 var book = entry.Entity
 as ConcurrencyBook;
 if (book == null)
 throw new NotSupportedException(
"Don't know how to handle concurrency conflicts for " +
 entry.Metadata.Name);

 var databaseEntity =
 context.Books.AsNoTracking()
 .SingleOrDefault(p => p.ConcurrencyBookId
 == book.ConcurrencyBookId);
 if (databaseEntity == null)

Takes in the application DbContext and
the ChangeTracking entry from the
exception’s Entities property.

Handles only ConcurrencyBook, so
throws an exception if the entry isn’t
of type Book.

You want to get the data that
someone else wrote into the
database after your read.

Entity must be read as NoTracking;
otherwise, it’ll interfere with the
same entity you’re trying to write.

Concurrency conflict method doesn’t
handle the case where the book was
deleted, so it returns a user-friendly
error message.

232 Chapter 8  Configuring advanced features and handling concurrency conflicts

 return "Unable to save changes.The book was deleted by another
user.";

 var version2Entity = context.Entry(databaseEntity);

 foreach (var property in entry.Metadata.GetProperties())
 {
 var version1_original = entry
 .Property(property.Name).OriginalValue;

 var version2_someoneElse = version2Entity
 .Property(property.Name).CurrentValue;
 var version3_whatIWanted = entry
 .Property(property.Name).CurrentValue;

 // TODO: Logic to decide which value should be written to database
 if (property.Name ==
 nameof(ConcurrencyBook.PublishedOn))
 {
 entry.Property(property.Name).CurrentValue
 = new DateTime(2050, 5, 5);
 }

 entry.Property(property.Name).OriginalValue =
 version2Entity.Property(property.Name)
 .CurrentValue;
 }
 return null;
}

The main part you need to change is the section starting with the comment // TODO.
You should put your code to handle the concurrent update there. The code you put in
sets a specific date so that your unit test can check that your code worked, but what you
put there depends on the business rules in your application.

Note that your HandleBookConcurrency method also detects that a concurrency
conflict caused by the original Book entity has been deleted. In that case, when your
concurrency-handling method tries to reread the actual row in the database using the
Book’s primary key, it won’t find that row and will return null. Your current implemen-
tation doesn’t handle that case and returns an error message to show the user.

You get the TEntity version of the entity,
which has all the tracking information.

You go through all the properties in the book
entity to reset the Original values so that the
exception doesn’t happen again.

Holds the version of the property
at the time you did the tracked
read of the book.Holds the version of the property as

written to the database by someone else.

Holds the version of the property
that you wanted to set it to in your
update.

Your code to fix the concurrency
issue goes here. You set the
PublishedOn property to a
specific value so you can check
it in your unit test.

Here you set the OriginalValue to the
value that someone else set it to. This
handles using concurrency tokens or a
timestamp.

You return null to say you
handled this concurrency issue.

	 233Handling simultaneous updates—concurrency conflicts

8.7.4	 The disconnected concurrent update issue

In applications such as a website, another concurrency update scenario can occur
that encompasses the user-interaction part of the system. The examples so far covered
simultaneous code updates, but if you bring in the human factor, the problem is more
likely, and possibly more business relevant.

For instance, figure 8.6 shows employee John Doe getting a pay raise being set by
both John’s boss and by Human Resources. Now the time between each person seeing
the figure and deciding what to do is measured in minutes instead of milliseconds, but
if you don’t do anything about it, you can have another concurrency conflict, with poten-
tially the wrong salary set.

1. John Doe’s boss gets an email saying it’s time to review
 John’s salary. The boss gives him a 10% raise for good work.

2. Human Resources gets the same email and decides
 to give John Doe the standard 2.5% raise.

3. Because of the order
 of updates, the boss’s
 decision is silently
 ignored unless you add
 some disconnected
 concurrency checks.

ChangeChange

ChangeChange

Stage 1

John Doe
Salary $1000/month

John Doe
Salary $1100/month

John Doe
Salary $1000/month

John Doe
Salary $1025/month

John’s
boss

Human
resources

Stage 1

Stage 2 Time

Stage 2

Click

Click

Figure 8.6   A concurrency problem, now running in human time. John Doe’s salary review is due, and two
people, John’s boss and a Human Resources employee, try to update his salary at the same time. Unless
you add concurrency checks, the boss’s update, which came first, is silently ignored, which most likely
isn’t the correct business outcome.

Although this looks very much like the concurrency conflicts example in section 8.7.2,
the change is in the way a disconnected concurrency conflict is found. To handle a
disconnected update, the original value of the property you’re protecting (in this case,
the Salary) must be passed from the first stage of the disconnect to the second stage.
Then your second stage must use that original Salary in the concurrency-conflict
check during the update part of the process.

Also, the way a concurrency conflict is dealt with is often different. Typically, in
a human user case, the decision on what should happen is given back to the user. If

234 Chapter 8  Configuring advanced features and handling concurrency conflicts

a conflict occurs, the user is presented with a new screen indicating what happened and
is given a choice on what should be done. This changes the code that handles DbUpdate-
ConcurrencyException into more of a diagnostic role rather than code that fixes the
problem.

If a concurrency conflict exists, the user is presented with a new screen with an error
message indicating what happened. The user is then invited to accept the current state,
or apply the update, knowing that this overrides the last user’s update.

Figure 8.7 shows what happens when the user clicks the Change button after setting
the new salary. As you can see, the original salary, which was displayed to the user on the
first screen, is sent back with the other data and used in the concurrency check when
the Salary is updated (see the UpdateSalary method in listing 8.16).

1. The screen shows the original
 salary value, which is returned
 along with the new salary that
 the user has set.

3. If a concurrency conflict occurs, the
 method DiagnoseSalaryConflict returns
 an appropriate message; either it was
 updated by someone else, or it was
 deleted by someone else.

 For the error states, the user is presented
 with a new screen that offers the option
 to leave the employee as is, or have their
 update applied.

2. You set the Salary property’s OriginalValue,
 which holds the value EF Core thinks the
 database contains, to the OrgSalary value
 that was originally shown to the user.

var employee = context.Employees
 .Find(EmployeeId);
entity.UpdateSalary(context,
 OrgSalary, NewSalary);
string message = null;
try
{
 context.SaveChanges();
}
catch (DbUpdateConcurrencyExp... ex)
{
 var entry = ex.Entries.Single();
 message = DiagnoseSalaryConflict
 (context, entry);
}
return message;

Sent back:
EmployeeId: 12
OrgSalary: 1000
NewSalary: 1025

Stage 2

Change

John Doe
Salary $1025/month

Figure 8.7   After the user has changed the salary and clicked the Change button, the new salary
and the original salary values are sent back to the web application. It then calls the UpdateSalary
method, shown in listing 8.16, that both updates the salary and sets the original value expected in the
database when it does the update. If a concurrency conflict is found, a new screen with an appropriate
error message is shown to the user, who can then accept the existing database state, or apply their own
update to the employee.

Listing 8.21 shows the entity class used for this example, with the Salary property set
as a concurrency token. You also create a method called UpdateSalary that contains
the code you need to execute in order to update the Salary property in such a way that
DbUpdateConcurrencyException will be thrown if the Salary value has changed from
the value originally shown on the user’s screen.

	 235Handling simultaneous updates—concurrency conflicts

Listing 8.21   Entity class used to hold an employee’s salary with concurrency check

public class Employee
{
 public int EmployeeId { get; set; }

 public string Name { get; set; }

 [ConcurrencyCheck]
 public int Salary { get; set; }

 public void UpdateSalary
 (DbContext context,
 int orgSalary, int newSalary)
 {
 Salary = newSalary;
 context.Entry(this).Property(p => p.Salary)
 .OriginalValue = orgSalary;
 }
}

After applying the UpdateSalary method to the Employee entity of the person whose
salary you want to change, you call SaveChanges within a try…catch block to update
the Employee. If SaveChanges raises DbUpdateConcurrencyException, the job of the
DiagnoseSalaryConflict method shown in the following listing isn’t to fix the con-
flict, but to create an appropriate error message so the user can decide what to do.

Listing 8.22   Returns different errors for update or delete concurrency conflicts

private string DiagnoseSalaryConflict(
 ConcurrencyDbContext context,
 EntityEntry entry)
{
 var employee = entry.Entity
 as Employee;
 if (employee == null)
 throw new NotSupportedException(
"Don't know how to handle concurrency conflicts for " +
 entry.Metadata.Name);

 var databaseEntity =
 context.Employees.AsNoTracking()
 .SingleOrDefault(p =>
 p.EmployeeId == employee.EmployeeId);

 if (databaseEntity == null)
 return

Salary property set as a concurrency token
by the ConcurrencyCheck attribute.

Updates the Salary in a
disconnected state

Sets the Salary to the new value

Sets the OriginalValue, which holds the
data read from the database, to the
original value that was shown to the
user in the first part of the update

Called if a DbUpdateConcurrencyException
occurs. Its job isn’t to fix the problem, but
form an error message and provide options
for fixing the problem.

If the entity that failed wasn’t
an Employee, you throw an
exception, as this code can’t
handle that.

You want to get the data that someone else
wrote into the database after your read.

Must be read as NoTracking; otherwise,
it’ll interfere with the same entity you’re
trying to write.

You check whether this was a delete
conflict—the employee was deleted
because the user attempted to update it.

236 Chapter 8  Configuring advanced features and handling concurrency conflicts

$"The Employee {employee.Name} was deleted by another user. " +
$"Click Add button to add back with salary of {employee.Salary}" +
" or Cancel to leave deleted.";

 return
$"The Employee {employee.Name}'s salary was set to " +
$"{databaseEntity.Salary} by another user. " +
$"Click Update to use your new salary of {employee.Salary}" +
$" or Cancel to leave the salary at {databaseEntity.Salary}.";
}

Listing 8.23 shows two methods, one for the update conflict case and one for the
delete conflict. These methods are called depending on which sort of concurrency
conflict was found (update or delete), and only if the user wants to apply an update to
Employee.

The update conflict can be handled using the same UpdateSalary method as used
for the normal update, but the orgSalary parameter is now the salary value as read
back when the DbUpdateConcurrencyException was raised. The FixDeleteSalary
method is used when the concurrent user deletes the Employee and the current user
wants to add the Employee back with their new salary value.

Listing 8.23   Two methods to handle update and delete conflicts

public class Employee
{
 public int EmployeeId { get; set; }

 public string Name { get; set; }

 [ConcurrencyCheck]
 public int Salary { get; set; }

 public void UpdateSalary
 (DbContext context,
 int orgSalary, int newSalary)
 {
 Salary = newSalary;
 context.Entry(this).Property(p => p.Salary)
 .OriginalValue = orgSalary;
 }

 public static void FixDeletedSalary
 (DbContext context,
 Employee employee)
 {

Error message to display to the user,
with two choices on how to carry on . . .

. . . otherwise, it must be an update
conflict, so you return a different error
message with the two choices for
this case.

Set as a concurrency token by the
ConcurrencyCheck attribute

The same method used to update the Salary can be
used for the Update conflict, but this time it’s
given the original value as found when the
DbUpdateConcurrencyException occurred

Sets the Salary to the new value

Sets the OriginalValue, which is now
the value that the database contained
when the DbUpdateConcurrency
Exception occurred

Handles the Delete
concurrency conflict.

	 237Summary

 employee.EmployeeId = 0;
 context.Add(employee);
 }
}

NOTE   These disconnected concurrency-conflict examples use a concurrency
token, but they work equally well with a timestamp. To use a timestamp instead
of passing the Salary concurrency token used in these examples, you’d pass
the timestamp and set the timestamp’s original value before any update.

Summary

¡	A collection navigational property can be turned into a backing field, which
allows you more control over how software can add or remove elements from the
collection.

¡	You can register an SQL user-defined function (UDF) with EF Core and then use
it in any database query.

¡	A column can be configured as an SQL computed column, including specifying
the SQL fragment that should be used in the computation.

¡	There are three ways to provide a default value for a property/column in an
entity; these go beyond what setting a default value via .NET could achieve.

¡	EF Core’s HasSequence method allows a known, predictable sequence provided
by the database server to be applied to a column in a table.

¡	When the database is created/migrated outside EF Core, EF Core provides con-
figuration commands to mark columns that behave differently than the norm.

¡	EF Core provides concurrency tokens and timestamps to detect a concurrency
conflict.

¡	When a concurrency conflict is detected, EF Core throws DbUpdateConcurrency
Exception and then allows you to implement code to handle the conflict.

For readers who are familiar with EF6:

¡	The three default value methods, the HasSequence method, and the setting of a
computed column aren’t available in EF6.x.

¡	EF Core’s handling of a concurrency conflict is identical to the way EF6.x han-
dles a concurrency conflict, but Microsoft suggests a few minor changes in how
the DbUpdateConcurrencyException should be handled.

The key must be at the CLR
default value for an Add to work.

Adds the Employee because it was
deleted from the database and therefore
must be added back

238

9Going deeper into the DbContext

This chapter covers
¡	How EF Core detects changes to an entity

¡	Using change tracking to build an audit trail

¡	Using raw SQL commands from EF Core

¡	Inspecting EF Core’s database model

¡	Using EF Core’s database connection resiliency

So far in this book, you’ve seen a wide range of EF Core commands available to you.
This chapter digs deeper into the properties and methods available in the appli-
cation’s DbContext. In some cases, I provide a more detailed explanation of com-
mands in chapter 3, such as the Add, Update, and Delete methods. I also introduce
methods that haven’t been covered, such as Attach and TrackGraph, that give you
options on how to change the database data.

The EF Core’s DbContext class has a wide range of methods and features. After
dealing with the methods and properties relating to adding, updating, or deleting
data, you’ll explore numerous other topics. We’ll start with an overview of the three
properties in the DbContext class, with pointers to coverage of their related features.

	 239Understanding how EF Core tracks changes

9
9.1	 Overview of the DbContext class’s properties

The DbContext class has only three properties:

¡	ChangeTracker—This provides access to EF Core’s change tracking code. You used
this in chapter 3 to run data validation before SaveChanges, and you’ll spend quite
a bit of time looking at how this works in this chapter, starting with the next section.
Quite a few of DbContext’s methods work with the ChangeTracker, and you’ll
learn about those in this chapter.

¡	Database—This property provides access to three main groups of features:

¡	Transaction control, covered in section 4.6.2

¡	Database creation/migration, covered in chapter 11

¡	Raw SQL commands, covered in section 9.5
¡	Model—This provides access to the database model that EF Core uses when con-

necting to or creating a database. Section 9.6 covers this topic.
Section 9.7 covers one other topic, which is database connection resiliency.

9.2	 Understanding how EF Core tracks changes
EF Core uses a property called State that’s attached to all tracked entities. The State
property holds the information about what you want to happen to that entity when you
call the application’s DbContext method, SaveChanges.

DEFINITION   As you may remember from chapter 2, tracked entities are entity instances
that have been read in from the database using a query that didn’t include the AsNo-
Tracking method. Alternatively, after an entity instance has been used as a param-
eter to EF Core methods, such as Add, Update, or Delete, then it becomes tracked.

This State property, an enum of type EntityState, is normally set by the change track-
ing feature inside EF Core, and, in this section, you’re going to explore all the ways the
State can be set.

Chapter 3 gave you a brief introduction to State but skipped many of its features,
especially related to relationships, as well as extra commands, which this section covers.
The following list, repeated from chapter 3, lists possible values of the State property,
which is accessed via the EF command context.Entry(myEntity).State:

¡	Added—The entity doesn’t yet exist in the database. SaveChanges will insert it.
¡	Unchanged—The entity exists in the database and hasn’t been modified on the

client. SaveChanges will ignore it.
¡	Modified—The entity exists in the database and has been modified on the client.

SaveChanges will update it.
¡	Deleted—The entity exists in the database but should be deleted. SaveChanges

will delete it.
¡	Detached—The entity you provided isn’t tracked. SaveChanges doesn’t see it.

Figure 9.1 shows the change of State of the entity instance, without any relationships,
as it’s added, modified, and deleted from the database. This gives a good overview of
the values that the State of an entity can have.

240 Chapter 9  Going deeper into the DbContext

An entity instance starts as Detatched.

After you use Add, it becomes Added.

After SaveChanges, it’s Unchanged.

If something changes, its state is Modified.

After that’s saved, it’s Unchanged again.

Removing the entity makes it Deleted.

And after SaveChanges, it’s Detatched,
because it’s gone from the database.

var entity = new MyEntity();
entity.MyString = "Test";

context.Add(entity);

context.SaveChanges();

entity.MyString = "New String";

context.SaveChanges();

context.Remove(entity);

context.SaveChanges();

EF Core code

Detatched

Added

Unchanged

Modified

Unchanged

Deleted

Detatched

= context.Entry(entity).StateEntity state

Figure 9.1   The code on the left uses all the standard ways of creating, updating, and deleting data in
a database. The right column, Entity state, shows the EF Core state of the entity as it moves through
each of these stages.

When you have an entity in the Modified state, another per property boolean flag,
called IsModified, comes into play. This identifies which of the properties, both scalar
and navigational, have changed in the entity. This IsModified property for a scalar
property is accessed via

context.Entry(entity).Property("PropertyName").IsModified,

and the IsModified property for navigational properties is accessed via

context.Entry(entity).Navigation("PropertyName").IsModified

These provide a per property/backing field/shadow property flag to define what has
changed if the entity’s State is set to Modified.

9.3	 Details on every command that changes an
entity’s State
Figure 9.1 covers a simple entity, but when relationships are involved, the State set-
tings get more complex. The following subsections present each command that can
change the State of an entity and its relationships.

EF6   EF Core’s approach to tracking entity changes has gone through a sig-
nificant upgrade, based on lessons learned from EF6.x. In addition to having
new commands, the way some commands work has changed too. I recom-
mend “Change default graph behavior of Add/Attach/etc.,” by Rowan Miller,
plus the follow-up thread on the EF Core Git issues site (https://github.com/
aspnet/EntityFramework/issues/4424).

EF Core’s approach has been finely tuned, based on feedback from the previous ver-
sions of EF (EF6.x and EF Core 1.x), to set the State of related entities to the most
“natural” State setting based on certain criteria. To give you an example, if you use
the Add method to add a new entity to the database, EF Core will decide whether the

https://github.com/aspnet/EntityFramework/issues/4424
https://github.com/aspnet/EntityFramework/issues/4424

	 241Details on every command that changes an entity’s State

relationship entity should be set to the Added or Modified state, depending on whether
EF Core is tracking the entity. Generally, this results in the right decisions for most Add
calls, but knowing how EF Core decides how to set the State helps you when your
needs are outside the normal usage.

The following subsections use the MyEntity entity class with its optional one-to-one
relationship and its one-to-many relationship to the ManyEntity entity class collection,
as shown in figure 9.2. Each subsection covers a method or approach that changes the
State of the entity and its relationships. You’ll see a table for each EF Core method
showing the State and IsModified flags for the main entity, MyEntity, and its optional
relationship to the OneEntity entity class.

OneEntity
Class

Properties
 OneEntityId : int
 MyInt : int
 MyEntityId : int?

MyEntity
Class

Properties

 MyEntityId : int
 MyString : string
 OneToOne : OneEntity
 Many :
 ICollection<ManyEntity>

ManyEntity
Class

OneEntity has an
optional relationship to
MyEntity because the
foreign key MyEntityId
is nullable.

Properties
 ManyEntityId : int
 MyEntityId : int

Figure 9.2   The examples that follow use these entity classes. OneEntity is an optional one-to-one
relationship, because the foreign key back to MyEntity is nullable. OneEntity can exist in the
database without being linked to MyEntity (its foreign key will be null). The ManyEntity entity
class provides the Add command—creating a new entity/row in the database

9.3.1	 The Add command--inserting a new row in the database

The Add/AddRange methods are used to create a new entity in the database by setting
the given entity’s State to Added. Section 3.2 covered the Add method. If the added
entity has any relationships, the value of the State of each relationship entity depends
on whether that relationship entity is tracked:

¡	Not tracked —The relationship entity is assumed to be new, and its State is set to
Added.

¡	Is tracked —The relationship entity is assumed to be in the database. The State
of the relationship entity depends on whether a foreign key needs to be set in it.
If the relationship entity contains a foreign key that needs to be set, its State will
be set to Modified, or left at its current State if it doesn’t need to be modified.

Figure 9.3 shows an example of both the not tracked and the is tracked cases. The overall
effect of these rules means that if you add a new entity with any navigational entities
attached, then, when you call SaveChanges, EF Core will correctly create any new rela-
tional entities for instances you just created, or add a reference to any existing entities
if you read them in from the database.

242 Chapter 9  Going deeper into the DbContext

MyEntity
State = Added

OneToOne
Many

OneEntity
State = Modified

ManyEntity
State = Added

2. OneEntity is a tracked
 entity, so its state isn’t set
 to Added, but to Modified,
 because the foreign key
 was modified.

1. The myEntity
 new instance
 is added, which
 sets its State
 to Added.

Entity being
Added

Relationships 3. ManyEntity is a new entity
 (not tracked), so its state
 is set to Added.

var myEntity = new MyEntity();

var oneEntity =
 context.OneEntities.First();

var manyEntity = new ManyEntity();

myEntity.OneToOne = oneEntity;
myEntity.Many.Add(manyEntity);
context.Add(myEntity);

Figure 9.3   Adding an entity with both an is tracked and a not tracked relationship. The is tracked case is
shown in step 2: a tracked OneEntity instance is set to Modified because a foreign key in that entity
was set. The not tracked case is shown in step 3: a new ManyEntity entity instance is added to the
myEntity’s entity instance Many collection navigational property.

Table 9.1 gives three examples of using the Add method, starting with the simple scalar
and then adding a new, and then an existing, relationship.

Table 9.1   Examples of using the Add method, with and without relationships

EF Core code Entity’s state IsModified == true

var entity = new MyEntity();
entity.MyString = "Test";
context.Add(entity);

entity: Added

var entity = new MyEntity();
var oneToOne = new OneEntity();
entity.OneToOne = oneToOne;
context.Add(entity);

entity: Added
oneToOne: Added

var entity = new MyEntity();
var oneToOne =
 context.OneEntities
 .First();
entity.OneToOne = oneToOne;
context.Add(entity);

entity: Added
oneToOne:
Modified

entity.OneToOne
oneToOne.
MyEntityId

See Note

NOTE   The third example works for only a tracked, optional relationship—a relationship that has a nullable foreign key
that’s already in the database. For EF Core to track the changes, it needs to set the IsModified flag on the OneToOne
navigational property in the MyEntity class, and change the foreign-key property of the OneEntity to the primary key of
the MyEntity class.

NOTE   AddAsync/AddRangeAsync methods are available as well, but are rarely
needed. These async methods are there for entities that use a value generator
(see section 8.1.3) or a sequence generator (see section 8.2). Both key genera-
tors have an Async option for value generation, which will be called if you use
the AddAsync/AddRangeAsync methods.

	 243Details on every command that changes an entity’s State

9.3.2	 The Remove command—deleting a row from the database

The Remove/RemoveRange methods delete the entity from the database by setting the
given entity’s State to Deleted. Section 3.5 covered the Remove method.

If the removed entity has any relationships, the value of the State for each relation-
ship entity depends on whether that relationship entity’s primary key is generated by
the database and is set (its value isn’t the default value for the key’s .NET type):

¡	Database-generated key and not the default value —EF Core will assume that the
relationship entity is already in the database and will set the State to either
Unchanged or Modified, depending on whether anything needs changing.

¡	Not a database-generated key, or the key is the default value —EF Core assumes that the
relationship entity is new and sets its State to Added.

This last bullet point may seem odd. Why is EF Core adding entities when you’re trying
to delete them? This is because at this stage, EF Core is looking at only the State of
the entity here, and EF Core must have a plan to handle the possibility of new entities,
and setting the State to Added is the most logical decision. But the State isn’t the only
thing that affects what happens to a relationship when the principal entity’s State is
set to Deleted. EF Core, and possibly the database, will separately apply the cascade
delete settings that are applied to the relationships. A new relationship’s State might
be set to Added for change tracking, but then be deleted by the cascade delete settings
(section 7.7.1 covered cascade delete settings).

Figure 9.4 shows an example of both cases: the database-generated key that’s not the
default value, and the key that’s not generated by the database or is the default value.

MyEntity
State = Deleted

OneToOne
Many

OneEntity
State = Modified

ManyEntity
State = Added

2. OneEntity was read from
 the database, so its primary
 key isn’t at the default value,
 and its state was set to
 Modified because the foreign
 key was set to null to end
 the relationship.

Note: Both the OneEntity and
ManyEntity entity classes have
a key of type int, which means
the database will provide the
primary-key value.

1. MyEntity is
 removed, which
 sets its State
 to Deleted.

Entity being
Removed

Relationships 3. ManyEntity is a new entity,
 so its primary key is at the
 .NET default value and its
 state is set to Added. But
 when SaveChanges is called,
 the cascade delete rules,
 which are set to cascade,
 will delete ManyEntity.

var myEntity =
 context.MyEntities.First();

var oneEntity =
 context.OneEntities.First();

var manyEntity = new ManyEntity();

myEntity.OneToOne = oneEntity;
myEntity.Many.Add(manyEntity);
context.Update(myEntity);

Figure 9.4   Updating an entity with both a Db generated key and not default value and a Not Db
generated key, or key is default value relationship. The “Db generated key and not default value” case is
shown in step 2. The “Not Db generated key, or key is default value” case is shown in step 3.

244 Chapter 9  Going deeper into the DbContext

Table 9.2 shows the State and IsModified flags after the DetectChanges method has
run, which happens when your code calls the SaveChanges method. The table shows
the results for various arrangements on relationships.

Table 9.2   Examples of using the Remove method, with and without relationships

EF Core code Entity’s state IsModified == true

var entity =
 context.MyEntities.First();
context.Remove(entity);

entity: Deleted

var entity =
 context.MyEntities
 .AsNoTracking.First();
context.Remove(entity);

entity: Deleted See Note 1

var entity =
 context.MyEntities
 .Include(x => x.OneToOne)
 .First();
context.Remove(entity);

entity: Deleted
OneToOne: Unchanged

See Note 2

var entity =
 context.MyEntities.First();
var oneToOne =
 context.OneEntities
 .First();
entity.OneToOne = oneToOne;
context.Remove(entity);

entity: Deleted
oneToOne: Modified

entity.OneToOne
oneToOne.
MyEntityId

See Note 3

NOTE 1   You can delete an untracked entity. EF Core looks for a nondefault primary key.

NOTE 2   A State of Unchanged for the dependent entity OneEntity seems incorrect, but the cascade delete rules, which
you can set, are applied by SaveChanges, which handles what happens to the dependent entity. See sections 7.4.4 and 7.7.1
for more on this.

NOTE 3   This is a deletion of a principal entity with an optional dependent. What happens here is that OneEntity isn’t
deleted, but its foreign key, MyEntityId, is set to null. See sections 7.4.4 and 7.7.1 for more on this.

9.3.3	 Modifying a tracked entity—EF Core’s DetectChanges

As you’ve seen in chapter 3 and throughout this book, the default way to mod-
ify an entity is to update a property/backing field/shadow property, and EF Core’s
DetectChanges method will detect the change. DetectChanges does this by using
the tracking snapshot held inside the current application’s DbContext. Figure 1.8
describes this, but figure 9.5 gives you a more in-depth look at the process of detecting
changes.

Table 9.3 shows the State and IsModified flags after the DetectChanges method
has run, which happens when your code calls the SaveChanges method. The table
shows the results for various configurations of the entity and its OneToOne navigational
property.

	 245Details on every command that changes an entity’s State

MyEntity

MyEntityId = 1
MyString = "New"
OneToOne =

OneEntity

OneEntityId = 1
One = null
MyEntityId = 1

MyEntity

MyEntityId = 1
MyString = "Test"
OneToOne =

OneEntity

OneEntityId = 1
One = null
MyEntityId = 1

1. Create classes
2. Relationship fixup
3. Tracking snapshot

MyEntity

MyEntityId = 1
MyString = "Test"
OneToOne =

OneEntity

OneEntityId = 1
One = null
MyEntityId = 1

1. The LINQ query returns a tracked
 entity because it doesn’t include
 the .AsNoTracking() method.

2. The application’s DbContext keeps a copy
 of the original data read from the database,
 known as the tracking snapshot.

4. When SaveChanged is called, EF Core’s DetectChanges method will run and compare
 an entity with a State of Unchanged with the tracking snapshot to see if anything is
 modified. It will also set the IsModified flag on those properties that are different.

3. In this case, you
 change only the
 MyString property

Your application code Inside current DbContext

entity = context.MyEntities
 .Include(r => r.OneToOne)
 .First();

entity.MyString = "New"

SaveChanged();

Database
SQL server

Changed

Figure 9.5   The default way that EF Core finds whether anything has been changed. EF Core holds
a tracking snapshot of any entities loaded as tracked entities—any query that doesn’t include the
AsNoTracking method. When SaveChanges is called, EF Core, by default, runs the DetectChanges
method, which compares tracked entities with the tracking snapshot and sets the State of the entities
that have been modified to Modified.

Table 9.3   Examples of modifying an entity, with and without relationships

EF Core code Entity’s state IsModified == true

var entity =
 context.MyEntities
 .First();
entity.MyString = “Changed”;

entity: Modified entity.MyString

var entity =
 context.MyEntities
 .First();
var oneToOne = new OneEntity();
entity.OneToOne = oneToOne;

entity: Unchanged
OneToOne: Added

var entity =
 context.MyEntities
 .First();
var oneToOne =
 context.OneEntities
 .First();
entity.OneToOne = oneToOne;

entity: Unchanged
oneToOne: Modified

entity.OneToOne
oneToOne.MyEntityId

246 Chapter 9  Going deeper into the DbContext

9.3.4	 INotifyPropertyChanged entities—a different way of tracking changes

In some applications, you may have a large number of tracked entities loaded. When
executing mathematical modeling or building artificial intelligence applications, for
instance, holding a lot of data in memory may be the only way to achieve the level of
performance that you require. If you want to update that data, then when you call
SaveChanges, which in turn calls DetectChanges, DetectChanges can take a long time
to compare every loaded entity with its tracking snapshot.

NOTE   An unscientific test of loading 1,000 Book entities, with their Author-
Links, Authors, and Reviews, and then timing how long SaveChanges took to
run, gave an answer of more than a second.

For this reason, EF Core provides another way to track changes, by using INotifyProp-
ertyChanged. This requires you to send an event to EF Core every time you change a
property. The following listing shows the NotifyEntity class, which has the same rela-
tionship types as the MyEntity shown in figure 9.2, but uses INotifyPropertyChanged
and ObservableHashSet to raise events every time the properties are changed.

Listing 9.1   NotifyEntity using NotificationEntity class for events

public class NotifyEntity : NotificationEntity
{
 private int _id;
 private string _myString;
 private NotifyOne _oneToOne;

 public int Id
 {
 get => _id;
 set => SetWithNotify(value, ref _id);
 }

 public string MyString
 {
 get => _myString;
 set => SetWithNotify(value, ref _myString);
 }

 public NotifyOne OneToOne
 {
 get => _oneToOne;
 set => SetWithNotify(value, ref _oneToOne);
 }

 public ICollection<NotifyMany>
 Collection { get; }
 = new ObservableHashSet<NotifyMany>();
}

Each noncollection
property must have a
backing field.

If a noncollection property is
changed, you need to raise a
PropertyChanged event, which you
do via the inherited method
SetWithNotify.

Any collection navigational property
must be an Observable collection,
so you need to predefine that
Observable collection.

You can use any Observable collection,
but for performance reasons, EF Core
prefers ObservableHashSet<T>.

	 247Details on every command that changes an entity’s State

The NotificationEntity helper class, which contains the SetWithNotify method
used by the NotifyEntity, is shown here.

Listing 9.2   NotificationEntity helper class that NotifyEntity inherits

public class NotificationEntity : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 protected void SetWithNotify<T>(T value, ref T field,
 [CallerMemberName] string propertyName = "")
 {
 if (!Object.Equals(field, value))
 {
 field = value;
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
}

After you’ve defined your entity class in the right way, you need to configure the EF
Core tracking strategy to ChangedNotifications. To set this up for one entity class,
you use the Fluent API command.

Listing 9.3   Setting the tracking strategy for one entity to ChangedNotifications

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder
 .Entity<NotifyEntity>()
 .HasChangeTrackingStrategy(
 ChangeTrackingStrategy.ChangedNotifications);
}

Alternatively, to set the tracking strategy for all the entity classes, you leave out the
Entity<T> part:

modelBuilder
 .HasChangeTrackingStrategy(
 ChangeTrackingStrategy.ChangedNotifications);

Automatically gets the propertyName by
using System.Runtime.CompilerServices

Only if the field and the value are different
do you set the field and raise the event.

Sets the field to the new value

Invokes the PropertyChanged event, but
using ?. to stop the method from failing
when the new entity is created and the
PropertyChangedEventHandler hasn’t
been filled in by EF Core…

... with the name
of the property

248 Chapter 9  Going deeper into the DbContext

I’ve described one of the three available settings of ChangeTrackingStrategy. The
ChangedNotifications setting means that EF Core still takes a tracking snapshot
(needed for features like concurrency checking), but the DetectChanges method
doesn’t use the tracking snapshot to detect changes. The SaveChanges method exe-
cutes quickly for entities that have a tracking strategy of ChangedNotifications, even
if there are lots of tracked entities loaded.

Another setting, ChangingAndChangedNotifications, does away with the need for
taking a tracking snapshot, but requires you to implement another interface called
INotifyPropertyChanging. This requires the NotificationEntry class to issue an
event before a property is changed so that EF Core knows what the original value was
before the change. The changes to NotificationEntry require two property events,
changing and changed. This listing shows a variant called Notification2Entry, which
has the second event added.

Listing 9.4   Notification2Entry with two property events

public class Notification2Entity :
 INotifyPropertyChanged,
 INotifyPropertyChanging
{
 public event PropertyChangedEventHandler PropertyChanged;
 public event PropertyChangingEventHandler PropertyChanging;

 protected void SetWithNotify<T>(T value, ref T field,
 [CallerMemberName] string propertyName = "")
 {
 if (!Object.Equals(field, value))
 {
 PropertyChanging?.Invoke(this,
 new PropertyChangingEventArgs(propertyName));
 field = value; //
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
}

A third option for the ChangeTrackingStrategy is ChangingAndChangedNotifica-
tionsWithOriginalValues. This version works the same as ChangingAndChanged
Notifications but does take a tracking snapshot of the entity when it’s loaded. This is
useful if you need to access the original values—for instance, when your entity needs
concurrency-conflict handling (covered in chapter 8).

9.3.5	 The Update method—telling EF Core that everything has changed

The Update/UpdateRange methods aren’t the normal way of updating an entity.
You typically do that by changing a property and calling SaveChanges, which I’ve
just described. The Update method is useful if you want to update all the data in the

Adds the extra interface,
INotifyPropertyChanging

Triggers an event before
the property is changed

	 249Details on every command that changes an entity’s State

database for an entity instance. The Update method is normally applied to untracked
entities—say, from an external source. (Figure 3.3 showed an example.)

The Update method tells EF Core to update all the properties/columns in this entity
by setting the given entity’s State to Modified, and sets the IsModified property to
true on all nonrelational properties, including the foreign key, in the entity class. This
means the row in the database will have all its columns updated.

Like the Remove method, the value of the State for each relationship of the updated
entity depends on whether the relationship entity’s primary key is generated by the
database and is set (its value isn’t the default value for the key’s .NET type):

¡	Database-generated key and not the default value —In this case, EF Core will assume
that the relationship entity is already in the database and will set the State to
Modified if a foreign key needs to be set; otherwise, the State will be Unchanged.

¡	Not database-generated key, or the key is the default value —In this case, EF Core will
assume that the relationship entity is new and set its State to Added.

Figure 9.6 shows an example of both cases.

OneEntity
State = Modified

ManyEntity
State = Added

Relationships

2. OneEntity was read from
 the database, so its primary
 key isn’t at the default value,
 and its state was set to
 Modified because the foreign
 key was changed.

Note: Both the OneEntity and
ManyEntity entity classes have
a key of type int, which means
the database will provide the
primary-key value.

1. MyEntity is
 updated, which
 sets its State
 to Modified.

Entity being
updated

3. ManyEntity is a new entity,
 so its primary key is at the
 .NET default value and its
 state is set to Added.

var myEntity =
 context.MyEntities.First();

var oneEntity =
 context.OneEntities.First();

var manyEntity = new ManyEntity();

myEntity.OneToOne = oneEntity;
myEntity.Many.Add(manyEntity);
context.Update(myEntity);

MyEntity
State = Modified

OneToOne
Many

Figure 9.6   The updating of an entity with both a Db generated key and not default value and a Not Db
generated key, or key is default value relationship. The Db generated key and not default value case is
shown in step 2: a tracked OneEntity instance is set to Modified because a foreign key in that entity
was set. The Not Db generated key, or key is default value case is shown in step 3: a new ManyEntity
entity instance is added to the myEntity’s entity instance Many collection navigational property.

Table 9.4 shows the State and IsModified flags after the DetectChanges method has
run, which happens when your code calls the SaveChanges method. The table shows
the results for various configurations of the entity and its OneToOne navigational prop-
erty after the Update method has been called.

250 Chapter 9  Going deeper into the DbContext

Table 9.4   Examples of using the Update method, with and without relationships

EF Core code Entity’s State IsModified == true

var entity = new MyEntity();
context.Update(entity);

entity: Added

var entity =
 context.MyEntities
 .AsNoTracking.First();
context.Update(entity);

entity: Modified entity.MyString

See Note 1

var entity = context.MyEntities
 .Include(x => x.OneToOne)
 .First();
context.Update(entity);

entity: Modified
OneToOne: Unchanged

entity.MyString

See Note 1

var entity = context
 .MyEntities.Single();
entity.OneToOne =
 new OneEntity();
context.Update(entity);

entity: Modified
OneToOne: Added

entity.MyString

See Note 1 and Note 2

var entity =
 context.MyEntities.First();
var oneToOne =
 context.OneEntities
 .First();
entity.OneToOne = oneToOne;
context.Update(entity);

entity: Modified
oneToOne: Modified

entity.MyString
entity.OneToOne
oneToOne.MyEntityId

NOTE 1 —The MyString property is the only nonprimary key, non-navigational property in this entity class. If there were more
such properties, they too would have their IsModified flag set to true.

NOTE 2 —The OneEntity entity is new, with a database-generated primary key of type int, which is at the default value of 0, so
this entity is added rather than modified.

9.3.6	 The Attach method—changing an untracked entity into a tracked entity

The Attach/AttachRange methods are useful when you have a whole entity instance
but it’s not being tracked. After you attach the entity, it’s tracked, and EF Core assumes
that its content matches the current database state. This could be useful in a discon-
nected state, where an entity’s whole content is passed from one instance of the appli-
cation’s DbContext to another, different context. You can Attach the entity, and it
becomes a normal tracked entity, without the cost of loading it from the database. The
Attach method does this by setting the entity’s State to Unchanged.

As with the Remove and Update methods, what happens to the relationships of the
updated entity depends on whether the relationship entity’s primary key is generated
by the database and is set (its value isn’t the default value for the key’s .NET type):

¡	Database-generated key and not the default value —EF Core will assume that the rela-
tionship entity is already in the database and will set the State to Unchanged.

¡	Not a database-generated key, or the key is the default value —EF Core will assume that
the relationship entity is new and set its State to Added.

	 251Details on every command that changes an entity’s State

This behavior works well at reconstituting entities with relationships that have been
serialized and then deserialized to an entity, but only if it’s being written back to the
same database, as the foreign keys need to match.

WARNING   Serialized and then deserialized to an entity with shadow properties
needs special handling with the Attach method. The shadow properties aren’t
part of the class, so they’ll be lost in any serialization. Therefore, you must
save/restore any shadow properties, especially foreign keys, after the Attach
method has been called.

Table 9.5 shows the State and IsModified flags after the DetectChanges method has
run, which happens when your code calls the SaveChanges method. The table shows
various configurations of the entity and its OneToOne navigational property after the
Attach method has been called.

Table 9.5   Examples of using the Attach method, with and without relationships

EF Core code Entity’s State Notes

var entity = new MyEntity();
context.Attach(entity);

entity: Added

var entity =
 context.MyEntities
 .AsNoTracking().First();
context.Attach(entity);

entity: Unchanged

var entity =
 context.MyEntities
 .AsNoTracking().First();
entity.OneToOne =
 new OneEntity();
context.Attach(entity);

entity: Unchanged
OneToOne: Added

The relationship is
established because the
OneToOne entity State is
set to Added.

var entity =
 context.MyEntities
 .AsNoTracking().First();
var oneToOne =
 context.OneEntities
 .First();
entity.OneToOne = oneToOne;
context.Attach(entity);

entity: Unchanged
oneToOne: Unchanged

The relationship isn’t
changed because both
entities are in State
Unchanged.

9.3.7	 Setting the State of an entity directly

Another way to set the State of an entity is to set it manually to whatever state you want.
This direct setting of an entity’s State is useful when an entity has many relationships
and you need to specifically decide which state you want each relationship to have. The
next section shows a good example of this.

252 Chapter 9  Going deeper into the DbContext

Because the entity’s State is read/write, you can set it. In the following code snippet,
the myEntity instance’s State is set to Added:

context.Entry(myEntity).State = EntityState.Added;

You can also set the IsModified flag on the property in an entity. The following code
snippet sets the MyString property’s IsModified flag to true and the entity’s State to
Modified:

var entity = new MyEntity();
context.Entry(entity).Property("MyString").IsModified = true;

NOTE   If the entity wasn’t tracked before you set the State, it’ll be tracked
afterward.

9.3.8	 TrackGraph—handling disconnected updates with relationships

The TrackGraph method is useful if you have an untracked entity with relationships
and you need to set the correct State for each entity. The TrackGraph method will
traverse all the relational links in the entity, calling an action you supplied on each
entity it finds. This is useful if you have a group of linked entities coming from a discon-
nected state (say via some form of serialization) and you want to change only part of
the data you’ve loaded.

EF6   The TrackGraph method is a welcome addition to EF Core. There’s no
equivalent command in EF6.x.

Let’s expand on the simple example of a RESTful API in chapter 3, in which an author’s
Name property was updated. In that case, the external system sent back only the Author
entity data. In this example, the external system will send back the whole book, with all
its relationships, but still wants you to update only the author’s Name property.

Although you could still use the Update command to do this, it’d be inefficient
because it’d update every table and column in the book’s relationships instead of just
the authors’ names. This is where EF Core’s ChangeTracker.TrackGraph method pro-
vides a better approach. Figure 9.7 shows an external system that returns all the data
relating to a Book entity, but by using TrackGraph, you can set the States in such a way
that only the author’s Name property gets updated.

TrackGraph traverses the entity provided as its first parameter and any entities that
are reachable by traversing its navigation properties. The traversal is recursive, so
the navigation properties of any discovered entities will also be scanned. The Action
method you provide as the second parameter is called for each discovered entity and
can set the State that each entity should be tracked in. If the visited entity’s State isn’t
set, the entity remains in the State of Disconnected (the entity isn’t being tracked
by EF Core). Also, TrackGraph will ignore any entities it visits that are currently being
tracked.

	 253Details on every command that changes an entity’s State

1. The external system asks for a
 book by title, with its authors,
 reviews, and so on.

3. Your application uses the TrackGraph command
 to update only the author’s Name property.

GET: myAPI/book/search?title=...

JSON: [{BookId: 4, Title: ...

Read stage

2. The external system sends back
 the whole book, but only the
 author’s Name has changed.

context.Books
 .Where (p =>p.Title ==
 "Quantum Networking")

{
"BookId"; 4,
"Title":
 "Quantum Networking",
 ...
"AuthorLink" : [{
 "BookId" : 4
 "AuthorId" : 3
 "Author" :
 { "Name" : "New Name"
 ...

context.ChangeTracker.
 TrackGraph(book, e =>
 ...
 //set IsModified flag on
 //Author’s Name property
);
context.SaveChanges();

My RESTful API application External system

PUT: myAPI/AuthorName + JSON

OK

Update stage

Figure 9.7   An external system that asks for a specific book and gets the JSON containing the book and
all its relationships. When the external system wants to update the authors’ names, it sends back all the
original JSON, with the changed names, but tells your application that it needs only the authors’ names
changed. Your application uses EF Core’s ChangeTracker.TrackGraph method to set all the classes
to state Unchanged, but sets the IsModified flag on the Name property in the Author entity class.

Listing 9.5 shows the code you’d need to traverse a Book entity instance, which you’ve
reconstituted from a JSON copy (it isn’t a tracked entity). The TrackGraph method
will call your lambda Action method, given as the second parameter, for every entity,
starting with the Book entity instance and then working through all the relational navi-
gational property’s entity instances it can reach.

Listing 9.5   Using TrackGraph to set each entity’s State and IsModified flags

var book = … untracked book with all relationships
context.ChangeTracker.TrackGraph(book, e =>
{
 e.Entry.State = EntityState.Unchanged;
 if (e.Entry.Entity is Author)

Expects an untracked book
with its relationships

Calls ChangeTracker.TrackGraph, which
takes an entity instance and an Action,
which in this case you define via a
lambda. The Action method is called once
on each entity in the graph of entities.

If the method sets the
state to any value other
than Disconnected, the
entity will become
tracked by EF Core.

Here you want to set only the Name
property of the Author entity to
Modified, so you check if the entity is of
type Author.

254 Chapter 9  Going deeper into the DbContext

 {
 e.Entry.Property("Name").IsModified = true;
 }
});
context.SaveChanges();

The result of running this code is that only the Author entity instance’s State is set to
Modified, whereas the State of all the other entity types is set to Unchanged. In addi-
tion, the IsModified flag is set only on the Author entity class’s Name property.

 In this example, the difference between using an Updated method and using the
TrackGraph code in listing 9.5 is about 20 updates to columns (19 of them needlessly)
with the Updated method, against one column being updated by the TrackGraph code.

9.4	 Using ChangeTracker to detect changes
You’ve learned how to set the State of an entity, but now you’ll see how ChangeTracker
can be used to find out what has changed, and use this information in some way. Here
are some of the possible uses of detecting what’s about to be changed in the database:

¡	Automatically add extra information to an entity—for instance, adding the time
when an entity was added or updated

¡	Produce a history audit trail of each time a specific entity type is changed
¡	Add security checks to see whether the current user is allowed to update that

particular entity type

The basic approach is to override the SaveChanges/SaveChangesAsync methods inside
your application’s DbContext and execute a method before the base SaveChanges/
SaveChangesAsync is called. That method can use ChangeTracker.Entries to obtain
a list of all the entities that have changed, and what State they’re in. What you do with
this information is up to you, but next is an example that logs the last time the entity
was added or updated.

The following listing provides an interface you can add to any entity class. This
defines the properties that you want filled in when the entity is added or updated, and a
method that can be used to set the properties to the right values.

Listing 9.6   The IWhen interface defining two properties and method for logging

public interface IWhen
{
 DateTime CreatedOn { get; }
 DateTime UpdatedOn { get; }

 void SetWhen(bool add);
}

Sets the IsModified flag on
the Name property. This
also sets the State of the
entity to Modified.

Calls SaveChanges, which finds that only
the Name property of the Author entity
has been marked as changed; creates the
optimal SQL to update the Name column
in the Authors table.

Added to any entity class when the entity
is added or updated.

Holds the datetime when the entity
was first added to the database

Holds the datetime when
the entity was last updated

Called when an addition or update to the
entity is found. Its job is to update the
properties based on the add flag.

	 255Using ChangeTracker to detect changes

The following listing shows an entity class called AutoWhenEntity that inherits the
IWhen interface that you’ll detect when your modified SaveChanges method is called
(see listing 9.8). The SetWhen method, which you’ll call in your modified SaveChanges
method, sets the UpdatedOn property, and the CreatedOn property if needed, to the
current time.

Listing 9.7   AutoWhenEntity automatically sets the datetime of a change

public class AutoWhenEntity : IWhen
{
 public int AutoWhenEntityId { get; set; }

 public string MyString { get; set; }

 public DateTime CreatedOn { get; private set; }
 public DateTime UpdatedOn { get; private set; }

 public void SetWhen (bool add)
 {
 var time = DateTime.UtcNow;
 if (add)
 {
 CreatedOn = time;
 }
 UpdatedOn = time;
 }
}

The next step is to override all versions of the SaveChanges method inside your appli-
cation’s DbContext and then precede the call to the base SaveChanges with a call to
your HandleWhen method. This method looks for entities with a State of Added or
Modified, and inherits the IWhen interface. If you find an entity(s) that fits that crite-
ria, you call the entity’s SetWhen method to set the two properties to the correct values.
The following listing shows your application’s DbContext, called Chapter09DbContext,
which implements that code. (To keep the code shorter, you’ll override only one of
the four possible SaveChanges methods. Normally, you’d override all four versions
of the SaveChanges/SaveChangesAsync methods.)

Entity class inherits the interface IWhen,
which means any addition/update of the
entity is logged.

Required by the IWhen interface. They
have private setters to stop software
from changing them, but they still allow
EF Core to fill them in when the entity is
loaded.

Required by the IWhen interface.
Its job is to set the two IWhen

properties appropriately.

Obtains the current time so that an
addition will have the same values in
both the Created and Updated
properties

If it’s an add, you set the
Created properties.

You always set the
Updated properties.

256 Chapter 9  Going deeper into the DbContext

Listing 9.8   Your DbContext looks for added or modified IWhen entities

public class Chapter09DbContext : DbContext
{
 //… other code removed for clarity

 public override int SaveChanges()
 {
 HandleWhen();
 return base.SaveChanges();
 }

 private void HandleWhen()
 {
 foreach (var entity in ChangeTracker.Entries()
 .Where(e =>
 e.State == EntityState.Added ||
 e.State == EntityState.Modified))
 {
 var tracked = entity.Entity as IWhen;
 tracked?.SetWhen(
 entity.State == EntityState.Added);
 }
 }
}

This is only one example of using ChangeTracker to take actions based on the State of
tracked entities, but it establishes the general approach. The possibilities are endless.

9.5	 Using raw SQL commands in EF Core
EF Core has methods that allow raw SQL commands to be used, either as part of a
LINQ query or a database write, such as an SQL UPDATE. These are useful when the
query you want to perform can't be expressed using LINQ—for instance, if it calls an
SQL stored procedure, or if using a LINQ query is resulting in inefficient SQL being
sent to the database.

DEFINITION   An SQL stored procedure is a set of SQL commands—which may or
may not have parameters—that can be executed. They typically read and/or
write to the database. The set of SQL commands is stored in the database as a
stored procedure and given a name. The stored procedure can then be called
as part of an SQL command.

Overrides SaveChanges so you can add
your method before calling the base.
SaveChanges method. You override only
one of the four versions of SaveChanges.

Calls your method, HandleWhen,
before you call the base.SaveChanges
to do the save

Your method for finding and
handling entity classes that
inherited the IWhen interface

You look at each entity that
the ChangeTracker says has
changed in some way.

You’re interested only in
entities that have been
added or modified.

Casts this entity to
the IWhen interface.

The result will be
null if it doesn’t
inherit from the
IWhen interface

Calls the method that the IWhen
interface provides for setting the
IWhen properties

Tells the method whether
it was an Add or Update

	 257Using raw SQL commands in EF Core

There are several ways to include SQL commands in EF commands. This chapter
covers:

¡	FromSql method, which allows you to use a raw SQL command in an EF Core
query

¡	ExecuteSqlCommand method, which executes a nonquery command
¡	Reload command, used to refresh an EF Core–loaded entity that has been

changed by an ExecuteSqlCommand method
¡	EF Core’s GetDbConnection method, which provides low-level database access

libraries to access the database directly

EF6   The commands in EF Core for SQL access are different from the way
EF6.x provides SQL access to the database.

9.5.1	 FromSql—adding raw SQL to an EF Core query

The FromSql method allows you to add raw SQL commands to a standard EF Core
query. This allows you to include SQL commands that you wouldn’t be able to call
from EF Core, such as an SQL stored procedure. Here’s an example of calling a stored
procedure that returns only books that have an average review vote of the given value.

Listing 9.9   Using the FromSql method to add SQL into an EF Core query

var books = context.Books
 .FromSql(
 "EXECUTE dbo.FilterOnReviewRank " +
 $"@RankFilter = {rankFilterBy}")
 .ToList();

In the preceding code, you were querying an entity class property, which is all you
could do up to EF Core 2.0. But from EF Core 2.1, you’ll be able to use the FromSql
method with a query type, which is a type that isn’t an entity class (see appendix B, sec-
tion B.1.5).

EF Core’s SQL commands support the C# 6 string interpolation feature that allows
you to place a variable name in the string, which EF Core will then check and turn into

Starts the query in the normal
way, with the DbSet<T> you
want to read

FromSql allows you to insert an SQL
command. This must return all the
columns of the entity type T that the
DbSet<T> property has—in this case,
the Book entity class.

Executes a stored procedure that
you added to the database outside
the normal EF Core database
creation systemUses C# 6 string interpolation feature to

provide the parameter. EF Core
intercepts the string interpolation and
turns it into an SQL parameter with
checks against common SQL injection
mistakes/security issues.

258 Chapter 9  Going deeper into the DbContext

parameters. The parameters will be checked to stop SQL injection attacks. Using string
interpolation makes it easier to see what the parameters are, especially in complex SQL
commands that have multiple parameters.

WARNING   If you form the command string by using the C# 6 string interpola-
tion feature outside the FromSql command, you lose the SQL injection attack
detection built into the FromSql method.

The FromSql method has some limitations:

¡	The column names in the result set must match the column names that proper-
ties are mapped to.

¡	If you’re loading to an entity class, the SQL query must return data for all prop-
erties of the entity type. This is because the entity will be tracked after the query.

You can use an Include method with the FromSql method, if you’re querying an entity
class and not executing a stored procedure. The following listing shows an example in
which you call an SQL user-defined function (explained in section 8.1.2). In this case,
you use the Include method to eager load the Book’s Reviews collection.

Listing 9.10   Using FromSql with Include to eager load other data

var books = context.Books
 .FromSql(
 "SELECT * FROM Books b WHERE " +
 "(SELECT AVG(CAST([NumStars] AS float)) " +
 "FROM dbo.Review AS r " +
 "WHERE b.BookId = r.BookId) >= {0}", 5)
 .Include(r => r.Reviews)
 .ToList();

WARNING   If you’re using model-level query filters (see section 3.5.1), the SQL
you can write has limitations—for instance, ORDER BY won’t work. The way
around this problem is to apply the IgnoreQueryFilters method before the
FromSql command and re-create the model-level query filter in your SQL code.

9.5.2	 ExecuteSqlCommand—executing a nonquery command

In addition to putting raw SQL commands in a query, you can execute nonquery SQL
commands via EF Core’s ExecuteSqlCommand method. Typical commands are SQL
UPDATE or DELETE commands, but any nonquery SQL command can be called. List-
ing 9.11 shows an SQL UPDATE command, which takes two parameters.

You write SQL to calculate
the average votes, then use
that result in an outer
WHERE test.

You use the normal SQL parameter
check and substitution method

of {0}, {2}, {3} etc. in the string
and then provide extra parameters

to the FromSql call.

The Include method works with FromSql
because you’re not executing a stored
procedure.

	 259Using raw SQL commands in EF Core

Listing 9.11   The ExecuteSqlCommand method executing an SQL UPDATE

var rowsAffected = context.Database
 .ExecuteSqlCommand(
 "UPDATE Books " +
 "SET Description = {0} " +
 "WHERE BookId = {1}",
 uniqueString, bookId);

The ExecuteSqlCommand method returns an integer, which is useful for checking that
the command was executed in the way you expected. In this example, you’d expect it
to return 1 to show that it found a row in the Books table that had the primary key you
provided and updated it.

9.5.3	 Reload—useful after an ExecuteSqlCommand

If you have an entity loading and you use an ExecuteSqlCommand method to change
the data on the database, your loaded entity is now out-of-date. That could cause you
a problem later, because EF Core doesn’t know the values have been changed. To fix
this, EF Core has a method called Reload, which updates your entity by rereading the
database.

In this listing, you load an entity, change its content via the ExecuteSqlCommand
method, and then use the Reload method to make sure the entity’s content matches
what’s in the database.

Listing 9.12   Using the Reload method to refresh the content of an existing entity

var entity = context.Books.
 Single(x => x.Title == "Quantum Networking");
var uniqueString = Guid.NewGuid().ToString();

context.Database.ExecuteSqlCommand(
 "UPDATE Books " +
 "SET Description = {0} " +
 "WHERE BookId = {1}",
 uniqueString, entity.BookId);
context.Entry(entity).Reload();

At the end of this code, the entity instance will match what’s in the database.

ExecuteSqlCommand can be found
in the context.Database property.

ExecuteSqlCommand executes the SQL
and returns an integer, in this case the
number of rows updated.

The SQL command as a string,
with places for the parameters
to be inserted.

Provides two parameters that
are referred to in the command.

Loads a Book entity in
the normal way

You now use ExecuteSqlCommand to
change the Description column of that
same Book entity. After this command
has finished, the Book entity EF Core
load is out-of-date.

By calling the Reload method, EF Core
will reread that entity to make sure
the local copy is up-to-date.

260 Chapter 9  Going deeper into the DbContext

9.5.4	 GetDbConnection—calling database access commands

When EF Core can’t provide the query features you want, you need to drop back to
another database access method that can. A few low-level database libraries require
a lot more code to be written, but provide more-direct access to the database so that
almost anything you need can be done.

These low-level database libraries are normally database server-specific. In this
section, you’ll use a library that works with SQL Server called System.Data.SqlClient,
known as ADO.NET, which is part of the .NET standard library. This bypasses all of EF
Core’s cleverness and uses standard SQL commands.

This listing shows the use of the ADO.NET library to execute an SQL SELECT com-
mand and then read the resulting data.

Listing 9.13   An example of using a low-level database access library with EF Core

var bookDtos = new List<RawSqlDto>();
var conn = context.Database.GetDbConnection();
try
{
 conn.Open();
 using (var command = conn.CreateCommand())
 {
 string query = "SELECT b.BookId, b.Title, " +
 "(SELECT AVG(CAST([NumStars] AS float)) " +
 "FROM dbo.Review AS r " +
 "WHERE b.BookId = r.BookId) AS AverageVotes " +
 "FROM Books b";
 command.CommandText = query;

 using (DbDataReader reader = command.ExecuteReader())
 {
 while (reader.Read())
 {
 var row = new RawSqlDto
 {
 BookId = reader.GetInt32(0),
 Title = reader.GetString(1),
 AverageVotes = reader.IsDBNull(2)
 ? null
 : (double?) reader.GetDouble(2)
 };
 bookDtos.Add(row);
 }

Asks EF Core for a DbConnection,
which the low-level SqlClient

library can use

You need to open the connection before
you use it.

Creates a DbCommand on
that connection

The ADO.NET library transfers SQL
directly to the database server;
hence all the database accesses
must be defined in SQL.

Assigns your command to
the DbCommand instance

The ExecuteReader method sends the
SQL command to the database server
and then creates a reader to read the

data that the server will return.

This tries to read the next row and
returns true if it was successful.

You have to hand-code the
conversion and copying of the
data from the reader into your
class. Have a look at Dapper
for a slightly easier way to read
data into a class.

	 261Using Context.Model to access EF Core’s view of the database

 }
 }
}
finally
{
 conn.Close();
}

As you can see, the code is longer than EF Core, but it does allow you to do almost any-
thing with the database. At the same time, you get no help on handling relationships,
tracking changes, and so on that EF Core provides—it’s all on you to handle. Chapter
13 presents more examples of direct SQL database accesses, but using a more develop-
er-friendly NuGet package called Dapper.

9.6	 Using Context.Model to access EF Core’s view
of the database
The Model property on the application’s DbContext provides access to the database
information for each entity and its properties. You might use this if you want to find
out the table name and column names of an entity so that you can build a raw SQL
command using ADO.NET, or if you’re building a tool to compare or build a database
yourself.

EF6   EF Core’s Model property is a tremendous improvement over EF6.x’s
access to the model metadata. In EF Core, the IModel interface gives you access
to all the database properties that EF Core uses. EF6.x’s version is cumbersome
and doesn’t cover every aspect of the database.

The following listing uses the context.Model property to get the table name of the
Book entity class.

Listing 9.14   Using the application’s DbContext Model property to get a table name

var eType = context.Model
 .FindEntityType(typeof(Book).FullName);
var bookTableName = eType
 .Relational().TableName;

In this case, the Book entity class’s table name is Books (see section 6.10.1, on how
EF Core defines the table name during configuration). The context.Model property
has a rich interface allowing access to both the representation of the data in the data-
base and information on the relationships between tables, and the last example just
scratches the surface. The next example is more complex and shows more of what the
Model property and its IEntityType classes contain.

9.6.1	 Using the Model property to build a fast database wipe method

To help with our unit-test library, you’ll implement a method that wipes all the data from
all the tables in the database by using raw SQL commands. This is useful in unit testing,
because it’s much quicker than the EF Core alternative of using the EnsureDeleted

When the read has finished, you
need to close the connection to
the database server.

262 Chapter 9  Going deeper into the DbContext

method followed by the EnsureCreated method; in section 15.5.3, you’ll use this
approach to create a CreateEmptyViaWipe method for use in unit testing.

This isn’t a trivial problem, because the order in which you can delete rows depends
on the cascade delete settings of relationships. In chapter 4, you defined how a book
order was held, and you set up the cascade delete settings such that once a Book entity
was referred to by a LineItem entity in an order, that specific Book entity (row) couldn’t
be deleted. If you want to wipe that database, you need to delete all the LineItem table
rows before you delete the Books table rows.

Figure 9.8 shows an example of a database with relationships between the various
entities/tables. You assume that all the cascade delete settings are set to Restrict,
which means you must delete in the order shown.

2. The correct order
 to wipe all rows
 from each table is

1. The diagram represents a set of entities with navigational links shown as arrows. If
 the cascade delete setting on each link is set to Restrict, then the order in which you
 can delete all the entities in a table matters. Dependents must be deleted first.

A B C D

E F

G H

First Second Third Fourth

Dependent
Dependent
& principal

Dependent
& principal Principal

Figure 9.8   Each rectangle represents a table in the database that you want to delete all rows from.
Because of the foreign-key links—which may have a cascade delete setting that precludes deleting a
row because another row points to it with a foreign key—the order in which you delete rows from a table
matters. The row at the bottom defines the correct order for deleting all the rows from a table.

This example is a useful piece of code, but here you want to concentrate on how the
Model property can be used to obtain the information you need to implement your
GetTableNamesInOrderForWipe method. The code is long, so the following listing
shows only the first part of the code, in which all the accesses to the Model and its
IEntityType information are used.

Listing 9.15   The extraction of the IEntityType information

public static IEnumerable<string>
 GetTableNamesInOrderForWipe
 (this DbContext context,
 int maxDepth = 10, params Type[] excludeTypes)

Looks at the relationships and returns
table names in the right order, to wipe

all their rows without incurring a
foreign-key delete constraint.

You can exclude entity
classes that contain only
circular references—this
method can’t handle them

	 263Using Context.Model to access EF Core’s view of the database

{
 var allEntities = context.Model
 .GetEntityTypes()
 .Where(x => !excludeTypes.Contains(x.ClrType))
 .ToList();

 ThrowExceptionIfCannotWipeSelfRef(allEntities);

 var principalsDict = allEntities
 .SelectMany(x => x.GetForeignKeys()
 .Select(y => y.PrincipalEntityType))
 .Distinct()
 .ToDictionary(k => k, v =>
 v.GetForeignKeys()
 .Where(y => y.PrincipalEntityType != v)
 .Select(y => y.PrincipalEntityType).ToList());

 var result = allEntities
 .Where(x => !principalsDict.ContainsKey(x))
 .ToList();

 ///… more code left out as it doesn’t use Model so much

NOTE   You can find all the code for the GetTableNamesInOrderForWipe
method at http://mng.bz/07vz.

Listing 9.16 shows how to use the GetTableNamesInOrderForWipe method and EF
Core’s ExecuteSqlCommand method to wipe all the data from the database; by that, I
mean deleting all the rows in all the tables in the database that the given application’s
DbContext is linked to.

Listing 9.16   Wiping all data from the tables in the application’s DbContext

foreach (var tableName in
 context.GetTableNamesInOrderForWipe())
{
 var commandString = $"DELETE FROM {tableName}";
 context.Database
 .ExecuteSqlCommand(commandString);
}

Gets the IEntityType for all the entities,
other than those that were excluded.
This contains the information on how
each table is built, with its relationships.

Contains a check for the hierarchical
case in which an entity refers to itself; if
the delete behavior of this foreign key is

set to restrict, you can’t delete all the
rows in one go.

Extracts all principal entities from
the entities you’re considering . . .

. . . puts them
in a dictionary,
with the
IEntityType
being the key

Removes any self-reference
links, as these are
automatically handled…

…and extracts the
PrincipalEntityType
at the value part of
the dictionary

Starts the list of entities to delete by
putting all the dependent entities first,
as you must delete the rows in these
tables first, and the order doesn't matter

Returns the table names to wipe in
the correct order to minimize the
likelihood of foreign-key delete
constraints returning an error

You must form the command string
outside the ExecuteSqlCommand; EF
Core will reject this string because it
could be an SQL injection attack.

Executes the SQL command, which
quickly deletes all the rows in that table

http://mng.bz/07vz

264 Chapter 9  Going deeper into the DbContext

9.7	 Handling database connection problems
With relational database servers, especially in the cloud, a database access can fail
because the connection times out, or certain transient errors occur. EF Core has
an execution strategy feature that allows you to define what should happen when a
time-out occurs, how many time-outs are allowed, and so on. Providing an execution
strategy can make your application less likely to fail due to connection problems, or
internal errors that are transient.

EF6   EF Core’s execution strategy is an improvement on the EF6.x execution
strategy, as EF Core can handle retries in a transaction.

The SQL Server database provider includes an execution strategy that’s specifically tai-
lored to SQL Server (including SQL Azure). It’s aware of the exception types that can
be retried and has sensible defaults for maximum retries, delay between retries, and so
on. This listing shows how to apply this to the setup of SQL Server, with the execution
strategy shown in bold.

Listing 9.17   Setting up a DbContext with the standard SQL execution strategy

var connection = @"Server=(localdb)\mssqllocaldb;Database=… etc.”;
var optionsBuilder =
 new DbContextOptionsBuilder<EfCoreContext>();

optionsBuilder.UseSqlServer(connection,
 option => option.EnableRetryOnFailure());
var options = optionsBuilder.Options;

using (var context = new EfCoreContext(options))
{
 … normal code to use the context

Normal EF Core queries or SaveChanges calls will automatically be retried without
your doing anything. Each query and each call to SaveChanges will be retried as a unit
if a transient failure occurs. But database transactions do need a little more work.

9.7.1	 Handling database transactions with EF Core’s execution strategy

Because of the way that an execution strategy works, you need to adapt any code that
uses a database transaction (in which you have multiple calls to SaveChanges within an
isolated transaction—see section 4.6.2 for information how transactions work). The
execution strategy works by rolling back the whole transaction if a transient failure
occurs, and then replaying each operation in the transaction again; each query and
each call to SaveChanges will be retried as a unit.

In order for all the operations in the transaction to be retried, the execution strategy
must be in control of the transaction code. This listing shows both the addition of the
SQL Server EnableRetryOnFailure execution strategy, and the use of that execution
strategy (in bold) with a transaction. The transaction code is written such that if a retry
is needed, the whole transaction is run again from the start.

	 265Handling database connection problems

Listing 9.18   Writing transactions when you’ve configured an execution strategy

var connection = @"Server=(localdb)\mssqllocaldb;Database=… etc.”;
var optionsBuilder =
 new DbContextOptionsBuilder<EfCoreContext>();

optionsBuilder.UseSqlServer(connection,
 option => option.EnableRetryOnFailure());
var options = optionsBuilder.Options
using (var context = new Chapter09DbContext(options))
{
 var strategy = context.Database
 .CreateExecutionStrategy();
 strategy.Execute(() =>
 {
 try
 {
 using (var transaction = context
 .Database.BeginTransaction())
 {
 context.Add(new MyEntity());
 context.SaveChanges();
 context.Add(new MyEntity());
 context.SaveChanges();
 transaction.Commit();
 }
 }
 catch (Exception e)
 {
 //Error handling to go here
 throw;
 }
 });
}

WARNING   The code in listing 9.18 is safe when it comes to a retry; by safe, I
mean that the code will work properly. But in some cases, such as when data
outside the execution strategy retry action is altered, the retry could cause
problems. An obvious example is an int count = 0 variable defined outside
the scope of the retry action that’s incremented inside the action. In this case,
the value of the count variable would be incremented again if there was a retry.
Bear this in mind when you design transactions if you’re using the execution
strategy retry facility.

9.7.2	 Altering or writing your own execution strategy

In some cases, you might need to change the execution strategy for your database. If
there’s an existing execution strategy for your database provider (for instance, SQL
Server), then there are options you can change, such as the number of retries, or the
SQL errors that you know can be retried.

Configures the database to use
the SQL execution strategy. This
means you have to handle
transactions differently.

Creates an IExecutionStrategy
instance, which uses the
execution strategy you
configured the DbContext with

The important thing is to make the whole
transaction code into an Action method
it can call.

The rest of the transaction
setup and running your code is
the same.

266 Chapter 9  Going deeper into the DbContext

If you want to write your own execution strategy, you need to implement a class that
inherits the interface IExecutionStrategy. I recommend you look at the EF Core
internal class called SqlServerExecutionStrategy as a template. This can be found
in the EF Core GitHub repo under the EFCore.SqlServer package in the directory
Storage/Internal.

After you’ve written your own execution strategy class, you can configure it into your
database by using the ExecuteStrategy method in the options, as shown here in bold.

Listing 9.19   Configuring your own execution strategy into your DbContext

var connection = this.GetUniqueDatabaseConnectionString();
var optionsBuilder =
 new DbContextOptionsBuilder<Chapter09DbContext>();

optionsBuilder.UseSqlServer(connection,
 options => options.ExecutionStrategy(
 p => new MyExecutionStrategy()));

using (var context = new Chapter09DbContext(optionsBuilder.Options))
{
 … etc.

Summary
¡	You can use EF Core’s entity State property, with a little help from a per prop-

erty IsModified flag, to define what will happen to the data when you call
SaveChanges.

¡	You can affect the State of an entity and its relationships in several ways. You can
use the methods Add, Remove, Update, Attach, and TrackGraph; set the State
directly; and use two ways of tracking modifications.

¡	With EF Core’s ChangeTracker, you can explore the State of all the entities that
have changed.

¡	You can use several EF Core methods that allow you to use raw SQL command
strings in your database accesses.

¡	You can access information about the database structure via the Model property.
¡	EF Core contains a system that allows you to provide a retry capability if there are

connection or transient errors.

For readers who are familiar with EF6:

¡	The ways that the entity State is set has changed in EF Core to be more “natural,”
based on lessons learned from EF6.x.

¡	In EF6.x, the methods such as Add, Remove, and Update are found only in the
DbSet<T> properties. In EF Core, those same methods are available via the appli-
cation’s DbContext as well, which makes the code shorter.

¡	EF Core introduces a new method called TrackGraph, which will traverse a graph
of linked entities and call your code to set each entity’s State to the value you
require.

	 267Summary

¡	The way you use raw SQL commands in EF Core is different from the way it’s
done in EF6.x.

¡	EF Core’s Model property is a tremendous improvement over EF6.x’s access to
the model metadata. Now you can access every aspect of the database model.

¡	EF Core’s execution strategy is an improvement on the EF6.x execution strategy,
as EF Core can handle retries in a database transaction.

Part 3

Using Entity Framework Core
in real-world applications

In my experience, you don’t really know something until you need to use
it for a real job. I might have read books containing great recipes and watched
inspiring cooking videos, but it isn’t until I have to cook an important meal that
I know whether I’ve learned what I’ve seen. Part 3 is a bit like that: you’ve read a
lot about EF Core in the previous chapters, so now I’ll help you take that knowl-
edge and implement more-complex issues, such as database migration and per-
formance tuning, in EF Core.

Part 3 starts with tips and techniques in chapter 10. I think every developer
has a software architect inside them and, even if you have the smallest of jobs in a
project, you should be thinking about the best way to build your part. I introduce
patterns and techniques that you can study to help you perfect your own patterns
for your project. Some topics, such as domain-driven design, need multiple books
to cover, but my aim is to give you an overview so you can decide whether looking
at that topic in more detail is worthwhile.

Chapter 11 is about how to migrate/change a database structure, a task that
became critical to me when I was designing and building a 24/7 e-commerce site.
Trying to build a system in which you can change the database structure on a live
site is a daunting job, especially if you might have paying customers using the site
while you’re applying the changes. I look at the overall problem of changing the
database structure and the three ways you can approach this safely.

Chapters 12 and 13 are all about performance tuning EF Core database
accesses. My philosophy is “Get your EF code working, but be ready to make it
faster if you need to.” Chapter 12 looks at what needs performance tuning, how to
detect performance issues, all the things that you can do to improve your EF Core

code. In chapter 13, you’ll follow a worked example of performance tuning; I’ll take
you through three stages of performance tuning, two of which go beyond what EF Core
can do on its own.

Chapter 14 starts by looking at the issues that arise when using various database types
with EF Core. It goes on to describe a hybrid SQL/NoSQL application that’s designed
for situations that need to quickly handle millions of rows of data and many thousands
of simultaneous users. You’ll also look at extensibility features designed into EF Core,
as well as EF Core’s services and how to replace them or co-opt them for your own use.

Chapter 15 covers unit-testing applications that use EF Core for its database access.
Unit testing when a database is involved needs careful thought, especially if you don’t
want the unit test to run slowly. I share several techniques and approaches, and I pro-
vide a NuGet package called EfCore.TestSupport I built that contains setup methods to
help you unit-test EF Core applications safely and quickly.

271

10Useful software patterns
for EF Core applications

This chapter covers
¡	Applying the separation-of-concerns principle

¡	Using a LINQ mapper to speed up development

¡	Using a domain-driven-design approach to EF Core

¡	Splitting your database across multiple
DbContexts

¡	Building error-handling for database errors

This chapter introduces techniques, patterns, and packages to help you become
a more productive developer. I find that I become a better developer by taking a
pattern or design principle that looks promising, using it in a project, reviewing
how that went, and improving the pattern in the next project. This chapter shares
techniques I’ve used and perfected over many years as well as some that I’ve only
just starting looking at now that EF Core has been released.

The techniques in this chapter aren’t the only ones you could use, and not all the
approaches I describe will be applicable to your needs, but they’re a good mix of
techniques to consider. Like me, you won’t know if an approach is useful until you’ve
used it in a real-world project, but you have to start somewhere. I hope this chapter
gets you thinking, so enjoy the journey.

272 Chapter 10  Useful software patterns for EF Core applications

10.1	 Another look at the separation-of-concerns principle
Section 5.5.2 covered the software design principle called separation of concerns (SoC).
This design principle states that a software system should be decomposed into parts
that overlap in functionality as little as possible. SoC is linked to two other principles:

¡	Low coupling —You want each component in your application to be as self-con-
tained as possible.

¡	High cohesion —Each project in your application should have code that provides
similar or strongly related functions.

Figure 10.1 (taken from chapter 5) shows the SoC principle applied to our book app.

SQL
server

Your business logic EF Core code is only in the
business database access project (see chapter 4).

No EF Core code in ASP.NET, other than
.ToList to execute a query object.

ASP.NET
Core

Service
layer

Data
access HTML

pages

Pure
business

logic

Business
database
access

JavaScript
/Ajax

Your CRUD accesses are all
done from the Service layer

Any generic or helper code
(paging or validation) goes here.

Generic
database

code
Execute

Business
logic

database
code

Most
CRUD

database
code

Figure 10.1   The application of the software design principle called separation of concerns to our layered
architecture. Your EF Core code lives in two primary places: any database access that your business
logic needs can be found in your BizDbAccess project, and the CRUD database accesses are all in the
Service layer.

By arranging your software code as shown in figure 10.1, you place each piece of data-
base code in an appropriately named class whose job it is to execute the database
access, and nothing more. This isolates the database access code and makes it easier to
test. In addition, the code is grouped into two main areas in our application; high cohe-
sion makes the code easier to find when you need to refactor or performance tune the
database access code. I’ll introduce new approaches in this chapter that will further
improve the SoC beyond what you see in figure 10.1.

In our example web application, you’ll use a layered architecture because it’s simple
to understand while being close to what might be used in a real-world application. But
you could use other architectures (such as microservices, event-driven, CQRS architec-
ture), but in all cases the SoC principle would still be applicable.

	 273Using patterns to speed development of database access

10.2	 Using patterns to speed development of database access
Over the years, I’ve learned from software giants such as Martin Fowler and Eric Evans,
and developed my own patterns and supporting libraries for building applications.
These patterns make me quicker at developing each application, and make testing and
performance tuning easier. This section covers using Eric Evan’s domain-driven design
(DDD) and Martin Fowler’s Service layer (figure 10.2).

I normally form these patterns by reviewing what I’ve done and looking for parts I
could improve or turn into patterns or libraries. Chapter 4 described one pattern for
business logic, my interpretation of DDD, and in section 10.4.2 you’ll enhance the busi-
ness logic further by applying additional DDD techniques.

SQL
server

1. The database format
 is defined by the
 business logic.

2. This project contains the
 pure business logic code.
 It has no distractions.

3. The business logic works
on in-memory data.

4. This project isolates all the database
 access that the business logic needs.

5. The Service layer is in charge of running
the business logic and calling SaveChanges.

ASP.NET
Core
web
app

Service
layer

Data
access

HTML
pages

Pure
business

logic

Business
database
access

JavaScript
/Ajax

Figure 10.2   My implementation of the DDD pattern for handling business logic with EF Core. This also uses the
SoC approach, with low coupling between the business logic and the database access. You can find a detailed
description of the five steps in chapter 4, and in section 10.4 I extend the design to move some of the business
logic inside the entity classes.

You’ll use another pattern in the book app. This pattern, which I developed for my
own web application development work, allows you to quickly build the CRUD data-
base access code that’s needed in most web applications. Figure 10.3 pulls out the four
key attributes that allow you to develop a robust, testable application quickly.

This review/improve cycle works well for me, and I recommend you try it too. I
review each project/subproject I work on and decide what worked well, what didn’t
work well, and what was repetitive. I especially look for patterns I can create to improve
future coding. That way, the simple things will get easier to develop, which allows me
to put my time into the complex parts that need my serious effort. Patterns make me
quicker, because I know ahead of time what I’m going to write. The right pattern makes
my code more robust, because I’ve thought through what could go wrong. The patterns

274 Chapter 10  Useful software patterns for EF Core applications

you develop with experience will be different from mine, and, like me, you might need
a few attempts to get something that works well. In the end, defining a set of good pat-
terns can make you a much more efficient developer.

1. One class per CRUD action
 You create one class which encapsulates
 all the commands you need for this CRUD
 action. It may use query objects or
 generic CRUD methods too.

2. Make it into a DI service.
 You add an interface so that the class
 can be injected into the ASP.NET Core
 action as a parameter, which is
 efficient and makes ASP.NET Core
 unit testing easier.

3. DTO to transform the data
 In over 85% of the display of data,
 you’ll need a subset/combination
 of database data. DTOs with Select
 queries are efficient and secure.

 4. Use standard pattern actions.
 The Service layer methods provide a
 consistent interface, so I can use a
 Standard ASP.NET Core action pattern
 for each of the Create, Read, Update,
 and Delete types.

CRUD service:

Entity classes and DbContext

class ChangePubDateService :
IChangePubDateService
{
 method GetOriginal(int id)
 method UpdateBook9(…)
}

Book

BookListDto

Admin Controller

Service layer

Data layer

Presentation
(ASP.NET Core)

Action ChangePubDate (int id,
 [FromServices]
 IChangePubDateService
 service)
{
 var dto = service.
 .GetOriginal(id);
 return View(dto);
}

Figure 10.3   Four key patterns I’ve developed to speed up the writing of CRUD commands using the EF
Core framework inside an ASP.NET Core application. Your pattern might be different, but developing your
own pattern will make you quicker and less error-prone.

10.3	 Speed up query development—use a LINQ mapper
Over the years, I’ve built many applications, and I noticed that a large percentage
(>85%) of the database queries I built needed to extract data from multiple entities,
just like the book list query in chapter 2. The most efficient way to achieve this, both in
performance and speed of development, was to use EF Core’s Select method to pick
the exact properties from an entity class and map the related data into a DTO.

Although writing a LINQ Select statement to map to a DTO isn’t hard, it’s time-con-
suming, can be error-prone, and most important, it’s boring! The answer to writing a
LINQ Select statement quickly and accurately is to use an object-to-object mapper (I refer
to this as a mapper from now on), with certain characteristics, to automatically build the
Select statement.

DEFINITION   An object-to-object mapper is a piece of software that transfers data
from one object (class), including any nested object, to another object. A map-
per can work out the mapping between the two objects in several ways; the most
useful ones do so automatically.

	 275Speed up query development—use a LINQ mapper

To be able to use a mapper with EF Core, the mapper library must support IQueryable
mapping; the mapper must be able to produce a LINQ query capable of copying the
data from one IQueryable source to another. Quite a few mappers support IQueryable,
but the best known, and possibly best supported, mapper that handles IQueryable map-
ping is AutoMapper (see https://github.com/Automapper/Automapper).

I’ve used AutoMapper for several years and found it to provide a comprehensive and
configurable package. It has recently been tuned to be faster at building object-to-
object maps. To give you an example of how the mapping works, you’ll map the Book
entity class to a BookDto class. Figure 10.4 shows the ways that the mapper builds a
Select query.

1. The first three properties are mapped
 by matching their names.

2. These properties aren’t present in the
 DTO, so they’re left out of the query.

3. This selects specific properties out of a
 one-to-one relationship by combining
 the names (Promotion.NewPrice
 becomes PromotionNewPrice). This is
 known as flattening.

4. This maps the one-to-many Review collection
 to a ReviewDto collection, which selects only
 the NumVotes property from the Review class.
 This is known as nested DTO.

public class Book
{
 public int BookId {get; set;}
 public string Title {get; set;}
 public decimal Price {get; set;}

 public string description
 {get; set;}
 public DateTime PublishedOn
 {get; set;}
 public string Publisher {get; set;}
 public string ImageUrl {get; set;}

 Public PriceOffer
 Promotion {get; set;}

 public ICollection<Review>
 Reviews {get; set;}
 ...
}

public class BookDto
{
 public int BookId {get; set;}
 public string Title {get; set;}
 public decimal Price {get; set;}

 public decimal?
 PromotionNewPrice {get; set;}
 public string
 promotionPromotionalText
 {get; set;}

 public ICollection<ReviewDto>
 Reviews {get; set;}
}

Figure 10.4   Four ways that AutoMapper maps the Book entity class to the BookDto class. The default
convention is to map via similar names, including handling relationships by having a name equivalent
to the property access, but without the dot. For instance, the DTO property PromotionNewPrice
is mapped to the Promotion.NewPrice property in the source. Mappings also can be nested; a
collection in the entity class can be mapped to a collection with a DTO.

Listing 10.1 shows the BookDto class, which holds only those properties you want to
copy, thereby minimizing the number of columns that are read back. This code also
includes flattening and nested DTOs to select specific properties from navigational
properties.

https://github.com/Automapper/Automapper

276 Chapter 10  Useful software patterns for EF Core applications

Listing 10.1   The BookDto class, with the properties you want to copy

public class BookDto
{
 public int BookId { get; set; }
 public string Title { get; set; }
 public decimal Price { get; set; }

 public decimal?
 PromotionNewPrice { get; set; }
 public string
 PromotionPromotionalText { get; set; }

 public ICollection<ReviewDto>
 Reviews { get; set; }
}

The DTO property PromotionNewPrice is an example of flattening. AutoMapper maps
the first half of the name, Promotion, to the one-to-one Promotion navigational prop-
erty, and then maps the second part of the DTO property, NewPrice, to the property
called NewPrice in the PriceOffer entity. EF Core converts the resulting Select query
into an SQL INNER JOIN, which selects the required column by using the foreign key
for that relationship. This makes for an efficient data access query.

The next listing builds the Select method by using AutoMapper and then uses a
query to create an EF Core query. The code uses AutoMapper’s ProjectTo method
which, instead of copying the data directly, produces the LINQ commands needed to
copy that data. You then use those LINQ commands to access the database via EF Core.

Listing 10.2   Setting up your mapping, and using ProjectTo to build the query

var config = new MapperConfiguration(cfg => {
 cfg.CreateMap<Book, BookDto>();
 cfg.CreateMap<Review, ReviewDto>();
});
using (var context = inMemDb.GetContextWithSetup())
{
 var result = context.Books.
 ProjectTo<BookDto>(config)
 .ToList();

Shows how AutoMapper uses the
DTO’s property names and types

Properties in the Book entity,
mapped because of their name

You must set the type to nullable,
because if no PriceOffer is linked
to the book, it’ll be set to null.

Flattens a relationship. Promotion refers to the
one-to-one relationship, and the end of the property
name refers to the property in the relationship class.

A nested DTO maps the Book’s Reviews
collection navigational property to a
collection of ReviewDtos.

You must tell AutoMapper to create a
map between the Book entity class
and the BookDto class. It does this by
matching the names in both classes.

You add a mapping from the Review entity class and
the ReviewDto class. This is a nested DTO, as it’s
used in the BookDto class.

Uses the normal access to the
books via the application’s
DbContext DbSet<T>
property, Books

Uses AutoMapper’s ProjectTo<T>
method to create the LINQ
needed to map the Book and its
navigational properties to the DTOUses ToList to get EF Core to build

and execute the database access

	 277Speed up query development—use a LINQ mapper

It’s much quicker to build Select queries by using AutoMapper than the hand-
coded way shown next, especially if you have more properties to copy. It’s also a lot
less boring.

Listing 10.3   A hand-coded Select query to do the same job as the mapper version

using (var context = inMemDb.GetContextWithSetup())
{
 var result = context.Books.
 Select(p => new BookDto
 {
 BookId = p.BookId,
 Title = p.Title,
 Price = p.Price,
 PromotionNewPrice = p.Promotion == null
 ? (decimal?)null
 : p.Promotion.NewPrice,
 PromotionPromotionalText = p.Promotion == null
 ? null
 : p.Promotion.PromotionalText,
 Reviews = p.Reviews
 .Select(x => new ReviewDto
 {
 NumStars = x.NumStars
 })
 .ToList()
 })
 .ToList();

AutoMapper has many features, including allowing the developer to include cus-
tom LINQ mapping for mappings that are too complex for AutoMapper to auto-
matically map. Nearly all Select queries can be built with the help of AutoMapper.

NOTE   The range of features and settings of AutoMapper can take some time
to get used to. A good start is https://github.com/AutoMapper/AutoMapper/
wiki/Getting-started.

Using AutoMapper with dependency injection
If you’re using AutoMapper in an application that uses DI, such as ASP.NET Core, you
need to use AutoMapper’s AutoMapper.Extensions.Microsoft.DependencyInjection
NuGet package. This finds your mapping by looking for classes that inherit from Auto-
Mapper’s Profile class, and then provides the config you need to do the mapping. You
can find information on how to do this in Jimmy Bogard’s blog post, http://mng.bz/14nL.
You can find a simpler explanation of DI in ASP.NET Core from Stack Overflow at
https://stackoverflow.com/a/40275196/1434764.

https://github.com/AutoMapper/AutoMapper/wiki/Getting-started
https://github.com/AutoMapper/AutoMapper/wiki/Getting-started
http://mng.bz/14nL
https://stackoverflow.com/a/40275196/1434764

278 Chapter 10  Useful software patterns for EF Core applications

10.4	 Domain-driven-design database repository
Another design concept for accessing a database that’s worth considering is the
domain-driven-design (DDD) entity and repository. This comes from Eric Evans’ sem-
inal book, Domain-Driven Design, which I referred to in chapter 4 when looking at busi-
ness logic. Evans’ book puts the business domain-relation problems at the heart of
software design and implementation.

Evans describes a database access design, referred to as a DDD repository, that central-
izes the reading and writing of a group of related business objects to a persistent store.
In his book, Evans lists four main advantages of a DDD repository:

¡	They present the client with a simple model for obtaining persistent objects
(classes) and managing their lifecycle.

¡	They decouple applications and domain (business) design from persistence
technology, multiple database strategies, or even multiple data sources.

¡	They communicate design decisions about object access.
¡	They allow easy substitution of a dummy implementation for use in testing.

When it comes to the implementation of a DDD design, a few key design principles are
applied to database accesses:

¡	To reduce the mental complexity, entities are grouped into what DDD calls a root
entity and aggregates. Aggregates are entities that are so closely aligned with the root
entity that the only way you can access them is via the root entity.
Our Book entity is a good example of a root/aggregates entity: the Book class is
the root entity; and the Review, PriceOffer, and BookAuthor linking tables, and
the Author classes, are aggregates. The idea is you can access the aggregates only
via the root entity.

¡	Setting the entity’s data is done not by directly setting an entity’s property, but
via methods that reflect the business goal you’re trying to achieve. For instance,
when you want to update the publication date for a book, instead of setting the
PublishedOn property in the Book entity, you must go through a method with an
appropriate business name, such as ChangePublicationDate(newDate).

¡	You use a repository pattern to “decouple applications and domain (business)
design from persistence technology” (as noted in the list of advantages). In our
implementation, shown next, you’ll create a DDD repository in the Data layer in
such a way that the software layers that need to access the database never use any
EF Core code, but only go through the appropriate DDD repository.

Figure 10.5 compares the original, non-DDD design with the DDD repository and the
original design for the ChangePubDateService action (shown in figure 10.3).

	 279Domain-driven-design database repository

public BookDdd
{
 public DateTime
 PublishedOn
 {get; Private set;}

 public ChangePubDate
 (DateTime date)
 {
 PublishedOn = date;
 }
{

The PublishedOn property now has a private setter

DDD repository designNon-DDD design summary
As you see, the DDD version moves
all the EF Core code out of the
Service layer and into the Data layer.
This gives you more controlled access
to the application’s DbContext, but
the DDD version requires you to
write more code.

public Book
{
 ...
 public DateTime
 PublishedOn {get; set;}
 ...
}

CRUD service:
{
 var book =
 _context.Find<Book>
 (dto.BookId);
 book.PublishedOn =
 dto.PublishedOn;
 _context.SaveChanges();
}

BookDdd FindBook(int bookId)
{
 return _context.
 Find<BookDdd>(bookId);
}

CRUD service:

DDD repository

{
 var dddRepro = new
 BookDddRepository(context);
 var book =
 dddRepro.FindBook(bookId);
 book.ChangePubDate(newDate);
 context.SaveChanges();
}

Admin controller
ChangePubDate()

Admin controller
ChangePubDate()

See how the Find method moves into the DDD repo

Data layer

Service layer

Presentation
(ASP.NET Core)

Figure 10.5   Comparing the non-DDD design for updating the book’s publication date in the book app
(left) with the DDD design (right). The code required for the update has the same parts, but the DDD
version moves all the EF Core code into the Data layer. If you also “hide” the application’s DbContext in
the DDD version, you can ensure that the developer can access the database only via the DDD repository.

The DDD concepts include so many details that I can’t hope to cover them all here,
but let me show you two examples:

¡	An implementation of a DDD Book entity with aggregates and a DDD repository.
¡	The refactoring of the order-processing business logic to take account of the new

constructors used by the DDD entity classes.

280 Chapter 10  Useful software patterns for EF Core applications

10.4.1	 Example Book DDD entity and repository

In this example, you’ll create a BookDdd entity class that’s a copy of the Book entity class,
but set up using DDD principles. The BookDdd entity is split into two listings. The fol-
lowing listing shows the properties and constructors, and listing 10.5 shows the DDD
business-oriented setting methods.

Listing 10.4   Part 1 of the BookDdd class showing properties and constructors

public class BookDdd
{
 public int BookId { get; private set; }
 public string Title { get; private set; }
 public string Description { get; private set; }
 public DateTime PublishedOn { get; private set; }
 public string Publisher { get; private set; }
 public decimal Price { get; private set; }
 public string ImageUrl { get; private set; }

 //---
 //relationships

 public PriceOfferDdd Promotion { get; private set; }
 public IEnumerable<ReviewDdd> Reviews
 => _reviews?.ToList();
 public IEnumerable<BookAuthorDdd> AuthorsLink
 => _authorsLink?.ToList();

 //---
 //ctors

 private BookDdd() { }

 public BookDdd(string title, string description,
 DateTime publishedOn, string publisher,
 decimal price, string imageUrl,
 IReadOnlyList<AuthorDdd> authors)
 {
 if (string.IsNullOrWhiteSpace(title))
 throw new
 ArgumentNullException(nameof(title));
 Title = title;
 Description = description;
 PublishedOn = publishedOn;
 Publisher = publisher;
 Price = price;
 ImageUrl = imageUrl;

All the properties
now have private
setters so that you
can set properties
only via the DDD
repository methods.

Collection navigational properties are
IEnumerable<T>, which doesn’t have the
Add and Remove methods; you can change
them only via the DDD repository methods.

The BookDDD class has a private, no-parameter
constructor for EF Core to use. This stops any code
outside this entity class from creating a BookDDD
other than via the parameterized constructor.

The developer uses this
constructor to create
BookDdd. This takes all
the parameters it needs to
create a book, including
the Author(s).

Allows you to add a few
system checks, such as
the book title not
being empty.

	 281Domain-driven-design database repository

 _reviews = new HashSet<ReviewDdd>();

 if (authors == null || authors.Count < 1)
 throw new ArgumentException(
 "You must have at least one Author for a book",
 nameof(authors));
 _authorsLink = new HashSet<BookAuthorDdd>(
 authors.Select(a =>
 new BookAuthorDdd
 {
 Book = this,
 Author = a
 }));
 }

You can see that all the properties now have private setters, and the one-to-many nav-
igational properties are now IEnumerable<T>, so you can’t Add or Remove items to/
from the collection. This forces all updates to properties to be done via methods that
are business-oriented (you’ll see these in listing 10.5).

Notice also that you add a parameterless constructor with a private access modi-
fier. This stops any code outside the Data layer from creating the BookDdd entity other
than via the public constructor, which requires various parameters to create a BookDdd
instance. EF Core does need a parameterless constructor, but can use a private access
constructor.

The following listing shows part 2 of the BookDdd entity class, in which you add several
methods that update the BookDdd entity instance. These methods, which have names
that represent the business need they’re providing, allow the developer to modify the
BookDdd entity and its relationships, or, in DDD terms, its aggregates.

Listing 10.5   Part 2 of the BookDdd class with the create/update methods

public class BookDdd
{
 //… see previous listing for properties and the constructors

 public void ChangePubDate(DateTime newDate)
 {
 PublishedOn = newDate;
 }

 private HashSet<ReviewDdd> _reviews;
 private HashSet<BookAuthorDdd> _authorsLink;

If a new BookDDD is created, the _reviews collection
is initialized. This allows ReviewDDD to be added to
a new BookDDD before being written to the database.

Allows you to add a few
system checks, such as the
book title not being empty.

The caller doesn’t have to
worry about setting up the
BookAuthorDdd linking
table, as you do it inside
the constructor.

Updates the book’s PublishedOn date.
The property has a private setter.

Uses backing fields to hold the two collection
navigational properties. These are null unless the
property is loaded, or a new BookDDD instance is
created by the constructor that takes all the
parameters needed to set up the entity.

282 Chapter 10  Useful software patterns for EF Core applications

 public void AddReview(DbContext context,
 int numStars, string comment, string voterName)
 {
 if (_reviews != null)
 {
 _reviews.Add(new ReviewDdd(
 numStars, comment, voterName));
 } else if (context.Entry(this).IsKeySet)
 {
 context.Add(new ReviewDdd(
 numStars, comment, voterName, BookId));
 }

 else
 {
 throw new InvalidOperationException(
 "Could not add a new review.");
 }
 }

 public void AddUpdatePromotion(DbContext context,
 decimal newPrice, string promotionalText)
 {
 context.Entry(this)
 .Reference(r => r.Promotion).Load();
 if (Promotion == null)
 {
 Promotion = new PriceOfferDdd
 {
 NewPrice = newPrice,
 PromotionalText = promotionalText
 };
 }
 else
 {
 Promotion.NewPrice = newPrice;
 Promotion.PromotionalText = promotionalText;
 }
 }

 //... other methods left out due to space
}

The other class you create in the Data layer is the DDD repository itself, which is shown
in listing 10.6. This contains methods to create (add), find, and delete a Book entity
instance, plus a method called GetBookList that provides a similar, but not identical,
functionality as the original ListBooksService class described in section 2.8.

Adds a ReviewDdd to the book,
using the parameters passed in

If the _reviews collection isn’t null, you add
the new review to the _reviews collection

Creates a ReviewDdd using the
parameters passed in. Only code
in this assembly can create the
ReviewDdd entity.

The alternative way to add a new review requires
the primary key of the BookDDD instance to be
set. IsKeySet returns true if the primary key of
this instance is set.

Creates a ReviewDDD and sets its foreign key to
the BookDDD’s primary key. See section 3.4.5.

Throws an exception if neither
method can be used.

Adds or updates the PriceOfferDdd
entity to go with this book.

Tries to load the PriceOfferDdd
entity. This is an optional one-to-
one relationship so it can be null.

There’s no
existing

Promotion,
so you add
a new one.

There’s an existing Promotion,
so you update it.

	 283Domain-driven-design database repository

Listing 10.6   The BookDddRepository class that provides a DDD repository

public class BookDddRepository
{
 private readonly Chapter10DbContext _context;

 public BookDddRepository(Chapter10DbContext context)
 {
 _context = context;
 }

 public void AddBook(BookDdd book)
 {
 _context.Add(book);
 }

 public BookDdd FindBook(int bookId)
 {
 return _context.Find<BookDdd>(bookId);
 }

 public bool DeleteBook(int bookId)
 {
 var book = FindBook(bookId);
 if (book == null)
 return false;
 _context.Remove(book);
 return true;
 }

 public IQueryable<BookDdd> GetBookList(
 DddSortFilterPageOptions options)
 {
 var booksQuery = _context.Books
 .AsNoTracking()
 .OrderBooksBy(options.OrderByOptions)
 .FilterBooksBy(options.FilterBy,
 options.FilterValue);

 options.SetupRestOfDto(booksQuery);

 return booksQuery.Page(options.PageNum - 1,
 options.PageSize);
 }
}

Most of the DDD repository code contains the methods that contain the EF Core code,
which, in our original design, was located in separate classes in the Service layer. For
instance, the EF Core commands found in the non-DDD designed ChangePubDate-
Service class are now brought inside the Book entity class.

The biggest change is the GetBookList method. It delivers an IQueryable<BookDdd>
result rather than the IQueryable<BookListDto> that the non-DDD design provides.
The DDD repository GetBookList method returns IQueryable<BookDdd> because the

Creates the
repository by
passing in the
applications’s
DbContext

Adds the book
to the context

Finds an existing book by
using its primary key

Tries to delete the book with the given
primary key. It returns true if it finds a
book to delete, or false if it doesn’t.

The DDD equivalent to the
ListBooksService class, but it passes
back IQueryable<BookDdd> rather
than IQueryable<BoolListDto> that
the original verision did.

Copies of the query
objects in the
original, non-DDD
design.

284 Chapter 10  Useful software patterns for EF Core applications

SoC principle says that the frontend design, which needs a BookListDto result, shouldn’t
influence the Data layer or the business layer. Therefore, the GetBookList method
returns IQueryable<BookDdd>. You must add a select query object in the Service layer to
convert the GetBookList method output to the IQueryable<BookListDto> result that
the ASP.NET Core presentation layer needs.

Listing 10.7 executes the change of the PublishedOn property in a disconnected
state. This code uses a combination of BookDddRepository and a method in the
BookDdd entity to set the new published date for a book. Also, EF Core’s SaveChanges
must be called outside BookDddRepository, because the SaveChanges call must come
at the end of any sequence of database commands.

Listing 10.7   How BookDdd and BookDddRepository update a book’s publish date

var dddRepro = new BookDddRepository(context);
var book = dddRepro.FindBook(bookId);
book.ChangePubDate(newDate);
context.SaveChanges();

This code would most likely be placed in a class in the Service layer and called in the
same way that the original ChangePubDateService class’s UpdateBook method (see list-
ing 3.8 in chapter 3) was used.

10.4.2	 How the DDD design changes the business logic design

Section 4.3 described a non-DDD approach to handing business logic, as it was a good
starting point. But the DDD approach can bring significant benefits to writing your
business logic. The DDD version you create in this section still applies the five rules
presented in chapter 4, but with much of the business logic now handled by the con-
structors of the entity classes involved in the business logic. This makes the business
logic much simpler, and “locks down” the entities so that a developer must use the
proscribed public constructor to create a new instance of the entity.

As an example, you’re going to rework the entity classes and business logic for creating
a customer’s order for books in the book app. You’ll write new versions of the Order and
LineItem entity classes, and refactor the business logic code in the PlaceOrderAction class.
The new classes will all end with Ddd so that you can compare the new DDD design with
the original design. You start by writing the LineItemDdd and OrderDdd entity classes,
which will differ from the non-DDD version in the following ways:

¡	The properties in the LineItemDdd and OrderDdd entity classes are read-only to
outside code; the properties setting has private or internal access modifiers, so
that only the entity classes can set them.

¡	The only way to create an instance of the DDD entity classes LineItemsDdd
and OrderDdd is via their public constructor. This constructor requires specific
parameters, which it uses to build an instance of the entity in the approved form.

¡	Data validation, and some extra checks in the entity’s public constructors, catch
any possible errors in the customer’s order before it’s written to the database.

	 285Domain-driven-design database repository

The next listing shows the LineItemDdd entity class, but focuses on the constructors:
one private, parameterless constructor for EF Core, and a second public constructor
used to create a LineItemDdd entity instance for a customer’s order.

Listing 10.8   The LineItemDdd entity class showing the constructors

public class LineItemDdd : IValidatableObject
{
 //... properties left out for clarity

 private LineItemDdd() { }

 public LineItemDdd(short numBooks,
 BookDdd chosenBook)
 {
 NumBooks = numBooks;
 ChosenBook = chosenBook ??
 throw new ArgumentNullException(
 nameof(chosenBook));
 BookPrice = chosenBook.Promotion?.NewPrice
 ?? chosenBook.Price;
 }
 //

 //... validation part left out - see listing 4.6

The OrderDdd entity class’s constructor, shown next, takes the customer’s name, plus
a collection of ListItemDdds to produce a valid order. The OrderDdd entity class’s
LineItems navigational collection property is handled by a backing field, so that the
LineItems property can’t be changed after the OrderDdd entity class is created.

Listing 10.9   The OrderDdd entity class, focusing on the constructors

public class OrderDdd
{
 private HashSet<LineItemDdd> _lineItems;

 //... properties left out for clarity

 private OrderDdd() {}

 public OrderDdd(string customerName,
 IEnumerable<LineItemDdd> lineItems,

All properties in OrderDdd have a private setter.
They can be set only by this entity class.

The private, parameterless constructor is needed
by EF Core to create instances when reading in
the entity.

This public constructor is the
way that the business logic can
create a LineItemDdd.Sets the

properties to
the correct

value The constructor will throw
an ArgumentNullException
if a book is missing.

Sets the properties
to the correct value

The IValidatableObject.Validate method (omitted to
save space) also contains checks to ensure that a
LineItemDdd is valid before it’s written to the database.

All properties in OrderDdd
have a private setter. They can
be set only by this entity class.

EF Core needs the private, parameterless
constructor to create instances when reading
in the entity.

The public constructor is the way
that the business logic can create
an OrderDdd.

286 Chapter 10  Useful software patterns for EF Core applications

 Action<string> addError)
 {
 CustomerName = customerName;
 DateOrderedUtc = DateTime.UtcNow;

 _lineItems = new
 HashSet<LineItemDdd>(lineItems);
 if (!_lineItems.Any())
 addError("No items in your basket.");

 byte lineNum = 1;
 foreach (var lineItemDdd in _lineItems)
 {
 lineItemDdd.LineNum = lineNum++;
 }
 }
}

Having moved the order creation code into the entity classes, the code required in the
business logic class reduces dramatically. The PlaceOrderAction class, shown in listing 4.2,
is refactored to use the DDD entities; and the new business logic class, shown here, is
called PlaceOrderActionDdd.

Listing 10.10   The PlaceOrderActionDdd class that creates an order

public class PlaceOrderActionDdd :
 BizActionErrors,
 IBizAction<PlaceOrderInDto, OrderDdd>
{
 private readonly IPlaceOrderDbAccessDdd _dbAccess;

 public PlaceOrderActionDdd(IPlaceOrderDbAccessDdd dbAccess)
 {
 _dbAccess = dbAccess;
 }

 public OrderDdd Action(PlaceOrderInDto dto)
 {
 if (!dto.AcceptTAndCs)
 {
 AddError(
"You must accept the T&Cs to place an order.");
 return null;
 }

Allows the constructor to report to the
caller any errors that the user can fix.

Sets the properties
to the correct value.

The _lineItems backing
field is set to the HashSet
of LineItemDdds provided
as a parameter to the
constructor.

If there are no line items, this is something the user
can fix. It uses the addError action to report that
error back to the caller.

The lineNum property in
the _lineItems collection
needs to be set. It’s only in
the OrderDdd, where you
have all the lineItemDdds,
that you can do this.

Now the lineItem tests are
either in the constructor or
in the data validation parts

Same call as the
original non-DDD

Same test as the
original non-DDD

	 287Domain-driven-design database repository

 var lineItems = dto.LineItems.Select(
 x => new LineItemDdd(x.NumBooks,
 _dbAccess.GetBookWithPromotion
 (x.BookId)));
 var order = new OrderDdd(
 dto.UserId.ToString(),
 lineItems,
 s => AddError(s));

 if (!HasErrors)
 _dbAccess.Add(order);

 return HasErrors ? null : order;
 }
}

The PlaceOrderActionDdd version is much shorter than the non-DDD version: 35
lines of code in PlaceOrderActionDdd, compared with 83 for the PlaceOrderAction
version. Also, an order is much less likely to be built incorrectly when using the DDD
version, because the entity classes control, and check, how the order is built.

10.4.3	 Impressions from building this DDD design

I’ve been using DDD design principles for some time and find them helpful; see chap-
ter 4 for my first take on DDD in business logic, which I expanded upon in the previous
section. I did look at creating a DDD entity with aggregates in EF6.x, but there were
limitations on controlling access to collection navigational properties. But now, with EF
Core’s capability to have navigational properties using backing fields (see section 7.10),
building a DDD entity with controlled access via methods is possible—which is exciting.

Having built this DDD entity/repository design and the modified business logic
code, I have some views on what works and what doesn’t. But because I haven’t yet
used a DDD design in a real project, these are only my first impressions. I’m going to
describe aspects of the design, and you can make your own decision on whether a DDD
design would help with your specific application. Here are what I think are the good
and bad parts of using a DDD approach.

The good parts of using a DDD approach with EF Core

First, let’s consider the good parts:

¡	Using specific constructors to create entity instances works well. Section 10.4.2 shows that
moving the code for building a valid entity class into the class’s constructor pro-
motes simpler business logic. Also, making the entity class properties read-only
reduces the likelihood of a developer incorrectly interpreting how a class should
be initialized or updated.

¡	Using business-oriented methods to change the entity is clearer. The act of making all the
properties have a private setter and then having to use meaningful named meth-
ods to change the properties is positive. For instance, the BookDdd constructor

Now the lineItem tests are either in the
constructor or in the data validation parts

The OrderDdd
constructor builds the
order. The constructor
and the data validation
parts handle the error
checking.

The OrderDdd constructor reports
errors back to the business logic
via an action parameter

Same ending as the
original non-DDD

288 Chapter 10  Useful software patterns for EF Core applications

shown in listing 10.4 hides the creation of the many-to-many linking table, which
is nice. Also, the other methods in part 2 (see listing 10.5) are clear and concise
and express what you’re doing.

¡	Altering the aggregates via business-oriented methods works well too. Hiding some of the
code relating to altering the BookDdd’s aggregate entities (the Review, PriceOffer,
and BookAuthor linking tables) and the OrderDdd’s LineItems property had a
good feel about it too. The method’s name more clearly indicates what’s going
on, and the methods hide some of the complexities of updating these aggregates.

The bad parts of using a DDD approach with EF Core

And now for the bad parts:

¡	The DDD repository can cause performance issues. I noticed a subtle but important
issue about creating the DDD repository in the Data layer. Because of SoC,
I didn’t let the frontend design/needs affect my DDD repository. The DDD
repository can return only entity classes, or other business classes, available at
the Data layer. In many cases, these classes won’t match what the frontend layer
needs, and further code will be needed in the Service layer to add a LINQ Select
method to map the data to a DTO.
For instance, the DDD repository method GetBookList returns an IQuery-
able<BookDdd> result instead of the original, non-DDD design, which returns
IQueryable<BookListDto>. You therefore must add a Select query object to the
IQueryable<BookDdd> result in the Service layer to turn it into what the frontend
wants—BookListDto. This can preclude some SQL optimizations that EF Core
could achieve because some columns will be accessed in different levels in the
LINQ statements.

¡	The DDD CRUD code requires more code to be written. If you look at figure 10.5, you
can see that the DDD CRUD implementation has more code in it compared to
our initial, non-DDD design. The plus side is the DDD CRUD code is DRY (don’t
repeat yourself), as the methods only exist once in the entity class.
In small applications, the extra development effort might not be worth the
improvement in SoC. But in large, multideveloper projects, the discipline of the
DDD design would help hide the database code from other developers working
on higher layers and therefore would warrant the extra code.

I could say a lot more about our DDD repository/entity implementation, but I hope
the code and my comments will help you to understand how you might use DDD
design principles with EF Core. In the end, the architecture you use must fit the busi-
ness need, the project type, and the people on the project. Now that you’ve been intro-
duced to one implementation of the DDD pattern for database access, you can decide
whether you want to consider a DDD approach in more detail.

NOTE   You might be interested in an article I wrote called “Creating Domain-
Driven Design entity classes with Entity Framework Core” where I compare and
contrast the standard way of creating entity classes with the DDD-styled entity
classes: http://mng.bz/1iJW.

http://mng.bz/1iJW

	 289Is the Repository pattern useful with Entity Framework?

10.5	 Is the Repository pattern useful with Entity Framework?
I said in section 10.4.3 that the DDD repository had some problems. These problems
aren’t limited to a DDD repository, but can occur in many Repository patterns when
working with EF Core.

DEFINITION   Martin Fowler’s website states that a Repository pattern “mediates
between the domain (business) and data mapping layers using a collection-like
interface for accessing domain objects.” The idea of a repository is that it takes
data from the generalized database access library (DAL) and delivers an inter-
face that’s better matched to the business needs (see https://martinfowler
.com/eaaCatalog/repository.html).

My view, and the view of others such as Rob Conery and Jimmy Bogard, is that EF Core
provides an interface that’s already a form of repository. That isn’t to say you can’t add
useful things to EF Core, such as using query objects (see chapter 2), but a full-blown
repository on top of EF Core is normally overkill and, in some cases, can cause problems.

I’m not saying repositories are all bad. In chapter 4, you effectively produced a mini
Repository pattern to isolate the EF Core code from your business logic (see section
4.4.4). That sort of repository is what I call an EF repository; you’re not hiding EF Core,
but putting all the EF Core commands for that business need in one place. This leads
me to talk about Repository patterns that I’d steer away from.

10.5.1	 Some forms of Repository patterns to avoid

These are the forms of repository that try to hide the DAL in such a way that one DAL
could be replaced by another DAL without any need for change to the higher code.
For instance, you could create a general repository that uses EF Core underneath, but
then replace the EF Core library with another DAL such as Dapper or NHibernate. My
experience is that such repositories are hard to write correctly and difficult to maintain.

The problem with a DAL-hiding repository is that you stop thinking about how EF
Core works, and assume that the repository method you call “does what it says on the
box.” The classic example of where a DAL-hiding repository is both inefficient and can
be misleading is with an update of data.

A DAL-hiding repository must provide an Update method, because that’s the typical
database action you want to do. But how should this Update method work? You know
that EF Core can detect updates by using tracked entities, but the DAL-hiding repos-
itory must ignore all aspects of tracked entities, because they’re DAL-specific. There-
fore, the DAL-hiding repository implementation would normally call EF Core’s Update
method, which is inefficient because it updates all the columns in the table. Also, EF
Core’s Update method has certain rules for handling navigational properties, and the
DAL-hiding repository can’t easily hide that from you.

I believe the idea that a DAL-hiding repository would allow you to change from, say,
EF Core to even another high-level O/RM (say, NHibernate) is a fallacy. There are just
too many nuances in these powerful DALs that make changing a big job. I think it’s bet-
ter to embrace whatever DAL you’ve chosen (hopefully, EF Core) and work out how to
use it to the best of your ability.

https://martinfowler.com/eaaCatalog/repository.html
https://martinfowler.com/eaaCatalog/repository.html

290 Chapter 10  Useful software patterns for EF Core applications

10.6	 Splitting a database across multiple DbContexts
The SoC principle can also be applied to the database and its tables. Splitting data-
base tables across multiple DbContexts based on their business grouping can be a use-
ful approach, especially in large systems. In DDD terms, each DbContext is called a
bounded context.

DEFINITION   A large business (domain) problem can be broken into small
groups called bounded contexts, which hold a subset of the business objects that
are related. This concept is central to DDD and goes way beyond splitting a
database among multiple DbContexts, but it’s still a good term to apply to this
section (see https://martinfowler.com/bliki/BoundedContext.html).

Figure 10.6 shows an example of such a splitting using an extended version of the
book app into three DbContexts: BookContext, OrderContext, and CustomerContext,
which cover displaying books, handling orders for books, and holding the customer’s
details, respectively.

BookContext OrderContext CustomerContext

1. The Books table is shared by both
 BookContext and OrderContext. Both
 contexts can access the same table.

2. The AddressC data is copied to the
 AddressO table, as the address of
 the Customer might change later.

Author

Reviews

BookAuthor
Author

AddressO AddressC

Customer

Credit

LineItem

PriceOffers

Copied

Books

Figure 10.6   Access to a database can be split into business groups, or in DDD terms, bounded
contexts. Here you see two ways of linking between contexts. First, you can share access to the
same table, as shown between BookContext and OrderContext. Second, you can send over the
data from one context to the other, as shown by the customer address being copied when an order is
taken, as the customer may change the address later.

Let’s start by creating a bounded context. Then you’ll learn how the application can
communicate between two bounded contexts.

10.6.1	 Creating DbContexts that contain only a subset of entities/tables

When creating a DbContext for a bounded context that doesn’t include all the entities
in an application, you need to consider how the entities/tables are linked, and whether
you want to retain these links. Let’s look at two examples, starting with the simplest.

https://martinfowler.com/bliki/BoundedContext.html

	 291Splitting a database across multiple DbContexts

In the first example, the BookContext bounded context is focused on the Book entity
class and its aggregate entities, and as such is self-contained (it doesn’t have any links outside
its context). The creation of the BookContext DbContext is straightforward, as you can see.

Listing 10.11   The BookContext class covers the Book entity and aggregates

public class BookContext : DbContext
{
 public DbSet<Book> Books { get; set; }
 public DbSet<Author> Authors { get; set; }
 public DbSet<PriceOffer> PriceOffers { get; set; }

 public BookContext(
 DbContextOptions<BookContext> options)
 : base(options) { }

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.ApplyConfiguration(
 new BookConfig());
 modelBuilder.ApplyConfiguration(
 new BookAuthorConfig());
 modelBuilder.ApplyConfiguration(
 new PriceOfferConfig());
 }
}

The second example is the OrderContext, which is different in that you want it to
include the Book entity, but not the entities that the book links to via navigational prop-
erties. In this case, you need to tell EF Core that you don’t want the entities Review,
PriceOffer, Author, or BookAuthor included in the DbContext. You do this by using
the Fluent API method, Ignore<T>, shown here.

Listing 10.12   OrderContext class includes Book but not its aggregates

public class OrderContext : DbContext
{
 public DbSet<Book> Books { get; set; }
 public DbSet<Order> Orders { get; set; }
 public DbSet<AddressO> Addresses { get; set; }

 public OrderContext(
 DbContextOptions<OrderContext> options)
 : base(options) { }

Defines three of the five tables in the database:
Books, Authors, and PriceOffers. The other two
tables, Review and BookAuthor, are found via
navigational links from the other tables.

Moves the Fluent API configuration
of various entity classes to separate
configuration classes that implement
the IEntityTypeConfiguration<T>
interface

Includes the DbSet<Book>
property to make sure the
name of the table is set.

292 Chapter 10  Useful software patterns for EF Core applications

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.ApplyConfiguration(new BookConfig());
 modelBuilder.ApplyConfiguration(new LineItemConfig());

 modelBuilder.Ignore<Review>();
 modelBuilder.Ignore<PriceOffer>();
 modelBuilder.Ignore<Author>();
 modelBuilder.Ignore<BookAuthor>();
 }
}

NOTE   In EF Core 2.1, you have the ability to create read-only classes, known
as query types (see appendix B). It would be appropriate to configure the Book
entity as a query type in the OrderContext because that context treats the
Book entity as a read-only entity.

I haven’t shown CustomerContext because it doesn’t introduce any new concepts that
you haven’t seen in the BookContext example. It doesn’t refer to entities that are out-
side its context, so it’s simple to set up.

10.6.2	 Passing data between bounded contexts

Although each bounded context should be as self-contained as possible, in some situ-
ations information needs to be passed between bounded contexts. This is a big topic,
so as an introduction, I cover only two ways to pass data from one bounded context to
another.

NOTE   If you want to research this topic in more detail, “Strategies for Integrat-
ing Bounded Contexts” by Philip Brown gives a good overview of many ways to
communicate between bounded contexts; see http://mng.bz/96Bg.

Shared kernel—sharing a table(s) between bounded contexts

Your BookContext and OrderContext both access the Books table in the database.
BookContext uses the Books table a lot and oversees changes to it, but the OrderContext’s
LineItem entity refers to the Book entity, as it needs a reference to the book that some-
one has bought. Sharing the Books table between the contexts works well in this case,
because when the order is placed, the OrderContext needs only a read-only reference
to the book.

NOTE   The PlaceOrderAction business logic, covered in chapter 4, needs
access to the optional PriceOffer class to work out the price. You could share
that table too, but OrderContext shouldn’t be involved in setting the price, so
that isn’t a good option. You therefore would arrange the actual price shown
onscreen to be returned with each order (with security to stop fraud).

Uses the Fluent API Ignore<T>
method to stop these entities/tables
from being included in the DbContext

http://mng.bz/96Bg

	 293Data validation and error-handling patterns

One advantage of the shared kernel approach is that it’s simple to set up, especially
when one bounded context is read-only. The other advantage is that the database,
which is designed to handle multiple accesses, manages the connection. The disadvan-
tage is that both bounded contexts are tightly linked through an entity/table, which
means that any changes affect both sides, which starts to break down the separation
between the two bounded contexts.

Customer/supplier—being sent data from another bounded context
In the second part of our bounded context example, you’ll propose a situation in which
OrderContext needs a delivery address, which is obtained from CustomerContext. In
this case, you’ll use another approach in which CustomerContext provides a copy of
the delivery address, read from table AddressC. OrderContext then writes this copy
into its own table, AddressO.

Copying the data works well in this situation, because the customer could change
addresses, but you want an old order to still show the original delivery address. The advan-
tages of copying the data are that the communication is one-way and final: one bounded
context sends the data to another bounded context, which then holds its own copy.

The disadvantage of copying is that it doesn’t work for data that might change. If
the customer changes their email address, the order-processing system needs to know
straight away so that it can send the confirmation emails to the correct place. For that,
you’d need another approach using events passing, which Julie Lerman covers in an
article at https://msdn.microsoft.com/magazine/dn802601.

10.7	 Data validation and error-handling patterns
If you fill in a form on an app and get an error, which you fix, and then you get another
error, you’ll get frustrated, especially if the site should have told you about both errors
in the first place. Nowadays, users expect good feedback on all the errors so that you
can fix them in one go. Most of that comes at the frontend of your application code,
but the database access code has a part to play in this situation. We’ll cover the area of
error detection and error feedback when using EF Core in an application.

We’ll look at three areas:

¡	Making sure data validation is available on your entity classes and DTOs
¡	Ensuring that your business logic returns a full list of errors
¡	Turning database server errors into user-friendly feedback

10.7.1	 Data validation to your entity classes makes for better
error feedback

Because EF Core is aimed at being higher performing and lightweight, it assumes that
a higher level, such as ASP.NET Core, will validate the data. But for the higher layer to
be able to validate input to an entity class, you must put the appropriate data valida-
tions on each entity class. Otherwise, you could be writing bad data to your database.

https://msdn.microsoft.com/magazine/dn802601

294 Chapter 10  Useful software patterns for EF Core applications

EF6:   Developers who are used to EF6.x need to watch out for changes in data
validations in EF Core. EF6.x validates data being written to the database,
whereas EF Core doesn’t. Section 4.6.1 shows how to validate data upon calling
SaveChanges.

In section 6.12.2, I recommended that you use data validations, such as Required and
MaxLength(256), rather than using the Fluent API when configuring the database.
This is because higher levels that apply validation can use these data validations to
check input. In addition, I recommend adding data validations that EF Core doesn’t
use, such as EmailAddress, or inheriting the IValidatableObject interface, to your
entity classes so that if your entity class is used in an input form at the frontend, the
validation rules are there to provide a comprehensive set of error checks.

The other point is about DTOs. When you build a DTO, you want to replicate any
data annotations you have on your entity class into the DTO. Otherwise, you’ll miss
these validation checks. As I said, I use DTOs a lot, and I generally create each DTO by
copying over the properties and any associated data validations to the DTO. That way,
the validations set in the entity class will still be applied even if you use a DTO for input.

TIP   If you use data validations that have a constant in them, such as
MaxLength(256), I recommend replacing the constant value with a .NET con-
stant; for instance, MaxLength(MyConstants.TitleMaxLength). By using this
approach, any changes to the constant will affect the entity class and the DTO.

10.7.2	 Business logic should contain checks and return a list of all errors

Your business logic often includes a range of checks to ensure that the data it has
received is acceptable. I classify these into two main types:

¡	User correctable errors —Data provided by users that isn’t correct—for instance, the
user hasn’t ticked the T&C’s box on the order.

¡	Unrecoverable system errors —These suggest a software/system error, and the code
shouldn’t continue.

Let’s explore each of these in turn.

User-correctable errors—give the user good, comprehensive feedback

My business logic always checks its input, because the business logic is at the center of
what my system is doing and it’s the right place to write/check any business rules. If I
can catch errors early via some form of validation on the input form, so much the bet-
ter for the user, but I personally (re)test the input inside my business logic too, as you
can’t be too careful.

TIP   Section 4.6.1 shows how to add validation to the writing of entities to the
database. This may allow you to move some of the business checks to data vali-
dation or IValidatableObject methods.

	 295Data validation and error-handling patterns

The second point is that you accumulate all the errors you can find, and return them
to the user in one go; that’s being courteous to your user. Because of this user require-
ment, you don’t use .NET exceptions to report errors, but instead return a list of all the
errors, if possible with the name of the property that caused the error, so that it can be
highlighted properly to the user.

NOTE   Views vary on the best way to handle errors. Some people say exceptions
are the best way, and some say passing back error messages is the best way. I’ve
tried most options, and they all have their advantages and disadvantages, but
I personally use exceptions only for system/coding errors that can’t be fixed
by the user. The main point is that you want to give a great experience to your
user, which means providing a list of all the error messages if there’s something
the user can fix.

Unrecoverable system errors where continuing isn’t advisable

EF Core can produce a range of exceptions if it finds something that it deems is incor-
rect. In my experience, the EF Core exception error messages are good at pointing the
developer to the problem, but they’re definitely not user-friendly. So, for most EF Core
exceptions, you’ll let them bubble up, and the frontend system will need to provide a
generic “Sorry, there was a system error” message to the user.

Some specific EF Core exceptions, such as DbUpdateConcurrencyException, are
useful to handle, because they occur only if you’ve enabled some form of concurrency
conflict test (see section 8.5). In addition, some database-related exceptions are useful
to capture, because they allow you to provide better error feedback to your users. The
following is an example.

10.7.3	 Catching database server errors and providing
user-friendly feedback

EF Core will pass on errors found by the database server when it’s writing to the data-
base. Relational databases provide a lot of error checking, mostly in the form of con-
straints. Some database checks, such as ensuring that each entry in a unique index is
unique, can be properly done only by the database. I have developed a system for cap-
turing certain database errors and reporting them to the user.

Although you could catch a database error and show its native error message to the
user, you don’t do that because database errors are normally not user-friendly and,
more important, could reveal something about your database structure, which is a pos-
sible security breach. My solution, which I’ve used in a few projects, is to build a system
that catches specific database errors and then provides a user-friendly error message.

Any solution that traps database errors is going to be database server–specific,
because the way errors are reported is different for each type of database server. In this
example, you’ll see how to capture the insert of a duplicate entry in a unique index for
a SQL Server database. Figure 10.7 shows the process.

296 Chapter 10  Useful software patterns for EF Core applications

1. You add a unique index with a constraint
 name to a set format, starting with a
 unique name, followed by class and
 property name, for instance:
 UniqueError_MyClass_MyProperty

2. Your method SaveChangesWithChecking
 calls SaveChanges, but traps any
 DbUpdateException.

3. If any exceptions are found, call a method
 registered in your dictionary with the same
 number as the SQL error number.

4. If your method finds the expected constraint
 format, it returns a user-friendly error
 message; otherwise, it returns null.

Configuration code in OnModelCreating

2016
2627
...

Dictionary<int, Func...>

UniqueError(sqlError, entites)
UniqueError(sqlError, entites)
...

modelBuilder.Entity<MyClass>()
 .HasIndex(p => p.UniqueString)
 .IsUnique().HasName(
 "UniqueError_MyClass_MyProperty");

public ValidationResult
 SaveChangesWithSqlChecks()
{
 try
 {
 _context.SaveChanges();
 }
 catch (DbUpdateException e)
 {
 var error = CheckHandleError(e);
 if (error != null)
 {
 return error;
 }
 throw;
 }
 return null;
}

Figure 10.7   You add a unique index and set its constraint name to a set format. You then use a
class for registering SQL error formatters based on the SQL error number that they handle.
SaveChangesWithSqlChecks catches any DbUpdateExceptions and, if the SQL error
number is found in the dictionary, it calls the associated SQL error formatter, which returns a
user-friendly error message if it finds the constraint format it expected. Otherwise, it returns
null, and the original error is rethrown.

This listing shows the class containing the SaveChangesWithSqlChecks method, which
you use to capture any exception and to see whether any error formatter has been
assigned to that SQL error number.

Listing 10.13   Class providing a version of SaveChanges with formatted SQL errors

public class SaveChangesSqlCheck
{
 private readonly DbContext _context;
 private readonly Dictionary<int, FormatSqlException> _sqlMethodDict;

 public SaveChangesWithSqlChecks(DbContext context,
 Dictionary<int, FormatSqlException> sqlMethodDict)

Provides a dictionary of all the SQL errors to
format, plus a method to do that formatting.

	 297Data validation and error-handling patterns

 {
 _context = context
 ?? throw new ArgumentNullException(nameof(context));
 _sqlMethodDict = sqlMethodDict
 ?? throw new ArgumentNullException(nameof(sqlMethodDict));
 }

 public ValidationResult SaveChangesWithSqlChecks()
 {
 try
 {
 _context.SaveChanges();
 }
 catch (DbUpdateException e)
 {
 var error = CheckHandleError(e);
 if (error != null)
 {
 return error;
 }
 throw;
 }
 return null;
 }

 private ValidationResult CheckHandleError
 (DbUpdateException e)
 {
 var sqlEx = e.InnerException as SqlException;

 if (sqlEx != null
 && _sqlMethodDict
 .ContainsKey(sqlEx.Number))
 {
 return
 _sqlMethodDict[sqlEx.Number]
 (sqlEx, e.Entries);
 }
 return null;
 }
}

The method you call to do SaveChanges, but also
capture and format the SQL errors you’ve registered

Calls SaveChanges inside a
try...catch block

Catches the
DbUpdateException
to see if you have a
formatter for that
SQL error Returns a ValidationError if

it can format the error, or
null if it can’t

Manages to
format the
error, so
return that

Doesn’t manage to format the error,
so you rethrow the original error

If it gets to here, there were no errors,
so it returns null to show that

Private method handles
the lookup and calling of
any error formatters that
have been registered.

Tries to convert InnerException to SqlException.
It’ll be null if InnerException is null, or the
InnerException wasn’t of type SqlException.

Passes only if InnerException was an
SqlException, and your dictionary
contains a method to format the
error message

Calls that formatting method, which has a
predefined signature, and returns its result…

…otherwise, you return null to
say you couldn’t format the error.

298 Chapter 10  Useful software patterns for EF Core applications

This listing shows how to set up the SaveChangesSqlCheck class by entering a directory
of SQL errors with a method to format that error.

Listing 10.14   Setting up, then calling the SaveChangesWithSqlChecks method

var checker = new SaveChangesSqlCheck(
 context, new Dictionary<int, FormatSqlException>
{
 [2601] = SqlErrorFormatters.UniqueErrorFormatter,
 [2627] = SqlErrorFormatters.UniqueErrorFormatter
});
var unique = Guid.NewGuid().ToString();

context.Add(new MyUnique() { UniqueString = unique });
var error = checker.SaveChangesWithSqlChecks();

Listing 10.15 shows the UniqueErrorFormatter method that you wrote to handle a
unique validation error. It looks for a constraint name in the defined format shown in
figure 10.7. If the constraint name doesn’t fit that format, the method assumes that the
unique validation error wasn’t one that you as the developer wanted to report to the
user, so it returns null to signal that the original exception should be rethrown.
Otherwise, it returns a user-friendly error message that you construct from the con-
straint name and extract the duplicate value from the SQL error message.

Listing 10.15   Decoding the SQL error and returning a user-friendly message

private static readonly Regex UniqueConstraintRegex =
 new Regex("'UniqueError_([a-zA-Z0-9]*)_([a-zA-Z0-9]*)'",
 RegexOptions.Compiled);

public static ValidationResult UniqueErrorFormatter
 (SqlException ex,
 IReadOnlyList<EntityEntry> entitiesNotSaved)
{
 var message = ex.Errors[0].Message;
 var matches = UniqueConstraintRegex
 .Matches(message);

 if (matches.Count == 0)
 return null;

Creates the SaveChangesSqlCheck
class with its two parameters

Provides a dictionary with keys of
2601 and 2627, a violation of unique

index, both paired with a method
that can format that exception into

a user-friendly format

Calls SaveChangesWithSqlChecks, which returns
null if there was no error, or a ValidationResult if
there was a formatted error to show the user

Creates a method to handle
the unique SQL error

SqlException is passed in, as this holds the
information you need to decode the error

The caller provides the
entities not saved by default.
You don’t use this in this case.

Uses Regex to check that the constraint name matches
what you expect, and to extract the entity class name
and the property name from the constraint

If there’s no match, this isn’t an exception that the
method is designed to handle. You return null to
report that you couldn’t handle the exception.

	 299Summary

 var returnError = "Cannot have a duplicate "+
 matches[0].Groups[2].Value + " in " +
 matches[0].Groups[1].Value + ".";

 var openingBadValue = message.IndexOf("(");
 if (openingBadValue > 0)
 {
 var dupPart = message.Substring(openingBadValue + 1,
 message.Length - openingBadValue - 3);
 returnError += $" Duplicate value was '{dupPart}'.";
 }

 return new ValidationResult(returnError,
 new[] { matches[0].Groups[2].Value });
}

This approach allows you to provide better error feedback to your users, while not
revealing anything about your application’s database type and structure, which could
be a security risk.

Summary

¡	Using the separation-of-concerns(SoC) software principle can help you build
robust, refactorable, testable applications.

¡	Developing your own software patterns can help you develop applications
quickly, but with a good design. You may need a few iterations to develop a pat-
tern that works well, but that’s OK.

¡	Using a LINQ mapper can speed up the building of the many CRUD database
accesses that a typical application needs.

¡	Building a domain-driven design (DDD) database repository can offer a much
more business-focused access to the database, but some other Repository pat-
terns should be avoided.

¡	Splitting the EF Core access to your database into separate business-oriented
groupings, referred to in DDD as bounded contexts, can improve separation of
concerns.

¡	You should think about data validation and how to return user-friendly error
messages when dealing with the EF Core entities and the database.

For readers who are familiar with EF6:

¡	EF Core is better than EF6.x at allowing a domain-driven design, with its root/
aggregate entities, because you can control access to one-to-many collections.

Forms the first part of the
user-friendly message

You know the format of the SQL violation
“unique index” error, so you try to extract
the duplicate value from the error message.

Adds the information
about the duplicate

value

Returns the user-friendly error message
in ValidationResult

Sends back the property that the
error related to, in case this can
be used to highlight the offending
property on the input form

300

11
This chapter covers
¡	Using EF Core’s migration to update a database

¡	Building a DbContext from an existing database

¡	Changing a database by using SQL command
scripts

¡	Applying updates to your production database

This chapter covers the three ways of changing the structure of a database. The
structure of the database is called the database schema—the tables, columns, con-
straints, and so on that make up a database. Creating and updating a database
schema can seem simple because EF Core provides a method called Migrate to do it
all for you; you create your entity classes and add a bit of configuration, and EF Core
builds you a nice, shiny database.

The problem is that EF Core’s Migrate method hides a whole series of database
migration issues that might not be immediately apparent; for example, moving data
from one entity class to another entity class can cause loss of data when applying a
database schema change. Getting a database change wrong on a database that has
live data in it is a scary problem.

Handling
database migrations

	 301Part 1—EF Core methods to change the database schema

I’ve split the chapter into two distinct parts. Part 1 describes all the ways to update a
database’s schema when working with EF Core. Part 2 presents the issues around a data-
base schema change, starting with simple changes and working up to the much more
complex situations requiring real care to ensure that data isn’t lost.

11.1	 Part 1—EF Core methods to change the database schema
Using EF Core to access a database assumes that the database schema and the applica-
tion’s entity classes and DbContext “match.” The EF Core view of the database struc-
ture, known as EF Core’s database model, needs to match the actual database schema;
otherwise, problems will occur when EF Core accesses the database. EF Core builds
this database model by looking at the entity classes and the application’s DbContext. This
database model is available via the Model property on the application’s DbContext.

NOTE   The word match in the preceding paragraph is a complex concept. Using
EF Core’s Migrate method will produce an exact match between the database
schema and EF Core’s Model property. But in some cases, the match doesn’t
have to be perfect. Your database may have features that EF Core doesn’t
include in its Model—for instance, SQL stored procedures. The match also
doesn’t have to be perfect when EF Core accesses only part of a database (see
section 10.6 on splitting a database across multiple DbContexts).

There are four ways to ensure that a match exists between EF Core’s database model
and the actual database schema. This chapter covers the first three, and chapter 15 cov-
ers the last one. They are:

¡	Code-first —The standard way to create or update a database schema is by using
your entity classes and the application’s DbContext as the template for your data-
base. Section 11.2 covers this topic.

¡	Database-first —EF Core has a command that inspects an existing database and
creates the various entity classes and the application’s DbContext to match that
database. Section 11.3 covers this topic.

¡	SQL-first—You can change a database’s schema by using SQL commands, known
as an SQL change script. These are typically applied to your database by using a
database migration/deployment tool. Section 11.4 covers this topic.

¡	Database.EnsureCreated method —EF Core’s Database.EnsureCreated method is
useful only for unit testing because it has no provision for updating the database
schema later. Chapter 15 refers to the Database.EnsureCreated method.

11.1.1	 A view of what databases need updating

Before I describe how to update a database’s schema, let’s look at the databases that can
be involved in an application being developed. Figure 11.1 shows a possible arrange-
ment of a multiperson development team, with development, testing, pre-production,
and production.

302 Chapter 11  Handling database migrations

Development of new
features and bug fixing.

Each developer has
their own database.
It’s their job to keep
these up-to-date as
changes come in.

Development

Test department.
Checks new releases.

Test department
makes sure that a
new release works.

Testing

Pre-production
deployment testing

Dev 1

Testing at the production
level. A copy of the
production data is
upgraded to check that
the migration works.

Pre-production

Live system with
active users

Go live! The database
changes and the new
software is deployed.

Production

Testers DevOps Users

Dev 2

Dev N

Db Change

Clone data

Db Change

Db C
ha

ng
eDb Change

Db Change

Figure 11.1   Various databases can be used in an application’s development, all of which will need
database schema changes applied to them. The terms development, testing, pre-production, and
production refer to different parts of the development, testing, and deployment of an application
and any associated database schema changes.

Not all development projects have all these stages, and some have more or different
stages. Also, this figure assumes that only one database is being used in production,
but you may have multiple copies of the same database. The permutations are endless.
This chapter refers to the development and the production databases, but be aware that
database schema updates may be needed on other databases as well.

11.2	 Code-first: using EF Core’s migrations
EF Core’s migration feature is the standard way to create and update a database from EF
Core. This approach is known as code-first, because your application’s code is used to define
the database schema. It’s the easiest approach for software developers, because it uses the
entity classes and DbContext in your application as the template for the database. You
don’t need to learn SQL language to create and change the application’s database. But
EF Core’s migration feature does have some limitations, which I cover as I describe its use.

EF6   EF Core’s migration feature looks the same as EF6.x’s migration from
the outside, but a lot of changes are underneath. Automatic migrations have
been removed, which simplifies the internals. The migration files produced by
EF Core are different too, as they make combining migrations from different
developers easier when working on a multiperson development (see https://
msdn.microsoft.com/en-us/magazine/mt614250.aspx).

The migration process has two stages:

1	 Create a migration —By running a command, EF Core will build a set of migration
code, which is added to your application. You need to run this “create a migra-
tion” stage after each change to your EF configuration or entity classes, which
means you’ll end up with multiple migrations in your application.

	 303Code-first: using EF Core’s migrations

2	 Apply migrations —The migrations created in step 1 are applied to a database
either via code in your application or via a manual command. You need to apply a
new migration to each database that needs updating; for instance, your develop-
ment database and your production database.

I describe the first stage in section 11.2.1 and the second stage in section 11.2.2.

11.2.1	 Stage 1: creating a migration—building the code for migration

When you change the database aspect of your EF Core code, you need to create a new
migration. Typical changes that affect the EF Core database model include:

¡	Changing the properties in one of your entity classes; for instance, changing a
property name or adding a new property.

¡	Changing some aspects of your EF Core configuration; for instance, changing
the way a relationship is defined.

¡	Changing the DbSet<T> properties in your application’s DbContext; for instance,
adding a new DbSet<T> property or changing the name of a DbSet<T> property.

TIP   I tend to “batch up” any changes that affect the database and run unit tests
on them before I build migration. This catches any errors before I go through
the longer process of creating and applying a migration to my application.

NOTE   A new feature called .NET Core Global tools is being added to .NET Core 2.1
(see appendix B). This is likely to provide a new way to call the design-time
tools described in this chapter. Please look out for Microsoft’s documentation
after EF Core 2.1 is released.

You can access the command for building a migration either via Visual Studio or via a
command line on your computer:

¡	From the Package Manager Console (PMC) inside Visual Studio, the command is

Add-Migration MyMigration [options]

To use this migration command, you need to install one extra EF Core NuGet
package, called Microsoft.EntityFrameworkCore.Tools, in your application’s
startup project. This command has lots of options; which you can find at
http://mng.bz/lm6J.

¡	From your development system, for instance, via a command in the Windows
command prompt, the command is

dotnet ef migrations add MyMigration [options]

This command requires that you installed the .NET Core SDK. If you’re run-
ning the command on the development system where you built your application,
that .NET Core SDK will have already been installed. This command has lots of
options, which you can find at http://mng.bz/454w.

http://mng.bz/454w

304 Chapter 11  Handling database migrations

NOTE   Describing all the command-line migration options would take up
too much space and push out the important information on approaches to
database changes. But you can check out the links to Microsoft’s detailed
information on these commands. For a more complete description of the
Add-Migration command, see section 2.2.3.

How the migration tools obtain a copy of your application’s DbContext

The migration commands try to create an instance of the application’s DbContext via
a parameterless constructor. If your application’s DbContext is built for an ASP.NET
Core application, it doesn’t have a parameterless constructor; when you try to use a
migration command, you’ll get the error message “No parameterless constructor was
found.”

The way around this is to create a class that implements the IDesignTimeDbContext-
Factory<T> interface, which is there specifically to help the design-time commands such
as Add-Migration. This class, located in the same project as your application’s DbContext,
provides a method that will create a fully configured instance of the application’s DbCon-
text. Here’s the IDesignTimeDbContextFactory<T> class in our book app.

Listing 11.1   The IDesignTimeDbContextFactory<T> class from our book app

public class ContextFactoryNeededForMigrations
 : IDesignTimeDbContextFactory<EfCoreContext>
{
 private const string ConnectionString =
 "Server=(localdb)\\mssqllocaldb;Database=EfCoreInActionDb;Trusted_

Connection=True;MultipleActiveResultSets=true";

 public EfCoreContext CreateDbContext(string[] args)
 {
 var optionsBuilder = new
 DbContextOptionsBuilder<EfCoreContext>();

 optionsBuilder.UseSqlServer(ConnectionString,
 b => b.MigrationsAssembly("DataLayer"));

 return new EfCoreContext(optionsBuilder.Options);
 }
}

Implements the IDesignTimeDbContextFactory<T>
interface, where <T> is the application’s DbContext.

EF Core migration tools need this class to obtain a fully
configured instance of the application’s DbContext.

Provides a connection string to a database. Some
migration commands, such as Update-Database,
will access this database

Method you must
implement. Database
migrations tools call
this to get an instance
of the application’s
DbContext.Creates the DbContextOptionsBuilder<T>

builder for configuring database options.

You select the SQL Server database provider with
the connection string to the database. You also add
options you need; here, you tell EF Core where the

database migrations are.
Uses these options to create an instance on the
application’s DbContext that the migration tools
can use

	 305Code-first: using EF Core’s migrations

What happens when you call the Add-Migration command?
Figure 11.2 shows what happens when you call the Add-Migration command. It uses
the application’s DbContext’s method, Database.Model, introduced in section 9.6.

MyDbContext
Class

Properties
 Entities :DbSet<Entity>
Methods
void OnModelCreating(...

Entity
Class

Properties
 ...

Entity
Class

Properties
 ...

Entity
Class

Properties
 ...

Entity
Entity

Entity
Class

Properties
 ...

Entity
Class

Properties
 ...

1. The process builds a model of the expected
 database by inspecting the application’s
 DbContext, the associated entity classes,
 and any configuration settings.

3. Using the two models, 1 and 2, the command
 generates code in three files.
 • The <MyContextName>ModelSnapshot.cs
 file holds the model of the database and
 is updated as each migration is added.
 • The other two files contain the code
 relating to the specific migration you
 have just added. They contain the code
 to execute the migration.

4. These files are written to a directory, normally called Migrations
 in the assembly that the application’s DbContext is in.

2. The command then looks at the
 <MyContextName>ModelSnapshot.cs
 file to form a model of the database at
 the time the last migration was done
 (empty model if no migrations).

The process kicked off by the Add-Migration MyMigrate command

…Migrations
 1234567890_Initial.cs
 1234567890_Initial.Designer.cs
 MyDbContextModelSnapshot.cs
 Etc. …

File: MyDbContextModelSnapshot.cs
class MyDbContextModelSnapshot :
 ModelSnapshot
{

}

File: 2345678901_MyMigrate.Designer.cs
class partial MyMigrate
{

}

File: 2345678901_MyMigrate.cs
class partial MyMigrate : Migrate
{
 void Up(...) { ...}
 void Down(...) { ...}
}

void OnModelCreating(...

Figure 11.2   Running the Add-Migration command to create a new EF Core migration. The command compares
two models of the database. One comes from our current application, with its DbContext, entity classes, and EF
Core configuration; and the other is from the <MyContextName>ModelSnapshot.cs file (which is empty if this
is your first migration). By comparing these two models, EF Core can create code that will update the database
schema to match EF Core’s current database model.

Three new files are added to your application as a result of running the Add-Migration
command. By default, these files are written to a directory called Migrations in the
project that contains your application’s DbContext. They contain the commands that
are used in the second stage of applying migrations to a database.

306 Chapter 11  Handling database migrations

Using EF Core’s migrations to change a database is the easy option. EF Core builds
a migration file that the database provider can convert into the relevant commands to
change the database schema. But this approach has limitations:

¡	If your migration includes moving data from one table to another, EF Core can’t
build code to do that. The Add-Migration command warns you with a “… may
result in the loss of data” message if the migration removes a table or a column.
Sections 11.5.2 and 11.5.3 cover how to handle a possible data loss scenario.

¡	If you have multiple application DbContexts (see section 10.6) and you share
a table, the migrations can fail if a change occurs to the shared table. You need
to either manually correct one of the migrations or use a script-based database
schema change (see section 11.4.1).

¡	EF Core doesn’t allow you to define every possible aspect of a database. For instance,
you can’t add a column CHECK constraint such as Age int CHECK (Age>=18). For
this level of database control, you need to use a script-based approach to chang-
ing the database schema (see section 11.4). But if you only want to add an SQL
feature such as stored procedures or user-defined functions, you can do that with
migrations (see the next section).

Adding your own migration code to a migration

Figure 11.2 shows that the Add-Migration command creates numerous files, one of
which contains the code to change the schema. This file has an Up method which, via
the parameter of type MigrationBuilder, provides access to a broad range of methods
to execute that you can use to introduce your own changes to the database schema.

For instance, the MigrationBuilder parameter includes an Sql method, which you
can use to run SQL code to add an SQL stored procedure to your database. The follow-
ing listing shows an example of adding SQL code via the Sql method (shown in bold) to
a migration’s Up method in order to add a stored procedure.

Listing 11.2   Using an SQL method to add code to an Up migration

protected override void Up
 (MigrationBuilder migrationBuilder)
{
 migrationBuilder.CreateTable(
 name: "CustomerAndAddresses",
 … other code left out
);

 migrationBuilder.Sql(
 @"CREATE PROC dbo.MyStoredProc
 @Name nvarchar(1000)
 AS
 SELECT * FROM dbo.CustomerAndAddresses
 WHERE Name = @Name");
}

NOTE   For more examples of using the Sql method in a migration file, see sec-
tion 11.5.2, where you’ll add more commands to copy data.

	 307Code-first: using EF Core’s migrations

If you add code into the Up method in a migration, you might want to add an Sql
method containing code in the Down method to drop (delete) MyStoredProc. This is
useful if you decide the migration doesn’t work; then, when you remove that migration
(see section 11.2.3), the extra SQL features you added manually will also be removed
from your development database.

Migrations are database-provider-specific

The first thing to understand is that EF Core migrations are built for the database type
your application’s DbContext is configured for. If your application’s DbContext uses
the SQL Server database provider, it creates migrations for an SQL Server database,
and those migrations won’t work for another database type (for instance, on a MySQL
database).

If you decide to change the database type your application is going to work with, you
need to delete all the existing migrations and create a new migration for the new data-
base type. That’s what you have to do when you change the book app from working with
an SQL Server database to a MySQL database in section 14.1.2.

It’s unusual for an application to run with different databases on different hosts.
This would mean that your application’s DbContext and its migrations must work with
more than one database type (for instance, SQL Server and MySQL). If you must do
this, you’ll need to manually combine the different migration files into one migration
file that the application can use. This is possible through the ActiveProvider property,
which holds the name of the database provider that’s currently being used. Listing 11.3
shows the use of the ActiveProvider property in an if statement (shown in bold) to
select the correct configuration commands for the database type being migrated.

WARNING   I don’t recommend using different database types with an applica-
tion, such as running one instance using SQL Server and another instance using
MySQL. First, each database server works in a slightly different way. EF Core can
hide (almost) all of these differences, but section 14.1.3 covers subtle variations
between database servers and how they might introduce bugs into your applica-
tion. Second, EF Core migrations are going to be difficult and cumbersome.

Listing 11.3   Using ActiveProvider to handle different database server types

protected override void Up(MigrationBuilder migrationBuilder)
{

 if (ActiveProvider ==
 "Microsoft.EntityFrameworkCore.SqlServer")
 {
 //… code to configure the SQL Server
 }
 else
 {
 //… code to configure the MySQL tables
 }
}

This test will be true only if
the database being migrated
is using the SqlServer
database provider. This
allows you to change the
migration code applied
depending on the database
server type.

308 Chapter 11  Handling database migrations

The other way isn’t to use EF Core migrations but to use an SQL script-based migration
approach (see section 11.4).

Warning: some databases don’t support all EF Core migration commands
Each database has its own capabilities on what sort of database schema changes you
can make. For instance, the SQLite database has significant limitations on what changes
you can apply to the database schema, such as not being able to rename a column in a
table or add/remove a foreign key (see http://mng.bz/wuN0).

SQLite is a rather extreme example, but if you’re using a non-Microsoft-supplied data-
base provider, you should check the commands that the database provides for changing
its schema and the database provider’s supports of EF Core’s MigrationBuilder.

11.2.2	 Stage 2: applying migrations—updating a database schema

After you’ve created a migration, or even several migrations, you need to apply them to
each of the databases associated with your application (for instance, your development
database and your production database). You can apply each migration to the database
in four main ways:

¡	Outputting the migration as an SQL change script, and applying it to a database
¡	Calling the Database.Migrate method from your main application
¡	Calling the Database.Migrate method from a special application just to execute

the migration
¡	Using one of the command-line methods to execute the migration

NOTE   Microsoft recommends that you use only the first option for production
databases: outputting an SQL change script and then applying it to the data-
base. That’s because the Database.Migrate method has limitations, such as
not supporting multiple, parallel versions of the Database.Migrate method
running at the same time, which I detail later.

EF Core’s migration uses a table called __EFMigrationsHistories, which holds a list of
all the migrations applied to that database. If an entry is found for a migration on the
database being updated, that migration won’t be applied again.

Each migration is applied within an SQL transaction, which means that the whole
migration either succeeds or fails, so your database isn’t left in an indeterminate state. If
you have multiple migrations to apply, they’re applied in the order they were created.
If one migration fails, it and any following migrations aren’t applied.

EF6   In EF6.x, migrations were automatically installed, based on the database
initializer. EF Core doesn’t do that. Migrations are applied only if you explicitly
include code to call the Database.Migrate method or use a command-line
method.

http://mng.bz/wuN0

	 309Code-first: using EF Core’s migrations

Outputting the migration as an SQL change script

This is the most robust, but also the most difficult, way of applying a migration to a
database. It’s Microsoft’s recommended way to update a production database, because
it works in all setups. There are two stages to the process.

NOTE   For software developers not used to using SQL change scripts,
this approach can be a bit intimidating, and they may prefer using the
Database.Migrate method (described after this SQL change script section).
The Database.Migrate migration approach will work fine if you understand
and abide by its limitations.

First, you need to output the SQL changes script after you create an EF Core migra-
tion. You use one of the command-line migration commands to create an SQL change
script. Both command types take two optional arguments:

¡	From—The name of the first migration you want included in the SQL change
script; for instance, AddColToMyTable. The number 0 indicates the initial empty
database, which is the default if this argument is left out.

¡	To—The last migration you want included in the SQL change script. If you leave
out this argument, the code references the last migration.

The two versions of the commands are as follows:

¡	From the PMC inside Visual Studio, the command is

 Script-Migration [From] [To] [options]

See http://mng.bz/lm6J for more information.

¡	From your development system, for instance, via a command in the Windows
command prompt, the command is

 dotnet ef migrations script [From] [To] [options]

See http://mng.bz/454w for more information.

The script output by these commands is written either to a new window in Visual Stu-
dio (PMC) or to the screen (command line).

The second stage is applying that SQL change script to the database. You must copy
the code output by the Script-Migration command and put it into a .sql file, using
some form of naming convention to make sure it’ll be applied in the correct order (see
section 11.4). These scripts will contain the same code to check/update the migration
history file so that an SQL change script is applied only once to a database.

Then you should apply the SQL change scripts to the database, as explained in sec-
tion 11.4.

Running the Migrate command as part of your application

The easiest way to update a database associated with your application is to include code
in the startup of that application to apply any outstanding migrations. The effect is
that any outstanding migrations are applied to the database it’s connected to whenever

http://mng.bz/lm6J
http://mng.bz/454w

310 Chapter 11  Handling database migrations

your application starts. The advantage is you can’t forget to do the migration, but some
disadvantages exist, which I mention at the end.

Section 5.9.2 showed how to apply a migration on the startup of an ASP.NET Core
application. You can apply a similar approach with other application types. The follow-
ing listing shows an example for a console application, which executes the Migrate
method every time it starts. If the database is up-to-date, the Migrate method does
nothing.

Listing 11.4   Running the Migrate command during startup of a console application

class Program
{
 static void Main(string[] args)
 {
 using (var context = new EfCoreContext())
 {
 context.Database.Migrate();
 }
 //... then start the rest of my code
 }
}

The advantage of using the Database.Migrate method is simplicity. This method
ensures that any database that it connects to is migrated to the correct level before
using it. This is the only approach that makes all migrations, breaking and nonbreaking
changes (see section 11.5), in one stage. This works across all your databases, including
the production database (with some caveats). But there are a few disadvantages:

¡	If a migration fails, your application won’t start. A migration can fail for several
reasons; for example, if you drop a table that other rows refer to via a required
foreign key. In a production environment, a failed migration can mean your
application is down, and it isn’t always easy to diagnose the problem.

¡	The Database.Migrate method isn’t designed to handle multiple copies of
Database.Migrate running at the same time. This could happen if you’re run-
ning multiple instances of your application, say, in a cloud web application with
scaling. If this could happen in your application, you can either use the alternative
method defined next or use an SQL change script approach, as defined in sec-
tion 11.4.

Alternative: Running Migrate in a standalone migration application

Instead of running the migration as part of your startup code, you can create a stand-
alone application to apply a migration to your databases. For instance, you could add
a console application project to your solution that uses your application’s DbContext
and calls the context.Database.Migrate method when it’s run, possibly taking the
database connection string as a parameter.

Setup of the appliction’s
DbContext is done by
overriding the OnConfiguring
method, so you don’t need to
provide any connection string
of the database provider here.

Calling the Migrate method applies any
outstanding migrations to the database
it’s attached to. If no outstanding
migrations exist, it does nothing.

	 311Code-first: using EF Core’s migrations

This approach has advantages over calling the Migrate method in the application’s
startup:

¡	If the migration fails, you get good feedback, because the code can report any
errors to the local console.

¡	It overcomes the problem that the Migrate method isn’t thread-safe, because
you run only one instance of the application that’s applying the migration.

The disadvantage of this approach is that it works only if your migration is safe, in what
I call a nonbreaking change: the database schema change doesn’t affect the parts of the
database that the current live version of your application is running. You can add new
columns, tables, and relationships (within reason—see section 11.5.1 for more detail)
for example, but you can’t remove any columns, tables, or relationships that the previ-
ous version uses. Section 11.5 covers applying database changes.

Running Migrate by calling a command-line method

Just as you created the migration via the command line, you can also manually apply
a migration to your development database. But updating the production database in this
way has limitations, depending on whether you used IDesignTimeDbContextFactory<T>
with a fixed connection string in your application.

NOTE   See section 11.2.1 for details on the software you need to install to be
able to run either of these commands.

You can access the command for updating a database either via Visual Studio or via a
command line on your computer:

¡	From the PMC inside Visual Studio, the command is

 Update-Database [options]

By default, this applies the last migration to your development database. This
command has lots of options, which you can find at http://mng.bz/lm6J.

¡	From your development system, for instance, via a command in the Windows
command prompt, the command is

 dotnet ef database update [options]

As with the PMC version, this applies the last migration to your development
database. This command has lots of options, which you can find at http://mng
.bz/454w.

11.2.3	 Undoing a migration—Remove-Migration or update command

After you’ve applied a migration to a database, you might decide it doesn’t fit your
needs. If this happens, you can use the command-line tools to undo any migration. You
shouldn’t need this command if you unit test your new database configuration before
applying a migration, but if you need to undo a migration, you have a command to do that.

http://mng.bz/lm6J
http://mng.bz/454w
http://mng.bz/454w

312 Chapter 11  Handling database migrations

TIME-SAVER   I’ve never needed the command to undo a migration. A quick
survey of EF users at a recent talk revealed that none of them had ever used this
command either.

Two commands can be used to remove a migration. They work by using the Down ver-
sion of the migration code created in stage 1 to undo the changes to the database. The
commands take options, which allow you to define the project where your applica-
tion’s DbContext is, and so on (see links to the documentation in section 11.2.2).

¡	From the PMC inside Visual Studio
The Remove-Migration command removes the last migration you created:

 Remove-Migration [options]

To remove all migrations down to a specific migration:

 Update-Database MyMigration [options]

The Update-Database command takes your database back to the state as defined
by the migration name given.

¡	From your development system; for instance, via a command in the Windows
command prompt
To remove the last migration you created:

 dotnet ef migrations remove [options]

To remove all migrations down to a specific migration:

 dotnet ef database update MyMigration [options]

As with the PMC version, the dotnet ef database update version takes your
database back to the state as defined by the migration name given.

The limitation of these commands is the same as the application of a migration via
a command line: it’ll work for your development database, but problems could arise
with other databases such as production.

11.3	 Database-first: creating a DbContext from a database
EF Core’s code-first approach works by using your software as the template for
the database you want to create/update. But in some cases, you’ll want to build
an application that accesses an existing database via EF Core code. For this, you
need to apply the opposite of migrations and allow EF Core to produce your entity
classes and application’s DbContext by using your existing database as the tem-
plate. This is known as database-first, also referred to as reverse engineering a database.
Figure 11.3 shows this process.

	 313Database-first: creating a DbContext from a database

TryMigrateDbContext
Class

Properties
 Entities :DbSet<Table1>
Methods
 void OnConfiguring(...)
 void OnModelCreating(...

SQL Server database

Table 3
Class

Properties
 ...

Table 2
Class

Properties
 ...

1. You type in a reverse-engineering command.
 Here is the Visual Studio Package Manager
 Console’s Scaffold-DbContext command:

The first parameter is the connection string
to the database you want to reverse engineer.

The second parameter is the name of the
EF Core database provider that will be
accessing this database.

Here you use the optional -OutputDir option to
define a directory that you want the created
classes placed in.

2. The command inspects the database schema
 and builds an internal model of the database.

3. It then uses this model to create the entity
 classes and the application’s DbContext.

Database-First: Reverse-engineering a database using the Scaffold-DbContext command

Table 3
Table 2
Class

Properties
 ...

Table 1
Class

Properties
 ...

 void OnConfiguring(...)
 void OnModelCreating(...

Table1 Table2 Table3

Scaffold-DbContext
 "Server=...;Database=TryMigrateDb;..."
 Microsoft.EntityFrameworkCore.SqlServer
 -OutputDir Scaffold

Figure 11.3   Typical use of EF Core’s reverse-engineering command, which inspects the database found via the
database connection string and then generates the entity classes and the application’s DbContext to match the
database. It uses the foreign-key database relationships to build a fully defined relationship between the entity
classes.

Reverse-engineering a database is done via command-line interfaces, like the migra-
tion commands. The two commands are as follows:

¡	From the PMC inside Visual Studio, the command is

 Scaffold-DbContext [Connection] [Provider] [options]

The first argument, [Connection], is a connection string that points to the data-
base you want to reverse-engineer. The second argument, [Provider], is the
name of the EF Core database provider that you want to access the database with;
for instance, Microsoft.EntityFrameworkCore.SqlServer. A series of other
options can be found at http://mng.bz/lm6J.

¡	From your development system, via a command at the Windows command
prompt, the command is

 dotnet ef dbcontext scaffold [Connection] [Provider] [options]

The first two arguments, [Connection] and [Provider], are the same as in
the PMC command. The options are similar too; you can find the full list at
https://mng.bz/454w.

http://mng.bz/lm6J
http://mng.bz/454w

314 Chapter 11  Handling database migrations

11.3.1	 How to alter or edit the output from the scaffold command

The application’s DbContext and the entity classes produced by the scaffold command
may not be quite in the form you need for your application. This section describes the
four ways you can alter or enhance the output of the scaffold process:

¡	Choosing between the Fluent API and data annotations for configuration
¡	Adding extra validation data annotations to an entity class
¡	Altering the application’s DbContext to work with an ASP.NET Core application
¡	Singularizing your entity class names

Choosing between the Fluent API and data annotations for configuration

By default, the scaffold command will use Fluent API methods to configure EF Core.
The downside is that you’ve lost the data validation annotations (see section 6.4), such
as [StringLength(100)], [Required], and so on, which are useful for data validation
if you use entity classes for input in your UI/presentation layer. Or if you use separate
ASP.NET ViewModel or DTO classes, having the data annotations in the entity classes
makes it easier to cut and paste the properties with their validation attributes into your
ViewModel/DTO classes.

By including the -DataAnnotations (Visual Studio 2017) or -d (.NET Core CLI)
option to the scaffold command, the scaffolder will use data annotations rather than
Fluent API wherever possible to configure EF Core.

Adding extra data validation annotations to an entity class

You may want to add extra data validation annotations, such as [EmailAddress], for
the UI/presentation layer. Because the scaffolding process creates the entity classes as
partial classes, there’s a way to add extra data validation annotations to a property in
a partial entity class without needing to edit the original class.

Let me give you an example. Here, the scaffolding has created a class called Users
with a property called Email:

public partial class Users
{
 public int UserId { get; set; }
 [StringLength(100)]
 public string Email { get; set; }
 //… other parts left out
}

Listing 11.5 shows how to use the ASP.NET Core ModelMetadataType attribute to add
the extra data validation attribute EmailAddress to the property Email.

	 315Database-first: creating a DbContext from a database

Listing 11.5   Adding a data validation attribute to the partial class, Users

[ModelMetadataType(typeof(Users_Validation))]
public partial class Users {}

public class Users_Validation
{
 [EmailAddress]
 public string Email { get; set; }
}

WARNING   The ModelMetadataType attribute works only for ASP.NET Core,
so other validation systems, such as the Validator class used to validate data
written to the database in section 4.6.1, won’t pick up extra data validation
attributes added this way.

Altering the application’s DbContext to work with an ASP.NET Core application

The scaffold command will create an application’s DbContext, which uses the
OnConfiguring method to set the database options. It uses the database provider and
connection string you used when you ran the scaffold command to build the database
options inside the OnConfiguring method. This listing shows an example of the appli-
cation’s DbContext that the scaffold command would create, if you told it you wanted
the application’s DbContext class to be called MyDbContext.

Listing 11.6   Format of the application’s DbContext output by the scaffold command

public partial class MyDbContext : DbContext
{
 //… DbSet<T> properties left out

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)//
 {
 if (!optionsBuilder.IsConfigured)
 {
#warning To protect potentially sensitive …

This attribute, found in the Microsoft.AspNetCore.Mvc
namespace, allows you to attach another class—in

this case, Users_Validation—which contains matching
properties with data attributes on them.

You have to create another partial class that you can
apply the ModelMetadataType attribute to, because
you don’t want to edit the partial class created via
the scaffold command, which you may need to delete
and re-create if the database changes.

Contains properties that match the class
you’re trying to add data attributes to

Adds the EmailAddress attribute, which makes
ASP.NET Core check that the input to this property
matches the format of an email address

This property matches one in the Users
class. ASP.NET Core can combine attributes
in the properties in the original class, and
the properties in the class provided via the
ModelMetadataType attribute.

Creates a partial class that inherits
from EF Core’s DbContext class.

Overrides the OnConfiguring method
to configure the database options by
using the information you provided
in the scaffold command

If you configure the database options via a
constructor, the “if” test will fail and the
configuration won’t be changed by this method.

Adds a warning because the
connection string may contain
authorization information that
you don’t want made public.

316 Chapter 11  Handling database migrations

 optionsBuilder.UseSqlServer(
 @"Server=(localdb)\… etc.”
 }
 }

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {
 //… configuration code left out
 }
}

The problem is, this form of database option setting isn’t going to work for an ASP
.NET Core application, which provides the database options via a constructor parame-
ter. But you can get around this by creating another partial class that contains the con-
structor with a parameter of type DbContextOptions<T>. This listing shows the partial
class you’d write to add the parameterized constructor to the application’s DbContext
that the scaffold command created in listing 11.6.

Listing 11.7   The new class to make the application DbContext work with ASP.NET Core

public partial class MyDbContext
{
 public MyDbContext (
 DbContextOptions<MyDbContext> options)
 : base(options) {}
}

The new database options provided via the parameterized constructor will replace the
configuration in the OnConfiguring method. This works because the OnConfiguring
code output by the scaffold command first checks to see whether the database options
have already been set. If they’ve been set, then the OnConfiguring method doesn’t run
its code to set the database options.

TIP   You create partial classes to add data annotations or provide the parame-
trized constructor for ASP.NET Core because you don’t want to edit the code
that the scaffold command produced. This is because all your edits would be
lost if you had to run the scaffold command again. I also suggest you don’t
place your partial classes in the same directory that the scaffolder writes to,
because sometimes you might want to delete the whole directory created by the
scaffold command before running the scaffolder again.

Uses the database provider name you provided and
inserts the correct Use method for that database
provider.

Uses the connection string you
provided as the connection string
that the application’s DbContext
should use.

Creates another partial class with the same name
as the application’s DbContext that the scaffold
command produced Adds the single-parameter

constructor that the ASP.NET
Core application needs to work
with the application’s
DbContext that was created by
the scaffold command

	 317Database-first: creating a DbContext from a database

Singularizing your entity class names

By default, the scaffold command creates entity classes with the same name as the table
it’s mapped to. If a table is called Books, the entity class that the scaffolder outputs will
also be called Books.

If you like your entity class names to be singular, you can inject code to override
the scaffold command’s normal operation. This listing shows the two classes you pro-
vide that will produce entity class names by singularizing the table name the entity is
mapped to.

Listing 11.8   Injecting your own class to singularize the entity class names

public class MyDesignTimeServices
 : IDesignTimeServices
{
 public void ConfigureDesignTimeServices
 (IServiceCollection services)
 {
 services.AddSingleton
 <IPluralizer, ScaffoldPuralizer>();
 }
}

public class ScaffoldPuralizer : IPluralizer
{
 public string Pluralize(string name)
 {
 return Inflector.Inflector
 .Pluralize(name) ?? name;
 }

 public string Singularize(string name)
 {
 return Inflector.Inflector
 .Singularize(name) ?? name;
 }
}

11.3.2	 The limitations of the reverse-engineering feature

The reverse-engineering feature is a great tool for working with existing databases.
It adds the entity classes and an application’s DbContext that you need to access the

The design-time methods look for a class
that implements the IDesignTimeServices
interface. If one exists, it’ll call its method
ConfigureDesignTimeServices.

This method is here to allow
other services to be added
to the design-time services.

Adds your pluralizer, which will replace
the default, noop, pluralizer

This is our implementation of the
IPluralizer interface. In this case,
you’re interested in only the
Singularize method, but you
implement both.

Takes a name and pluralizes it—dog
would become dogs. Uses a small .NET
4.5 NuGet library called Inflector.

Takes a name and
singularizes it—cats
would become cat.

318 Chapter 11  Handling database migrations

existing database you provided to the scaffold command. This approach has a few lim-
itations/downsides, but they’re small:

¡	If you change the existing database schema after running the scaffold command,
you need to delete the entity classes and the application’s DbContext and run
the scaffold command again. This gets a bit tedious if you have lots of changes to
the database, at which point the script update approach (section 11.4) may make
more sense.

¡	The scaffolding fully defines the relationships between each entity. The scaffold-
ing produces entity classes that have navigational properties going each way, which
may not be as “clean” as the entity classes you’d have written. See section 7.2, which
covers minimizing the navigational properties based on the business need.

Look out for the Update Model from Database feature
The plan is for EF Core to gain a feature called Update Model from Database (EF Core
GitHub issue #831) in EF Core version 2.2 or later. This feature will significantly help
developers who have an existing database with a schema that changes regularly.

The problem with the reverse-engineering feature (section 11.3) is that if the database’s
schema is changed, you have to run the whole reverse-engineering process again. If the
schema changes a lot, this can become tedious. The Update Model from Database fea-
ture will make handling database schema changes much easier and quicker.

This feature will be a design-time command that updates the application’s DbContext
and/or entity classes to match the schema in the attached database. This will help devel-
opers using the reverse-engineering feature, and possibly developers for whom the data-
base schema is updated using SQL change scripts (see section 11.4).

11.4	 SQL-first: using SQL change scripts to change the schema
The last way to manage your database schema change is to produce SQL change scripts
and then apply them to any of your databases. These scripts contain SQL commands
that update the schema of your database. This is more of a traditional approach to han-
dling database schema updates and gives you much better control over the database
features and the schema update. But you need some knowledge of SQL commands to
understand what these scripts do.

The complication with this approach is that you need to make sure that your SQL
change scripts produce a database that matches what EF Core thinks the database looks
like; otherwise, EF Core won’t work properly with the database. I’ve found three ways
of building the SQL scripts so that I can confirm that they match EF Core’s database
model:

¡	Using EF Core’s migration script feature to produce SQL change scripts for each
of your migrations. Section 11.2.1 covered the first part of this.

	 319SQL-first: using SQL change scripts to change the schema

¡	Using an SQL comparison tool to build an SQL change script by comparing your
existing database with a database created by EF Core.

¡	Using the tool EfSchemaCompare to check that the SQL change scripts you’ve cre-
ated produce a database that matches EF Core’s database model.

By using one or a combination of these approaches, you can produce an SQL change
script. These scripts need to be applied in order, just as migrations do. I name each
script starting with Script and then a number; for instance, Script02 - add date col
to MyEntities.sql. This way, I can sort the SQL change scripts by name so that they
can be applied in the right order.

TIP   If you’re working in a multiperson project, you need a process to allocate
a script number, or you can use a timestamp in the filename, so that the scripts
are applied in the right order.

Figure 11.4 shows an example of applying SQL change scripts to a database.

Script02 – add date col to MyEntities.sql

SQL change script
Check/apply tool

e.g.,
DbUp, RedGate

Tools

2. You use an SQL change script tool that
 checks which scripts need to be applied
 to the database, and then applies them
 within an SQL transaction.

1. Your SQL change script contains SQL commands
 to change the schema of the database. They may
 also contain commands to reformat/move data.

3. In this example, the database already has Script01 applied to it, but
 needs Script02 applied to get the database to the required state.

Script01 – Initial database.sql
CREATE TABLE [MyEntities} (
 [MyEntityId] int IDENTITY,
 CONSTRAINT [PK_MyEntities]
 PRIMARY KEY ([MyEntityId])
 …

AppliedTable
Script1…,

1/2/17

Figure 11.4   The process of applying SQL change scripts is normally handled by a tool that checks a
table in the database to see what scripts have already been applied to the database. It then applies any
missing scripts to the database.

You can apply an SQL change script to the database (step 2 in figure 11.4) in multiple
ways, ranging from manually applying them in Microsoft’s SQL Server Management
Studio to using open source and commercial tools that check which change scripts
have already been applied and applying only new change scripts. The important issues
are as follows:

¡	You must apply the SQL change scripts to your database in the correct order.
¡	You must apply an SQL change script only once to a database.

320 Chapter 11  Handling database migrations

¡	Each database schema change should be applied within an SQL transaction. This
ensures that either the whole schema change is applied or your database is left in
its original stage.

¡	If an SQL change script fails, all subsequent scripts shouldn’t be applied.

Several packages meet these four criteria. Here are two:

¡	DbUp (http://dbup.github.io/), an open source NuGet package that will apply
SQL change scripts.

¡	Redgate has commercially available tools that have more features than DbUp
(see www.red-gate.com/products/sql-development/readyroll/).

Some packages, such as Redgate’s offerings, can be run manually or as part of a soft-
ware deployment tool. DbUp is a software package, so you can build whatever you like.
I’ve used DbUp to create a console application, which I can either trigger manually or
use in an automated software deployment.

Having dealt with how the scripts are applied to a database, let’s focus on the critical
issues of creating SQL change scripts in which the database schema changes match
EF Core’s database model. Section 11.2.1 has already covered how to produce an SQL
change script from a migration. The other two approaches to creating SQL change
scripts that match EF Core’s model are as follows:

¡	Using an SQL comparison tool to build an SQL change script by comparing a
new and old database

¡	Using the EfSchemaCompare tool to ensure that your SQL change script matches
EF Core’s database model

11.4.1	 Using an SQL comparison tool to build an SQL change script

One method to automatically create an SQL change script is to compare two databases:
your original database and a new database created by EF Core after you’ve updated the
EF Core configuration. Comparing these two databases shows the differences, and you
can create a script that will change your original database to the same schema as the
newly EF Core–generated database.

Thankfully, many SQL comparison tools produce an SQL change script for you auto-
matically. One is available for SQL Server in Visual Studio 2017 (any version), called
SQL Server Object Explorer, found in the Data Storage and Processing workload in the
Visual Studio installer.

Figure 11.5 shows how to compare the database in chapter 2 with the changes in
chapter 4, where you add Order and LineItem entity classes, and get an SQL change
script by using SQL Server Object Explorer inside Visual Studio.

http://dbup.github.io/
https://www.red-gate.com/products/sql-development/readyroll/

	 321SQL-first: using SQL change scripts to change the schema

Etc...

1. The Chapter02 database already
 exists, with its tables.

4. You then use the SQL Server Object Explorer
 inside Visual Studio to compare the two
 databases and output an SQL change script.

2. You add the two new entity classes,
 Order and LineItem, and add them
 to the application’s DbContext.

3. You then create a new database by
 using EF Core’s EnsureCreated method.

Review

Properties
 ...

Author

Properties
 ...

Etc...
Review

Author

Properties
 ...

Book
Class

Properties
 ...

CREATE TABLE [dbo].[LineItem] (
 [LineItemId] INT IDENTITY (1, 1) NOT NULL.
 [BookId] INT NOT NULL,
 [BookPrice] DECIMAL (18, 2) NOT NULL,
 [LineNum] TINYINT NOT NULL,
 [NumBooks] SMALLINT NOT NULL.

…EnsureDeleted();
…EnsureCreated();

Chapter02Db

Compare

Chapter04Db.Test

Book

Properties
 ...

Book

Properties
 ...

LineItem

Properties
 ...

Order
Class

Properties
 ...

Figure 11.5   The process of building an SQL change script by comparing two databases. The important point
is that the second database is created by EF Core, so you know it matches the current EF Core model. In this
example, you use the SQL Server Object Explorer feature inside Visual Studio to compare the two databases and
build an SQL change script that will migrate the Chapter02 database to the correct level for the software changes
added in chapter 4.

11.4.2	 Using EfSchemaCompare to check your SQL matches EF Core’s model

In the second approach, you write the SQL change scripts yourself and then use a tool
called EfSchemaCompare to ensure that your changes match EF Core’s database model.
This is attractive to developers who want to define the database in ways that EF Core
can’t. For instance, this approach allows you to set more-rigorous CHECK constraints on
columns, add stored procedures or user-defined functions, add seed data, and so on
via SQL scripts.

The only disadvantage for a software developer is that you need to know enough
SQL to be able to write/edit the SQL change scripts. This might put off some develop-
ers, but it’s not as bad as you think because you can look at the SQL EF Core outputs
to create a database and then tweak that SQL with your changes. Section 15.8.1 shows
how to do that. Also, plenty of online help is available for SQL commands, such as Stack
Overflow, which I find invaluable.

322 Chapter 11  Handling database migrations

The main problem in writing SQL change scripts is making sure they exactly match
EF Core’s database model. I can testify that getting an exact match is hard, and not
something I’d attempt without a tool to check my scripts. Figure 11.6 shows how the
EfSchemaCompare tool solves that problem by automating the comparison of the
updated database against EF Core’s database model.

The SQL-first approach uses a tool to compare EF Core’s database model with the database schema.

EfSchemaCompare
tool

or

Schema

EF Model

Your application The EfSchemeCompare tool lets the developer
know whether their changes to the EF Core
classes/configuration match the database
produced by their SQL changes scripts.

Context.Model

nnnnfferReviewEntityMyEntityProperties
 ...

OtherEntity

Properties
 ...

MyEntity
Class

Properties
 ...

Script002.sql

Apply Scripts
For example

DbUp,
Redgate tools

Script001.sql
CREATE TABLE [MyEntities] (
 [MyEntityId] int IDENTITY,
 CINSTRAINT [PK_MyEntities]
 PRIMARY KEY …
 …

AppliedTable
Script1…,

1/2/17

Figure 11.6   The EfSchemaCompare tool compares EF Core’s model of the database, which it forms by looking at
the entity classes and the application’s DbContext configuration, with the actual database schema. It will output
human-readable error messages if it finds a difference.

I chose the SQL-first approach, and I built the tool called EfSchemaCompare after becom-
ing cautious about using EF’s database migrations in a production environment. The
EfSchemaCompare tool is available in my EfCore.TestSupport package (see https://
github.com/JonPSmith/EfCore.TestSupport/wiki/9.-EfSchemaCompare). With this
tool, I create unit tests that check my development database, and more important, my
production database, to see whether the EF Core’s database model has drifted away
from the actual database schema.

The process for using the SQL-first approach is to change your entity classes and/or
the EF Core configuration of your application, and build an SQL change script that will
alter the database schema. Then you can apply your SQL change script to a database in
development, and run the EfSchemaCompare tool to check whether the new database
and the EF Core’s model of the database match. If they don’t match, the tool outputs a
series of error messages that highlight the differences so you can fix them.

NOTE   Section 15.9 provides examples of using the EfSchemaCompare tool.

11.5	 Part 2—Issues around a database schema change
Now that you understand the three approaches to updating a database’s schema (sec-
tions 11.2 to 11.4), you’re ready to focus on the application of database schema

https://github.com/JonPSmith/EfCore.TestSupport/wiki/9.-EfSchemaCompare
https://github.com/JonPSmith/EfCore.TestSupport/wiki/9.-EfSchemaCompare

	 323Part 2—Issues around a database schema change

changes. This section includes information about not losing data in the production
database, because that’s valuable to clients and their users; losing or corrupting that
data is a job-limiting event that I don’t think any of us want to have.

Let’s start with a simple update and then progress to more-complex update scenar-
ios. They’re as follows:

¡	Nonbreaking schema change —Adding a new table or column that’s used in only
the new application version. This shouldn’t cause a problem to the currently
running application, because it won’t be accessing those changed parts of the
database. You can apply the database schema change while the existing software
version is running (with some caveats).

¡	Breaking schema change —If your schema change involves changes to the tables,
columns, constraints, and so on, I refer to this as a breaking schema change. Your
currently running application will throw exceptions when accessing the modi-
fied database, because the database doesn’t match its database model. You can
update a database with a breaking schema change in two ways:

¡	Can stop the application—You stop your running application, and apply the
database change and any data copying before loading and running your new
application that matches the changed database.

¡	Can’t stop the application—If you want to apply a breaking schema change while
providing continuous service to your users, you need a more complex approach.
I describe how you can achieve this type of schema update without interrupting
your users, but it’s much more complex than the preceding approach.

TIP   When I’m in the development stage and haven’t released to production yet,
I may find that a breaking database schema change just isn’t worth handling, so
I delete (drop) the whole development database and start again.

The following sections describe these scenarios and how to handle them.

11.5.1	 Applying nonbreaking changes while the current app is running

When I’m developing a new application with a new database, I tend to grow the data-
base schema as the project progresses; for instance, by adding new tables that the previ-
ous version of the software doesn’t know about. I call these nonbreaking changes, because
they don’t cause any currently running application to fail, as the parts of the database
it uses haven’t changed.

With nonbreaking changes, the modifications to a database schema can be applied
using any of the previous methods described, and at any time—even to the production
database while the old software is running. But you need to be sure that your changes
don’t affect the old tables. For instance, adding a new table can often require you to add
columns to existing tables (say, a foreign key to link to a new table). This can work, but
you need to be careful. Here are some issues to consider:

¡	If you’re adding a new scalar property to an existing table, the old application
won’t set it. That’s OK, because SQL will give it a default value—but what default

324 Chapter 11  Handling database migrations

do you want it to have? You can control that by setting an SQL default value for
the column (see section 8.1.1).

¡	If you’re adding a new foreign-key column to an existing table, you need to
make that foreign key nullable and have the correct cascade delete settings. That
allows the old application to add a new row in that table without the foreign-key
constraint reporting an error.

TIP   Testing a (supposedly) nonbreaking database change that alters columns in
existing tables is highly recommended, especially if going to a production database.

11.5.2	 Applying breaking database changes by stopping the application

Breaking changes are those that change the database schema in a way that the old
application will fail. Your database change affects the current tables, columns, con-
straints, and so on that the currently running application uses. My example of a break-
ing database schema change is described in section 11.2.2, where you split one entity
class called CustomerAndAddress into two entity classes, Customer and Address.

This example of splitting one table into two has the added problem that, without
manual intervention, you’d lose data. If you deleted the old CustomerAndAddresses
table and created the two new tables, Customers and Addresses, you’d lose any data
that was in the original CustomerAndAddresses table. This section describes the first
approach to changing the database schema without losing data, but at the cost that
you’ll stop your application from accessing its database.

The simplest way to stop your application from accessing its database is to stop the
application itself. Your users might not be happy with you, but it makes updating your
database schema and copying data much easier.

Things to consider when stopping an application for a database update
You need to consider what will happen if you abruptly stop an application. It could cause
users to lose data that’s irretrievable, or on an e-commerce site, a user could lose their
order. For this reason, a warning, or soft stop, should be considered.

I had this problem on an e-commerce system I was building, and I developed a “down for
maintenance” approach. This provided an onscreen warning to users indicating when
the site would close. During the closing, I show a “this site is down for maintenance”
page. You can read about this at http://mng.bz/mXkN.

Another way to softly stop your application is to provide read-only access to the database.
You disable every method that could update the database. The application is still reading
the database, so you can’t change the existing database structures, but this does allow
you to add new tables and safely copy data into them. After you’ve loaded the new appli-
cation, you can apply another database schema update to remove the database parts
that are no longer needed.

Section 11.5.3 describes how to apply a breaking database schema change while pro-
viding continuous service to your users. This is the ultimate solution for the users, but
comes at a price of a much more complex database update process.

http://mng.bz/mXkN

	 325Part 2—Issues around a database schema change

Stopping your current application means that you can change the database in a way
that the previously running application wouldn’t like; for instance, you can delete or
rename tables, columns, constraints, and so on. Stopping the application makes the
database schema change into a simpler, one-stage database change. Figure 11.7 shows
an example of splitting the CustomerAndAddresses table into two tables, Customers
and Addresses, with a “before” view of the database on the left, and an “after” view of
the database on the right.

1. Stop the application. 2. A new table called Addresses is created to
 hold the customer address part of the data.

3. An SQL script is run that copies the data
 from the original CustomerAndAddresses
 table into the new Addresses table.

4. The original CustomerAndAddresses table
 is renamed to Customers, and the Address
 column is dropped.

Original database schema New database schema

CustomerAndAddresses

Id

Name
Address

Id Name Address
1 Joe 10 a street ...
2 Jane 99 some str ...
3 Jim 10 my street ...

PK

Addresses

Id

Address
CustFKFK1

PK

Customers

Id

Name

PK

Id Name
1 Joe
2 Jane
3 Jim

Id Address CustFK
1 10 a street ... 1
2 99 some str ... 2
3 10 my street ... 3

Figure 11.7   The steps in changing a database schema that requires data to be copied to ensure
no loss of data. In this case, the application software is stopped while the database schema change
is applied and data is copied to the new Addresses table. When that has finished, the new
application software can start.

You can update the database schema and copy the data in two ways:

¡	Use EF Core’s Migrate method, with hand-coded changes to the Migrate file.
¡	Use SQL change scripts that combine schema changes with data copying.

I describe each of these next, using the example of splitting the CustomerAndAddresses
table into two tables, Customers and Addresses, as shown in figure 11.7.

Using EF Core’s Migrate method to update the database schema

For this example, you can use EF Core’s Migrate method, but you need to edit the
migration heavily because the standard migration code produced by the EF Core’s
Add-Migration command lacks the code to copy the data.

When you run the Add-Migration command after you’ve deleted the Customer
AndAddresses table and added the two tables, Customers and Addresses, you get a warn-
ing message that the migration “…may result in the loss of data.” EF Core can’t work

326 Chapter 11  Handling database migrations

out what code is needed to fix this, so you need to go in and change the code inside the
Migrate file. Table 11.1 shows the differences between EF Core’s migration code and
your improved migration code.

Table 11.1   Differences in the standard EF Core migration code produced by the Add-Migration command
and your improvements to that migration code to not lose data

Step EF Core migration Improved migration

1. Drops the CustomerAndAddresses table Renames the CustomerAndAddresses table
to Customers so the data is preserved

2. Creates the Customers table - Not needed -

3. Creates the Addresses table and links to the
Customers table, plus index

- Same -

4. - End - Copies the Address column data from the
Customers table to the Addresses table

5. Drops the Address column from the Cus-
tomers table

Here’s the migration code with the changes listed in table 11.1.

Listing 11.9   The changed Up method to change the database and not lose data

protected override void Up
 (MigrationBuilder migrationBuilder)
{
 migrationBuilder.RenameTable(
 name: "CustomerAndAddresses",
 newName: "Customers");

 migrationBuilder.CreateTable(
 name: "Addresses",
 … code removed to shorten the code
 … the code builds the Addresses table
 });

 migrationBuilder.CreateIndex(
 name: "IX_Addresses_CustFK",
 table: "Addresses",
 column: "CustFK",
 unique: true);

 migrationBuilder.Sql(
 @"INSERT INTO [dbo].[Addresses]
 ([Address], [CustFK])
 SELECT Address, Id

Changes the code produced by EF Core’s
Add-Migration command to produce the
changes you want

EF Core would drop the CustomerAndAddresses
table and create a new Customers table, but to
save data, you rename the CustomerAndAddresses
table to Customers

EF Core adds the new Addresses table.

Copies the Address part of the
renamed CustomerAndAddresses
table to the Addresses table

	 327Part 2—Issues around a database schema change

 FROM [dbo].[Customers]");

 migrationBuilder.DropColumn(
 name: "Address",
 table: "Customers");
}

If you’re running only one instance of the application, and you call the Migrate
method in the startup of your application, this type of update works well. This is
because the act of deploying the new application will stop the old version, the database
will be updated during the startup of your new version, and then the application will
start working. This is likely to provide the shortest downtime of your application, but
remember my comment in section 11.2.2: if a migration fails during the startup of your
production system, it can be hard to diagnose.

Using SQL change scripts to update the database schema

The other way to apply a database schema change with data copying is by using an SQL
change script. As explained in section 11.4, you can use various methods to create a
script, but if you need to copy data, you have to write that part of the code yourself. SQL
scripts provide the most complete control of the database schema via SQL commands.

This listing shows the content of an SQL change script that would apply the database
schema changes and data copying as shown in figure 11.7.

Listing 11.10   SQL change script to change the database schema and retain the data

EXEC sp_rename N'CustomerAndAddresses', N'Customers';
GO

CREATE TABLE [Addresses] (
 [Id] int NOT NULL IDENTITY,
 [Address] nvarchar(max),
 [CustFK] int NOT NULL,
 CONSTRAINT [PK_Addresses] PRIMARY KEY ([Id]),
 CONSTRAINT [FK_Addresses_Customers_CustFK]
 FOREIGN KEY ([CustFK])
 REFERENCES [Customers] ([Id])
 ON DELETE CASCADE
);
GO

CREATE UNIQUE INDEX [IX_Addresses_CustFK]
 ON [Addresses] ([CustFK]);
GO

INSERT INTO [dbo].[Addresses]
 ([Address], [CustFK])

Drops the Address column from the renamed
CustomerAndAddresses so it now acts like the
Customers table that EF Core expects

Renames the CustomerAndAddresses table to
Customers now, as you want the Addresses table to
have a foreign-key relationship to the Customers table

Creates the new Addresses table …

… with a unique index
for the foreign key

Copies the Address part of the renamed
CustomerAndAddresses table to the
Addresses table

328 Chapter 11  Handling database migrations

 SELECT Address, Id
 FROM [dbo].[Customers];
GO

ALTER TABLE [Customers] DROP COLUMN [Address];
GO

For breaking changes like this example, you need to stop the old version of software,
apply your SQL change script, and then deploy/start your new application. That way,
the database schema will be in the correct state for each version. The disadvantage is
that your application is down (not responding to users) for longer than the EF Core’s
migrations approach, but it’s easier to debug if it goes wrong.

11.5.3	 Handling breaking database changes when you can’t stop the app

The most complicated situation occurs when you want to provide continuous service to
your users, even during a breaking database schema change. For instance, applications
providing critical services such as credit card payment, banking, or other 24/7 services
can’t afford any downtime. Also, many large e-commerce websites don’t want to lose a
customer, so they also plan on running 24/7.

Figure 11.8 shows how Microsoft Azure web hosting can provide continuous service
during software updates. Azure has deployment slots, which you can use to start a new ver-
sion of the application, known as warming up your application, so that it’s ready to take
over from the current live application. After you swap the deployment slots, your new
code immediately takes over handling any HTTP requests.

SQL
database
(shared)

1. You need to ensure that the database is in
 a state that can handle both the current
 software, which is delivering the live site
 now, and your new version, which is going
 to be loaded into the staging slot.

2. When the database is in the right state, you
 can load the new version of your software
 into the staging slot and check that it works.

3. When you’re confident that the new software is
 working, you can swap the staging and live slots.
 The users see no interruption in the service.

User

Upload new version Web apps

Staging slot
www.MyApp–staging.com

DevOps
Live site

www.MyApp.com

SWAP

User

User

Figure 11.8   Azure provides a continuous service to the user when deploying a new version of the software.
In Azure, you have a deployment slot, often called staging, where you can run up your new application ready
to take the load. When you’re happy with how it’s working, you can swap the deployment slots, and your new
code will take over. The important point from the EF Core/database perspective is that the database must be
in a state that both your current and new software can use.

Drops the Address column
from the Customers table,
as the data has been copied

	 329Part 2—Issues around a database schema change

The issue I want to cover in this continuous service example is that the two software
versions—the current live application and the new application in staging—must both
be able to work with the same database. The solution is a more complex operation,
consisting of multiple schema changes and an interim software release.

As an example of this continuous service approach, let’s look at the splitting of the table
CustomerAndAddresses into the two tables, described in section 11.5.2. This time, you’ll
produce the same update, but for a continuous service application. Figure 11.9 shows the
stages that you must go through to migrate from a single CustomerAndAddresses table to
separate Customers and Addresses tables. Your particular database schema change will be
different from this example, but your changes should follow the same, five-stage approach.

Figure 11.9 shows exactly which software versions are running (at the top) and when the
three SQL change scripts are run (at the bottom). This shows how careful you need to be to
ensure that there’s never a time when the database and the application software version(s)
accessing that database are incompatible. You can see the two points where two versions of
the software are running in parallel—the original and the interim software after Script01
has run, and the interim and final software after Script02 has run to copy the data.

It would be great to just copy the data from the CustomerAndAddresses table into new
Customers and Addresses tables, but until you know that the original software has gone,
there’s always a chance (albeit small) that that software could add another entry after the
copy has finished. You can’t take the risk of missing data, so the interim software needs to
be running as it’s designed to write any new data to both the old and the new tables.

NOTE   I don’t list the SQL change scripts shown in figure 11.9 because they
would fill quite a few pages. You can find these scripts at http://mng.bz/Bbth;
you can find the unit tests that go with these scripts at http://mng.bz/g4Mv.
I’ve also created two DbContexts, Chapter11ContinuousInterimDb and
Chapter11ContinuousFinalDb, which show how the two application DbContexts
differ (and help check that the code in this book works!).

This continuous service example could be implemented in other ways. Here are some
other options:

¡	Use a more sophisticated SQL arrangement with SQL views and triggers to
update the tables. See http://mng.bz/0vxk.

¡	Use a more EF Core approach, and move some of the updating and copying out
of the SQL change scripts.

¡	Don’t change the database at all, but use a DDD repository approach, as
explained in section 10.4, to “hide” the suboptimal database structure.

I think you’ll agree that the database schema change example for a continuous service
application is a lot harder than the same example in which you can stop the applica-
tion to do an update (see section 11.5.2). You need to think hard before you propose
a change to a continuous service application’s entity classes/EF configuration that
would cause a data-moving database schema change. What might be easy in software
can have big implications in the production database.

http://mng.bz/Bbth
http://mng.bz/g4Mv
http://mng.bz/0vxk

330 Chapter 11  Handling database migrations

1. Script01 creates a Customers
 and Addresses table and adds
 a stored procedure that updates
 all three tables. The interim
 software must use this stored
 procedure for any changes to
 the customer/address data.

2. After Script01 has
 run, you can load
 the interim software.

4. Once Script02 has
 run you can load
 the final software.

3. Script02 copies all the
 CustomerAndAddress
 rows to the Addresses
 table, making sure it
 doesn’t create any
 duplicates.

5. Script03 removes the old CustomerAndAddresses table and any
 interim columns/procedures that are no longer needed.

CustomerAndAddresses

Id

Name
Address

PK

CustomerAndAddresses

Original database Interim database Tidy up databaseCopy
data

Hand
over

Id

Name
Address

PK

Addresses

Id

Address
CustFKFK1

PK

Customers

Id

Name

PK

CustomerAndAddresses

Id

Name
Address

PK

Addresses

Id

Address
CustFKFK1

PK

Customers

Id

Name

PK

Original software

SQL
stored
proc

Final software
This uses the Customer-

AndAddresses table
Interim software

This only reads from the
CustomerAndAddresses table, but uses

a stored proc to add new rows to
the CustomerAndAddresses,

Customers, and Addresses tables.

Add

Figure 11.9   The five stages of changing a database when you want to supply a continuous service to your users.
The three software versions—original, interim, and final—overlap to provide a continuous service. The interim
software needs to read data from the original database structure because the original software is running in
parallel, but the interim software calls an SQL stored procedure to do any updates; this ensures all three tables are
updated. After that’s in place, you can copy the data without missing any new customer and address information
that’s added.

	 331Summary

Summary

¡	The easiest way to change a database schema is to use EF Core’s migration fea-
ture, but that feature has limitations when dealing with more-complex applica-
tions. Using the migration feature is the code-first approach.

¡	You can use EF Core’s scaffold command to get EF Core to work with an existing
database. This is known as the database-first approach.

¡	You can change the database schema via direct SQL commands. I refer to this as
the SQL-first approach. The trick is to make sure that your schema changes match
EF Core’s model of the database, which the EfSchemaCompare tool helps with.

¡	Updating a production database is a serious undertaking, especially if data could
be lost in the process.

¡	Updating a database while providing continuous service to your users requires a
complex, five-stage update procedure if you’re changing something that the old
application relies on.

For readers who are familiar with EF6:

¡	EF Core provides similar migration features to EF6.x, but has different commands.
¡	EF Core’s migration feature is significantly changed and improved.
¡	There’s no automatic migration—you control when a migration happens.
¡	It’s easier to combine migrations in a multiperson team.

332

12EF Core
performance tuning

This chapter covers
¡	Deciding which performance issues to fix

¡	Techniques for finding performance issues

¡	Using patterns that promote good performance

¡	Finding patterns that cause performance issues

This chapter is the first of two covering performance tuning your database accesses.
Covering what, where, and how to improve your EF Core database code, this chapter
is divided into three parts:

¡	Part 1 —Understanding performance, the difference between speed and scal-
ability, deciding what to performance tune, and determining the costs of per-
formance tuning.

¡	Part 2 —Techniques you can use to find performance issues and the use of EF
Core’s logging to help you spot problems.

¡	Part 3 —A whole range of database access patterns, both good and bad, to help
you diagnose and fix many EF Core performance issues.

	 333Part 1—Deciding which performance issues to fix

12
In chapter 13, you’ll apply the approaches shown in this chapter to the book app’s
book list query. You’ll start by tuning EF Core code and then progress to more-com-
plex techniques, such as using raw SQL commands to squeeze the best performance
out of the database accesses.

12.1	 Part 1—Deciding which performance issues to fix
Before describing how to find and fix performance issues, I want to provide an over-
view of the subject of performance. Although you can ignore performance at the start
of a project, some concepts might help you later, when someone says, “The application
is too slow—fix it.”

When people talk about an application’s performance, they’re normally thinking
about how fast an application deals with requests; for instance, how long it takes an API
to return a specific request, or how long a human user has to wait when searching for a
specific book. I call this part of the application’s performance speed, and use terms such
as fast and slow.

The other aspect is what happens to the speed of your application when it has lots of
simultaneous requests. For instance, a fast website with a few users might become slow
when it has many simultaneous users. This is referred to as the scalability of the appli-
cation—the ability of the application to feel fast even when it has a high load of users.
Scalability is often measured via throughput —the number of requests an application can
handle per second.

12.1.1	 “Don’t performance tune too early” doesn’t mean you stop thinking

Pretty much everyone says you shouldn’t performance tune early; the number one
goal is to get your application working properly first. A saying attributed to Kent Beck
is “Make it Work. Make it Right. Make it Fast,” which gets across the progressive steps in
building an application, with performance tuning coming last. I totally agree, but with
three caveats:

¡	Make sure any software patterns you use don’t contain inherent performance
problems. Otherwise, you’ll be building in inefficiencies from day one. (See sec-
tion 12.4.)

¡	Don’t write code that makes it hard to find and fix performance problems. For
instance, if you mix your database access code in with other code, such as fron-
tend code, performance changes can get messy and are difficult to test. (See sec-
tion 12.4.6.)

¡	Don’t pick the wrong architecture. Nowadays, the scalability of web applica-
tions is easier to improve by running multiple instances of the web applica-
tion. But if you have an application that needs high scalability in its database
accesses, a Command and Query Responsibility Segregation (CQRS) architec-
ture might help.

334 Chapter 12  EF Core performance tuning

It’s often hard to predict what performance problems you’re going to hit, so waiting
until your application is starting to take shape is sensible. But a bit of up-front thought
can save you a lot of pain later if you find your application is too slow.

12.1.2	 How do you decide what’s slow and needs performance tuning?

The problem with terms such as fast, slow, and high load is that they can be subjec-
tive. You might think your application is fast, but your marketing department may
think it’s slow. Sticking with subjective views of an application’s performance isn’t
going to help, so the key question is, does the speed matter in this case, and how
fast should it be?

You should remember that in human-facing applications, it’s not just the raw
speed that matters, but the user’s expectations of how fast a certain feature should be.
For instance, Google’s search has shown how blindingly fast a search can be, and we
therefore expect all searches to be fast. Conversely, paying for an online purchase, with
the need to fill in your address, credit card number, and so on isn’t something that we
expect to be fast (although too slow, and we’ll give up!).

When thinking about what needs to be performance tuned, you need to be selective;
otherwise, you’re in for a lot of work for little gain. For example, I developed a small
e-commerce site that had a little more than 100 different queries and updates to
20 database tables. More than 60% of the database accesses were on the admin side,
some of which were rarely used. For the paying user, maybe 10% of the database accesses
affected them. That analysis helped me to decide where to put my effort.

Figure 12.1 shows what happens when you apply the same analysis of the user’s
expectations against the speed of the database access for the book app. This analysis
covers the book listing/search, the placing of an order, and the few admin commands
ranging from updating the publication date of a book (fast) to wiping and re-inputting
all the books (very slow).

Place
order

Book
search

Must
improve

Admin staff features
(used a lot)

Admin staff features
(rare)

Strategic decision:
The order-processing
code is already fast, and
users don’t necessarily
expect placing an order
to be quick.
But you might want to
improve the performance
to make the user
experience better (so
that they buy more).

Must improve:
Users expect the search
to be quick, because
they’re used to Google’s
search speed.

Might improve:
It may be worth speeding
up the everyday admin
commands.

Don’t improve:
Rare admin commands
aren’t worth the effort
to improve.

User
expectations

High

Low

Short db access speed Long

Figure 12.1   Various features from the book app graded with the user’s expectations of speed on the
vertical access, and the actual complexity/speed of the database access part of the feature. The type of
user and user expectations have a big impact on what needs performance tuning.

	 335Part 1—Deciding which performance issues to fix

After you’ve done some analysis of your application, you should get a list of features
that are worthy of performance tuning. But before you start, you need clear metrics to
work from:

¡	Define the feature —What’s the exact query/command that needs improving, and
under what circumstances is it slow (for instance, how many concurrent users)?

¡	Get timings —How long does it take now, and how fast does it need to be?
¡	Cost of fix —How much is the improvement worth? When should you stop?
¡	Prove it still works —Do you have a way to confirm that the feature is working prop-

erly before you start the performance tuning and that it still works after the per-
formance change?

TIP   You can find a useful article on general performance tuning at http://
mng.bz/8oZ5.

12.1.3	 The cost of finding and fixing performance issues

Before diving into finding and fixing performance issues, I want to point out that
there’s a cost to performance tuning your application. It takes development time and
effort to find, improve, and retest an application’s performance. As figure 12.1 illus-
trates, you need to be picky about what you plan to improve.

A couple of years ago, I wrote an article, “The Compromise Between Development
Time and Performance in Data-Driven ASP.NET MVC,” in which I measured the gain
in performance in an EF6.x database access against the time it took me to achieve that
improvement. Figure 12.2 shows the results of that work. I started with an existing
EF Core query (1 on the horizontal scale) and then applied two steps (2 and 3) of
improvement, still using EF6.x, and then I estimated the time it would take to write a
raw SQL version (4 on the horizontal scale).

 Figure 12.2 The trade-off between database performance and development effort for three stages of
improvement of an EF database access. Development time is shown as a bar chart (hours—left scale), and
the speed of the database access is shown as a line (milliseconds—right scale). An almost exponential
increase occurs in development effort against an almost linear reduction on the database access time.

http://mng.bz/8oZ5
http://mng.bz/8oZ5

336 Chapter 12  EF Core performance tuning

NOTE   You can find the original article, “The Compromise Between Develop-
ment Time and Performance in Data-Driven ASP.NET MVC,” at http://mng
.bz/n5EJ.

The point of figure 12.2 is to show that extreme performance improvements aren’t
easy. I had an exponential increase in development effort against an almost lin-
ear reduction on the database access time. Therefore, it’s worth thinking about the
problem holistically. Although it might be that the database access is slow, the solu-
tion might come from changing other parts of the application. For instance, for web/
mobile applications, you have a few other possibilities:

¡	HTTP caching —This allows you to remember a request in memory and return a copy
if the same URL is presented, thus saving any need to access the database. Caching
takes work to get it right, but it can have a big effect on perceived performance.

¡	Scaling up/out —Cloud hosting allows you to pay for more powerful host com-
puters (known as scaling up in Azure) and/or running more instances of the web
application (known as scaling out in Azure). This might solve a lot of small perfor-
mance problems quickly, especially if it’s a scalability problem.

I’m not suggesting sloppy programming. I certainly try to show good practices in this
book. But by choosing EF Core over writing direct SQL commands, you’ve already
opted for quicker development time against (possibly) slower database access times. In
the end, it’s always about effort against reward, so you should only performance tune
parts of your application that really need the extra speed or scalability.

12.2	 Part 2—Techniques for diagnosing a performance issue
In part 1, you decided which parts of your application need improving and how much
improvement you want. The next step is to find the code involved in the slow feature
and diagnose the problem.

This book is about EF Core, so you’ll concentrate on the database code, but those
database accesses rarely exist on their own. You need to drill down through your applica-
tion to find the database code that’s hitting the application’s performance. Figure 12.3
shows a three-step approach I use to pinpoint performance bottlenecks.

1. The user experience is paramount, so
 start there. Measure what the user sees.

2. Find all the database accesses and look for
 any performance antipatterns (see section 12.5).

3. The ultimate truth can be found in the actual SQL
 database access commands—look for poor queries.

Measure the user’s experience

Find the database
accesses

Look at the
SQL

Figure 12.3   Finding database performance issues requires you to start with what the user sees
and then drill down to the database code. After finding the database code, you check that it uses
the optimal strategies outlined in this chapter. If this doesn’t improve the situation, you need to
look at the actual SQL commands sent to the database and consider ways to improve them.

http://mng.bz/n5EJ
http://mng.bz/n5EJ

	 337Part 2—Techniques for diagnosing a performance issue

You’ll explore each of these stages in more detail in the next three subsections.

12.2.1	 Stage 1: get a good overview—measuring the user’s experience

Before you go digging to find a performance problem, you need to think about the
user’s experience, because this is what matters. You might improve the speed of a data-
base access by 500%, but if it’s a small part of the whole picture, it won’t help much.

First, you need to find a tool measuring how long a specific request/feature takes.
What you use will depend on the type of application you’re using. Here’s a list of free
tools that are available for looking at the overall time a request takes:

¡	For Windows applications, you can use the Performance Profiler in Visual Studio.
¡	For websites, you can use Google Chrome browser in developer mode to obtain

timings. There are other ways of doing this, such as Glimpse (see http://
getglimpse.com/).

¡	For the ASP.NET Core Web API, you can use Azure Application Insights locally
in debug mode.

NOTE   Plenty of other commercial (paid for) tools are available for testing and
profiling all manner of systems. I’ve listed at least one free version for each of
the main types of applications.

I am interested in the total time my ASP.NET
Core application took to show the default list
of books. In this case 119ms.

Figure 12.4   Using the Google Chrome browser in development mode to find out how long the book app
takes to display 54 books when using EF Core 1.1, before you start any performance tuning

Figure 12.4 shows the timeline for the book app (using EF Core 1.1 and before any
performance tuning) as measured by the Google browser, Chrome, in developer mode
(F12). It shows only one timing. You should take timings for a range of sort/filter
combinations to get an overview of where the performance issues exist in the book
list feature. See the next chapter for an example of timings for multiple sort/filter
combinations.

WARNING   Measuring the time it takes for ASP.NET Core to execute a com-
mand in debug mode can give misleading figures, because some slow logging
methods may be enabled. These can add significant extra time to each HTTP
request. I recommend testing your software in Release mode to get more rep-
resentative figures.

http://getglimpse.com/
http://getglimpse.com/

338 Chapter 12  EF Core performance tuning

12.2.2	 Stage 2: find all the database code involved in the feature you’re tuning

Having identified the part of the application you want to performance tune, you need
to locate all the database access code involved in that feature. After you’ve found the
database code, run your eye over the code, looking for performance antipatterns (see
section 12.4). This is a quick way to find and fix issues. It’s not foolproof, but after a
while, you get a feel for what might be causing a problem.

For example, when you look at the listing of books in your book app, various parts
jump out as possible performance bottlenecks:

¡	Calculating the average review votes, including sorting and filtering on the aver-
age votes. That needs a database-side calculation to be fast.

¡	Sorting on the actual price. The problem is that the price changes depending on
whether the Book entity has a PriceOffer entity attached to it, so you can’t use a
simple index.

My user experience timing shows that sorting or filtering on average votes was slow, but
it wasn’t until I had looked at the EF Core logging output, which I cover next, that I saw
the problems.

12.2.3	 Stage 3: inspecting the SQL code to find poor performance

The ultimate source of database access performance is the SQL code. Even if you don’t
know the SQL language well, EF Core logging has two features that help you diagnose
the problem. The EF Core logging can

¡	Provide warnings on LINQ commands that EF Core can’t directly translate to SQL
¡	List the SQL sent to the database, with the time that query took

I’ll cover how you can use this information to look for performance issues, but first let
me describe how to access the logging information that EF Core produces.

Accessing the logging information produced by EF Core

.NET Core defines a standard logging interface that any piece of code can use. EF
Core produces a substantial amount of logging output, which is normally collected
by the application it’s running in. Logging information is categorized by a LogLevel,
which ranges from the most detailed information at the Trace (0) level, right up to
Critical (5). In production, you’d limit the output to Warning (3) and above, but
when running in debug mode, you might output any logs from the Debug (1) level and
above.

You need to supply a logging provider to capture any logging and make it available
for you to look at. Logging is so useful that most applications include code to set up the
logging providers. For instance, in an ASP.NET Core application, a logging provider(s)
is configured during startup (see http://mng.bz/KH6W).

	 339Part 2—Techniques for diagnosing a performance issue

If you want to capture logging information inside your unit tests, you need to link a
logging provider into EF Core’s ILoggerFactory. Because you’re using the xUnit unit
tests library (see https://xunit.github.io/), you can’t use a normal logging provider
such as Console, as xUnit runs tests in parallel. You’ll therefore write a simple logger
that returns a list of logging information produced by EF Core.

TIP   I provide a prebuilt logging tool in my EfCore.TestSupport library that
goes with chapter 15; see section 15.8 for more on capturing EF Core’s logs in
your unit tests.

This listing shows how to add your own logging provider such that any EF Core logging
from this context will be sent to your logger. This allows you to capture the logging out-
put in your unit test and output it to the test screen.

Listing 12.1   Capturing EF Core’s logging output in a unit test

var logs = new List<string>();
var loggerFactory = context.GetService<ILoggerFactory>();
loggerFactory.AddProvider(
 new MyLoggerProvider(logs, LogLevel.Information));

Having covered how to capture EF Core’s logging, now you’ll see how to use this infor-
mation to find performance issues.

Using EF Core logging to detect suboptimal LINQ queries

EF Core will alert you to possible suboptimal LINQ commands by logging a warning of
state QueryClientEvaluationWarning, indicating that EF Core couldn’t translate the
LINQ command into a corresponding SQL command. It’ll produce this warning only
the first time EF Core translates the LINQ command, so it’ll see the warning only once
after your application starts (or every time in a unit test).

In this example, when you start the project under version 1.0 of EF Core and run
your Book listing query, you get a QueryClientEvaluationWarning. This tells you that
EF Core couldn’t convert the LINQ Average method into an SQL AVE (average) com-
mand (this was fixed in version 2 of EF Core). The average review votes are calculated
by reading all the Review entity class’s Votes properties for each book and calculating
the average vote in software. That was obviously a performance bottleneck.

Will be filled by log messages whenever
EF Core generates a new log.

Obtains the logger factory for
the DbContext used in this test

Adds your logging provider to EF Core’s
logger factory. If EF Core generates a new
log, your logging provider will be called.

Takes two parameters: List<string>, which your
logger will add to if a relevant log is generated, and
one that allows you to set a minimum value for the

LogLevel you want to store.

https://xunit.github.io/

340 Chapter 12  EF Core performance tuning

For extra protection, you can get EF Core to throw an exception if EF Core logs a
QueryClientEvaluationWarning. To do this, you use the ConfigureWarning method
when building the options to set up the application’s DbContext. The following list-
ing shows how you might alter the ASP.NET Core configuration such that EF Core will
throw an exception on QueryClientEvaluationWarning.

Listing 12.2   ASP.NET Core application DbContext with ConfigureWarnings

var connection = Configuration
 .GetConnectionString("DefaultConnection");
services.AddDbContext<EfCoreContext>(options => options.

UseSqlServer(connection,
 b => b.MigrationsAssembly("DataLayer"))
 .ConfigureWarnings(warnings =>
 warnings.Throw(
 RelationalEventId
 .QueryClientEvaluationWarning)));

TIP   Personally I don’t cause an exception in my live application as I would
rather it run slowly than fail. But I do configure this exception in my unit test.
The EfCore.TestSupport library used in chapter 15 will, by default, enable the
throwing of an exception on a QueryClientEvaluationWarning, but it can be
turned off—see section 15.8.

Extracting the SQL commands sent to the database via EF Core’s logging output

If you set the log level to Information, you’ll get a complete list of the SQL commands
generated by EF Core and sent to the database. The following listing shows an example
of an Information message containing the SQL code.

Listing 12.3   An Information log showing the SQL command sent to the database

Executed DbCommand (4ms)
 [Parameters=[],
 CommandType='Text',
 CommandTimeout='30']
SELECT [p].[BookId], [p].[Description],
 [p].[ImageUrl], [p].[Price],
 [p].[PublishedOn], [p].[Publisher],
 [p].[Title],
 [p.Promotion].[PriceOfferId],
 [p.Promotion].[BookId],
 [p.Promotion].[NewPrice],
 [p.Promotion].[PromotionalText]
FROM [Books] AS [p]
LEFT JOIN [PriceOffers] AS [p.Promotion]
ON [p].[BookId] = [p.Promotion].[BookId]
ORDER BY [p].[BookId] DESC

Allows you to define
what happens on a
log of LogLevel
Warning.

You want EF Core to throw an
exception if the EventId of the log
is QueryClientEvaluationWarning.

Tells you how long the database
took to return from this command

If any external parameters are used in the
command, their names will be listed here.

The time-out for the command. If the
command takes more than that time,
it’s deemed to have failed.

SQL command that was
sent to the database

	 341Part 3—Techniques for fixing performance issues

One LINQ database access command can produce multiple information logs like this,
because EF Core may split your LINQ command into multiple SQL commands. For
instance, the LINQ query context.Books.Include(r => r.Reviews).First() pro-
duces two information logs because EF Core knows that loading the Book entity and
the Reviews collection separately is (normally) more efficient.

For those of you who are more aware of the SQL language, you can copy the SQL
code from the logging output and run it in some form of query analyzer. Microsoft SQL
Server Management Studio (SSMS) allows you to run a query and look at its execution
plan, which tells you what each part of the query is made up of and the relative cost of
each part. Other databases have a query analyzer, such as MySQL Query Analyzer and
the PostgreSQL plprofiler.

12.2.4	 Techniques for finding database scalability issues

In the introduction, I talked about the scalability of the application—the ability of the
application to still feel fast even when it has a high load of users. Testing for scalability
issues is much harder than finding speed issues, because it requires a test setup that
can generate a lot of users all accessing the database at the same time.

For ASP.NET web applications, I’ve used the Apache HTTP server benchmarking
tool, ab (https://httpd.apache.org/docs/2.4/programs/ab.html), to measure scalabil-
ity. This tool can produce multiple HTTP requests at the same time, and measure how
long the site takes to respond. I used ab to test a simple website, but I didn’t get great
results because I couldn’t produce enough requests to overload the site (see this article
I wrote on async/await and using ab: http://mng.bz/13b6).

Andrew Lock, the author of ASP.NET Core in Action (Manning, 2018), pointed me
to the ASP.NET site on benchmarking, which recommends another load generation
tool called wrt (https://github.com/aspnet/benchmarks#generating-load). The doc-
ument also describes the system that the ASP.NET team built for benchmarking, which
uses a series of powerful computers and a dedicated, high-bandwidth network.

Nowadays, the cloud seems to be the way to go for load testing. Many online load-test-
ing tools are available that can (at a price) spin up multiple test instances to produce
high levels of demand to your site.

12.3	 Part 3—Techniques for fixing performance issues
The rest of this chapter provides a list of good and bad EF Core patterns for database
access. These are here both to teach you what can help or hurt performance, and to
act as a reference when hunting for database performance issues. This section consists
of four parts:

¡	Good EF Core patterns —These look at “apply always” patterns that you might like to
adopt. They aren’t foolproof but give your application a good start.

¡	Poor database patterns —These are EF Core code antipatterns, or patterns you
shouldn’t adopt, because they tend to produce poor-performing SQL commands.

https://httpd.apache.org/docs/2.4/programs/ab.html
http://mng.bz/13b6
https://github.com/aspnet/benchmarks#generating-load

342 Chapter 12  EF Core performance tuning

¡	Poor software patterns —These are EF Core code antipatterns that make your soft-
ware run more slowly.

¡	Scalability patterns —These are techniques that help your database handle lots of
database accesses.

Chapter 13 walks you through an example of the performance tuning approaches
shown in this chapter. Chapter 13 starts with tuning the EF Core commands in your
book app, but then goes into deeper techniques such as replacing EF Core code with
direct SQL and changing the database structure to provide better performance.

12.4	 Using good patterns makes your application perform well
Although I’m not a fan of early performance tuning, I do look at the performance
aspects of any patterns I adopt. It’s silly to create a pattern that’s going to “bake in”
poor performance right from the start. Many of the patterns and practices described
in this book do have some effect on performance, or make performance tuning easier.
Here’s a list of the patterns that help with performance issues that I always apply right
from the start of a project:

¡	Using Select loading to load only the columns you need
¡	Using paging and/or filtering of searches to reduce the rows you load
¡	A warning that using lazy loading will affect database performance
¡	Always adding the AsNoTracking method to read-only queries
¡	Using the async version of EF Core commands to improve scalability
¡	Ensuring that your database access code is isolated/decoupled, so it’s ready for

performance tuning

12.4.1	 Using Select loading to load only the columns you need

In section 2.4, you learned about the three ways of loading related data, one of which
was to use the LINQ Select command. For database queries that require information
from multiple tables, the Select method often provides the most efficient database
access code for queries (see section 12.5.1 on minimizing database accesses). Fig-
ure 12.5 illustrates this process.

From the Books table
From the Books table

From Authors table
(via BookAuthor
linking table)

Calculated using
the Reviews table

From PriceOffers table

Figure 12.5   Select queries provide the best-performing database access, in which the final result
consists of a mixture of columns from multiple tables.

	 343Using good patterns makes your application perform well

Creating a Select query with a DTO does take more effort than using eager loading
with the Include method (see section 2.4.1), but benefits exist beyond higher database
access performance, such as reducing coupling between layers.

TIP   Section 10.3 describes how an object-to-object mapper, such as AutoMapper,
can automate the building of a Select query for you, and thus speed up your
development.

12.4.2	 Using paging and/or filtering of searches to reduce the rows you load

Because EF Core’s queries use LINQ commands, you can sometimes forget that one
query can pull in thousands or millions of rows. A query that works fine on your devel-
opment system, which might have only a few rows in a table, may then perform terribly
on your production system that has a much larger set of data.

You need to apply commands that will limit the amount of data returned to the user.
Typical approaches are as follows:

¡	Paging —You return a limited set of data to the user (say, 10 rows) and provide the
user with commands to step through the “pages” of data (see section 2.7.3).

¡	Filtering —If you have a lot of data, a user will normally appreciate a search fea-
ture, which will return a subset of the data (see section 2.7.2).

Remember not to write open-ended queries, such as context.Books.ToList(),
because you might be shocked when it runs on your production system, especially if
you’re writing code for Amazon’s book site.

12.4.3	 A warning that using lazy loading will affect database performance

Lazy loading (see the sidebar in section 2.4.3) is a technique that allows relationships to
be loaded when read. This feature is in EF6.x, and now added to EF Core in version 2.1.
The problem is, lazy loading has a detrimental effect on the performance of your data-
base accesses, and after you’ve used lazy loading in your application, replacing it can
require quite a bit of work.

This is one of the instances where you bake in poor performance, and you might
regret it. When I understood the effects of lazy loading in EF6.x, I didn’t use it any-
more. Sure, it can make development easier in some cases, but each lazy load is going to
add another database access. Considering that the first performance antipattern I list is
“Not minimizing the number of calls to the database” (section 12.5.1), then if you have
too many lazy loaded, your query is going to be slow.

NOTE   I’ve found that lazy loading is often used when a developer adopts a
Repository pattern on top of EF Core. See my article about why this isn’t best
way to get good performance: http://mng.bz/5VH2.

http://mng.bz/5VH2

344 Chapter 12  EF Core performance tuning

12.4.4	 Always adding the AsNoTracking method to read-only queries

If you’re reading in entity classes directly and you aren’t going to update them, includ-
ing the AsNoTracking method in your query is worthwhile. It tells EF Core not to cre-
ate a tracking snapshot of the entities loaded, which saves a bit of time and memory
usage. This is an example of a query in which the AsNoTracking method, in bold, will
improve performance.

Listing 12.4   Using the AsNoTracking method to improve the performance of a query

var result = context.Books
 .Include(r => r.Reviews)
 .AsNoTracking()
 .ToList();

If you use a Select query in which the result maps to a DTO, and that DTO doesn’t
contain any entity classes, you don’t need to add the AsNoTracking method. But if your
DTO contains an entity class inside it, adding the AsNoTracking method will help.

12.4.5	 Using the async version of EF Core commands to improve scalability

Microsoft’s recommended practice for ASP.NET applications is to use async commands
wherever possible (section 5.10 explains async/await). This improves the scalability of
your website by releasing a thread while the command is waiting for the database to
respond; this freed-up thread can run another user’s request.

Although I agree with Microsoft’s blanket “Use async everywhere” statement, a more
case-by-case use of the async database commands may be correct in some circumstances
for performance-critical systems. Section 12.7.2 covers this in more detail, as you learn
about the trade-offs between async’s scalability versus its speed.

12.4.6	 Ensuring that your database access code is isolated/decoupled

As I said earlier, I recommend that you get your EF Core code working first, without
any performance tuning—but you should be ready to make that code faster if you need
to later. To achieve this, the code must

¡	Be in a clearly defined place (isolated). This allows you to find the database code that’s
affecting performance.

¡	Contain only the database access code (decoupled). My advice is to not mix your data-
base access code with other parts of the application, such as the UI or API. That
way, your database access code can be changed without worrying about other,
nondatabase issues.

Returns a Book entity class and a
collection of Review entity classes.

Adding the AsNoTracking method tells
EF Core not to create a tracking snapshot,
which saves time and memory usage.

	 345Performance antipatterns—database access

Throughout this book, you’ve seen lots of examples of this approach. Chapter 2
introduced the Query Object pattern (see section 2.6.1), and chapter 4 showed the use
of a separate project to hold the database access code for the business logic (see sec-
tion 4.4.4). These patterns make performance tuning your database access code easier,
as you have a clearly defined section of code to work on.

12.5	 Performance antipatterns—database access
The previous patterns are ones that are worth using all the time, but you’ll still bump
into issues requiring you to tune up your LINQ. EF doesn’t always produce the best-
performing SQL commands: sometimes it’s because EF didn’t come up with a good
SQL translation, and sometimes it’s because the LINQ code you wrote isn’t as efficient
as you thought it was.

This section presents some of the performance antipatterns that affect the time it
takes to get data to/from the database. I use the negative antipattern terms, as that’s
what you’re looking for—places where the code can be improved. Here’s a list of
potential problems, followed by how to fix them, with the ones you’re more likely to
hit coming first:

¡	Not minimizing the number of calls to the database
¡	Calling SaveChanges multiple times
¡	Allowing too much of a data query to be moved into the software side
¡	Not replacing suboptimal SQL translations with user-defined functions
¡	Not precompiling queries that are used frequently
¡	Expecting EF Core to build the best SQL database commands
¡	Not using the Find method when the entity might be already loaded
¡	Missing indexes from a property that you want to search on
¡	Mismatching column data types

12.5.1	 Not minimizing the number of calls to the database

If you’re reading an entity from the database with its related data, you have four
ways of loading that data: eager loading, explicit loading, select loading, and lazy load-
ing (lazy loading was introduced in EF Core 2.1). Although they all achieve the same
result, their performance differs quite a lot. The main difference comes down to the
number of separate database accesses they make; the more separate database accesses
you do, the longer your database access will take.

You’ll build a test to use eager loading, explicit loading, and select loading to load
the Book entity class and all its relationships. Table 12.1 shows the number of SQL com-
mands, the number of database accesses, the time the access took, and the percentage
difference from the eager-loading time.

346 Chapter 12  EF Core performance tuning

Table 12.1   Comparing relationship-loading techniques—the more database accesses, the longer your
code takes to finish

Three ways of loading data
with their relationships

Number of SQL
commands

Number of DB
accesses Time (ms)/%

Select loading, for example:

Books.Select(p=>new {x.BookId…

4 1 3.4 ms/80%

Eager loading, for example:

Books.Include(p => p.Reviews)

3 1 4.3 ms/100%

Explicit loading, for example:

Collection(c=>c.Reviews).Load()

6 6 29.2 ms/680%

The table speaks for itself: multiple accesses to the database cost. In the explicit-loading
case (item 3 in the table), the database access code does six database accesses and is over
six times slower than the other two approaches, which use only one database access.

So, the rule is, try to create one LINQ query that gets all the data you need in one
go. Select queries are the best performing if you need only specific properties; oth-
erwise, eager loading, with its Include method, is better if you want the entity with its
relationships.

NOTE   In a performance issue called the N + 1 query problem, one query that
returns a collection of N items produces a single database query, followed
by N extra queries—one for each item. EF Core suffers with this issue when
using a Select query that contains a collection, as you’ll see in section 13.2.
This has been improved in EF Core 2.1 (see https://github.com/aspnet/
EntityFrameworkCore/issues/9282).

12.5.2	 Calling SaveChanges multiple times

If you have lots of information to add to the database, you have two options:

1	 Add one entity and call SaveChanges. For example, if you’re saving 10 entities, you
call the Add method followed by a call to the SaveChanges method, 10 times.

2	 Add all the entity instances and call SaveChanges at the end. For example, to save 10
entities, call Add 10 times (or even better, one call to AddRange) followed by one
call to SaveChanges at the end.

Option 2, in which you call SaveChanges only once, is a lot faster, as you can see in
table 12.2. This is because EF Core will “batch” multiple data writes on database servers
that allow this approach, such as SQL Server. This means it’ll generate SQL code that’s
more efficient at writing multiple items to the database. Table 12.2 shows the differ-
ence in time for the two ways of writing out 100 new entities to an SQL Server database
on my development system.

https://github.com/aspnet/EntityFrameworkCore/issues/9282
https://github.com/aspnet/EntityFrameworkCore/issues/9282

	 347Performance antipatterns—database access

Table 12.2. A comparison of calling SaveChanges after adding each entity, and adding all the entities
and then calling SaveChanges at the end. Calling SaveChanges at the end is about four to six times
faster.

One at a time All at once (batched on an SQL Server)

for (int i = 0; i < 100; i++)

{

 context.Add(new MyEntity());

 context.SaveChanges();

}

for (int i = 0; i < 100; i++)

{

 context.Add(new MyEntity());

}

context.SaveChanges();

Total time = 160 ms (±40 ms) Total time = 30 ms (±15 ms)

NOTE   One reviewer commented that there was a huge variation in the results I
show. Well, welcome to the problem of performance measurement and tuning!
My experience is that getting good software performance figures takes effort.
In my performance tests, I normally measure one try, followed by multiple
tries. I also run the tests multiple times to see if there’s much variation; in this
case, there was a lot of variation.

The difference between the two ways of saving multiple entities is large: calling
SaveChanges every time (left side) is four to six times slower than calling SaveChanges
once (right side). This batching capability applies to inserting, updating, and deleting
data in the database. For a more detailed look at this this, see http://mng.bz/ksHg.

NOTE   It’s also not good practice to call SaveChanges after each change, because
what happens if something goes wrong halfway through? The recommendation
is to do all your additions, updates, and removals and then call SaveChanges at
the end. That way, you know that either all your changes were applied to the
database, or, if there was an error, none of the changes will have been applied
to the database.

12.5.3	 Allowing too much of a data query to be moved into the software side

It’s all too easy to write LINQ code that will move part of the database evaluation out of
the database and into the software, often with a big impact on performance. Let’s start
with a simple example.

Listing 12.5   Two LINQ commands that would have different performance times

context.Books.Where(p => p.Price > 40).ToList();
context.Books.ToList().Where(p => p.Price > 40);

This query would perform
well, as the Where part would
be executed in the database.

This query would perform badly, as all the books
would be returned (which takes time), and then the
Where part would be executed in software.

348 Chapter 12  EF Core performance tuning

Although most people would immediately spot the mistake in listing 12.5, it’s possible
for code like this to be hidden in some way. In particular, the client vs. server evaluation
feature (see section 2.5) makes it much easier to write code that calls software-only
methods, such as string.Join, ToString, and so on, that then moves part of the query
into the software. Mostly, this has little effect on performance, as it’s applied to the
returned data, but sometimes it’ll affect performance, possibly badly.

For example, the query in listing 12.6 uses string.Join to concatenate all the
authors into a comma-delimited string called AuthorsString. That’s fine, as that can be
done when all the data is returned (see figure 2.7). But you then use that AuthorsString
property to order the books returned from the database, which hits the performance of
this query.

Listing 12.6   An example of a poor-performing client vs. server evaluation

var books = context.Books
 .Select(p => new
 {
 p.BookId,
 p.Title,
 AuthorsString = string.Join(", ",
 p.AuthorsLink
 .OrderBy(q => q.Order)
 .Select(q => q.Author.Name)),
 }
).OrderBy(p => p.AuthorsString).ToList();

The result of running this code is that EF Core produces SQL code that reads all the
books, and then reads each row individually, twice—definitely not an optimal database
access!

Thankfully, this is one of the situations in which EF Core will log a QueryClientEval-
uationWarning warning (see section 12.2.3). This means you should be able to spot this
type of problem. The solution is to change your code to remove this sort of problem, or
use a user-defined function (see next section) or other raw SQL commands to move the
calculation into the database.

12.5.4	 Not replacing suboptimal SQL translations with user-defined functions

Section 12.2.3 already talked about a suboptimal translation of LINQ to SQL; in ver-
sion 1 of EF Core, the LINQ Average method doesn’t get translated into an SQL AVG
command. In that sort of case, you’ll get a QueryClientEvaluationWarning warning,
but what can you do about it?

One way around this problem is to create an SQL user-defined function (UDF) con-
taining the optimal SQL code, and then include that in your query. This requires an
understanding of the SQL language and extra work to add the UDF to the database, but
it does allow you to get around any suboptimal SQL that EF Core produces.

string.Join isn’t translated into SQL by EF
Core, so this must be evaluated in software
after the data is returned from the database.

You ask for the data to be sorted by
a value that’s created in software,
so EF Core calculates that value and
then rereads the database to
execute the OrderBy command.

	 349Performance antipatterns—database access

Although the translation of LINQ Average to SQL AVG is fixed in version 2 of EF, it’s
still a helpful example of the process of replacing suboptimal SQL translations, so I use
it in listings 12.7 and 12.8. This replaces the suboptimal SQL code by providing a UDF
to work out the average review votes that uses the optimal SQL command, AVG.

The following listing shows the SQL change script that can add a UDF to your database
(see section 11.5.2 with listings 11.4 and 11.5 on how to add an SQL command to a data-
base schema change). This contains the code to calculate the average of the review votes.

Listing 12.7   SQL change script with a UDF containing optimal code for averaging

CREATE FUNCTION udf_AverageVotes (@id int)
RETURNS float
AS
BEGIN
DECLARE @result AS float
SELECT @result = AVG(CAST([NumStars] AS float))
 FROM dbo.Ch12Review AS r
 WHERE @bookId = r.Ch12BookId
RETURN @result
END

You then use this UDF in a computed column called AverageVotes, which you add to
the Ch12Book entity class. When the AverageVotes is read by EF Core, the computed
column is executed, and calls the udf_AverageVotes UDF to calculate the average
within the SQL database. The configuration to set this up is shown next. (See section
8.3 for more on computed columns.)

Listing 12.8   Configuring a computed column to call the udf_AverageVotes UDF

protected override void OnModelCreating
 (ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Ch12Book>()
 .Property(p => p.AverageVotes)
 .HasComputedColumnSql(
 "dbo.udf_AverageVotes([Ch12BookId])");
}

NOTE   There are other ways to get around this problem, and chapter 13 shows
two alternatives.

udf_AverageVotes takes the primary key of
the FixSubOptimalSql entity referenced by
the Ch12Reviews’ foreign key.

Here you use the SQL command AVG, which
is the optimal SQL command for this.

Returns the result, which can be
null if no Ch12Reviews are linked
to the FixSubOptimalSql entity

The AverageVotes column will contain
the computed value when it’s loaded.

udf_AverageVotes UDF must be in the database
before this HasComputedColumnSql configuration
method is called.

udf_AverageVotes UDF takes an input of the
primary key of the Ch12Book entity class.

350 Chapter 12  EF Core performance tuning

12.5.5	 Not precompiling queries that are used frequently

When you first use an EF Core query, it’s compiled and cached, so if it’s used again, the
compiled query can be found in the cache, which saves compiling the query again. But
there’s a cost to this cache lookup, which the EF Core method EF.CompiledQuery can
bypass.

The EF.CompiledQuery method allows you to hold the compiled query in a static
variable, which removes the cache lookup part.

Listing 12.9   Creating a compiled query and holding it in a static variable

private static Func<EfCoreContext, int, Book>
 _compliedQuerySimple =
 EF.CompileQuery(
 (EfCoreContext context, int i) =>
 context.Books
 .Skip(i)
 .First()
);

Compiling a query in this way has limitations. First, the query returns a class, or an
IEnumerable<T> result, so you can’t chain query objects as you’ve done in the book
query in chapter 2. Second, the query can’t be dynamic; the LINQ commands provided
to the EF.CompiledQuery method can’t change. In chapter 2, for example, you built a
book filter query object that dynamically chose whether to filter on votes, publication
date, or no filter; that wouldn’t work in a compiled query.

The EF.CompiledQuery method is for taking a specific query and compiling it. In the
case of the book query, you’d need to build a separate compiled query for each filter
and sort option to allow each one to be compiled; for instance:

¡	Query books, no filter, no sort
¡	Query books, filter on votes, no sort
¡	Query books, filter on votes, sort on votes
¡	Query books, filter on votes, soft on publication date

So, the EF.CompiledQuery method is useful, but it’s best to apply it when the query you
want to performance tune is stable. This is because it may take some work to reformat
your query into the correct form to fit the EF.CompiledQuery method.

You define a static function to hold
your compiled query. In this case,
the function with two inputs and
the type of the returned query.

Expects a DbContext, one or two parameters to
use in your query, and the returned result, either
an entity class or IEnumerable<TEntity>.

You define the query
to hold as compiled.

	 351Performance antipatterns—database access

12.5.6	 Expecting EF Core to build the best SQL database commands

EF Core makes development quick and easy, and for simple queries, EF Core generates
quite efficient SQL commands. But in some cases it won’t create the best SQL and you
might need to replace it with hand-coded SQL commands sent to the database by the
ADO.NET or Dapper libraries. Three things could hit performance:

¡	Is your LINQ code efficient? There are often many ways to write a LINQ query,
but some will perform better than others on the database. Chapter 3 shows one
such case, in which you can update a relationship via the principal entity in sec-
tion 3.4.3, but I then show you a quicker way using foreign keys in section 3.5.4.

¡	EF Core doesn’t always produce the SQL commands that take advantage of all
the features of a particular database type. EF Core’s translation of LINQ queries,
which uses a calculated property in two places, isn’t optimal for SQL Server. For
instance, the code in this listing calculates the ReviewCount property twice.

Listing 12.10   An example of using a calculated value twice in an EF Core query

var books = context.Books.Select(b => new
 {
 b.BookId,
 ReviewCount = b.Reviews.Count
 }).OrderBy(x => x.ReviewCount)
 .ToList();

It’s possible to create an SQL command that would produce the same output
as listing 12.10, but would calculate the ReviewCount only once. This SQL com-
mand would be quicker than EF Core’s version at the time of writing (version 2.0).

¡	EF Core has software-side performance issues also. It takes longer than the Dap-
per library to create and fill an entity class instance when reading in data. These
software-side issues are much smaller than any suboptimal SQL-related issues,
but they can add up in certain situations.

NOTE   Chapter 13 provides a worked example of progressively improving the
main book listing query to show what can be done to improve or replace EF
Core commands.

12.5.7	 Not using the Find method when an entity might be already loaded

The EF Core Find method finds and loads an entity based on its primary key. For
instance, context.Find<Book>(1) loads the Book entity instance whose primary key is 1.
The special feature of the Find method is if the entity is already loaded into the con-
text, then it’s returned without querying the database. This makes the Find method
much faster when the entity might already be loaded.

Calculates the number of reviews

Recalculates the number of
reviews again for the OrderBy.

352 Chapter 12  EF Core performance tuning

Therefore, it’s worth using the Find method anytime you need to find/load an entity
by using its primary key. The only downside is that you can’t use eager loading; use the
Include method to load a relationship when using the Find method.

12.5.8	 Missing indexes from a property that you want to search on

If you plan to search a large amount of data on a property that isn’t a key (EF Core
adds an index automatically to primary, foreign, or alternate keys), adding an index to
that property will improve the search and sort performance. It’s easy to add an index to
a property; see section 6.9.

There’s a performance cost to having an index on a property, especially if the data is
changed a lot, as the database must update the index. Indexes work best for tables that
don’t change much and have many rows.

12.5.9	 Mismatching column data types

If the type that EF Core has for a table column differs from the actual column type, you
won’t get an error under some circumstances; instead, the database server will translate
the data between the two types, but at a performance cost. This shouldn’t happen if you
follow the recommended ways of creating and updating a database’s schema, covered in
chapter 12. But if it does happen, it can be a difficult performance problem to find.

I’ve never had this problem, but Ben Emmett of Redgate has a detailed description
of what happens if a NVARCHAR/VARCHAR type difference exists between EF Core’s data-
base model and the actual database schema. See the “Mismatched data types” section in
his article at http://mng.bz/H2rR. (Ben’s article is about performance tuning EF6.x,
so many of his other performance comments don’t apply to EF Core.)

12.6	 Performance antipatterns—software
Now that you’ve learned about performance antipatterns that apply to the database,
let’s look at performance antipatterns that apply to the software side. These perfor-
mance issues take more compute time to run than they need to, thus they slow your
application. I’ve listed the problems with the most likely one first:

¡	Making DetectChanges work too hard
¡	Startup issue: using one large DbContext

12.6.1	 Making DetectChanges work too hard

Every time you call SaveChanges, it runs by default a method inside your applica-
tion’s DbContext called DetectChanges to see whether any of the tracked entities
have been updated (see section 9.3.3 for more details). The time DetectChanges
takes to run depends on how many tracked entities are loaded—the number of entities
that you read in without the AsNoTracking method and that don’t implement the
INotifyPropertyChanged interface (see section 9.3.4).

If you read 1,000 tracked entities and call SaveChanges, the DetectChanges method
would need to check all 1,000 entities to find whether any have changed. That can take

http://mng.bz/H2rR

	 353Performance antipatterns—software

some time; one of the unit tests in chapter 9 showed that calling SaveChanges with
1,000 Book entities, with their Review and Author entity relationships, took over 2 sec-
onds to run.

This sort of problem has various solutions, depending on the design of your applica-
tion. Here are ways to solve this sort of performance issue:

¡	Do you need all these tracked entities loaded? If SaveChanges is taking a long
time, did you forget to use the AsNoTracking method when you read all the
entities?

¡	Can you break up a big insert into smaller batches? I did this in chapter 13 where
I built a class to create large test data sets for performance tests. My initial imple-
mentation took 7 minutes for 100,000 books, but by splitting up the database
write into multiple writes of small groups of <500 books, then the time came
down to 2 minutes.

¡	When you need a lot of entities loaded that are ready to be modified, con-
sider changing your entity classes over to using the INotifyPropertyChanged
change tracking strategy. This requires extra coding of your entity classes to
add the INotifyPropertyChanged and configure the entity class’s change
tracking strategy (see section 9.34). The result is that your entities will report
any changes to EF Core and DetectChanges doesn’t have to scan your loaded
entities for changes.

12.6.2	 Startup issue: using one large DbContext

The first time you create your application’s DbContext, it’ll take some time, maybe
several seconds. There are many reasons for this, but part of it is that EF Core needs to
scan all the entity classes in the application’s DbContext to configure itself and build a
model of the database you want to access. Normally, this isn’t a big problem, because
after your application is running, the configuration and database model information
is cached by EF Core. But if your application is constantly being started and stopped—
say, in a serverless architecture (see https://martinfowler.com/articles/serverless.html)—
this startup time could matter.

You can help speed up the building of the first application’s DbContext by reducing
the number of entity classes it includes. The only reasonable way to do that is to pro-
duce multiple application DbContexts, with each one covering a subset of the tables
in the database. Section 10.6 covered splitting a database across multiple DbContexts
based on the DDD approach of bounded contexts. Figure 12.6 shows a cut-down version
of this diagram, illustrating how a large database could be split across multiple applica-
tions’ DbContexts.

https://martinfowler.com/articles/serverless.html

354 Chapter 12  EF Core performance tuning

BookContext OrderContext CustomerContext

Author

Reviews

BookAuthor
Author

AddressO AddressC

Customer

Credit

LineItem

PriceOffers

Copied

Books

Figure 12.6   A large database can be split into multiple applications’ DbContexts. In this
case, the database is split along business lines. If you need to minimize application startup costs,
you could create specific DbContexts for each application that contain only the entities that
application needs to access.

Figure 12.6 splits the database across different applications’ DbContexts based on the
business domains, which might be an appropriate split for some applications. If you’re
building small, self-contained applications, such as in a serverless architecture or a
microservices architecture (see https://martinfowler.com/articles/microservices.html),
you could build an application’s DbContext, including only the entities/tables specific
to each application.

12.7	 Performance patterns—scalability of database accesses
Scalability of an application (the number of simultaneous accesses that the application
can handle) is a big topic. Even when limiting the scope to database access scalability,
you still have a lot of things to think about. Scalability issues can’t typically be tracked
down to a poorly written piece of code, because scalability is more about design. This
section covers

¡	Using pooling to reduce the cost of creating a new application’s DbContext
¡	Using async/await to aid scalability, but with little effect on overall speed
¡	Helping your database scalability by making your queries as simple as possible
¡	Picking the right architecture for applications that need high scalability

12.7.1	 Using pooling to reduce the cost of a new application’s DbContext

If you’re building an ASP.NET Core application, EF Core provides a method called
AddDbContextPool<T> that replaces the normal AddDbContext<T> method. The
AddDbContextPool<T> method uses an internal pool of an application’s DbContext
instances, which it can reuse. This speeds up your application’s response time in cases
where you have lots of short requests.

This is simple to use, and this listing shows an updated registration of the EfCoreContext
context in the book app.

https://martinfowler.com/articles/microservices.html

	 355Performance patterns—scalability of database accesses

Listing 12.11   Using AddDbContextPool to register the application’s DbContext

services.AddDbContextPool<EfCoreContext>(
 options => options.UseSqlServer(connection,
 b => b.MigrationsAssembly("DataLayer")));

Whether it makes a significant difference to the scalability of your application depends
on the type of concurrent traffic you have. But you should get at least a small improve-
ment in speed, as the AddDbContextPool<T> method will be quicker at returning a
fresh application’s DbContext instances.

12.7.2	 Async/await—adding scalability, with small effect on speed

In section 12.4.5, I said you should use the async versions of the database access meth-
ods in an application that must handle multiple simultaneous requests. This is because
async/await releases a thread to allow other requests to be handled while the async
part is waiting for the database to respond (see figure 5.7). But using an async method
instead of the normal, synchronous method does add a small overhead to each call.
Table 12.3 gives performance figures for a few types of database access.

Table 12.3   Performance for types of database access of the normal, sync version, and async version on a
database containing 1,000 books. Sync and async times are in milliseconds.

Type of database access DB trips Sync Async Async/sync%

Read book: book only, simple load 1 0.14 0.47 236%

Read book: eager-load book and
relationships

3 1.38 3.76 172%

Read book: explicit-load book and
relationships

6 54.00 53.00 -2%

Read book: book only, sort, filter, and take 1 1.72 1.95 13%

From this table, you can make the following observations:

¡	If the SQL database command is simple, and therefore quick (see the first entry
in the table), using async/await costs a lot. The async method doesn’t give you
much back in scalability, as the command is quick, and the cost of async/await is

You register your application DbContext
by using the AddDbContextPool<T>.

You’re using an SQL Server database, but
pooling works with any database provider.

Because you’re using migrations in a layered
architecture, you need to tell the database provider

which assembly the migration code is in.

356 Chapter 12  EF Core performance tuning

high compared to the short time the command takes. But it’s a quick command,
so if it’s async, it’s not the end of the world.

¡	If the SQL database command is complex and takes some time, using async/
await is worth it. You gain a thread for all the time you’re waiting for the database,
and the cost of async/await is small in comparison to the database wait.

NOTE   I wrote an article some time ago covering async/await and its fea-
tures, scalability, and speed issues in more detail. You can find it at http://
mng.bz/13b6.

12.7.3	 Helping your database scalability by making your queries simple

Creating SQL commands that have a low “cost” on the database server (meaning,
are easy to execute and return a minimal amount of data) minimizes the load on the
database. Performance tuning your key queries to be simple and return only the data
needed, not only improves the speed of your application, but also helps with the scal-
ability of your database.

12.7.4	 Picking the right architecture for applications that need
high scalability

Section 5.2 detailed how a web application can have multiple instances to provide
more scalability. That’s helpful for the software/compute performance, but if all the
web application instances are accessing just one database, then it doesn’t necessarily
help the database scalability.

Although software/compute performance is normally the bottleneck on scalability,
for applications that make high demands on the database, extra instances of the web
application won’t help much. At this point, you need to be thinking about other archi-
tectures. This topic is beyond the scope of this book, but I recommend you look at
architectures that split the read-only database accesses from the write database access,
such as the CQRS architecture.

Because most applications read the database more than they write to the database,
the CQRS architecture can help with database performance. In addition, by splitting
out the read-only queries to a NoSQL database, you can make the replication of the
read-only databases easier, which gives you more database bandwidth. I implement just
such an architecture using a CQRS approach in section 14.4, with impressive perfor-
mance gains.

Summary

¡	Don’t performance tune too early; get your application to work properly first.
But try to design your application so that if you need to performance tune later,
it’s easier to find and fix your database code.

¡	Performance tuning isn’t free, so you need to decide what performance issues
are worth the development effort to fix.

http://mng.bz/13b6
http://mng.bz/13b6

	 357Summary

¡	EF Core’s logger output can help you identify database access code that has per-
formance issues.

¡	Make sure any standard patterns or techniques you use in writing your applica-
tion perform well. Otherwise, you’ll “bake in” performance issues from day one.

¡	Avoid, or fix, any database performance antipatterns (database accesses that
don’t perform well).

¡	If scalability is an issue, try simple improvements, but high scalability may need a
fundamental rethinking of the application’s architecture.

For readers who are familiar with EF6:

¡	Some of the EF6.x performance issues, such as using the AddRange method over
repeated Add method calls, have been fixed.

¡	Some performance tweaks in EF6.x have been lost. In EF Core 2.0, the LINQ
GroupBy method doesn’t convert into an SQL GROUP BY command, but this is
available in version 2.1.

¡	EF Core has new, potential performance problems, such as the client vs. server
evaluation feature, allowing you to produce nonoptimal SQL code.

358

13A worked example
of performance tuning

This chapter covers
¡	Ensuring that your LINQ query translates into

good SQL

¡	Using EF Core’s DbFunction to improve a query

¡	Building high-performance queries via raw SQL

¡	Using cached values to improve performance

¡	Trading development effort for performance gains

Section 12.1.2 showed that the book list query needs to have great performance,
so this chapter is about performance-tuning that query. The query has already
avoided nearly all the performance issues mentioned in chapter 12, so you must go
beyond the normal changes to make any further improvements. This chapter takes
you through a series of performance-tuning steps, starting with EF Core–focused
approaches and then branching out to more-extreme changes to get the best per-
formance possible.

The aim is to show you how to tackle performance-tuning an application, and the
amount of effort needed to get that next level in performance. You may never need

	 359Part 1a—Making sure a single query performs well

13
some of the extreme performance-tuning techniques covered here, but at least you’ll
know that better performance is possible if you need it.

This chapter is divided into four distinct parts for improving the performance of the
book list query:

¡	Working with EF Core–built queries
¡	Part 1a— Making sure a single query performs as well as possible
¡	Part 1b—Performance-tuning the existing EF Core query by adding a DbFunction
¡	Part 2—Replacing the EF Core book query code with a SQL-based OR/M called

Dapper
¡	Part 3—Changing the database structure to make it easier for EF Core to query it

At the end of this chapter, you’ll look at the scalability issue: the number of concurrent
users your website can handle. You’ll also learn about a different database architecture
that provides better scalability.

Because your performance issues will be different from the ones found in the book
app, parts 1a to 3 cover generic issues, such as making sure your query is translated
properly, or what to do if you want to write your own SQL. At the end of each part, I give
you performance-tuning takeaways that might help when you need to make your own
application run faster.

13.1	 Part 1a—Making sure a single query performs well
In this part, you’re going to do all you can to get the book app’s list query running as
fast as possible, while still using EF Core for the query. As you’ll see, EF Core can pro-
duce excellent SQL code if you write LINQ queries in the correct form for EF Core.
It’s also true that EF Core can produce terrible SQL code if you don’t write your LINQ
queries with EF Core and the database in mind.

Your starting point is the book list query described in chapter 2. This query already
has most of the features I recommended in chapter 12: using a Select query, minimiz-
ing database accesses, paging to minimize the data loaded, and so on. It turns out that
most things perform well, although you do have one issue that highlights a generic
problem—see section 13.1.2. But first, let’s see the challenges involved in displaying
one book.

13.1.1	 Analyzing the book list query to see potential performance issues

First, you want to ensure that displaying the information on one book is fast. Some
items, such as the book title, are straightforward, but as you can see in figure 13.1, parts
of the book information take a bit more time to calculate. The aim of this section is to
ensure that they’re as fast as they can be, just using EF Core.

360 Chapter 13  A worked example of performance tuning

Complex: Find all the Authors
linked to this book via a many-
to-many table, BookAuthor, and
then combine their Name columns.

Complex: Take the average
of the NumStars in each
Review linked to this book.

Moderate: The price depends
on whether a PriceOffer is
linked to this book.

Easy: Taken from the Title
column in the Books table

Calculate: Count the number
of Reviews linked to this book.

Moderate: This appears only if
a PriceOffer is linked to this book.

Figure 13.1   The level of difficulty in displaying each part of one single book listing. As you can see,
all but one of the displayed data items need some form of calculation to get the right value.

To create the book list display, you created a class called BookListDto, which contains
all the elements needed for display. In section 2.6.1, you created the BookListDto class
as well as the MapBookToDto method that contains the LINQ commands to fill in that
class. The following listing shows the code in the MapBookToDto method, the starting
point for our performance tuning.

Listing 13.1   The MapBookToDto method that fills the BookListDto class

public static IQueryable<BookListDto>
 MapBookToDto(this IQueryable<Book> books)
{
 return books.Select(p => new BookListDto
 {
 BookId = p.BookId,
 Title = p.Title,
 Price = p.Price,
 PublishedOn = p.PublishedOn,
 ActualPrice = p.Promotion == null
 ? p.Price
 : p.Promotion.NewPrice,
 PromotionPromotionalText =
 p.Promotion == null
 ? null
 : p.Promotion.PromotionalText,
 AuthorNamesOrdered = p.AuthorsLink
 .OrderBy(q => q.Order)
 .Select(q => q.Author.Name),
 ReviewsCount = p.Reviews.Count,
 ReviewsAverageVotes =
 p.Reviews.Select(y => (double?)y.NumStars).Average()
 });
}

	 361Part 1a—Making sure a single query performs well

It took me some time to get the LINQ in the MapBookToDto method right, and in this
part and part 1b I’ll talk you through the problems I had. Hopefully, knowing the pro-
cess I went through will help you tackle any problems of your own. Let’s start with the
problem of client-side calculations.

13.1.2	 Turning the book’s Votes display into a client-side calculation

I always knew that calculating the average of all the customer reviews for a book was
going to be a challenge. I also knew that SQL has a handy AVG command that would
help a lot with performance. My problem was writing the LINQ code such that EF Core
would properly translate my use of the LINQ’s Average method into the SQL AVG com-
mand. That turned out to be a challenge.

First, let me explain that any part of a LINQ sequence that EF Core can’t properly
translate into SQL will, by default, be converted to a client-side calculation by using the
client vs. server evaluation feature (see section 2.5). This feature is great for quick devel-
opment, because it’ll make almost any valid LINQ query work. But when it comes to
performance, having that client vs. server evaluation run part of your query in software
instead of in the database can be bad news for performance!

EF6   If you produced LINQ code that couldn’t be translated into SQL when using
EF6.x, it threw an exception. EF Core is much more tolerant, and, via the client vs.
server evaluation feature, it’ll handle LINQ queries that EF6.x wouldn’t touch.

Table 13.1 shows my attempts to get the correct format for the LINQ, with indicating
that it didn’t translate to the SQL AVG command, and indicating that it did. It took me
a while to get this right, and I got the correct answer only by raising an issue on the EF
Core GitHub issues page. (Thanks to Andrew Peters on the EF Core team for provid-
ing the right answer.)

Table 13.1   My attempts at getting the right LINQ code for calling the SQL AVG command

LINQ code OK?

double? AveVotes = b.Reviews.Select(y => y.NumStars).Average(); ✕

double? AveVotes = b.Reviews.Count == 0 ? null :
 (double?)b.Reviews.Select(y => y.NumStars).Average();

✕

double? AveVotes = b.Reviews.Select(y =>
 (double?)y.NumStars).Average()

✔

After I was shown the right format, it made sense, but I didn’t see it immediately! The
first two examples in table 13.1 end up as client vs. server evaluations, which are slow.
Only the last row has the correct form for the LINQ query to be translated into the fol-
lowing SQL code:

SELECT AVG(CAST([y].[NumStars] AS float))
FROM [Review] AS [y]
WHERE [b].[BookId] = [y].[BookId]

362 Chapter 13  A worked example of performance tuning

How I measured the performance—my test environment
Throughout this chapter, I’ll show you timing, in milliseconds, and here I’ll explain how I
got these figures. I followed my own advice in section 12.2.1 by concentrating on what
the user experiences. Therefore, my timings were taken by using the Chrome browser
(see figure 12.4) from the running book app. I took multiple readings and show the aver-
age of those readings.

I did all my testing on my development PC, using the book app running in debug mode.
This ASP.NET Core application had only in-memory logging, but also had application
insights running, which slows the overall application. For comparison, accessing the
About page, which has no database accesses in it, typically takes 11 ms to load, so the
database accesses are always going to be slower than that.

Note also that the 10-book display includes about 3 ms of sending the HTML to my
browser (called content download by Chrome), whereas the 100-book display includes
somewhere between 15 to 18 ms of sending HTML to my browser. It still affects the user,
but it’s not something that EF Core can do anything about. These content download over-
heads are included in all the 10-book and 100-book performance figures in this chapter.
I recommend Alan Hume’s Progressive Web Apps (Manning, 2017) on reducing the con-
tent download overheads.

The effect of getting the correct translation of LINQ into SQL is significant, as you can
see in table 13.2.

Table 13.2   Comparing the performance of client vs. server evaluation of the average votes with SQL’s
AVG command

How the average review values were calculated 10 books 100 books

Average review votes evaluated client-side, in software
via client vs. server evaluation

64 ms 410 ms

Average review votes evaluated server-side, in the data-
base using SQL AVG command

54 ms 230 ms

How much faster SQL AVG is over client vs. server 15% 40%

Getting the SQL right for calculating the average votes has an even more massive effect
on sorting or filtering of books based on average votes—think about how slow it would
be to calculate in software the average votes of 100,000 books!

The takeaways from this example are twofold:

¡	You should check your logs for the QueryClientEvaluationWarning warning,
which says that the client vs. server evaluation has moved a part of your query to
the client-side (software). An alternative is to get EF Core to raise an exception if
QueryClientEvaluationWarning is logged.

¡	Even knowing that part of your LINQ code is being run client-side, finding the
right form can still take some effort. But it’s worth the effort.

	 363Part 1b—Improving the query by adding a DbFunction

TIP   I recommend not configuring your application to throw an exception
on poor SQL translations, as a slow application is often better than a broken
application. I do enable the throwing of an exception on QueryClientEvalua-
tionWarning in my unit tests. See section 15.8.

13.2	 Part 1b—Improving the query by adding a DbFunction
You need to create a comma-delimited list of the authors’ names to show in the book
list display. To form this combined name, EF Core must pick out the Name property
from each Author entity class that’s linked to the Book entity via the many-to-many
BookAuthor entity class. See figure 13.2 for a view of the database and the actions
needed to form the combined authors string.

Books

To form the book’s list of comma-delimited authors, EF Core needs
to extract each Name column, in the correct order, from the Authors
table linked to a specific book via the BookAuthor table.

BookId

Title
Description
PublishedOn
... etc.

PK

Authors
1 0..* 1

0..* AuthorId

Name

PK

BookAuthor

BookId
AuthorId

Order

PK,FK1
PK, FK2

Figure 13.2   The many-to-many relationship between a Book and an Author. To generate
the list of authors of a book, you have to extract the Name property from each Author
class in the order defined by the Order property in the BookAuthor linking table.

EF Core produces an efficient piece of SQL code to do this, but it returns the resul-
tant collections as a separate database access (each individual collection is returned
as a separate database access). This is known as the N + 1 query problem, which I note in
section 12.5.1. This particular performance issue is fixed in EF Core 2.1, but uses two
database accesses in this case. The solution you’ll use in this section executes the query
using only one database access.

We know that not minimizing the calls to the database is the top issue in database
performance antipatterns (see section 12.5.1). So, you need to reduce the number
of database accesses required to produce the list of authors of a book in order to
improve performance. EF Core 2.1’s improvement to the N + 1 query problem would
go a long way to fixing this particular problem, but the approach you use in this section
can be used in other cases where you need to inject your own custom SQL into an
existing LINQ query.

In this case, you know something that EF Core doesn’t know—that you want to
concatenate the names into a comma-delimited string—and it turns out you can do
that concatenation in the database. You can return a single string in the main query,
thus removing all the extra database accesses EF Core needs to return the collections.
As you’ll see, this makes a significant difference in the performance of displaying
multiple books.

364 Chapter 13  A worked example of performance tuning

To achieve this, you need to insert your own piece of SQL into EF Core’s SQL. The
easiest way to do this is by using an SQL UDF to find and combine the authors’ names.
The code for the UDF, called AuthorsStringUdf, is here.

Listing 13.2   AuthorsStringUdf SQL code for combining authors’ names

CREATE FUNCTION AuthorsStringUdf (@bookId int)
RETURNS NVARCHAR(4000)
AS
BEGIN
DECLARE @Names AS NVARCHAR(4000)
SELECT @Names =
 COALESCE(@Names + ', ', '') + a.Name
FROM Authors AS a, Books AS b, BookAuthor AS ba
WHERE ba.BookId = @bookId
 AND ba.AuthorId = a.AuthorId
 AND ba.BookId = b.BookId
ORDER BY ba.[Order]
RETURN @Names
END

Thanks to Stack Overflow for the tip about combining each author’s name into a com-
ma-delimited string (https://stackoverflow.com/a/194887/1434764).

NOTE   You need to add this UDF into your database for this to work. Chapter 11
explores the whole area of including SQL in your database migrations.

To use this UDF, you need to register it with EF Core, and the DbFunction described
in section 8.2 is the best way to do this. You then alter your BookListDtoSelect query
object to call this UDF instead of the client vs. server code shown in section 2.5.1. This
listing shows the new code in bold.

Listing 13.3   Modified MapBookToDto method showing how the UDF is called

public static IQueryable<BookListDto>
 MapBookToDto(this IQueryable<Book> books)
{
 return books.Select(p => new BookListDto
 {
 BookId = p.BookId,
 //… other property setting removed for clarity
 AuthorsOrdered =
 UdfDefinitions.AuthorsStringUdf(p.BookId)
 });
}

Creates a UDF in an SQL Server database. It takes a
parameter of the book’s primary key to find all the

authors of this book.
Returns a single NVARCHAR string containing all
the authors’ names in a comma-delimited string

A clever bit of SQL that combines each
author’s name into a comma-delimited
string.

Selects the correct Authors rows linked to the
target book via the BookAuthor table

The order of the authors matters, so you
include a value to define the order in which
authors should be cited.

Having registered the AuthorsStringUdf with EF Core,
and ensured that the AuthorsStringUdf UDF was added
to the database as part of the migration, you can then

call the UDF within a query.

https://stackoverflow.com/a/194887/1434764

	 365Part 1b—Improving the query by adding a DbFunction

Table 13.3 compares the query produced by EF Core 2.0, which has the “N + 1” query
problem and causes multiple database accesses, against the use of a UDF to combine
the authors’ names in the database into a single string. The speed improvement shown
in the table isn’t primarily because the database is quicker at combining the authors’
names into a string, but because the number of database accesses is reduced.

Table 13.3   Comparing the performance of the standard EF Core 2.0 query with a query that uses a UDF
to return a comma-delimited list of author’s names

Parts
10 books

Time
10 books

#DB access
100 books

Time
100 books

#DB access.

1a. Returning collection of authors’
names and combining in software

48 ms 12 230 ms 102

1b. Using UDF to combine authors’
names in the database and return-
ing a single string within the main
query

34 ms 2 94 ms 2

How much faster using the UDF is 30% 60%

Here are the takeaways from this example:

¡	You sometimes have specific information that can suggest shortcuts that EF Core
can’t be expected to see. This may allow you to spot areas where you could write
better SQL than EF Core could.

¡	Try to minimize the number of database accesses, as each one adds overhead. As
you can see in this example, the extra database accesses had a significant detri-
mental effect on the performance of this query.

¡	The DbFunction feature of EF Core (see section 8.2) is a great tool for adding
your own SQL into a query. You need to add the UDF you write to the database
before it’s called, which takes a bit more work, but the gain in performance might
be worth all that effort.

13.2.1	 Looking at the updated query

Before moving on to improving the sorting and filtering, it’s instructive to see the SQL
command produced from our improved MapBookToDto method, shown in figure 13.3.
The important thing to realize is that EF Core produces all that code by translating
your LINQ commands inside the MapBookToDto method. The only place you intervene
is in writing SQL inside AuthorsStringUdf and then adding a call to that UDF in the
MapBookToDto method (see listing 13.3 for the change to MapBookToDto).

Overall, I think EF Core did a great job on the SQL. The other nice thing about
EF Core is that it produces SQL in a format and style that’s close to the way an SQL
programmer would write it (see section 15.8 on capturing that SQL via logging). This
makes it much easier to understand what the SQL is doing.

Now we’re ready to move from the query to sorting and filtering, as that brings up
bigger issues that’ll take a bit more work.

366 Chapter 13  A worked example of performance tuning

These first four
columns are
read in the
normal way.

Here’s the call
to your UDF to
combine the
authors’ names
into one string.

The Left Join
is used to find
whether a
PriceOffer is
linked to
this book.

EF Core generates
the SQL to work
out the price, and
is efficient.

This counts the
number of reviews
for this book.

And this calculates
the average of all
the votes in the
book’s reviews.

SELECT [b].[BookId], [b].[Title],
[b].[Price], [b].[PublishedOn],
CASE
 WHEN [p.Promotion].[PriceOffereId] IS NULL
 THEN [b].[Price] ELSE [p.Promotion].[NewPrice]
END AS [ActualPrice],
[p.Promotion].[PromotionalText] AS [PromotionPromotionalText],
[dbo].AuthorsStringUdf([b].[BookId]) AS [AuthorsOrdered],
(
 SELECT COUNT(*)
 FROM [Review] AS [r]
 WHERE [b].[BookId] = [r].[BookId]
) AS [ReviewsCount],
(
 SELECT AVG(CAST([y].[NumStars] AS float))
 FROM [Review] AS [y]
 WHERE [b].[BookId] = [y].[BookId]
) AS [ReviewsAverafeVotes]
FROM [Books] AS [b]
LEFT JOIN [PriceOffers] AS [p.Promotion]
 ON [b].[BookId] = [p.Promotion].[BookId]

Figure 13.3   As a result of applying your two performance improvements, EF Core now produces a main query that
returns all the book information in one go. EF Core produces 90% of the SQL code from your LINQ query. You have to
improve only one area by using a UDF to concatenate the authors’ names so that string can be returned in this one query.

13.2.2	 Ensuring that the query sorting and filtering are performing well

Right from the start, I designed the book query’s sort-and-filter feature to contain
different levels of difficulty, because I knew I wanted to cover performance tuning in
detail. Sorting and filtering a few books is no challenge and doesn’t represent real-
world problems, so for this chapter you’ll build a tool to generate any amount of book
test data. That way, I can show you where performance starts to drop and what you
can do about it. I recommend anyone who wants to performance-tune to get a known,
large data set to help with performance testing.

For this section, you’ll use 100,000 books as your testing environment. You’ll also
ensure that the data has a range of associated data; for instance, you’ll produce books
with a set of reviews ranging from 0 to 12 reviews. Table 13.4 shows the number of rows
for each table in the database.

NOTE   I like my test data to look real, so I’ve recycled a set of about 400 book
titles, authors, and publication dates taken from Manning’s book site. I find
that using test data that looks like real data makes the testing more focused on
the performance issues.

Table 13.4 The test data used for running the sorting and filtering tests

Table names -> Books Review BookAuthor Authors PriceOffers

Number of rows 100,000 549,984 188,235 580 14,286

	 367Part 1b—Improving the query by adding a DbFunction

You’ll then create a series of sorting/filtering tests, starting with simple queries and
then increasing in difficulty. These provide a good platform to test the performance of
the book list query. Here are your four tests:

¡	Easy (default sort/page) —For paging to work, you need to sort on something, so
you use the primary key, which has an index.

¡	Moderate (sort on PublishedOn) —You add an index to this property, but by default
it wouldn’t have an index. You want to see the effect on the sorting performance
of adding an index to this property.

¡	Hard (sort by average votes) —The average votes value is dynamically computed by
averaging all the votes from all the book’s reviews. There are over a half-million
reviews to consider, so that’s a challenge.

¡	Double hard (filter by average votes, sort by price)—This is a double whammy. Both the
price and the average votes are dynamically computed, so it’s interesting to see
what happens here.

You’ll also test with a page size of 10 books and 100 books to see whether that affects
the sorting/filtering performance, with the results shown in table 13.5.

Table 13.5   The results of four sorting/filtering tests with both a 10 and 100 on a database containing
100,000 books and associated entities for the part 1b version of the query

Test scenario 10 books 100 books Comment

Easy—default sort/page 30 ms 80 ms

Moderate—sort on
PublishedOn

ix = 30 ms

no ix = 95 ms

ix = 80 ms

no ix = 150 ms

You show the figures with an
index (ix = NN ms) and with-
out an index (no ix = NN ms).

Hard—sort by average votes 500 ms 530 ms Long, but it has to process over
a half-million reviews to do that.

Double hard—filter by average
votes (four or more), sort by
price

440 ms 490 ms More work, but fewer books to
sort. If you filter on votes 1 or
more, it goes to 1.3 seconds!

The first two timings, especially with the index on the PublishedOn column, are accept-
able, but the other two are a little longer than you’d like.

Personally, I'm impressed that the sort on the average votes is as fast as it is, because it
had to process over a half-million reviews to do that. For your application, this may well
be good enough performance, in which case you can stop. I’m sure you have plenty of
other things to do.

But in this case, I’ve deemed that 500 ms is slow, as is the “filter by votes, sort by price”
case, so you need to do something about these. You can’t add indexes because the val-
ues are dynamically calculated, and there isn’t a simple change to the SQL that will
help. But I do have a plan, which I describe in part 3 of this chapter.

368 Chapter 13  A worked example of performance tuning

Looking at the SQL code, you can see places to improve it. For example, EF Core
doesn’t use the average votes calculated in the SELECT query in the sort or filter, but
EF Core repeats the calculation again for the sort (see an example of this problem in
section 12.5.6). This is a small thing, but in part 2 of this chapter, which is on replacing
the EF Core queries with SQL queries, you’ll correct that, and you can see whether the
extra development effort is worth the performance gain.

Here are the takeaways from this section:

¡	Get the query for a single instance performing well before worrying about anything else.
I’m glad I persevered and got the average votes to run on the database in part 1a;
just think how long a sort on the average votes of 100,000 books would take if the
average was being executed in software!

¡	Take the time to write code to generate large, deterministic datasets for performance tun-
ing—it will pay off in the long run. Also, producing test data that looks real helps
make the testing more appropriate, and it helps if you’re demonstrating perfor-
mance to the customer.

¡	Don’t forget to apply an index to a property that you’re going to do lots of sorts or filtering on
(see section 12.5.8). But be warned: indexes increase the time it takes to insert or
update an entity.

13.3	 Part 2—Converting EF Core commands to SQL queries
As a developer of database access code, your “get out of jail free card” is to drop down
into SQL to get around anything that EF Core can’t do or doesn’t do well. I ended the
last section saying there’s one place you could improve the SQL that EF Core produces
from the LINQ, so let’s see if hand-tuning the SQL helps. To help with this, you’re
going to use a package called Dapper.

13.3.1	 Introducing Dapper

Dapper (https://github.com/StackExchange/Dapper) is a NuGet package, available
on .NET and .NET Core, that executes SQL code and then copies the results back
to .NET classes. It uses ADO.NET underneath, so it can work with any databases that
ADO.NET supports, such as SQL Server, SQLite, Oracle, MySQL, PostgreSQL, and
others. It’s well-known and has been downloaded over a million times.

Getting Dapper to work with EF Core is easy, because Dapper matches database col-
umns to the names of properties in the same way as EF Core’s By Convention configu-
ration. Also, EF Core can provide the correct type of database connection that Dapper
needs via its Database.GetDbConnection method. Here’s an example of using Dapper
to read all the rows in the Books table into a collection of Book entity classes. The Dap-
per part is in bold.

https://github.com/StackExchange/Dapper

	 369Part 2—Converting EF Core commands to SQL queries

Listing 13.4   Using Dapper with EF Core to read the Books table

var books = context.Database
 .GetDbConnection()
 .Query<Book>("SELECT * FROM Books");

Although you could do the same thing with EF Core’s FromSql method (see section 9.5.1),
the advantage of Dapper is that it’ll work with any class, whereas FromSql maps only
to an entity class. You can use Dapper with your BooksListDto class, but you can’t use
FromSql to do that.

NOTE   A lot of people, including me, have been asking for “Support for ad hoc
mapping of arbitrary types” (issue #1862 in the EF Core GitHub). This will
come in the form of query types in EF Core 2.1 (see appendix B), but Dapper
also fulfills that role admirably.

What Dapper doesn’t do is handle any of the relationships that you set up in EF Core
(the navigational properties, such as the Reviews property in the Book entity class).
Dapper executes SQL commands—it’s up to you to handle relationships at the SQL
level by returning primary keys and setting foreign keys.

This means Dapper is great for replacing Select-type EF Core queries, such as the
book list you’re trying to performance-tune. But using Dapper to write out a new Book
entity with its Reviews, BookAuthor, Author, and PriceOffer entities would require a
lot more code than EF Core would.

Thankfully, it’s often the Select queries you want to improve, so let’s see if you can
make the book query any faster by using your hand-tuned SQL, executed by Dapper.

13.3.2	 Rewriting MapBookToDto and associated EF queries using Dapper

The book list query implemented in chapter 2 is split into four separate query objects:
MapBookToDto, OrderBooksBy, FilterBooksBy, and a generic paging method. That
means each part is easy to understand and can be separately tested. Duplicating this
query in Dapper requires you to sacrifice the elegance of query objects and move to a
design that combines snippets of SQL to create the query. But sometimes that’s what
you need to do to squeeze out the best performance. Figure 13.4 shows how the Dap-
per version of the book list query dynamically builds the SQL command.

Use the application’s DbContext
to run the Dapper query.

You need to get a DbConnection for EF Core, as
that’s what Dapper needs to access the database.

The Dapper call executes the SQL code
provided in the first parameter, and
Dapper then maps the results to the class
type you supplied, in this case, Book.

370 Chapter 13  A worked example of performance tuning

ORDER BY[b].[BookId] DESCAdd SELECT [b].[BookId]...

Add paging

Add SELECT COUNT(*)...

Add AND([b].[SoftDeleted]=0)

ORDER BY[ReviewsAverageVotes]...

ORDER BY[b].[PublishedOn] DESC

ORDER BY[ActualPrice]

ORDER BY[ActualPrice] DESC

What sort?Add sort?
Yes

Add WHERE(SELECT AVG...

Add WHERE(DATEPART(year
What filter?

Building an SQL query from its parts: filter, count/select, sort, and paging

Add filter?
Yes

Yes
EXIT!

EXIT!

Select or Count?

Figure 13.4   The Dapper code consists of a series of string concatenations to produce the final
SQL query. It’s not as elegant as the EF Core version, with its four query objects, but when you’re
performance tuning, you often must accept some loss of “cleanness” from your original code to
achieve the performance you need.

Listing 13.5 shows the method called BookListQuery that’ll execute the book list query
by using the sort, filter, and paging options the user has requested. The listing also
shows the BuildQueryString that does the string concatenations shown in figure 13.4.
To save space, I’ve left out all the rest of the code for creating the SQL. You can find the
full code on GitHub at http://mng.bz/z1gE.

Listing 13.5   Top-level methods for building and executing the book list query

public static IEnumerable<BookListDto>
 BookListQuery(this EfCoreContext context,
 SortFilterPageOptions options)
{
 var command = BuildQueryString(options, false);
 using(new LogDapperCommand(command, context))
 {

A Dapper query returns an IEnumerable<T>
result. By default, it reads all the rows in one go,

but you can change Dapper’s buffered options.

Passes in the application’s DbContext, as you’re
assuming most of the database accesses will be
done via EF Core

Contains the settings of the sort,
filter, page controls set by the user.

Calls the method to build the correct
query string based on the user options

Just some code to capture the
SQL command and how long it
took to execute and log it

	 371Part 2—Converting EF Core commands to SQL queries

 return context.Database.GetDbConnection()
 .Query<BookListDto>(command, new
 {
 pageSize = options.PageSize,
 skipRows = options.PageSize
 * (options.PageNum - 1),
 filterVal = options.FilterValue
 });
 }
}

private static string BuildQueryString
 (SortFilterPageOptions options, bool justCount)
{
 var selectOptTop = FormSelectPart(options, justCount);

 var filter = FormFilter(options);
 if (justCount)
 return selectOptTop + filter;

 var sort = FormSort(options);
 var optOffset = FormOffsetEnd(options);

 return selectOptTop + filter
 + sort + optOffset + "\n";
}

This might seem like a lot of work, but because you have access to the SQL that EF Core
produces, which is already pretty good, it doesn’t take too long. It took me less than a
day to add Dapper, write the Dapper version of the book query, write tests, and convert
the ASP.NET application to use the Dapper version.

You make two changes to the SQL command that Dapper uses from the SQL that
EF Core has produced for the book list query:

¡	The initial count of the books includes a LEFT JOIN on the PriceOffer table,
which you know it doesn’t need, so you remove it. It turns out that makes no dif-
ference; the execution plan is the same for either form.

¡	You know from the tests that EF Core repeats (at the time of this writing) the
calculation of a value, such as the average votes, in the ORDER BY part of the SQL.
You know that in SQL Server you can refer to a calculated column in ORDER BY
(but not in WHERE), so you alter the SQL to do that.

Gets the type of connection that Dapper
needs from the application’s DbContext

Takes the SQL command string and an
anonymous class with the variable data.

Combines the parts of the SQL query. Takes in the
sort, filter, page options and a boolean if the query

is just counting the number of rows.

Forms the Select part: if it’s just for counting, it
returns “SELECT COUNT(*) FROM [Books] AS b”;
otherwise, it includes all the columns, calculated
values, and so on.

Builds the filter, starting with “WHERE
([b].[SoftDeleted] = 0)” and filling in the
rest depending on the options

If it’s only a count, you return the SELECT
and WHERE parts, because paging needs
to total number of rows available.

Adds a sort of the form “ORDER BY [b].
[PublishedOn] DESC” or similar

For paging, add an OFFSET value.

Returns the complete SQL command

372 Chapter 13  A worked example of performance tuning

Having rerun the four tests in section 13.2.1, the only changes are on the sort of your
average votes. Table 13.6 compares your part 1b EF Core query with your part 2,
improved SQL version, with the change in sort by average votes in bold.

Table 13.6   The results of the four sorting/filtering tests on a database containing 100,000 books and
associated entities

Test scenario Part 1b—EF Core Part 2—SQL Comment

Easy—default sort/page 10 = 30 ms

100 = 80 ms

10 = 30 ms

100 = 85 ms

No real change, within
normal variations

Moderate—sort on
PublishedOn

10 = 30 ms

100 = 80 ms

10 = 30 ms

100 = 90 ms

No real change, within
normal variations

Hard—sort by average votes 10 = 500 ms

100 = 530 ms

10 = 325 ms

100 = 390 ms

Improved SQL is about
40% faster than EF Core

Double hard—filter by average
votes (four or more), sort by price

10 = 440 ms

100 = 490 ms

10 = 455 ms

100 = 520 ms

No real change, within
normal variations

NOTE   I checked the execution plans in Microsoft’s SQL Server Management
Studio for the sort on price in EF Core’s SQL and this simplified SQL in Dapper.
This confirmed that both versions produce identical execution plans. The only
improvement from referencing a calculated value is in the sort on average votes.

I find these results interesting, as the Dapper GitHub site states that it’s ten times faster or
more than EF (most likely EF6.x), which didn’t show up in these results. I tried a simple
“read one book row” test, and yes, in that case Dapper is about seven times faster than EF
Core. That makes sense, because EF Core has several things to do on loading, including
relational fix up, whereas Dapper only executes the SQL. But when it comes to large or
complex queries for which the database execution is the limiting factor, the performance
depends on the quality of the SQL produced, and not the software-side of the library.

Small accesses don’t normally need performance tuning, because they’re quick any-
way. So, the question is, “Was all that effort to swap to SQL worth it?” Before you decide,
read part 3, where you’ll try another approach that takes more work but improves per-
formance much more than the hand-tuned SQL does.

Here are the takeaways from this section:

¡	It’s the SQL translation that matters. If something is slow, have a look at the SQL
found in the logs.

¡	Swapping to Dapper isn’t hard, especially if you capture the SQL that EF Core
produces and use it as a template for your SQL. If you see a query in which EF
Core is producing suboptimal SQL code, and you can produce better SQL, then
consider swapping that query over to Dapper. Dapper takes less compute time to
run the query, but this gain is very minor once the SQL is longer than a few milli-
seconds. It’s only worth swapping to Dapper if you have some SQL that is better
than the SQL that EF Core produces.

	 373Part 3—Modifying the database to increase performance

13.4	 Part 3—Modifying the database to increase performance
As you’ve seen, if you can add an SQL index to a property, as you did with the
PublishedOn property, then any sort or filter is fast. The problem is, the average votes
and the price both need to be calculated on the fly, so they can’t have an index, which
means your application’s performance suffers. This section shows you a way to precal-
culate these values so an index can be added. Overall, the changes in part 3 provide
a significant boost in performance, but they also come with significant issues that you
need to solve. Let me explain.

A well-designed database has only one copy of a piece of data. Having two copies
could mean that those pieces of data can get out of step. This is why your default query
calculates the average votes every time, as someone might have just added a new review
to a book and so changed its average votes value. I’m sure you’ve heard the software
term caching, in which a calculation that takes a long time is calculated once, and used
again and again. Well, you want to cache some data in your database, but the problem
is, what happens when your cached value gets out-of-date?

The good news is, EF Core has excellent tools to help you keep a cached value in the
database up-to-date. The bad news is, doing this requires extra development work, and
you must think carefully to make sure the cache doesn’t get out of step with the data-
base’s calculated value. This extra work and complexity is the price you pay if you want
to improve your application’s intrinsic performance.

In the rest of part 3, you’ll cache three precalculated values by using three tech-
niques, each tuned to the specifics of the cached value(s). Here are the ways you’ll
create cached values:

¡	Adding ActualPrice and OrgPrice properties. You change the way a promotion is
added to the book and fold the PriceOffer entity class into the Book entity class.
See section 13.4.1.

¡	Adding AverageVotes and ReviewsCount properties. You still keep the Review entity
class, but you ensure that reviews can be added/removed only via the Book entity
class. This allows you to calculate the average votes and the number of votes
whenever the book’s reviews change. See section 13.4.2.

¡	Adding an AuthorsString property. You move the adding of authors into the Book
entity class’s constructor so that you can precalculate the comma-delimited
authors string. See section 13.4.3.

13.4.1	 Creating an ActualPrice property—changing the promotion process

In parts 1a, 1b, and 2, the price of a book relies on whether a PriceOffer is linked to
a book: if a PriceOffer is present, the NewPrice property in the PriceOffer overrides
the Price property in the Book entity class. The nice feature of this approach is that
these actions are transparent: you add/remove a PriceOffer to a book to add/remove
a price promotion. See figure 13.5.

374 Chapter 13  A worked example of performance tuning

Books

ActualPrice = book.Promotion == null
 ? book.Price
 : p.Promotion.NewPrice;

The actual price is currently calculated
using the following code

BookId

Title
Description
... etc.

PK

PriceOffers

PriceOfferId

NewPrice
PromotionalText
BookId

PK

FK1

Figure 13.5   The Price property in the Book can be overridden if a PriceOffer is linked to a
Book. In part 3, you’ll remove the PriceOffer entity from the database and add three properties to
the Book entity class—OrgPrice, ActualPrice, and PromotionalText—to take over from the
PriceOffer entity.

But to improve performance, you want to do away with the PriceOffer entity and
move the data normally held in the PriceOffer entity class into the Book entity class.
This requires changing the form that the promotion takes, and you’d use three prop-
erties in the Book entity class:

¡	OrgPrice—The recommended retail price of the book, which is used if there
isn’t a promotion on the book.

¡	ActualPrice—Set to either the OrgPrice or a promotional price.
¡	PromotionalText—Holds the text that should be shown when a promotional

price is in place, for example, “50% off today.”

This change is fine, but for me it makes the process of adding or removing a price
promotion less obvious. For that reason, you’ll create an AddPromotion method and
RemovePromotion method to the Book entity class that adds or removes a price promo-
tion, respectively. This makes it crystal clear what’s going on and leaves the logic inside
the Book entity.

In addition, you set the OrgPrice, ActualPrice, and PromotionalText property
setters to private. This ensures that the only way the price can be changed is via the
AddPromotion and RemovePromotion methods.

Listing 13.6   The changes to the Book entity class to handle price promotions

public class Book
{
 //… other properties removed for clarity

 public decimal OrgPrice { get; private set; }
 public decimal ActualPrice { get; private set; }
 [MaxLength(PromotionalTextLength)]
 public string PromotionalText { get; private set; }

 //This ctor is needed for EF Core
 private Book()
 {
 }

 public Book(//… other params removed for clarity

The properties that control the price all
have a private setter so that only the
Book entity can change their values.

The only public way to create a Book
entity is now via this constructor.

	 375Part 3—Modifying the database to increase performance

 decimal orgPrice)
 {
 //… other settings removed for clarity
 OrgPrice = orgPrice;
 ActualPrice = OrgPrice;

 }

 public string AddPromotion(decimal newPrice,
 string promotionalText)
 {
 if (promotionalText == null)
 return
 "You must provide text for the promotion";

 ActualPrice = newPrice;
 PromotionalText = promotionalText;

 return null;
 }

 public void RemovePromotion()
 {
 ActualPrice = OrgPrice;
 PromotionalText = null;
 }

As you can see, this change requires you to “lock down” more of the Book entity: you
remove features, such as being able to change the price via its setter, so that you must use
the new, prescribed path (you saw this in section 10.4 which covered DDD entity classes).
In this case, you provide clearly named methods for handling the adding and removing
of a price promotion, and change the access modifiers on the price properties so that
only the designated methods can change the promotion state.

This “locking down” is important in multiperson projects, because it ensures that
another developer doesn’t, inadvertently, bypass your approach and therefore intro-
duce a bug. I’d lock down my design even if I were the only developer on this project,
because it’s so easy for me to forget what I did if I come back a year later and need to add
a new feature in the same area.

The result of all this is that one property, ActualPrice, holds the price at which the
customers can buy the book. You can add an index to this column, so the sort on price
will be much faster. The “sort on price” is now the same speed as the sort on the book’s
published date. (You can see the full results at the end of part 3.)

Sets the OrgPrice with the
recommended retail price
of the book

Sets the ActualPrice to the OrgPrice
because a new book starts off without
any promotion

Adds a price promotion. Returns
null if successful, or an error
message if there’s an error.

You use the fact that the
PromotionalText property
isn’t null to tell you if there’s
a promotion on this book.
Therefore, it must not be null
when adding a promotion.

Replaces the current ActualPrice
with the new, promotional price

Sets the PromotionalText property, which then tells
the rest of the system that a promotion is in place

Returns null to say that it was successful

Removes a price promotion

Sets the book’s ActualPrice to the recommended
retail price held in the OrgPrice property

Nulls the PromotionalText, which tells
the rest of the system that there isn’t a
price promotion on this book

376 Chapter 13  A worked example of performance tuning

13.4.2	 Caching the book review values, and not letting them get out-of-date

In parts 1a, 1b, and 2, the average votes value was dynamically calculated by looking at
which Review entities were linked to each Book entity. This works fine but requires the
SQL server to process over a half-million Reviews rows to sort or filter on the average
votes value. In this section, you’ll add two properties to the Book entity class:

¡	AverageVotes—Holds the average votes of all the Reviews linked to this Book
¡	ReviewsCount—Holds the number of Reviews linked to this Book

As with the price promotion example just covered, you add two new methods, called
AddReview and RemoveReview, to the Book entity to add/remove a review, respectively,
on the Book. You still need to keep the Review entities so that users can look at the
Review’s comments on a book. But that makes this caching implementation much
more complicated than the price promotion example, because you’ll have two versions
of the “truth”: what your cached values say, and what the actual Review rows in the data-
base say. You must take extra steps to make sure your cached values stay up-to-date. The
first part is to “lock down” the adding, removing, or changing of a review. The two parts
of the problem are as follows:

1	 You still need the Reviews property, which sets up the one-to-many relationship
between a Book entity and its Review entities. But you must ensure that Review
entities can’t be added or removed from the Reviews property; all additions or
removals must go through the AddReview and RemoveReview methods.
You need to lock down the Review entity class by changing its properties to have
private setters. You also stop any methods outside the DataLayer from being able
to create a Review entity instance by adding an internal access modifier to its
constructors.

2	 Because the AverageVotes and ReviewsCount properties are cached values, the
possibility exists of a concurrent addition or removal of a review, which could
invalidate the cached values.

The next two subsections cover each of these in turn.

NOTE   To save time, I haven’t implemented the capability to see the individual
reviews on a book, nor have I given a user the ability to edit their review in
the book app. But my performance-tuning code does handle those features if
they’re ever added.

Ensuring add/remove of Reviews to a book must go through your access methods

EF Core has a great feature called backing fields (see section 6.15), which allows you to
better control access to an entity’s property. In this case, you want to control access to
the Reviews navigational property and, because it’s a collection, you want to remove the
capability to add or remove instances from the collection. This you can do by using the
IEnumerable<Review> type for your Reviews property, with a backing field behind it.

	 377Part 3—Modifying the database to increase performance

Figure 13.6 shows the various parts in the Book entity class and the Review entity class,
with the AddReview method that does all the work.

You “lock down” the Reviews collection by making the
property of type IEnumerable<T>. You then map that
property to the real Reviews collection, which is held
in a private EF Core backing field.

The Review class is locked down.
The properties have private
setters, and the constructor has
an internal access modifier so
only the DataLayer can create it.

2. The AddReview method adds the new
 Review to the backing field collection.

3. The AddReview method then
 updates the cache properties’
 AverageVotes and ReviewsCount
 whenever a new Review is added
 to the Book.

1. The Review method uses the
 constructor to create a
 new Review.

Private readonly List<Review>
 _reviews = new List<Review>();

public double? AverageVotes
 { get; private set; }
public IEnumerable<Review> =>
 _reviews.ToList();
//… other code left out

public void AddReview(DbContext context,
 int numStars, string comment,
 string voterName)
{
 var review = new
 Review(numStars, comment, voterName);

 Context.Entry(this)
 .Collection(c => c.Reviews).Load();
 _reviews.Add(review);

 AverageVotes = _reviews
 .Average(x => x.NumStars);
 ReviewsCount = _reviews.Count;
}

Book class properties/fields

Public int NumStars
 { get; private set; }
//… etc.

internal Review(
 int numStars,
 string comment,
 string voterName)
{
 //set properties…
}

Review class properties/ctor

Figure 13.6   The Book entity class (top left) and the Review entity class (top right) are “locked down.”
The properties that the class doesn’t want anyone else to change have private setters, and the Reviews
navigational collection is of type IEnumerable<T> to stop adding or removing reviews from the collection. The
AddReview method (bottom) in the Book entity class is the only way a developer can add a new Review. When a
new Review is added, the method also recalculates the cache properties, AverageVotes and ReviewsCount.

Listing 13.7 shows the Book entity with the various changes:

¡	You change the way to handle reviews, with a backing field to hold the collection
and the public Reviews property now of type IEnumerable<Review>.

¡	You add two properties, AverageVotes and ReviewCount, to hold the cached values.
Both properties have private setters to stop them from being changed accidentally.

¡	You add two methods, AddReview and RemoveReview, that update the backing
field _reviews and at the same time recalculate the AverageVotes and Review-
Count cache properties.

378 Chapter 13  A worked example of performance tuning

Listing 13.7   The Book entity class focusing on the new Review-handling code

public class Book
{
 private readonly List<Review> _reviews
 = new List<Review>();

 //… other properties removed for clarity
 [ConcurrencyCheck]
 public int ReviewsCount { get; private set; }
 [ConcurrencyCheck]
 public double? AverageVotes { get; private set; }

 public IEnumerable<Review> Reviews =>
 _reviews.ToList();

 //… other ctors and methods removed for clarity

 public void AddReview(DbContext context,
 int numStars, string comment,
 string voterName)
 {
 context.Entry(this)
 .Collection(c => c.Reviews).Load();
 var review = new
 Review(numStars, comment, voterName);
 _reviews.Add(review);
 AverageVotes = _reviews
 .Average(x => x.NumStars);
 ReviewsCount = _reviews.Count;
 }

 public void RemoveReview(DbContext context,
 Review review)
 {
 context.Entry(this)
 .Collection(c => c.Reviews).Load();

 _reviews.Remove(review);
 AverageVotes = _reviews.Any()
 ? _reviews.Average(x => x.NumStars)

Adds a backing field, which is a list. You then tell
EF Core to use this for all reads and writes.

Adds a [ConcurrencyCheck]
attribute to this property

Holds a precalculated average of the
reviews and the number of reviews

for this book. It’s read-only so it
can’t be changed outside this class.

Returns a copy of the reviews that were loaded.
By taking a copy, no one can alter the list by
casting IEnumerable<T> to List<T>.

Adds a method to allow a new review to
be added to the _reviews collection

Makes sure the backing field,
_reviews, has the reviews for
this book loaded

Creates a review using the data given and then adds
the new review to the backing field _reviews. This
updates the database on the call to SaveChanges.

Recalculates the average votes and
number of reviews for this book

Adds a method to
remove a review from
the _reviews collection

Makes sure the backing field, _reviews,
has the reviews for this book loaded

Removes the review from
the list. This updates the
database on the call to
SaveChanges

If there are reviews, you recalculate
the average votes for the book

	 379Part 3—Modifying the database to increase performance

 : (double?)null;
 ReviewsCount = _reviews.Count;
 }
}

To ensure that the backing field, _reviews, is updated when the reviews are loaded,
you need to add some configuration, as shown here (the configuration syntax may
change in EF Core 2.1):

public class BookConfig : IEntityTypeConfiguration<Book>
{
 public void Configure
 (EntityTypeBuilder<Book> entity)
 {
		
 //… other configrations removed for clarity
 entity.Metadata
 .FindNavigation(nameof(Book.Reviews))
 .SetPropertyAccessMode
 (PropertyAccessMode.Field);
 }
}

The final stage is locking down the Review entity class so no one outside the DataLayer
can create or change a review. This listing shows the Review entity class with private
setters, and all constructors having an internal access modifier.

Listing 13.8   Review class showing private setters and internal constructors

public class Review
{
 public const int NameLength = 100;

 public int ReviewId { get; private set; }
 [MaxLength(NameLength)]
 Public string VoterName { get; private set; }
 Public int NumStars { get; private set; }
 Public string Comment { get; private set; }

 //---
 //Relationships

 public int BookId { get; private set; }

 private Review() { }

 internal Review(int numStars,
 string comment, string voterName)
 {
 NumStars = numStars;
 Comment = comment;
 VoterName = voterName;
 }
}

If there are no reviews,
you set the value to null

Recalculates the number
of reviews in this book

All the Review class’s properties have
a private setter to stop anyone from

altering the Review, therefore
invalidating the cached values.

You must create a parameterless
constructor for EF Core. You add a
private access modifier to it so only
EF Core can create a Review using
this constructor.

380 Chapter 13  A worked example of performance tuning

The result of all this is that the only way to add, update, or remove a Review entity from a
Book entity is via AddReview and RemoveReview. The cached values can’t become out-of-
date by a developer directly manipulating the Reviews property or a Review entity instance.

Ensuring that a concurrent update of a book’s reviews doesn’t invalidate the cached values
As I stated before, concurrent adding or removing of a review could invalidate the
cached values. That’s because a small window of time exists between the loading of
the current reviews linked to a book and the saving of the new review collection and
the associated cached values. In that time window, another Review could be added/
removed from the same book by another user, which would make the cached values
out of step with the database. The solution to this problem is to use EF Core’s concur-
rency conflict feature (see section 8.7) when saving a Review addition/removal.

Listing 13.9 shows the modified AddReviewToBook method in the AddReviewService
class, which the ASP.NET Core’s AddBookReview action uses to allow a user to add a
review to a book. At the end of this listing, you’ll see the important call to the specialized
SaveChangesWithReviewCheck method (in bold) that ensures the cached values are
correct even if a simultaneous addition/removal occurs of another Review on this Book.

Listing 13.9   Calling SaveChangesWithReviewCheck after a review update

public class AddReviewService : IAddReviewService
{
 private readonly EfCoreContext _context;

 public AddReviewService(EfCoreContext context)
 {
 _context = context;
 }

 //… other methods removed for clarity

 public void AddReviewToBook(int bookId,
 int numStars, string comment, string voterName)
 {
 var book = _context.Books.Find(bookId);
 book.AddReview(_context,
 numStars, comment, voterName);
 _context.SaveChangesWithReviewCheck();
 }
}

Listing 13.10 shows the SaveChangesWithReviewCheck method, which executes the
SaveChanges method and catches situations in which another concurrent AddReview
or RemoveReview has changed the cached values. In this case, the method recalculates
both cached values and retries SaveChanges (see section 8.7 for more detail on how
concurrency handling is done).

ASP.NET Core action calls this method
to add a new review to a book

Finds the book that the user
wants to add a review to

Calls the AddReview method in the Book
instance loaded

Calls a special version of SaveChanges,
which checks if the AverageVotes or
ReviewsCounts are different from the
values it obtained when it loaded the
Book entity

	 381Part 3—Modifying the database to increase performance

Listing 13.10   SaveChangesWithReviewCheck method to fix invalidated cached
values

public static class SaveChangesBookFixer
{
 public static int SaveChangesWithReviewCheck
 (this EfCoreContext context)
 {
 try
 {
 return context.SaveChanges();
 }
 catch (DbUpdateConcurrencyException ex)
 {
 var entityToFix = ex.Entries
 .SingleOrDefault(x => x.Entity is Book);
 if (entityToFix == null)
 throw;

 if (FixReviewCachedValues(context, entityToFix))
 return context.SaveChangesWithReviewCheck ();
 }
 return 0;
 }

 private static bool FixReviewCachedValues(
 EfCoreContext context,
 EntityEntry entry)
 {
 var book = (Book) entry.Entity;

 var actualReviews = book.Reviews
 .Where(x =>
 context.Entry(x).State == EntityState.Added)
 .Union(context.Set<Review>().AsNoTracking()
 .Where(x => x.BookId == book.BookId))
 .ToList();

 var databaseEntity =
 context.Books.AsNoTracking()
 .SingleOrDefault(p => p.BookId == book.BookId);

Method automatically handles
any concurrency issues.

Calls the normal SaveChanges method within a
try/catch block. If it works, it returns. If there’s a
DbUpdateConcurrencyException, it’ll enter the
“catch” part and execute code to fix the problem.

Handles only Book entities,
so you filter those out.

You expect only one Book concurrency
issue, so you check that’s the case.

If the entity isn’t a book, you rethrow the
exception because you can’t handle it.

Calls your private method to handle this
book concurrency issue. If it returns true, it

has updated the book entity.

If someone deletes the book you were
updating, you leave that as is and return
0 to say nothing was updated.

You cast the entity to a book so that you
can access the properties you know.

Gets the combination of the reviews in the database
and any new reviews being added. That’s what the
cached values must match.

Need to load the current values for the book entity
in the database. You need that later to stop EF Core

from seeing a concurrency error again.

382 Chapter 13  A worked example of performance tuning

 if (databaseEntity == null)
 return false;

 var databaseEntry = context.Entry(databaseEntity);

 //We need to fix the ReviewCount and the AverageReview
 var countProp = entry.Property(nameof(Book.ReviewsCount));
 var averageProp = entry.Property(nameof(Book.AverageVotes));

 var reviewCount = actualReviews.Count;
 countProp.CurrentValue = reviewCount;
 countProp.OriginalValue =
 databaseEntry.Property(nameof(Book.ReviewsCount))
 .CurrentValue;
 averageProp.CurrentValue = reviewCount > 0
 ? actualReviews.Average(x => (double?) x.NumStars)
 : null;

 averageProp.OriginalValue =
 databaseEntry.Property(nameof(Book.AverageVotes))
 .CurrentValue;

 return true;
 }
}

Yes, this is complex, but that’s because you need to handle all combinations of adding/
removing in memory and in the database. The result is the SaveChangesWithReview-
Check method will automatically correct the AverageVotes and ReviewsCount cache
properties if a concurrent update makes them incorrect.

The other benefit of using EF Core’s ConcurrencyCheck on the two cache proper-
ties is, if you forget to use the specialized SaveChangesWithReviewCheck method and
use the normal SaveChanges, EF Core will throw a DbUpdateConcurrencyException
instead of letting the cached values be incorrectly written out.

If there’s no book in the
database, it’s deleted.

Gets the EntityEntry class of the
databaseEntity, because you need to
access its currentValues

Gets references to the PropertyEntry for the
ReviewsCount and AverageVotes in the Book entity.

Recalculates the reviews count by using
the actual number of reviews

Updates the
ReviewsCount
property to this
recalculated value

Sets the OriginalValue of the ReviewsCount property
to the last read value. This stops EF Core from
throwing a DbUpdateConcurrencyException again.

Sets the AverageVotes value to the
recalculated average votes value

Sets the OriginalValue of the AverageVotes property
to the last read value. This stops EF Core from

throwing a DbUpdateConcurrencyException again.

Returns true to say that SaveChanges
needs to be called again to update the
Book entity with the corrected data

	 383Part 3—Modifying the database to increase performance

Having done all this, you have two columns, AverageVotes and ReviewsCount, in the
Books table that you can add an index to. This makes a significant difference in the
“sort on votes” feature. Now it’s as fast as the sort on the book’s published date (full
results shown at the end of part 3).

13.4.3	 Calculating AuthorsString when a book is first created

The final cached part is precalculating the AuthorsString property instead of using
the AuthorsStringUdf UDF to build the string dynamically. This doesn’t help on
searching or sorting, but it does remove a small amount of time that AuthorsStringUdf
takes to combine the book authors’ names. This should knock off a few milliseconds in
displaying the book info.

You make a simple decision here to precalculate the comma-delimited string of author
names when the Book entity is first created and added to the database. You also make the
Author entity’s Name property have an internal setter, and the BookAuthor entity’s for-
eign keys and linking entities to have private setters. This stops the authors of a book from
being changed, and the name of an author in the Author entity from being changed.

This level of restriction may be unacceptable, but these are the sorts of decisions you
need to make. The more restricted you can be, the simpler your cached values will be to
create and maintain. As you saw with adding/removing Review entities to a Book entity,
you had to write quite a bit of code to handle all the options. In this case, you lock down
the features the application could offer to allow you to produce simpler caching. This
listing shows the modifications to the Book entity to do this.

Listing 13.11   Book entity class—calculating the AuthorsString on construction

public class Book
{
 private readonly List<BookAuthor>
 _bookAuthors = new List<BookAuthor>();

 //… other properties removed for clarity

 public string AuthorsString
 { get; private set; }

 public IEnumerable<BookAuthor>
 AuthorsLink => _bookAuthors.ToList();

 private Book () {}

 public Book(
 //… other params removed for clarity

Uses a backing field to
hold the _bookAuthors list

Holds the precalculated comma-delimited
list of authors’ names.

Access to the AuthorList is via an
IEnumerable<Author> property
so that no one can add or remove
items from the collection.

EF Core needs a parameterless constructor. You add
a private access modifier to it so only EF Core can
create a Review using this constructor.

The public Book constructor allows
other projects to create a Book.

384 Chapter 13  A worked example of performance tuning

 ICollection<Author> authors,
 string authorsString = null)
 {
 //… other setting removed for clarity

 byte order = 0;
 _bookAuthors = authors
 .Select(a => new BookAuthor(this, a, order++))
 .ToList();
 AuthorsString = authorsString ??
 string.Join(", ", authors.Select(a => a.Name));
 }
}

You can set various configuration values, but you should get the idea from listing 12.3
that you calculate the AuthorsString when the Book entity instance is first created,
and you set the access modifiers on the other involved classes, such as the Author and
BookAuthor entity classes, to restrict access outside the DataLayer.

As a result, you have the precalculated, comma-delimited string of authors’ names
stored in the AuthorsString property. Therefore, you don’t need to use the Authors
StringUdf UDF every time you display the information about a book, but you can access
the AuthorString property.

13.4.4	 Analyzing the changes—Is the performance gain worth the effort?

In subsections 13.4.1 to 13.4.3, you saw three ways of producing precalculated values
to improve performance. They took quite a bit of work, and you might ask yourself
whether the gain in performance is worth that level of effort.

Let’s start with the performance gains. Table 13.7 shows the improvements com-
pared to part 2, the improved SQL version.

Table 13.7   The timing for the four tests for part 3 (cached values) with the improvement over part 2
(improved SQL version).

Test 10 books Improvement 100 books Improvement

All books 30 ms no improvement 80 ms No improvement

Sort by publication dates 30 ms no improvement 80 ms No improvement

Sort by votes 30 ms 12 times better 80 ms 5 times better

Sort by price, filter by 4+ votes 30 ms 12 times better 80 ms 5 times better

One of the parameters is the list of authors
for the book, in the correct order.

Provides the option to provide an authorsString
rather than allowing the constructor to create it.
This allows more formatting options.

You build the _bookAuthors collection by
forming the many-to-many linking item

for each Author entity in the provided
authors parameter.

If there’s a provided authorsString
parameter, you use that …

… otherwise, you calculate the
comma-delimited string of authors

	 385Part 3—Modifying the database to increase performance

Here are some notes on performance:

¡	I tried a half-million books: the 10-book time was 85 ms, and the 100-book time
was 150 ms. For this number of books, the database server is starting to be a lim-
iting factor.

¡	In parts 1a, 1b, and 2 the “sort by price, filtered by +1 votes” timings were all over
a second in length. But this part 3 implementation still comes in at 30 ms.

¡	You took the SQL produced by EF Core in part 3 and used Dapper to execute it,
but there was no further performance improvement, so it wasn’t worth doing.

The standout improvements of part 3 are the last two items in the table (see bold
results in previous table): sort by votes and sort by price, filter by 4+ votes. These now
execute in the same time as the ordinary book display, which is ordered on the Book’s
primary key, and the sort by publication date. This makes sense, because the value it’s
sorting or filtering on is a property, and you add indexes to those properties.

This also shows that the precalculation of the AuthorsString had little or no effect.
I was initially surprised, but when I thought about it, the AuthorsString is used only in
the display of the information and not in any sort or filter.

This leads me to the following conclusions on the value of the changes:

¡	The ActualPrice change is well worth it, for performance and features.
This change improves the performance, and it improves the application struc-
ture. Before this change, you had to remember to add code to calculate the
correct price everywhere you needed it. Now you can just reference the Actual-
Price property to get the correct price for the book in question. That’s a win-win.

¡	The AverageVotes/ReviewCount changes are a lot of work but provide great
performance.
The changes to produce cached AverageVotes and ReviewCount values are com-
plex, but the sorting and filtering performance is brilliant. Although the under-
lying code is complicated, the methods AddReview and RemoveReview are easy
to understand and use. Sorting and filtering on the average votes of a book are
important features that users need, so I’d definitely do this again.

¡	The AuthorsString isn’t worth it: no performance gain, with complex rules.
To make AuthorsString easy to calculate, you apply a lot of rules, which limits
what the application can do, for no measurable gain in performance. In a real-
life application, you’d remove this change, because it reduces the inherent fea-
tures of your application. For instance, without this change, you could update
the Name property in the Author entity, and that new name would appear in all
the books that the author is involved in.

Here are the takeaways from part 3:

¡	Precalculating and caching values that the database takes a long time to calculate
has two benefits: the value is available instantly, and you can have an SQL index
added to that cached property.

386 Chapter 13  A worked example of performance tuning

¡	Using cached values is at the extreme end of the spectrum of performance tun-
ing because, if done incorrectly, it can produce hard-to-find issues and a cached
value that can become out-of-date.

¡	To stop a developer from bypassing your caching code, you must “lock down”
accesses to the cached values and the database values that are used to calculate
the cached values. Otherwise, someone (even you) might forget what you did
and write code that invalidates your caching feature.

¡	Restricting some features in your application may make building and maintain-
ing a cached value simpler. But at the same time, you need to decide whether
that’s going to be a problem later.

¡	If you can’t change the database structure to avoid concurrency issues, as you did
in the ActualPrice property (section 13.4.1), you’ll need to add concurrency
checking and fixing code, as you did in section 13.4.2.

13.5	 Comparing parts 1a, 1b, 2, and 3
In summary, you’ve taken a specific query in our book app and seen how much you
could improve it. Let’s start with an overview chart of the gains in performance. Fig-
ure 13.7 shows the performance gains over the four parts for two different, but diffi-
cult, query types: displaying 100 books, sorted on average votes; and displaying 100
books sorted on primary key.

700

1a. Straight EF Core

530 ms

390 ms

80 ms90 ms80 ms

230 ms

(ms)
Display 100 books, sort by votes

660 ms

1b. + DbFunction 2. Better SQL 3. Cached values

The four stages of improving the performance of the book list display

600

500

400

300

200

100

0

Display 100 books

The test data consists
of 100,000 books and
½ million votes.

Figure 13.7   Two of the hardest queries: the display of 100 books, sorted on votes, and the
display of 100 books. Although the Straight EF Core version looks poor compared to the
others, just remember that to sort on votes, it needs to average over a half-million votes.

This graph gives a great overview, but what it doesn’t convey is that the part 3 per-
formance improvements make all the 10-book displays, or any sort or filter, come
in at around 30 ms. Because the 10-book display is the default, the site is now really
fast. Also, the 30 ms is the time for the ASP.NET page to display, which includes other

	 387Comparing parts 1a, 1b, 2, and 3

overhead outside the database access—in fact, the database accesses are between 10 ms
and 15 ms.

Although the improvements in performance are undeniable, there are other factors
to consider:

¡	How much effort did each stage take?
¡	Were there any problems or adverse effects to the application?

Table 13.8 gives my answers to these questions.

Table 13.8 The amount of effort needed to create each stage

Part Effort Comments

1a Straight EF Core Few days Finding the correct format for the LINQ average wasn’t easy. I
had to ask the EF Core team via EF Core’s GitHub issue page.
But after I got this right, EF Core produced great SQL code.

1b + DbFunction Half day Very easy. I like the DbFunction a lot, and in this case, it made
a significant improvement to the performance.

2 Better SQL One day Fairly easy, as I copied the SQL code that EF Core produces
and tweaked the bit that my experiments said would help. But
useful only if you can come up with some better SQL; the dif-
ference in speed of Dapper over EF Core helps on only small,
quick database accesses, which you don’t need to perfor-
mance-tune anyway!

3 Cached values Three days Definitely hard work, but also a fantastic result. Other than the
cached AuthorsString (which I’d remove in a real applica-
tion), I think the performance changes to the code don’t hinder
future development of the application at all. But it does add a
lot of complexity to the application, which isn’t ideal.

Overall, I’m pleased with the process. EF Core produces great SQL code from the
get-go, but only because you made sure your LINQ queries were written in a way that’s
sympathetic to how EF Core works. The methods and approaches introduced in the
first five chapters are a good starting point. As I said in chapter 12, make sure your stan-
dard patterns for queries work well; otherwise, you’ll be building inefficiencies into
your application right from the start. Even so, you had to persevere with the LINQ
Average method to get EF Core to translate that to SQL.

But, at some point, you’ll need more performance than EF Core can give you, and
I think I’ve shown that you can do plenty of things to improve performance. Using EF
Core to develop your database access code should mean you get your application up
and working more quickly, leaving plenty of time to tune up the parts that matter in
your application.

NOTE   Section 14.2 goes to an even higher level of performance by changing
the overall architecture of the database query.

388 Chapter 13  A worked example of performance tuning

13.6	 Database scalability—what can you do to improve that?
The performance tuning covered in parts 1 to 3 is all about speed: how fast you can
return the result to the user. The other aspect is scalability: handling large numbers of
concurrent users. To end this chapter, let’s look at database scalability.

I talk about database scalability because although this book is about EF Core, the
overall scalability of a website is normally the limiting factor. That scalability is the over-
all time that the website, including the database access, takes—which is what you’ve
been measuring using Chrome. It turns out that for simple book list queries, such as
displaying 10 books, the database part isn’t the main cost. For instance, even in part 1a,
the EF Core query for 10 books takes 8 ms, and the overall time is 45 ms—this means
most of the time is spent in the ASP.NET Core application. So, the first thing to try for
better scalability is to improve ASP.NET Core’s scalability, which is easy to do by running
multiple instances of your web application.

The other thing about database scalability is, the simpler you make the database
accesses, the more concurrent accesses the database can handle. The part 3 solution, in
which the worst database access time is 15 ms, provides much better database scalability
than the other versions.

I’ve already given you suggestions in section 12.7, one of which is using async/await.
For small queries, async/await has overhead, but for queries such as the book list (which
take a long time), async/await is well worth it. I produced an async version of part 2,
which at its worst is only 5% slower than the sync version; in longer-running queries,
async/await adds less than 1% overhead. Use async/await on your big queries, because
you’ll gain scalability while the application is waiting for the database to return.

But some large applications will have high concurrent database accesses, and you
need a way out of this. The first, and easiest, approach is to pay for a more powerful
database. If that isn’t going to cut it, here are some ideas to consider:

¡	Split your data over multiple databases—sharding your data. If your data is segregated
in some way (for instance, if you have a financial application used by many small
businesses), you could spread each business’s data on a different database. This is
called sharding (see http://mng.bz/9Ck3).

¡	Split your database reads from your writes—the CQRS architecture. A Command Query
Responsibility Segregation (CQRS) architecture (see https://martinfowler.com/
bliki/CQRS.html) splits the database reads from the database writes. This allows
you to optimize your reads, and possibly use a separate database, or multiple
read-only databases, on the CQRS read side.

¡	Mixing NoSQL and SQL databases—polyglot persistence. In part 3, you started to
make the Book entity look like a complete definition of a book, like a JSON struc-
ture would hold. With a CQRS architecture, you could have used a relational
database to handle any writes, but on any write you could build a JSON version of
the book and write it to a read-side NoSQL database or multiple databases. This
might provide a higher read performance. This idea is one form of a polyglot

https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html

	 389Summary

persistence (see https://martinfowler.com/bliki/PolyglotPersistence.html). See
section 14.2, where you’ll implement a mixed SQL/NoSQL application to gain
even more performance.

Summary

¡	If you build your LINQ queries in a way that matches the EF Core approach, EF
Core will reward you by producing excellent SQL code.

¡	Check that your queries don’t produce a QueryClientEvaluationWarning warn-
ing indicating that the client vs. server evaluation feature will evaluate the values
in software. This is a sign that you have an inefficient query.

¡	You can use EF Core’s DbFunction feature to inject a piece of SQL code held in
an SQL user-defined function (UDF) into a LINQ query. This allows you to tweak
part of an EF Core query that’s run on the database server.

¡	If a database query is slow, check the SQL code that EF Core is producing. You
can obtain the SQL code by looking at the Information logged messages that EF
Core produces.

¡	If you feel you can produce better SQL for a query than EF Core is producing,
you can use EF Core 2.1’s query types in a FromSql method call, or use Dapper to
execute your SQL query.

¡	If all other performance-tuning approaches don’t provide the performance you
need, consider altering the database structure, including adding properties to
hold cached values. But be warned: you need to be careful how you do this.

For readers who are familiar with EF6:

¡	EF6.x doesn’t have EF Core’s DbFunction feature, which makes calling a UDF
so easy.

¡	EF6.x doesn’t have EF Core’s backing fields feature (and the IEnumerable<T>
navigational collection feature—see section 8.1) that allows you to stop a devel-
oper from adding/removing entries to a navigational collection.

https://martinfowler.com/bliki/PolyglotPersistence.html

390

14Different database types
and EF Core services

This chapter covers
¡	Looking at different database server types

¡	Using the CQRS architecture with EF Core

¡	Understanding how the SaveChanges method
sets keys

¡	Using EF Core’s internal services

¡	Accessing EF Core’s command-line services

This chapter starts with the differences you might encounter in the range of rela-
tional databases that EF Core supports. To bring this to life, you’ll convert our book
app from using SQL Server to the MySQL database to see what changes. I make that
application available in the Git repo branch Chapter14MySql.

You’ll then look at the Command Query Responsibility Segregation (CQRS) archi-
tecture discussed at the end of the preceding chapter (see section 13.6). We’ll spend
quite a bit of time on this, as it’s a useful architecture and its implementation high-
lights advanced features inside EF Core. You’ll also add a NoSQL database to the mix
to end up with a high-performance version of our original book-selling site applica-
tion. It might not challenge Amazon, but it’s still pretty fast for a single-instance

	 391What differences do other database server types bring?

14
ASP.NET Core application. This application is available on the book’s Git repo branch
Chapter14 as well as on a live site at http://cqrsravendb.efcoreinaction.com/.

The end of this chapter goes deeper into EF Core and looks at its internal services
and what you can do with them. The EF Core team has designed these services to allow
you to alter the way EF Core works inside. This is advanced stuff, but it’s worth knowing
about in case your project could benefit from it.

14.1	 What differences do other database server types bring?
In most of this book, you’ve used an SQL Server database, but what happens if you
want to use a different type of database server? EF Core has multiple database pro-
viders that access a range of database servers, and that list will grow over time. So, the
question is, does anything change with different database types and providers?

You’ll tackle this wide-ranging question with a worked example: you’ll convert our
book app from using an SQL Server database to a MySQL database. Typically, you don’t
change databases of an application; you just have to get your application working with
the database of your choice. But it’s instructive to see what changes when you swap data-
base types, because it gives you an idea of the sorts of issues you may encounter when
using different database types.

To make the example a bit harder, you’ll convert the performance-tuned version of
the book app (see section 13.2), which has an SQL UDF in it. That brings in the com-
plication of raw SQL code that you add to the database outside EF Core, and this does
create some issues.

I’ve chosen a MySQL database because it’s a well-known database with a commu-
nity version that’s available under the GPL license on many platforms. You can run the
application locally by downloading a MySQL server; I give full details on how to do that
next. Following that, this section covers the following topics:

¡	First steps: creating an instance of our application’s DbContext for a MySQL
database

¡	What you have to do to convert the book app from SQL Server to MySQL
¡	A general look at other database server types and the differences they may bring

How to run the MySQL version of the example book-selling site locally
If you want to run the MySQL version of the book app, you need a local MySQL data-
base server. Here are the steps you need to follow to run the Chapter14MySql branch
of the Git repo:

1	 Download a copy of the MySQL Community database server.
2	 Go to https://dev.mysql.com/downloads/ and select the MySQL Community edition.
3	 Click the MySQL Community Server and then select the correct installer for your

development system. MySQL works across many operating systems.

Note: I recommend this video showing the steps on how to download and install the com-
munity version of the MySQL database: www.youtube.com/watch?v=fwQyZz6cNGU.

http://cqrsravendb.efcoreinaction.com/
https://dev.mysql.com/downloads/
http://www.youtube.com/watch?v=fwQyZz6cNGU

392 Chapter 14  Different database types and EF Core services

4	 Install the MySQL Community database server.
I chose the custom installation, and selected the server and the MySQL Work-
bench. The Workbench is like Microsoft’s SQL Server Management Studio and
allows you to inspect the databases and then delete them when you’ve finished.

5	 Configure the community MySQL database server.
6	 After the MySQL Community server is installed, you need to configure the server.

During the configuration stage, I left all the settings at their default values. The
only specific item you need to set is a user in the MySQL User Account section, with
a username of mysqladmin and a password of mysqladmin.

7	 I use mysqladmin for the username and password in the connection strings already
in the Chapter14MySql application. If you want to use a different username/pass-
word, you need to update the connection strings in the appsetting.json file.

After this, you can run the Chapter14MySql application via Visual Studio 2017 (press F5),
or VS Code (Debug > Net Core launch (web)), or type dotnet run on a console terminal
in the EfCoreInAction project directory.

I use the MySQL EF Core database provider Pomelo.EntityFrameworkCore.MySql in
my application. There’s another MySQL database provider, MySql.Data.EntityFrame-
workCore, but when I was building my application, that database provider didn’t sup-
port EF Core 2.0; it’s worth checking out, though.

14.1.1	 Creating an instance of the application’s DbContext for MySQL

The first thing you need is to be able to create an instance of the application’s DbCon-
text that accesses a MySQL database rather than an SQL Server database. Section 2.2.2
showed how to create an instance of the application’s DbContext with SQL Server, and
this listing shows the same code, but with the changes needed to use a MySQL database
shown in bold. In this case I show the connection string as a constant, but in the ASP.NET
Core-based book app you would need to update the connection string in the appsetting
.json/appsettings.Development.json file.

Listing 14.1   Creating an instance of the DbContext to access the database

const string connection =
 "Server=localhost;"+
 "Database=EfCoreInActionDev;"+
 "Uid=<username>;Pwd=<password>;";
var optionsBuilder =
 new DbContextOptionsBuilder
 <EfCoreContext>();

optionsBuilder.UseMySql(connection);
var options = optionsBuilder.Options;

The connection string for the MySQL database that you’re
accessing on the local MySQL server. The Server part
would change if you were accessing a hosted server.

You need an EF Core DbContextOptionsBuilder<>
instance to be able to set the options you need.

You’re accessing a MySQL database, so
you use the UseMySql method from the
MySQL database provider NuGet package
you installed. This method needs the
database connection string.

(continued)

	 393What differences do other database server types bring?

using (var context = new EfCoreContext(options))
{
 var bookCount = context.Books.Count();
 //... etc.

As you can see, there aren’t a lot of changes—just the connection string and changing
the UseSqlServer method to the UseMySql method. You have to install the EF Core
MySQL database provider NuGet package Pomelo.EntityFrameworkCore.MySql to get
access to the UseMySql method, and a MySQL database.

14.1.2	 What you have to do to convert the SQL Server
application to MySQL

Although the changes to create an instance of the application’s DbContext are small,
other changes are necessary to make the application work. This section lists all the
changes required to make the Chapter13-Part1 branch version of the book app, which
used SQL Server, now work with MySQL. I’ve split these into significant changes and
housekeeping changes.

Significant changes needed to convert from Chapter13-Part1 version to use MySQL
The significant changes required in the Chapter13-Part1 application are related to
migrations and the raw SQL in the application, as detailed here:

1	 Rerun the Add-Migration command for the MySQL database provider.
In chapters 2 and 4, you added database migrations to the book app application
(see section 11.2). These migrations are built for an SQL Server database, not a
MySQL database, so you must change them.

First, you update the class called ContextFactoryNeededForMigrations in the
DataLayer to MySQL. You change the connection string to point to your local
MySQL database and replace the UseSqlServer method with the UseMySql
method. That requires you to add the MySQL database provider package to the
DataLayer project. You need to do that because the command-line migration
tools use this class to obtain an instance of the application’s DbContext.

After deleting the old migration files, you run the Add-Migration/dotnet ef
migrations add command to build a new set of migration files using the MySQL
database provider.

2	 Change the raw SQL in places where the MySQL format is different from
SQL Server.
In section 13.2, you added a UDF called AuthorsStringUdf to your database
to improve the performance of building the comma-delimited list of authors
of a book. That UDF is written for an SQL Server database, and, although
MySQL supports UDFs, the syntax of a UDF is different. You converted the

Creates the EfCoreContext using the options you’ve set
up. DbContext should be disposed of after you’ve
finished your data access.

Uses DbContext to find out how
many books are in the database

394 Chapter 14  Different database types and EF Core services

AuthorsStringUdf UDF to the MySQL format successfully, but unfortunately,
the COALESCE string-combining trick that you used doesn’t work on MySQL. You
therefore have to remove the UDF and go back to the LINQ-based approach to
combine the author names.

This is a typical problem when you change database server types and have raw SQL
commands. The EF Core’s database provider translates LINQ or EF Core com-
mands into the correct format for the database type, but any raw SQL commands
you write need checking to ensure they work on the new database type. But even
with the EF Core–produced SQL, problems can arise, as the next point shows.

3	 Fix any type mapping between .NET and the database that has changed.
When you converted from an SQL server database to a MySQL database, the LINQ
query that calculates the average review votes (see section 13.1.2) threw an excep-
tion. It turns out that the returned type of the SQL AVG command on MySQL is a
nullable decimal, rather than the nullable double in SQL Server. To overcomes
this, you need to change the BookListDto’s AverageReviewVotes property .NET
type to decimal? to match the way MySQL works.

Other, more subtle type differences exist between database servers. For instance,
MySQL stores all strings in Unicode (16-bits), MySQL’s DATETIME default preci-
sion is slightly lower than SQL Server’s DATETIME2 precision, and so on. One of
my unit tests broke because of the difference in the DateTime precision, but every-
thing else worked fine. In bigger applications, other problems could arise from
these small changes.

The small, housekeeping changes needed to swap to MySQL database provider

You need to make minor changes to make the Chapter13-Part1 application work with
the MySQL database provider. They’re trivial, but the application isn’t going to work
without them.

The first change is to the DefaultConnection string in ASP.NET Core’s appsetting.
json file. When running the application locally for development, the connection string
must be in the correct format to access the local MySQL database (see listing 14.1). If you
deploy the application to a web host, you need to provide the correct connection string
during the publish process to access the hosted MySQL database (see section 5.4.1).

You also need to alter ASP.NET Core’s ConfigureServices method in the Startup
class, where the application’s DbContext is registered as a service. You replace the
UseSqlServer method with the UseMySql method. That requires you to add the MySQL
database provider package to your ASP.NET Core project.

14.1.3	 Looking at other database server types and differences

The two key issues when looking at a database to use with EF Core are as follows:

¡	Does the database have the features you need?
¡	Does EF Core have a database provider that properly supports that database?

	 395What differences do other database server types bring?

Looking at the database features first, mostly minor differences exist in SQL syntax or
features. The SQLite database has the biggest number of feature limitations (it does
have the suffix lite), but most other database servers provide good coverage of all SQL
features that EF Core uses.

NOTE   If you’re interested in SQLite, you can learn about the limitations of
the SQLite database in chapter 15 (see table 15.2), which covers using SQLite
in-memory databases for quicker unit testing.

Typical of a minor database difference is MySQL’s requirement that the EF Core’s con-
currency timestamp (see section 8.7.2) must be of the .NET type DateTime, rather than
the byte[] in SQL Server, whereas a PostgreSQL database uses a column called xmin
(see http://mng.bz/5zB9). I’m sure that lots of subtle EF Core issues exist in various
databases, because each database server works in a slightly different way.

TIP   Most of the Microsoft documentation, and mine, uses SQL Server as the
primary example. Most other database providers publish documentation high-
lighting any differences from the standard EF Core setup. You can find links to
this documentation via the EF Core’s database providers’ list (see https://docs
.microsoft.com/en-us/ef/core/providers/).

The quality of the EF Core database provider and the level of support it provides is also
another part of the equation. Writing a database provider for EF Core is a nontrivial
task, and the SQL Server database provider written by the EF Core team is the gold
standard. You should test any database provider to ensure that it works for you. When
I started using the Pomelo.EntityFrameworkCore.MySql database provider, I found a
problem, and when I raised an issue on the Pomelo Foundation EF Core GitHub issue
page, I got a workaround in 24 hours—which I thought was a good result.

NOTE   Although talking about various databases is important for EF Core, I
don’t cover running an EF Core application on different platforms, such as
Linux, macOS, and so on. That topic is a .NET Core issue, and I recommend
Dustin Metzgar’s .NET Core in Action (Manning, 2018), which covers this in
detail.

14.1.4	 Summarizing EF Core’s ability to work with multiple
database types

Doing this database swap, plus a bit of work with PostgreSQL, shows me that EF Core
and its database providers do an excellent job of handling various database types. The
only problems I had during the conversion from SQL Server to MySQL were the differ-
ences in how each database server worked. EF Core can also produce database migra-
tions specifically for each database type (see section 11.2.1, subsection “Migrations are
database-provider specific”), which is another help for developers who don’t know the
SQL language well.

http://mng.bz/5zB9
https://docs.microsoft.com/en-us/ef/core/providers/
https://docs.microsoft.com/en-us/ef/core/providers/

396 Chapter 14  Different database types and EF Core services

14.2	 Developing a CQRS architecture application
with EF Core
Having talked about various databases, I now want to talk about a solution that com-
bines a relational database handled by EF Core with a NoSQL database. This comes
about from my suggestion in section 13.6 that a CQRS architecture using a polyglot
database structure would provide better scalability performance.

DEFINITION   A CQRS architecture segregates operations that read data from oper-
ations that update data, by using separate interfaces. This can maximize per-
formance, scalability, and security, and supports the evolution of the system
over time through higher flexibility. See http://mng.bz/Ix8D.

DEFINITION   A polyglot database structure uses a combination of storage types; for
instance, relational databases, NoSQL databases, and flat files. The idea is that
each database type has its strengths and weaknesses, and by using two or more,
you can obtain a better overall system. See http://mng.bz/6r1W.

The CQRS architecture acknowledges that the read side of an application is differ-
ent from the write side. Reads are often complicated, drawing in data from multiple
places, whereas the write side is often much simpler. You can see in the example appli-
cation that listing the books is complex, but adding a review is fairly trivial. Separating
the code for each part can help you focus on the specific features of each part; this is
another application of the SoC software principle.

In chapter 13, you produced the performance version, in which you cached values
(see section 13.4). It struck me then that the final query didn’t access any relationships
and could be stored in a simpler database, such as a NoSQL database. In this example,
you’ll use a polyglot database structure, with a mixture of SQL and NoSQL databases, for
the following reasons:

¡	Using an SQL write-side database makes sense because business applications
often use relational data. Think about a real book-selling site: it would have a
lot of complex, linked data to handle business aspects such as suppliers, inven-
tory, pricing, orders, payment, delivery, tracking, audits, and so on. I think a rela-
tional/SQL database with its superior level of data integrity is the right choice for
many business problems.

¡	But those relationships and some aspects of an SQL database, such as the need
to dynamically calculate some values, can make it slow at retrieving data. So, a
NoSQL database with precalculated values such as the “average review votes” can
improve performance considerably over an SQL database. This is what Mateusz
Stasch calls “a legitimate cache” in his article at http://mng.bz/A7eC.

The result of these design inputs means you’ll develop what I refer to as a two-database
CQRS architecture, as shown in figure 14.1.

http://mng.bz/Ix8D
http://mng.bz/6r1W
http://mng.bz/A7eC

	 397Developing a CQRS architecture application with EF Core

SQL

{ }

Projection

NoSQL

DTOs

DTOsCommands

User
interface

Write domain
model

Read-side
Write-side

Queries

The conceptual CQRS architecture, which separates reads from writes. You
use two databases: SQL for the write-side and NoSQL for the read-side.

The write-side writes a projection to the read-side database;
the data is in a form that’s ready to display to the user.

User

Figure 14.1   A conceptual view of a CQRS architecture with an SQL database for the write side, and a
NoSQL database for the read side. A write takes a bit more work because it writes to two databases—
the normal SQL database and the new NoSQL read-side database. In this arrangement, the read-side
database is writing in the exact format needed by the user, so reads are fast.

Using two databases is a logical step with the CQRS architecture. It brings potential
performance gains for reads, but a performance cost on writes. This makes the two-
database CQRS architecture appropriate when your business application has more
reads of the data than writes. Many business applications have more reads than writes
(e-commerce applications are a good example), so this architecture fits our book app well.

14.2.1	 Implementation of a two-database CQRS architecture application

You want to move only the book list view data to the read-side database, and not do this
for the order-processing part, because only the book list view has a performance issue.
It turns out that although adding CQRS does require a fair amount of work, it’s simple
to apply the CQRS architecture to only part of our application. Figure 14.2 shows the
design of our changed book application, with the book list implemented as a two-data-
base CQRS part.

Biz db
access

All non-book list reads

All writes

Book list read

No SQL
layer

{ }

NoSQL

Service
Layer

Biz logicDataLayer

Yes

ASP.NET
Core

web app.

The NoSQL layer handles
the add, update, and delete
of book list entries.

The Data layer finds book
changes and sends them
to the NoSQL layer.

The Service layer accesses
the book list data via the
NoSQL layer.

SQL Always
update SQL

Book change?

Figure 14.2   To implement the CQRS architecture for the book list, you inspect every write to see
whether it’ll change the book list data. That’s best done by the DataLayer, where you can use the EF Core
change tracker to see what’s being added, updated, or deleted. If it’ll change the book list data, you ask
the NoSQL layer to update the database.

398 Chapter 14  Different database types and EF Core services

Figure 14.2 shows different lines between the ServiceLayer and the DataLayer to illus-
trate the different routes that data takes through the system, but the lines are notional.
The ServiceLayer and BusinessLayer continue to work in the same way, and it’s the
DataLayer’s job to split out any writes that will change the book list view. You do this by
overriding the SaveChanges method(s) inside the application’s DbContext and adding
code to work out whether the book list view has changed. If this new code detects a
book list view change, it sends a request to the new NoSQL layer to update the NoSQL
database.

The other part to change is the BookListService class in the ServiceLayer. This class
handles the book list, and you change it to access the NoSQL database instead of the
SQL database. I selected the RavenDB NoSQL database, which has a community ver-
sion of its database server that you can run locally. There’s also a .NET package that
supports LINQ commands, so the LINQ built for EF Core works directly with RavenDB.

I don’t cover the RavenDB database access code because it’s outside the scope of this
book. Visit https://ravendb.net/ for documentation, or the GitHub documentation
site at https://github.com/ravendb/docs/, which includes sample code.

NOTE   Thanks to Oren Eini (Twitter @ayende) for his help with using the
RavenDB database. Oren is the main force behind the RavenDB NoSQL data-
base and contacted me after one of my articles. He provided support and guid-
ance that were helpful.

How to run the SQL Server and RavenDB CQRS application locally
If you want to run the two-database CQRS application locally, you need a local copy of a
RavenDB server. Here are the extra steps you need to follow to run the CQRS application
in the Chapter14 branch of the Git repo:

1	 Go to the https://ravendb.net/ site; click Buy; and request a license for the free,
community version of the RavenDB server. Please read the terms and conditions
at https://ravendb.net/terms.

2	 Click Download and click the .zip package to download a .NET version of RavenDB
to run locally. The Chapter14 EfCoreInAction code uses the 3.5.4 RavenDB Client;
if the RavenDB server is of a different version (version 4 is now out), you should
update the RavenDB Client NuGet package across the solution.

Note: If you aren’t developing on a Windows platform, you can use a hosted RavenDB
database instead. I went to www.ravenhq.com and found a package called Experimen-
tal, which was free. You can create a database on there and use that in the CQRS appli-
cation. You need to copy the connection string into the EfCoreInAction appsetting.json
file. There’s also a Docker container version of RavenDB; see http://mng.bz/CaE4.

3	 Unzip the RavenDB .zip package and click the Start.cmd file. This starts the
RavenDB server. It should also start a RavenDB database screen in your browser
on localhost:8080.

https://ravendb.net/
https://github.com/ravendb/docs/
https://ravendb.net/
https://ravendb.net/terms
www.ravenhq.com
http://mng.bz/CaE4

	 399Developing a CQRS architecture application with EF Core

4	 In the RavenDB database screen on your browser, create a database by clicking
the + New Resource button. Name the database EfCoreInAction-Develop-
ment. You don’t need to set any other settings.

5	 Now select the Git repo branch Chapter14, which contains the two-database
CQRS version of our book app.

6	 You can run the CQRS application via Visual Studio 2017 (press F5), or VS Code
(Debug > Net Core launch (web)), or type dotnet run on a console terminal in the
EfCoreInAction project directory.

7	 The example site starts with no books in it. You need to click the Admin button
and select Generate Books to create test data. Try 100 books as a start. You can
always add more books later. After you’ve created those books, you’re good to go.

NOTE   You can see a live version of the two-database CQRS book app at http://
cqrsravendb.efcoreinaction.com/. This site has 250,000 books in its data-
base. This site uses a hosted RavenDB database courtesy of www.ravenhq.com
(thanks to Jonathan Matheus at RavenHQ for organizing that). The RavenDB
hosting I’m using is the simplest/cheapest, so the performance of the live site
won’t match the performance figures given in this chapter.

In addition to being a high-performance combination, the implementation of this
architecture reveals advanced aspects of the way EF Core works. The following are the
points covered in the next few subsections:

¡	How the parts of this CQRS solution interact with each other.
¡	Finding the book view changes—part 1, finding the correct State and primary key.
¡	Finding the book view changes—part 2, building the correct State.
¡	Why the CQRS solution is less likely to have out-of-date cached values.

14.2.2	 How the parts of the CQRS solution interact with each other

When updating an existing application for performance reasons, you need to be care-
ful not to break the application in the process. The book-selling site isn’t that compli-
cated, but you still need to be careful when you modify the application over to a CQRS
architecture. You therefore want a design that minimizes the changes and isolates the
new parts.

I came up with a design that keeps all the NoSQL/RavenDB parts separate. In this
final design, the EF Core doesn’t know, or care, what database is being used for the
read-side part of the CQRS system. This makes the update simpler, plus offers the possi-
bility of changing the NoSQL database used. I like RavenDB, with its support of LINQ,
but EF Core version 2.1 previews Azure’s NoSQL database, Cosmos, which might be an
interesting alternative.

(continued)

http://cqrsravendb.efcoreinaction.com/
http://cqrsravendb.efcoreinaction.com/
www.ravenhq.com

400 Chapter 14  Different database types and EF Core services

Keeping as much of the new database code in the NoSqlDataLayer, and using inter-
faces, keeps the impact of the changes to a minimum. Figure 14.3 shows how to hide
the NoSQL code behind interfaces to keep that code isolated. You use dependency
injection to provide both the DataLayer and the ServiceLayer with methods that allow
access to the database.

{ }

Write
to

NoSQL

YES

Read from
NoSQL

Any create/update
commands

RavenStore
private IDocumentStore

Raven’s impl. of
INoSqlAccessor

Raven’s impl. of
INoSqlUpdater

Call
INoSqlUpdater

Project to
BookListNoSql

BookListNoSql

ListBookNoSqlService

SaveChanges

DataLayer
The DbContext gets the
INoSqlUpdater instance

via dependency injection.

NoSqlData
The NoSqlData layer hides

all the NoSQL access
behind interfaces.

ServiceLayer
RavenDB supports LINQ,

so the changes to the
service layer are minimal.

Build/run LINQ query

Changes book
list view?

ServiceLayer uses
INoSqlAccessor to
create a IQueryable<T>
context to query the
NoSQL database.

DataLayer creates a
BookListNoSql class and
then sends it with an add,
update, or delete command
to INoSqlUpdater.

Figure 14.3   Internals of the NoSqlDataLayer are hidden from the DataLayer and ServiceLayer. The
DataLayer and ServiceLayer work with the BookListNoSql class, which maps to the book list view, and
several interfaces. The aim is to make it easy to add the CQRS read-side database with minimal impact
on the existing application. It also allows you to change the read-side database server with minimal
refactoring to the code outside the NoSqlDataLayer.

The changes from the existing, SQL-based book app are as follows:

1	 New code is added to the DataLayer by overriding the SaveChanges methods.
This detects when a change to the database means a certain book list view needs
to be updated.

2	 The whole of the NoSqlData project is new. It contains all the RavenDB code.

3	 Minor changes are made to ListBookService to use RavenDB.

The core of this NoSQL implementation is a class I call RavenStore (see listing 14.2).
RavenDB requires a single instance of the RavenDB’s IDocumentStore, which is set up
on the application’s start. This RavenStore class provides two methods: one for the
DataLayer to get a class for writing to the read-side database, and one for the Service-
Layer to get a class to allow reading of the read-side database.

	 401Developing a CQRS architecture application with EF Core

Listing 14.2   RavenStore, with methods to create, read, and write accessors

public class RavenStore :
 INoSqlCreators
{
 public const string RavenEventIdStart
 = "EfCoreInAction.NoSql.RavenDb";
 private readonly DocumentStore _store;
 private readonly ILogger _logger;

 public RavenStore(string connectionString,
 ILogger logger)
 {
 if (string.IsNullOrEmpty(connectionString))
 return;
 _logger = logger;

 var store = new DocumentStore();
 store.ParseConnectionString(connectionString);
 store.Initialize();

 //Add indexes if not already present
 new BookById().Execute(store);
 new BookByActualPrice().Execute(store);
 new BookByVotes().Execute(store);

 _store = store;
 }

 public INoSqlUpdater CreateNoSqlUpdater()
 {
 return new RavenUpdater(_store, _logger);
 }

 public INoSqlAccessor CreateNoSqlAccessor()
 {
 return new RavenBookAccesser(_store, _logger);
 }
}

The INoSqlCreators interface is used by the DataLayer to get the method to update
the read-side database, and by the ServiceLayer to gain access to the read-side for que-
rying. You need to register a single RavenStore instance with ASP.NET Core’s depen-
dency injection service as the service to be accessed via the INoSqlCreators interface.
The following listing shows the section of code in the ConfigureServices method

The primary class to access the RavenDB store. Defines the two creator methods:
CreateNoSqlUpdater and CreateNoSqlAccessor.

You use this EventId name when logging
accesses. It allows the logging display to
mark these as database accesses.

The RavenStore needs the RavenDB
connection string and a logger.

To stop the application from
throwing an exception on
startup if there’s no connection
string, you leave the store as
null. You can throw a better
exception later.

RavenDB commands to initialize the database Ensures that the indexes the
application needs have been created

Saves the store ready for the
calls to the Create methods

Returns a class that matches the
INoSqlUpdater interface. It contains
methods to create, update, and
delete a BookListNoSql item.

Returns a class that matches the INoSqlAccessor
interface. It has a method to create a context

(session in RavenDB terms) and then gain LINQ
access to the BookListNoSql items.

402 Chapter 14  Different database types and EF Core services

in the Startup class that registers the RavenStore as a singleton, which provides the
service INoSqlCreators.

Listing 14.3   Registering the two interfaces to the RavenDB implementation

var ravenDbConnection =
 Configuration.GetConnectionString
 ("RavenDbConnection");
services.AddSingleton<INoSqlCreators>(ctr =>
{
 var logger = ctr.GetService<ILogger<RavenStore>>();
 return new RavenStore(ravenDbConnection, logger);
});

The listing shows part of the Raven implementation of the INoSqlUpdater interface,
which the DataLayer would use to update the read-side database. This gives you some
idea of how this works.

Listing 14.4   The RavenUpdater class that handles the read-side database updates

public class RavenUpdater : INoSqlUpdater
{
 private readonly DocumentStore _store;
 private readonly ILogger _logger;

 public RavenUpdater(DocumentStore store,
 ILogger logger)
 {
 _store = store;
 _logger = logger;
 }

 public void DeleteBook(int bookId)
 {
 using(new LogRavenCommand
 ($"Delete: bookId {bookId}", _logger))
 using (var session = _store.OpenSession())
 {
 session.Delete(
 BookListNoSql
 .ConvertIdToNoSqlId(bookId));
 }
 }

Reads the connection string for the RavenDB from the
appsettings.json file in the ASP.NET Core application

Registers the RavenStore class as a
singleton that’s accessed via the
INoSqlCreators interface

You need to provide a logger to
the RavenStore, along with the
RavenDB connection string. You
do this in a factory method.

The RavenUpdater must implement the INoSqlUpdater
interface so that the DataLayer can access it.

The RavenDB’s link to the database,
which is needed for every command

You use this to log all the RavenDB
accesses so you get a similar level of
logging to what EF Core provides.

The RavenUpdater is created by the
RavenStore’s CreateNoSqlUpdater
method. You do this so it can access
the private IDocumentStore.

Deletes a book list view from
the RavenDB database

LogRavenCommand will time
how long the command takes (via
the disposal of this method) and
then log the message and time.

A RavenDB command that provides a
session. Sessions allow normal Create,
Read, Write, and Update commands.

Deletes the book from
the RavenDB database

The format of the RavenDB key is a string, which has to
have a specific format to allow sorting on the key, so you
have a specific method to convert the int to that format.

	 403Developing a CQRS architecture application with EF Core

 public void CreateNewBook(BookListNoSql book)
 {
 using (new LogRavenCommand
 ($"Create: bookId {book.GetIdAsInt()}",
 _logger))
 using (var bulkInsert = _store.BulkInsert())
 {
 bulkInsert.Store(book);
 }
 }
//The UpdateBook and BulkLoad methods are left out to save space

Now that you’ve seen the code that’ll update the read-side database, the other major
part of the CQRS implementation is in how the DataLayer detects changes to the SQL
database, which will alter the NoSQL book list view. I describe this next.

14.2.3	 Finding book view changes—Part 1, finding the correct state
and key

As explained in section 14.2.2, you override the SaveChange methods (sync and async)
in the application’s DbContext and add code to find changes that will affect the book
list view. This turns out to be quite complex; I solved it only by understanding how EF
Core works underneath. I think this learning is useful outside the CQRS situation, so
in this section I explain how EF Core handles the setting of the foreign keys by looking
at the navigational properties.

For this example, you’ll add a new Book entity instance, with one new Review entity
instance attached to it via the Book’s Reviews navigational property. This is the simplest
example that shows all the stages that EF Core goes through. Table 14.1 shows the value
of the State of the Book entity in the Book’s State column after the code in column 1
has run. The other two columns, Book’s BookId and Review’s BookId, show the value of
BookId property of the Book entity, and BookId of the Review entity, respectively, after
the code in column 1 has run.

Now, you might be wondering about the large negative value that appears after
stage 2, the Add stage in table 14.1. What has happened here is that the Add method has
looked at the Book entity’s navigational properties to see whether there are any changes
in its relationships. EF Core finds that a new Review entity is assigned to the Book entity,
so it wants to set the foreign key. In this case, the Book entity hasn’t yet been written to
the database, so it uses a negative key to represent that relationship. The negative key
is unique within the current tracked entities and tells the SaveChanges method which
new entities are linked.

In stage 3, in which the SaveChanges method is called, these negative keys link the Book
entity and the Review entity. This causes EF Core to output SQL code that first INSERTs
the Book entity into the Books table, returning its primary key as normal, followed by an
INSERT of the Review entity, including a BookId value taken from the Book entity.

Creates a new book list entry
in the RavenDB database

LogRavenCommand will time how long the
command takes (via the disposal of this

method) and then log the message and time.

For this command, Oren Eini suggested using
the BulkInsert, as it’s slightly quicker.

404 Chapter 14  Different database types and EF Core services

Table 14.1   How EF Core tracks relationships when adding new entities to the database. EF Core’s Add
method uses negative key values to define the relationships. These negative keys are replaced with the
real key value after the entities have been written to the database.

The three stages in the code Book’s State Book’s BookId Review’s BookId

1. Create instances

var review = new Review

 {NumStars = 5};

var book = new Book

 {Title = "New book"};

book.Reviews = new

 List<Review> {review};

Detached

0 0

2. Add stage

context.Add(book);

Added

–2147482643 –2147482643

3. SaveChanges stage

context.SaveChanges();

Unchanged

1 1

The problem is, if you wait until after the call to the SaveChanges method to get the
correct key values, the State of the entities will have been cleared. You need a two-stage
process, as shown in this listing. In the first part of the process, you capture the State
and the relationships; and in the second part, you capture the primary key of any Book
entities.

Listing 14.5   The code inside one of the overridden SaveChanges

 public override int SaveChanges()
{
 var detectedChanges = BookChangeInfo
 .FindBookChanges(ChangeTracker.Entries());

 var result = base.SaveChanges();

 var booksChanged = BookChange
 .FindChangedBooks(detectedChanges);
 var updater = new ApplyChangeToNoSql
 (this, _updater);
 updater.UpdateNoSql(booksChanged);
 return result;
}

You must override all the SaveChanges methods (sync
and async) to make sure you capture all updates to
the database.

This stage is all about detecting the State of
all the tracked entities before they get

cleared by the call to the base SaveChanges.

Now you can call the base SaveChanges,
as you have all the State information.

Multiple changes may have been
made to a single Book. This stage

combines them so you send only one
update to the NoSQL database.

The DataLayer oversees the projection of the SQL
database into the form that the NoSQL database
needs it in. The NoSQL provides an updater method,
via the constructor, which will do the update.

Applies any updates
to the NoSQL
database

	 405Developing a CQRS architecture application with EF Core

Now, let’s look inside the BookChangeInfo class and the FindChangedBooks method, as it’s
interesting to see the steps required to get the State and the BookId in the correct form.

14.2.4	 Finding the book view changes—Part 2, building
the correct State

The preceding section showed you how the State property was correct before the
call to the SaveChanges method, but the BookId wouldn’t be correct for a new Book
until after that method call. Obviously, you need to do something before and after the
SaveChanges method call. This section shows those steps.

Listing 14.5 showed the overridden SaveChanges method, with the extra code before
and after the call to the base SaveChanges method. Now you’ll look at what’s happening
before and after the base SaveChanges method call.

Before the base SaveChanges method call—get the State and relationships

Any change to a relationship in the Book entity class could affect the book list view. You
therefore mark the Book entity and all its relationship entities with an interface, as
shown in this code snippet:

public interface IBookId
{
 int BookId { get; }
}

You apply the IBookId interface Book entity, any entity class that has a foreign-key rela-
tionship with the Book entity (the Review, PriceOffer, and BookAuthor entities). This
allows you to detect when a command changes any of these entities, which in turn will
affect the book list view. After you find any change, you decode that change into a series
of BookChangeInfo instances. The BookChangeInfo class holds the State before the
SaveChanges method is called, and the BookId that refers to the Book entity it changes.
This may be a negative value, as shown in table 14.1, or the real BookId for an update,
but either way you can use it to find all the entities that are linked to a single Book entity.

Listing 14.6 shows how the BookChangeInfo class works out the correct State for the
book list view. Working out the right State from the Book entity’s perspective is complex—
for instance, a new Book entity should set the State to Added—but a new Review should
only set the State to Modified, because the new Review only modifies the book list view.

Listing 14.6   The BookChangeInfo class and how it decides on the correct State

internal class BookChangeInfo
{
 private readonly Book _book;

 public int BookId { get; }
 public EntityState State { get; }

Each class holds the correct State to give to the
NoSQL updater, plus a way to get the Final BookId
after the SaveChanges method is called.

If the instance is a Book entity, you keep a
reference to it, as its BookId may change after
the SaveChanges method is called.

Holds the BookId before the SaveChanges
method is called. It may be negative or
positive, but it’ll link all entities that are
linked to the same Book entity.

Holds the State that NoSQL needs to
know about. It might be different from
the State EF Core is using.

406 Chapter 14  Different database types and EF Core services

 public int FinalBookId => _book?.BookId ?? BookId;

 private BookChangeInfo(int bookId,
 EntityEntry entity)
 {
 BookId = bookId;
 _book = entity.Entity as Book;

 if (_book != null)
 {
 var softDeletedProp = entity.Property(
 nameof(_book.SoftDeleted));

 if (softDeletedProp.IsModified)
 {
 State = _book.SoftDeleted
 ? EntityState.Deleted
 : EntityState.Added;
 }
 else if (entity.State ==
 EntityState.Deleted)
 {
 State = _book.SoftDeleted
 ? EntityState.Unchanged
 : EntityState.Deleted;
 }
 else
 {
 State = _book.SoftDeleted
 ? EntityState.Unchanged
 : entity.State;
 }
 }
 else
 {
 State = EntityState.Modified;
 }
 }

That might seem like a lot of work to decide on the final State, but because you’re
using the SoftDeleted property to hide a Book entity (see section 3.5.1), you need to
honor that in the NoSQL database. If a Book entity’s SoftDeleted property is set to
true, you must delete it from book list NoSQL database. Listing 14.6 must correctly
handle all the combinations to ensure that it doesn’t try to delete an already soft-
deleted book from the NoSQL database.

Can be used after the SaveChanges
method call to access the correct BookId.

Takes in the BookId provided by the
IBookId interface and the entity itself.

Takes a copy of the entity if it’s of type
Book. The Book entity always takes
precedence in any update.

If the entity is of type Book, you need to handle the
SoftDeleted state, as that affects whether you want a
book list view for that book.

You find the SoftDeleted property, as you need
to see whether this property was changed.

If the SoftDeleted property has
changed, it defines whether the
book list contains this book.

If the Book is deleted, you
don’t want to delete it again
if it is already excluded via
the SoftDeleted property...

…otherwise, the Book’s State
will be used, unless the Book is
already SoftDeleted.

If it’s a linked entity that has
changed, this can cause only an
update of the book list view.

	 407Developing a CQRS architecture application with EF Core

After the base SaveChanges method call—build a list of books that need updating
Now, let’s look at how to use this information after the SaveChanges method has been
called. You take the BookChangeInfo information, which may include multiple updates
to the same Book entity, and coalesce them down to a one-change-per-book list. The
trick is to make sure the type of change is correct for the read-side database. This list-
ing shows the BookChange class, with its static method that produces the final update
information.

Listing 14.7   The BookChange class with its static FindChangedBooks method

internal class BookChange
{
 public int BookId { get; }
 public EntityState State { get; }

 private BookChange(int bookId,
 EntityState state)
 {
 BookId = bookId;
 State = state;
 }

 public static IImmutableList<BookChange>
 FindChangedBooks(IImmutableList<BookChangeInfo>
 changes)
 {
 var booksDict = new
 Dictionary<int, BookChangeInfo>();
 foreach (var bookChange in
 changes.Where(
 x => x.State != EntityState.Unchanged))
 {
 if (booksDict.ContainsKey(bookChange.BookId)
 && booksDict[bookChange.BookId].State
 != EntityState.Modified)
 continue;

 booksDict[bookChange.BookId] = bookChange;
 }

 return booksDict.Select(x => new
 BookChange(x.Value.FinalBookId, x.Value.State))
 .ToImmutableList();
 }
}

Provides the information on what book
to change, and what state to change it to

Holds the final
BookId as found in
the SQL database

Holds three possible states:
Added, Deleted, or Modified

Only your static method is allowed to
create an instance of this class.

Processes the BookChangeInfo
classes generated before the

SaveChanges method was called.

There might be multiple entities that suggest an
update to the same book. You use a Dictionary to

combine all changes to the same Book entity.

You look only at
BookChangeInfo
that isn’t unchanged

The Book entity can set the State to Added or Deleted;
these always take precedence over a Modified State
that other related entities might provide…

…otherwise, you set
the dictionary entry
for this bookId to the
value you have.

Returns the update instructions for the NoSQL database,
using the FinalBookId, which may be different from the

original BookId when it’s adding a new Book entity.

408 Chapter 14  Different database types and EF Core services

The result of this is a list of BookChange classes, which conveys the BookId of the book
list view to change, and the State it should be changed to. You make this class as small
as possible, because in a real system, you might want to save the information in the data-
base, or send it to a background job to process. That would allow you to improve on
the performance of the write, but more important, to provide retry and error-checking
facilities in case the NoSQL database access fails.

14.2.5	 Why the CQRS solution is less likely to have out-of-date cached values

When you create any system in which you cache values, the key issue is to make sure
that the cached values stay in step with the calculated values. Applications that handle
lots of simultaneous updates can produce situations in which a cached value gets out of
step. This is one form of a concurrency issue (see section 8.7).

In section 13.4, you built a version of our application that stored various values, such
as the average book’s review votes (what I refer to as cached-values SQL from now on). In
that version, you use EF Core’s concurrency detection to find and fix a possible concur-
rency issue around simultaneous Reviews being added to a Book. That works, but you
need to correctly identify that this is a potential problem and then write code to handle
it. But it’s better if the design avoids potential concurrency issues, as you did with the
ActualPrice in the cached-values SQL solution (section 13.4.1). The CQRS solution
does that, by removing any concurrency issues right from the start.

Figure 14.4 shows the difference in how the cached-values SQL solution (sec-
tion 13.4) and the CQRS solution handle the “two simultaneous reviews” problem. Each
makes sure that the calculated values are up-to-date, but I believe the CQRS approach
is much better because it designs around the problem instead of having special code to
handle the problem.

1. In the SQL cached version, if two users add
 a review at the same time, you use EF Core’s
 concurrency detection feature to fix it.

2. In the CQRS version, each new review is picked
 up, and a new book list view is generated
 and sent to the read-side database.

This figure shows a case where the read of the Book’s current state happens after the
second Add review. But this out-of-sequence update doesn’t matter, as all that happens
is the read-side database would be updated slightly early with the final, correct value.

1. Add review
2. Update Average Votes
3. Update book + Review

Add review

CQRS solution (this chapter)“Cached values” SQL solution (section 13.4)

Read book+send

Read book+send

Add review

1. Add review
2. Update Average Votes
3. Update book + Review

Time Time

Book change detector

{ }

Figure 14.4   On the left, the cached-values SQL performance-tuning implementation developed in
section 13.4 fixes the problem of two simultaneous reviews being added, by using EF Core’s concurrent
detection and handling feature. On the right, the CQRS architecture handles the same problem by design;
it doesn’t need any special handling to cope with this problem.

	 409Developing a CQRS architecture application with EF Core

Unlike the cached-values SQL solution, in which you had to consider each cached value
separately and devise a different solution for each, the CQRS design handles all potential
problems in one go; it effectively designs them out. In addition, the CQRS architecture
helps with the overall design of the system, which is why I think CQRS architecture is wor-
thy of consideration for systems that have more reads of data than writes.

14.2.6	 Is the two-database CQRS architecture worth the effort?

Implementing this two-database CQRS architecture isn’t simple and took me over a
week to develop, which is long for me. Admittedly, the main part is learning a new
database approach, but there are also some complex EF Core parts to write to. So, is it
worth the effort? I’ll answer that question in terms of three distinct aspects:

¡	Is the improvement in read-side performance worth the extra effort to convert
the application?

¡	Is the drop in the performance of any book-related database write acceptable to
gain the extra read-side performance?

¡	Does the extra effort, complexity, and robustness warrant the read-side perfor-
mance that the CQRS architecture brings?

The differences in read-side performance between the non-CQRS and CQRS solutions

First, let’s compare the performance of the CQRS solution against the “best-SQL” solu-
tion—the part 2 version (see section 13.3) in which SQL had to calculate the average
vote every time the book list was displayed. Figure 14.5 shows the performance of the
CQRS solution against the part 2 version for the following database content:

¡	100,000 books, which have ½ million book reviews
¡	250,000 books, which have 1.4 million book reviews
¡	500,000 books, which have 2.7 million book reviews

2,000

100,000 books

Comparing “best-SQL” solution against a two-database CQRS solution

1,500

1,000

500

0

“best-SQL” Two-database CQRS

The test is sorting the books
by average votes and then
showing the top 100 books.

2,030 ms

990 ms

385 ms

100 ms 100 ms 100 ms

(ms) 250,000 books 500,000 books

Figure 14.5   The time it takes to sort all the books by the average review votes and then
show the 100 top books. The graph compares the “best-SQL” solution (see section 13.3) of
the book app against the two-database CQRS solution.

410 Chapter 14  Different database types and EF Core services

How I measured the performance—the test environment
The performance testing is done the same way as in chapter 13 (see sidebar in section
13.1.2): I measured the time it takes for the request to complete in the Chrome browser.

The SQL database and the RavenDB database were running locally on my development
machine. There are variations in the measured figures, so I discarded the first access,
which could be slow, and took the average of several repeated requests.

Clearly, the performance of this two-database CQRS solution is much better than the
“best-SQL” solution from section 13.3. No user wants to wait two seconds for the books
to be sorted. The SQL version is slow because it must dynamically calculate the average
votes every time. The CQRS solution, in which the book list view contains a precalcu-
lated average votes value with an index, is obviously much faster.

But to provide a fair comparison, you need to compare the CQRS solution against
the part 3 solution (see section 13.4), in which you add cached values to your SQL data-
base (the cached-values SQL solution). In this case, the difference is much smaller; see
figure 14.6.

Comparing a “cached values” SQL solution against a two-database CQRS solution

100,000 books

Cached value SQL Two-database CQRS

100 ms

99 ms

100 ms

117 ms

100 ms

153 ms

(ms) 250,000 books 500,000 books
0

20

40

60

80

100

120

140

160

The test is sorting the books
by average votes and then
showing the top 100 books.

Figure 14.6   The time it takes to sort all the books by the average review votes and then show
the 100 top books. This graph compares the “cached values SQL” version (see section 13.4)
of the book app against the two-database CQRS solution.

Figure 14.6 shows that the cached value with its index is the main reason that the CQRS
solution is quicker. When using a CQRS solution to improve performance, the primary
goal must be to store the exact data that the user wants to see or sort and/or filter on
what I call a precalculated view. If you’re not going to build a precalculated view, but just
access the same database as before, you won’t gain much in terms of performance. The
precalculated view is the main performance multiplier.

	 411Developing a CQRS architecture application with EF Core

Looking beyond the precalculated view issue, figure 14.6 also shows that the
RavenDB database, with its simpler database structure, has better performance as the
number of books in the database increases. This brings us to another side of perfor-
mance: scalability.

Scalability determines how many simultaneous users an application can handle while
still providing good performance (see chapter 12, especially section 12.7). Because
NoSQL databases such as RavenDB are dealing with a single entry containing all the infor-
mation, a read or write is simpler than in the SQL case. In general, this makes NoSQL
databases easier to duplicate (to have multiple databases all containing the same data).

The effect of having multiple databases on scalability can be significant. Not only
can you spread database access across multiple databases, but you can locate databases
geographically around the world to provide shorter access times.

To summarize on performance:

¡	The CQRS architecture solution provides better performance than a noncached
SQL version, when its read-side database holds a precalculated view of the book
list. This precalculated view makes the handling of sorting, filtering, and viewing
a book much faster.

¡	Using a NoSQL database, which has a simpler, single-entry view, for the read-side
database does have performance benefits, especially around scalability, over an
SQL database.

Is the drop in the performance of any book-related database write acceptable?
I said previously that a two-database CQRS architecture is going to be slower on writes,
because it must write to two databases. I’ve measured this in my solution and there’s an
effect, but it’s pretty small. Table 14.2 shows one common case, which is a user adding
a review to a book, and the difference in write time.

Table 14.2   The difference in the time taken for the ASP.NET action to return after adding a new review
to a book

Solution type Total time Notes

Cached-values SQL 13 ms Simple addition of Review entity to the database
and a recalculation of the cached values.

Two-database CQRS 35 ms The extra time is mainly around writing to the NoSQL
database. I measured the RavenDB update as taking
25 ms, which is quite long compared to an SQL write.

In my mind, a function that takes less than 50 ms to return to the user isn’t worth per-
formance tuning. But in applications with more-complex updates, this time might get
too long. But there are plenty of ways to handle this; for instance, you could pass the
update a background task to be executed so that the application returns immediately to

412 Chapter 14  Different database types and EF Core services

the user. The only downside of that approach is the user may be shown out-of-date data,
which could be confusing. These are the design trade-offs you must think through.

The differences in software implementation between non-CQRS and CQRS solutions

This section compares the cached-values SQL solution in section 13.4 and the two-data-
base CQRS solution in this chapter. Both solutions take extra work to build, and make
the software structure more complex. Table 14.3 compares the development effort,
complexity, and robustness of the two designs.

Table 14.3   Comparing the cached-values SQL solution in section 13.4 and the two-database CQRS
solution against three software criteria

Solution type Effort Complexity Robustness

Cached-values SQL ~ 3 days Same Good

Two-database CQRS ~ 8 days Same Very good

In terms of development effort, the CQRS implementation takes longer to create than
the cached-values SQL solution. Part of that is learning about RavenDB’s philosophy
and software package, and part of it is coming up with a clever design to separate the
NoSQL code from the rest of the application. But I think this is still within a sensible
development cost, considering you’re performance-tuning an existing, SQL-only, EF
Core application (but some managers may not agree with me!).

The CQRS design is more complex than the original EF Core design in chapter 5,
but I accept some additional complexity whenever I apply performance tuning. But the
cached-values SQL solution also added complexity, just in other places. Their complex-
ity is different: the CQRS design has complex interfaces to hide things, the cached-
values SQL solution has complex concurrency handling code. Overall, I think the
CQRS design and the cached-values SQL solution are comparable in the extra com-
plexity they add to the book app.

The big, positive difference is in the robustness of the CQRS design. I rate it above
the cached-values SQL solution because it designs out the concurrency issues that the
cached-values SQL solution has. You don’t need any explicit code to handle concur-
rency in my CQRS solution. That’s a big plus.

To summarize the differences in implementation:

¡	The CQRS is superior to the cached-values SQL solution (see section 13.4)
because the design doesn’t need special handling of concurrency issues.

¡	Changing the book app over to a CQRS architecture adds complexity to the
code, but no more than the cached-values SQL solution does.

¡	The CQRS implementation takes longer (about eight days) to develop than the
cached-values SQL solution (about three days). But, in my opinion, it’s worth the
extra effort.

	 413Accessing and changing EF Core services

14.3	 Accessing and changing EF Core services

TIME-SAVER   This section discusses advanced features within EF Core that
aren’t useful in everyday use of EF Core. If you’re new to EF Core, you might
want to skip this section for now.

Now let’s look at a completely different area of EF Core: its internal services. EF Core
is built in a modular way, with most of the key parts of its code linked by dependency
injection (see section 5.3). The EF Core team has made these services available for
developers to use for their own uses; you can override some of the services if you want
to change the way EF Core works.

Using or overriding the EF Core services is an advanced feature, but it can be useful
when you need to customize EF Core behavior, or to save you from writing code that EF
Core has already implemented. This section covers the following:

¡	How and why you might use an EF Core’s service in your own code
¡	How and why you might override one of EF Core’s internal services

14.3.1	 Accessing an EF Core service to help in your own application

EF Core has more than 50 services that you could gain access to. Most aren’t that use-
ful, but a few might help with a project you’re working on. One part of EF Core I’m
interested in is its mapping of entity classes to SQL tables. In previous applications I
wrote with EF6.x, I had to have a table of how EF mapped .NET types to database types.
With EF Core, you can tap into its relational mapping service and obtain that informa-
tion directly from the EF Core code.

To do this, you need to access the database provider mapping service via the IRela-
tionalTypeMapper interface. This service provides methods that can map a .NET type,
with any EF Core configurations or attributes, to an SQL type, and from an SQL type to
a .NET type. Listing 14.8 shows how to obtain an instance of the SQL-type-to-.NET-type
mapper that EF Core uses for an SQL Server database. In this case, you give it the SQL
type, and it tells you the information about the .NET type, including information you’d
need to configure EF Core to match that SQL Server type.

Listing 14.8   Determining how EF Core would map an SQL type to a .NET type

//… other setup code left out
optionsBuilder.UseSqlServer(connection);
using (var context = new EfCoreContext(optionsBuilder.Options))
{
 var service = context.GetService<IRelationalTypeMapper>();
 var netTypeInfo = service.FindMapping("varchar(20)");

The mapping depends on the database provider you’re
using. In this case, you’re using an SQL Server.

You must create an instance of the application’s
DbContext to access the services.

You use the GetService<T> method to get the
IRelationalMapper; this will be mapped to the
database provider’s mapper.

You can use this service to find the
mapping from an SQL type to a .NET type.

414 Chapter 14  Different database types and EF Core services

 netTypeInfo.ClrType.ShouldEqual(typeof(string));
 netTypeInfo.IsUnicode.ShouldBeFalse();
 netTypeInfo.Size.ShouldEqual(20);
}

There are other services, but many are even more specific to EF Core and therefore
not that useful outside EF Core itself. But the next section shows how you can replace
an EF Core service with your own custom variant, which opens interesting possibilities.

TIP   If you want to see all the services that EF Core makes available, there isn’t a sim-
ple method to call. But if you write the code var service = context.GetService
<IServiceScopeFactory>(); and use the debugger to look at the nonpublic
members, you can see the list of all services.

14.3.2	 Replacing an EF Core service with your own modified service

Wouldn’t it be great if you could change how the internals of EF Core work? For
instance, you could modify the IModelValidator service to check that the database
table names adhere to your specific project rules. Or you could apply a new proper-
ty-naming convention to set the correct SQL varchar/nvarchar type by overriding the
IRelationalTypeMapper service.

Even if you could replace them, some of these services are complicated; for instance,
the RelationalModelValidator class has 11 methods. So it would be a nightmare if you
had to re-create all that code, and you might have to change your code when a new EF
Core version comes out. Thankfully the EF Core team has thought about developers
wanting to alter or extend EF Core internal services.

The EF Core development team has built all the EF Core internal services with over-
ridable methods. You can inherit the appropriate class and then just override the spe-
cific method you want to change, with the option of calling the base method if you need
to. This makes it much easier to build a customer service, although you still need to
understand what you’re doing.

For this example, you’re going to override part of the EF Core SqlServerType
Mapper class, which has 20 parts that can be overridden. Writing all those parts would be
an impossible job, but you can override just the one you want to change and leave the
rest alone, as shown in figure 14.7.

You’re going to override the FindMapping(IProperty property) method to add
your own By Convention rule to EF Core’s configuration stage. The new rule will allow
you to configure the SQL storage of certain string properties as a non-Unicode (8-bit)
string to save space (normally, string properties are held in 16-bit Unicode characters
in SQL Server). The new rule is as follows: if a string property name ends with Ascii, it
should be stored using SQL Server’s varchar type (8-bit chars) rather than the normal
string mapping to SQL Server’s nvarchar type (16-bit chars).

Unit test checks that verify that
the .NET version would be a string

Unit test checks that confirm the EF Core
configuration parts needed to property-map

a string to the specific SQL type

	 415Accessing and changing EF Core services

EF Core’s SqlServerTypeMapper class
is big and complicated, so you don’t
want to replicate all its code.

But you don’t have to, because every
method that you can replace is
overrideable, so you alter the specific
method you want to change, calling
the original method for the cases you
don’t want to handle.

Your CustomSqlServerTypeMapper class with just one,
small method in it. Everything else is provided by
the inherited SqlServerTypeMapper class.

public class SqlServerTypeMapper
// This has 20 overrideable items

public override IByteArrayRelationalTyoeMapper ByteArrayMapper { get; }
public override IStringRelationalTypeMapper StringMapper { get; }
public override void Validate TypeName(string storeType)
public override RelationalTypeMapping FindMapping(Type clrType)
protected override bool RequiresKeyMapping(IProperty property)
public virtual void ValidateTypeName(string storeType)
public virtual bool IsTypeMapped(Type clrType)
public virtual RelationalTypeMapping FindMapping(IProperty property)
Public virtual RelationalTypeMapping FindMapping(Type clrType)
Public virtual RelationalTypeMapping FindMapping(string storeType)
… and so on CustomSqlServerTypeMapper

 : SqlServerTypeMapper

public override FindMapping(...)
{ my code goes here }

Figure 14.7   A tiny change to one of EF Core’s key services can be achieved by inheriting the service
you want to change and then overriding just the method that you want to change. You can even call the
original method for the cases you don’t want to change.

The first step is to create a custom type mapper, which is shown in the following list-
ing. You override the .NET-type-to-SQL-type mapping method, in which you add the
new code.

Listing 14.9   The custom SQL Server type-mapping class

public class CustomSqlServerTypeMapper
 : SqlServerTypeMapper
{
 public CustomSqlServerTypeMapper(
 RelationalTypeMapperDependencies dependencies)
 : base(dependencies) {}

 public override RelationalTypeMapping
 FindMapping(IProperty property)
 {
 var currentMapping = base.FindMapping(property);
 if (property.ClrType == typeof(string)
 && property.Name.EndsWith("Ascii"))
 {
 var size = currentMapping.Size == null
 ? "max"
 : currentMapping.Size.ToString();

Creates a custom type mapper by
inheriting the SqlServer type mapper

You need to add a constructor
that passes the dependencies

it needs to the inherited class.

You override only the FindMapping method that deals
with .NET type to SQL type. All the other mapping
methods you leave as is.

Gets the mapping that the SQLl Server
database provider would normally do. This

gives you information you can use.

You insert the new rule here. If the property is of .NET
type string and the property name ends with Ascii, you
want to set it as an SQL varchar instead of the normal
SQL nvarchar.

You work out the size part of SQL type string—either
the size provided, or max if the size is null.

416 Chapter 14  Different database types and EF Core services

 return new StringTypeMapping(
 $"varchar({size})",
 DbType.AnsiString, true,
 currentMapping.Size);
 }

 return currentMapping;
 }
}

NOTE   The type mapper is different for every database provider, so you have to
inherit from the correct one to match the database server you’re using. Inherit-
ing from the wrong service base will cause serious problems.

The second step is to alter the configuration options sent to the application’s DbCon-
text when you create a new instance. Listing 14.10 shows the alteration of the ASP.NET
Core’s ConfigureServices method in the Startup class, which registers the applica-
tion’s DbContext, plus its options, with ASP.NET Core’s dependency injection module.
The new line of code is shown in bold.

Listing 14.10   Registering the custom type mapper to replace the normal mapper

var connection = Configuration
 .GetConnectionString("DefaultConnection");
services.AddDbContext<EfCoreContext>(
 options => options.UseSqlServer(connection,
 b => b.MigrationsAssembly("DataLayer"))
 .ReplaceService<IRelationalTypeMapper,
 CustomSqlServerTypeMapper>()
);

NOTE   You must specify the interface for service as the first part of the generic
ReplaceService<IService, TImplementation> method.

14.4	 Accessing command-line tools from software
EF Core provides a series of command-line tools to allow you to migrate your database
or reverse-engineer a database (see chapter 11 for more details). These are known as
design-time services, because these services are normally run by typing a command into
the PMC in Visual Studio or the command prompt on your system. But you can access
them via software, which can be useful if you want to automate something or exploit a
tool for your own use.

WARNING   This code accesses internal parts of the EF Core system, which may
change with no warning when a new release of EF Core comes out.

Builds StringTypeMapping with the
various parts set to a varchar type
column—an 8-bit character string

If the property didn’t fit the new rule, you
want the normal EF Core mapping. You
therefore return the SQL type mapping
that the base method has calculated.

The normal code registers the EFCoreContext class,
which is the application’s DbContext, and its options
with ASP.NET Core dependency injection module

The new code that replaces the normal relational type
mapper with the modified type mapper

	 417Accessing command-line tools from software

As an example, you’ll tap into the EF Core’s reverse-engineering tool design-time ser-
vice and use it to get data that allows you to list the schema of a database referred to by
a connection string.

14.4.1	 How to access EF Core design-time services

To access EF Core design-time services, you need to re-create the setup that EF Core
uses when you call commands such as Add-Migration or dotnet ef dbcontext scaf-
fold. This is a bit complicated, and thanks to Erik Ejlskov Jensen (http://erikej.blogspot
.co.uk/) for helping me with this.

Listing 14.11 shows the code to create the scaffolding (also known as reverse-engineering)
service that’s used to produce the entity classes and application’s DbContext from an
existing database (see section 11.3). For this to compile, you need to include the NuGet
packages for the database providers that you want to access the design-time services; for
instance, Microsoft.EntityFrameworkCore.SqlServer to access the SQL Server services.

Listing 14.11   Building and returning the scaffolder design-time service

public enum DatabaseProviders { SqlServer, MySql }

public class DesignTimeProvider
{
 private readonly List<string> _errors
 = new List<string>();
 private readonly List<string> _warnings
 = new List<string>();

 public ImmutableList<string> Errors =>
 _errors.ToImmutableList();
 public ImmutableList<string> Warnings =>
 _warnings.ToImmutableList();

 public ServiceProvider GetScaffolderService
 (DatabaseProviders databaseProvider,
 bool addPrualizer = true)
 {
 var reporter = new OperationReporter(
 new OperationReportHandler(
 m => _errors.Add(m),
 m => _warnings.Add(m)));

 // Add base services for scaffolding
 var serviceCollection =
 new ServiceCollection()
 .AddScaffolding(reporter)
 .AddSingleton<IOperationReporter,
 OperationReporter>()
 .AddSingleton<IOperationReportHandler,
 OperationReportHandler>();

Uses an enum to select which database provider’s
design services you want to use. You also have a
method (not shown) that will select the correct enum
based on the current DbContext.

Just like the command-line versions, the
design-time commands can return errors or

warnings. They’re placed in these lists.

You provide the Errors and
Warnings as immutable lists.

Returns the design services for
the chosen type of database
provider. The addPluralizer
parameter adds/leaves out a
pluralizer used to make classes
singular and tables plural.

All this code is required
to create the scaffolder
design-time service.

http://erikej.blogspot.co.uk/
http://erikej.blogspot.co.uk/

418 Chapter 14  Different database types and EF Core services

 if (addPrualizer)
 serviceCollection.AddSingleton
 <IPluralizer, ScaffoldPuralizer>();

 switch (databaseProvider)
 {
 case DatabaseProviders.SqlServer:
 {
 var designProvider =
 new SqlServerDesignTimeServices();
 designProvider.
 ConfigureDesignTimeServices(
 serviceCollection);
 return serviceCollection
 .BuildServiceProvider();
 }
 case DatabaseProviders.MySql:
 {
 var designProvider =
 new MySqlDesignTimeServices();
 designProvider.
 ConfigureDesignTimeServices(
 serviceCollection);
 return serviceCollection
 .BuildServiceProvider();
 }
 default:
 throw new ArgumentOutOfRangeException(
 nameof(databaseProvider),
 databaseProvider, null);
 }
 }
}

You can use other design-time services, such as the migration tools, but those services
will need a different setup. The best way to find out what’s required is to look at the EF
Core source at https://github.com/aspnet/EntityFrameworkCore.

14.4.2	 How to use design-time services to build the
EfSchemaCompare tool

Section 11.4.2 introduced the EfSchemaCompare tool I created to help with database
migrations. This uses the design-time scaffolding service to read in the schema of the
database you want to inspect. Using the scaffolding service replaces a large amount of
ADO.NET code I had to write when I built the EF6.x version of the EfSchemaCompare
tool. And because the scaffolding service is provided by the database provider, my new
EfSchemaCompare tool can work with any relational database that EF Core supports.

This listing shows how to use one of the available scaffolding services to get informa-
tion on the schema of the database.

You optionally add
a pluralizer.

In this case, you support only
two types of database providers:
SQL Server and MySQL

Creates the SQL Server
design-time service for the

loaded SQL Server database
provider NuGet package

Creates the MySQL design-
time service for the loaded
MySQL database provider

NuGet package

Adds the services the
scaffolder needs and
returns the built service

https://github.com/aspnet/EntityFrameworkCore

	 419Summary

Listing 14.12   Using the design-time service in your code to read a database’s schema

var connectionString = "Server=... shorten to fit";
var builder = new DesignTimeBuilder();
var serviceProvider = builder
 .GetScaffolderService(
 DatabaseProviders.SqlServer);
var service = serviceProvider
 .GetService<IDatabaseModelFactory>();

var model = service.Create(connectionString,
 new string[] { }, new string[] { });
var tables = model.Tables;

From this code, EfSchemaCompare can use the data to compare with EF Core’s Model
property, which contains a model of what the database should look like based on the
entity classes and EF Core configuration.

Using this design-time service provides three things to help build the EfSchema-
Compare tool:

¡	It removes the need to write a lot of complicated ADO.NET code to read in a
database’s schema and convert it to a useful form.

¡	It provides a solution that would work with any relational database supported by
EF Core.

¡	If new features appear in EF Core, it’s more likely that the design-time service will
upgrade too, thus reducing the amount of refactoring required to support that
new feature.

Summary
¡	The main differences between each database type are the EF Core database pro-

vider, the UseXXX method (for instance UseMySql), and the connection string.
¡	Features and syntax differ slightly among the various database types. You need to

read the documentation relevant to the database type and its EF Core provider.
¡	The CQRS architecture with different read-side and write-side databases can

improve performance, especially if you use a NoSQL database as the read-side
database.

Provides the connection string to
the database you want to read

DesignTimeBuilder, which holds
the code in listing 14.11

Gets the ServiceProvider specifically
set up by your code to contain the
setting needed for the scaffolder.

Indicates what database provider you
need, which must match the type of
database you’re reading

Creates one of the services that the
scaffolder has. In this case, you use the
method that returns a class DatabaseModel.

The service has only one method, called
Create, which takes the connection
string and reads its schema, returning a
DatabaseModel instance.

These two parameters allow you to target specific tables
and/or schema names. You use an empty collection to
say you want all the tables in all the schemas.

DatabaseModel has a property, called
Tables, that returns information on
the tables it could find.

420 Chapter 14  Different database types and EF Core services

¡	When tracking changes to an entity, the State of an entity is correct before the
call to the SaveChanges method, but the primary and foreign keys of a new entity
will be correct only after the call to the SaveChanges method.

¡	You can access EF Core internal services via the context.GetService<T> method.
¡	You can replace an EF Core internal service by using the ReplaceService

<IService, TImplemenation> method at the time that you configure the appli-
cation’s DbContext.

¡	You can access the EF Core design-line services, such as Add-Migration or
Scaffold commands, via software. This could save you time when developing a
tool to work with EF Core.

421

15Unit testing
EF Core applications

This chapter covers
¡	Simulating a database for unit testing

¡	Using an in-memory database for unit testing

¡	Using real databases for unit testing

¡	Unit testing a disconnected state update

¡	Capturing logging information while unit testing

This chapter is about unit testing applications that use EF Core for database access.
You’ll learn what unit-testing approaches are available and how to choose the cor-
rect tools for your specific needs. I also describe numerous methods and techniques
to make your unit testing both comprehensive and efficient.

Unit testing is a big subject, with whole books dedicated to the topic. I focus on the
narrow, but important, area of unit-testing applications that use EF Core for database
accesses. To make this chapter focused, I don’t explain the basics of unit testing, but
leap right in. I therefore recommend anyone new to unit testing to skip this chapter,
or come back to it after you’ve read up on the subject. This chapter won’t make any
sense without that background, and I don’t want to discourage you from unit testing
because I make it look too hard.

422 Chapter 15  Unit testing EF Core applications

TIP   To learn more about unit testing, have a look at https://msdn.microsoft
.com/en-us/library/hh694602.aspx. For much more in-depth coverage of unit
testing, I recommend Roy Osherove’s The Art of Unit Testing: with Examples in C#,
Second Edition (Manning, 2013), http://mng.bz/1f92.

OK, if you’re still with me, I assume you know what unit testing is and have at least
written some unit tests. I’m not going to cover the differences between unit tests and
integration tests, or acceptance tests, and so on. I’m also not here to persuade you that
unit tests are useful; I assume you’re convinced of their usefulness and want to learn
the tips and techniques for unit testing an EF Core application.

Still with me? Good, because I think unit testing is useful and I use it a lot. I have
more than 500 in the EfCoreInAction Git repo. But that doesn’t mean I want to spend a
lot of time writing unit tests. I want to be as efficient as I can at writing the unit tests, and
I seek to be efficient in two areas, depicted in figure 15.1:

¡	Fast to develop —I’ll introduce tools and techniques to help you write unit tests
quickly for applications that use EF Core.

¡	Fast to run —I want my unit tests to run as quickly as possible, because a quick
test-debug cycle makes developing and refactoring an application a much nicer
experience.

The quicker your unit
tests run, the more
you will use unit tests.
• When developing a class,
 you may run one set of unit
 tests 10 or 20 times.
• The faster the whole test
 suite runs, the more likely
 you are to run them after
 a change.

Of course you want to
develop unit tests quickly,
but that needs planning.
Think about:
• What tools can you find to
 make you more efficient?
• Will the way you simulate
 your database still work
 as your application grows?

[Test]
public void TestMyMethod()
{
 //SETUP
 var class = new MyClass();

 //ATTEMPT
 var result = class.MyMethod(1);

 //VERIFY
 result.ShouldEqual(2);
}

Fast to run

The two aspects of efficiency in unit testing

Fast to develop SPEED
LIMIT

30My
unit
test

Figure 15.1   I believe wholeheartedly in unit tests, but that doesn’t mean I want to spend a lot of time
developing or running them. My approach is to try to be efficient at using unit tests, and that splits into
developing quickly and not having to hang around while they run.

15.1	 Introduction—our unit test setup
Before I start explaining the techniques, I need to introduce you to our unit test setup;
otherwise, the examples won’t make any sense. I use a fairly standard approach, but
as you’ll see, I’ve also created tools to help with the EF Core and database side of unit
testing. Figure 15.2 shows a unit test with some of the features/methods covered in the
chapter.

https://msdn.microsoft.com/en-us/library/hh694602.aspx
https://msdn.microsoft.com/en-us/library/hh694602.aspx
http://mng.bz/1f92

	 423Introduction—our unit test setup

[Fact]
public void TestExample()
{
 //SETUP
 var options = this
 .CreateUniqueClassOptions<EfCoreContext>();
 using (var context = new EfCoreContest(options))
 {
 context.CreateEmptyViaWipe();
 var logs = context.SetupLogging();

 //ATTEMPT
 context.Add(new book {Title = “New Book”});
 context.SaveChanges();

 //VERIFY
 context.Books.Count() .ShouldEqual(1);
 foreach (var log in logs.ToList())
 {
 _output.WriteLine(log.ToString());
 }
 }
}

Here you output the
logging information
from EF Core to the
unit test window.

This method quickly
produces an empty
database for a test.

Now you run
your test.

This is an xUnit
unit test.

You use fluent
validation in
your tests.

This captures any
logging produced
by EF Core.

This method creates
options for an SQL
Server database
whose name is
unique to this class.

Figure 15.2   This gives you a flavor of some of the unit-test features covered in this chapter. Some of these
methods are also available in a NuGet package called EfCore.TestSupport.

This section covers

¡	The test environment you’ll be using—the xUnit unit test library
¡	A NuGet package I created to help with unit testing EF Core applications

15.1.1	 The test environment—the xUnit unit test library

I’m using the xUnit unit test library (see https://xunit.github.io/) because Microsoft
supports it well. xUnit is also quicker than some other unit test frameworks, such as
NUnit (which I used to use), because xUnit can run unit test classes in parallel. This
has downsides, which I show you how to get around, but it does mean you can run your
complete unit test suite a lot quicker.

I also use fluent validation —see row 1 in table 15.1. I find the fluent validation style
much easier to work with than the assert method approach; it’s slightly shorter, and
IntelliSense can suggest the fluent validation methods that are appropriate.

Table 15.1   Two approaches to checking that two books were loaded by the previous query that was
under test

Type Example code

Fluent validation style books.Count().ShouldEqual(2);

Assert method style Assert.Equal(2, books.Count());

https://xunit.github.io/

424 Chapter 15  Unit testing EF Core applications

You can find these fluent validation extension methods at http://mng.bz/6mu6, but
I’ve also included them, plus a few extra fluent validations, in the NuGet package
called EfCore.TestSupport that I’ve built. See section 15.1.2.

This listing shows a simple unit test using the xUnit unit test package and the fluent val-
idation extensions. This example uses a three-stage pattern of setup, attempt, and verify.

Listing 15.1   A simple example of an xUnit unit test method

[Fact]
public void DemoTest()
{
 //SETUP
 const int someValue = 1;

 //ATTEMPT
 var result = someValue * 2;

 //VERIFY
 result.ShouldEqual(2);
}

I use JetBrain’s ReSharper (see www.jetbrains.com/resharper/) to run my unit tests
inside Visual Studio 2017, but that costs money. You can run your unit tests using Visual
Studio’s built-in Test Explorer, found under the Test menu item.

If you’re using Visual Studio Code (VS Code), the test runner is built in. You need to
set up the build and test tasks in the VS Code tasks.json file, which allows you to run all
the tests via the Task > Test command. You can also run all the tests from the command
line by typing dotnet test while in the Test directory of your application. Individual
unit tests can be run by selecting the class containing the test and clicking the | run
test | debug test | markers over each test method.

NOTE   Visual Studio 2017 Enterprise offers live unit testing: it will automatically
rerun the unit tests associated with the code you’re writing. Other commer-
cial tools, such as dotCover, NCrunch, and NCover, have similar features. You
might also like to look at “The Rise of Test Impact Analysis,” an article describ-
ing an approach to speeding up the testing phase; see http://mng.bz/66tg.

15.1.2	 A library I’ve created to help with unit testing EF Core applications

I learned a lot about unit testing EF Core applications as I built the software that goes
with this book. If I had to do it again, I’d organize my unit tests differently. I therefore
decided to build a unit test library by rearranging and improving my original unit test
code. This library is available as an open source NuGet package called EfCore.TestSup-
port (see www.nuget.org/packages/EfCore.TestSupport/).

The [Fact] attribute tells the unit test runner that
this method is an xUnit unit test that should be run.

The method must be public. It should
return void, or, if you’re running async
methods, it should return a Task.

Typically, you put code here that sets up the
data and/or environment for the unit test.

This is where you run the
code you want to test.

Here is where you put the test(s) to check
that the result of your test is correct.

www.jetbrains.com/resharper/
www.nuget.org/packages/EfCore.TestSupport/

	 425Simulating the database when testing EF Core applications

This chapter uses many of the methods in the EfCore.TestSupport library, but I don’t
detail their signatures as I do in the EfCore.TestSupport Git repo at https://github
.com/JonPSmith/EfCore.TestSupport. But I’ll be explaining the how and why of unit
testing by using some of the methods from my EfCore.TestSupport library and showing
some of the code I developed too.

15.2	 Simulating the database when testing EF Core applications
If you unit test your application and it includes accesses to a database, you have several
approaches to simulating the database. Over the years, I’ve tried many approaches to
simulating the database in a unit test, ranging from mimicking, or mocking, the DbCon-
text (not easy!) through to using real databases. This chapter covers some of those
approaches and a few new tactics that EF Core offers.

DEFINITION   Mocking simulates the features of another object. For instance, if
you access the database via an interface, you can mock the database’s access
code by creating a class that matches that interface. This mock can then provide
test data without accessing a database.

Early consideration on how to unit test with a database can save you a lot of pain later,
especially if you’re using EF Core. As I said in section 15.1.2, I had to change my unit
testing as I progressed with the code in this book, and things got messy toward the end.
But that isn’t new; in some of my projects, I later regretted my early decisions on how to
unit test, as they start to fall apart at the project grows. Although some rework of early
unit tests is inevitable, you want to minimize this, as it slows you down.

So, let’s start by looking at your options for simulating the database and how you
might select the right options for your project.

15.2.1	 The options you have for simulating the database

You can simulate a database in EF Core in many ways, and I list the four mains ones in
this section. These options range in complexity, speed, and which features they sup-
port. Typically, you might use a mixture of these options in unit testing an application.

Using an in-memory database designed for unit testing

EF Core has an InMemory database designed specifically for unit testing. You can also
use an SQLite in-memory database, which provides more relational checks.

¡	Pros: Quick to run, builds fresh database every time.
¡	Cons: In-memory databases don’t support advanced SQL features such as UDFs,

computed columns, and so on.

Using a “real” database of the same type as your application uses

You can create a database, or databases, of the same type as your application (say, SQL
Server or MySQL) for running your unit tests.

¡	Pros: Perfect match to your application. Handles any SQL feature that you could
use in your application.

¡	Cons: Can be slow to create. If using xUnit in parallel, you need a separate data-
base for each unit test class.

https://github.com/JonPSmith/EfCore.TestSupport
https://github.com/JonPSmith/EfCore.TestSupport

426 Chapter 15  Unit testing EF Core applications

Mocking a database repository pattern

Chapter 4 described building business logic with a DbAccess part, which acts as a
Rrepository pattern to access the database. This is easy to mock.

¡	Pros: Fast, total control over what data comes in and out.
¡	Cons: Can be used in only specific areas. More code to write.

Mocking your application’s DbContext

You could try to mock EF Core’s DbContext. I mention this only for completeness; I
don’t recommend trying this, other than in simple access cases.

¡	Pros: Fast.
¡	Cons: Hard to mock EF Core’s DbContext successfully.

You’ll likely need to use a database in a lot of your unit tests, which means choosing
between the first two options: using an in-memory or “real” database. The next section
talks about how you choose.

15.2.2	 Choosing between an in-memory or real database for unit testing

I didn’t get this decision quite right at the start of building the EfCoreInAction code
base. I started out with EF Core’s InMemory database, quickly swapped to an SQLite
in-memory database, and then had problems later when I started using SQL UDFs, as
some of my early unit tests broke. The simple lesson here is, if you’re going to build
an application that uses features that the SQLite server can’t handle, you need to use a
“real” database. Otherwise, you can use an in-memory database.

If you’re building an application that uses the SQL features listed in table 15.2, you
can’t use an SQLite in-memory database for unit testing. (The EF InMemory database
provider has even more limitations.)

Table 15.2   The SQL features that EF Core can control, but that aren’t going to work with SQLite—either
because SQLite doesn’t support the feature, or because SQLite uses a different format from SQL Server,
MySQL, and so on.

SQL feature See section SQLite support?

Different schemas 6.11.2 Not supported

SQL sequences 8.5 Not supported

SQL computed columns 8.3 Different format than SQL Server

SQL user-defined functions (UDFs) 8.2 Different format than SQL Server

SQL fragment default value 8.4.2 Different format than SQL Server

	 427Getting your application’s DbContext ready for unit testing

If you decide you can use an in-memory database, you can use either of these:

¡	EF Core’s InMemory database
¡	SQLite with an in-memory database

I highly recommend the SQLite in-memory option, because SQLite is a true relational
database, whereas EF Core’s InMemory database provider isn’t a real relational data-
base. EF Core’s InMemory database won’t pick up on data that would break referential
integrity, such as foreign keys that don’t match the appropriate primary key. About
the only good thing about EF Core’s InMemory is that it’s about 40% faster on setup
than SQLite (but slower in execution), but both are fast at setup anyway. I cover using
SQLite in-memory in the next section.

NOTE   If you want to use EF Core’s InMemory database, I provide the code
to do that in my EfCore.TestSupport library. See http://mng.bz/94tj for an
example of a unit test that uses an InMemory database provider. You can find
my InMemory options setup code at http://mng.bz/f4tt.

15.3	 Getting your application’s DbContext ready
for unit testing
Before you can unit test your application’s DbContext with a database, you need to
ensure that you can alter at least the database name. Otherwise, you can’t provide a
database that your unit tests can use to read and write to. The technique you use to do
this depends on how the application’s DbContext expects the options to be set. The
two approaches that EF Core provides for setting the options are as follows:

¡	The application’s DbContext expects the options to be provided via its construc-
tor. This is the recommended approach for ASP.NET Core applications.

¡	The application’s DbContext sets the options internally in the OnConfiguring
method. This is the recommended approach for all other types of applications.

The technique you use to define the database differs in the two cases.

15.3.1	 The application’s DbContext options are provided
via its constructor

This form of option setting is perfect for using with unit tests and doesn’t need any
changes to the application’s DbContext. Providing the options via the application’s
DbContext constructor gives you total control over the options; you can change the
database connection string, the type of database provider it uses, and so on.

This listing shows the format of an application’s DbContext that uses a constructor to
obtain its options. The constructor is shown in bold.

428 Chapter 15  Unit testing EF Core applications

Listing 15.2   An application DbContext that uses a constructor for option setting

public class EfCoreContext : DbContext
{
 public DbSet<Book> Books { get; set; }
 public DbSet<Author> Authors { get; set; }
 public DbSet<PriceOffer> PriceOffers { get; set; }

 public EfCoreContext(
 DbContextOptions<EfCoreContext> options)
 : base(options) {}

 //… rest of the class left out
}

For this type of application’s DbContext, the unit test can create the options and then
provide them as a parameter in the application’s DbContext constructor. The next list-
ing shows an example of creating an instance of your application’s DbContext in a unit
test that will access an SQL Server database, with a specific connection string.

Listing 15.3   Creating a DbContext by providing the options via a constructor

const string connectionString
 = "Server= … content removed as too long to show";
var builder = new
 DbContextOptionsBuilder<EfCoreContext>();
builder.UseSqlServer(connectionString);
var options = builder.Options;
using (var context = new EfCoreContext(options))
{
 //… unit test starts here

15.3.2	 Setting an application’s DbContext options via OnConfiguring

This form isn’t immediately ready for unit testing and requires you to modify
your application’s DbContext before you can use it in unit testing. But before you
change the application’s DbContext, I want to show you the normal arrangement
of using the OnConfiguring method to set the options; the OnConfiguring method
is in bold.

Holds the connection string for
the SQL Server database

You need to create the DbContextOptionsBuilder<T>
class to build the options.

Defines that you want
to use the SQL Server
database provider

Builds the final DbContextOptions<EfCoreContext>
options that the application’s DbContext needs

Allows you to create an instance
for your unit tests

	 429Getting your application’s DbContext ready for unit testing

Listing 15.4   A DbContext that uses the OnConfiguring method to set options

public class DbContextOnConfiguring : DbContext
{
 private const string connectionString
 = "Server=(localdb)\\... shortened to fit";

protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 optionsBuilder.UseSqlServer(connectionString);
 base.OnConfiguring(optionsBuilder);
 }
 // … other code removed
}

Microsoft’s recommended way to change a DbContext that uses the OnConfiguring
method to set up the options is shown next. As you’ll see, this adds the same sort of con-
structor setup as ASP.NET Core uses, while making sure the OnConfiguring method
still works in the normal application.

Listing 15.5   An altered DbContext allows the connection string to be set by the unit test

public class DbContextOnConfiguring : DbContext
{
 private const string ConnectionString
 = "Server=(localdb)\\ … shortened to fit";

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 if (!optionsBuilder.IsConfigured)
 {
 optionsBuilder
 .UseSqlServer(ConnectionString);
 }
 }

 public DbContextOnConfiguring(
 DbContextOptions<DbContextOnConfiguring>
 options)
 : base(options) { }

 public DbContextOnConfiguring() { }
 // … other code removed
}

To use this modified form, you can provide options in the same way you did with the
ASP.NET Core version.

Changes the OnConfigured method to
run its normal setup code only if the
options aren’t already configured

Adds the same constructor-based
options settings that the ASP.NET

Core version has, which allows you
to set any options you want

Adds a public, parameterless
constructor so that this DbContext
works normally with the application

430 Chapter 15  Unit testing EF Core applications

Listing 15.6   A unit test provides a different connection string to the DbContext

const string connectionString
 = "Server=(localdb)\\... shortened to fit";
var builder = new
 DbContextOptionsBuilder
 <DbContextOnConfiguring>();
builder.UseSqlServer(connectionString);
var options = builder.Options;
using (var context = new
 DbContextOnConfiguring(options)
{
 //… unit test starts here

Now you’re good to go for unit testing.

15.4	 Simulating a database—using an in-memory database
SQLite has a useful option for creating an in-memory database. This option allows a
unit test to create a new database in-memory, which means it’s isolated from any other
database. The database lives in the SQLite connection.

To make an SQLite database be in-memory, you need to set DataSource to ":memory:",
as shown here. This listing comes from the SQLiteInMemory.CreateOptions method in
my EfCore.TestSupport library.

Listing 15.7   Creating DbContextOptions<T> for in-memory SQLite database

public static DbContextOptions<T> CreateOptions<T>
 (bool throwOnClientServerWarning = true)
 where T : DbContext
{
 var connectionStringBuilder =
 new SqliteConnectionStringBuilder
 { DataSource = ":memory:" };
 var connectionString =
 connectionStringBuilder.ToString();
 var connection =
 new SqliteConnection(connectionString);
 connection.Open();

 // create in-memory context
 var builder =

Holds the connection string for the
database to be used for the unit test

Sets up the options you want to use

Provides the options to the DbContext
via a new, one-parameter constructor

By default, it throws an exception if a
QueryClientEvaluationWarning is logged

(see section 15.8). You can turn this off by
providing a value of false as a parameter.

Creates an SQLite connection string with
the DataSource set to “:memory:”

Turns the SQLiteConnectionStringBuilder
into a string

Forms an SQLite connection
using the connection string

You must open the SQLite connection. If you
don’t, the in-memory database doesn’t work.

	 431Simulating a database—using an in-memory database

 new DbContextOptionsBuilder<T>();
 builder.UseSqlite(connection);
 builder.ApplyOtherOptionSettings
 (throwOnClientServerWarning);

 return builder.Options;
}

You can then use the SQLiteInMemory.CreateOptions method in one of your unit
tests, as shown in the next listing. You should note the line context.Database.Ensure
Created(). This is the main method provided by EF Core to create the database with
the correct schema (the databases tables, columns, and so on) based on the applica-
tion’s DbContext.

Listing 15.8   Using an SQLite, in-memory database in an xUnit unit test

[Fact]
public void TestSQLiteOk()
{
 //SETUP
 var options = SQLiteInMemory
 .CreateOptions<EfCoreContext>();
 using (var context = new EfCoreContext(options))
 {
 context.Database.EnsureCreated();

 //ATTEMPT
 context.SeedDatabaseFourBooks();

 //VERIFY
 context.Books.Count().ShouldEqual(4);
 }
}

WARNING   If you are working with .NET 4.7 then you need to call SQLitePCL
.Batteries_V2.Init() before every use of the SQLite database. See the issue
raised by Tomás López at https://github.com/JonPSmith/EfCore.TestSupport/
issues/6. Another crucial point is that the in-memory database is held in the
connection. You can create multiple instances of the application’s DbContext,
and they’ll all access the same database. This is useful when writing tests for
checking disconnected state updates, covered in section 15.6.

Builds DbContextOptions<T> with the SQLite
database provider and the open connection

Calls a general method used on all your option
builders. If throwOnClientServerWarning is
true, it configures the warning to throw on a
QueryClientEvaluationWarning being logged.

Returns the DbContextOptions<T> to use in
the creation of your application’s DbContext

Calls your SQLiteInMemory.CreateOptions
to provide an in-memory database. It has
an optional boolean parameter called
throwOnClientServerWarning, which
defaults to true; see section 15.8.

Uses that option to create your
application’s DbContext

You must call context.Database.
EnsureCreated, a special method that
creates a database using your application’s
DbContext and entity classes.

Runs a test method you’ve written that
adds four test books to the database

Checks that your
SeedDatabaseFourBooks
worked, and added four
books to the database

https://github.com/JonPSmith/EfCore.TestSupport/issues/6
https://github.com/JonPSmith/EfCore.TestSupport/issues/6

432 Chapter 15  Unit testing EF Core applications

15.5	 Using a real database in your unit tests
Although using an in-memory database for unit testing is great, sometimes you need to
use a real database—possibly because you use a feature that the in-memory databases
don’t support, or maybe because you want to look at the SQL produced for perfor-
mance tuning. When this happens, handling a real database is a bit more complicated.
The issues you’ll look at in this section are as follows:

¡	Setting up a real database for unit testing—connection string options
¡	Running unit tests in parallel—uniquely named databases
¡	Speeding up the database creation stage of a unit test
¡	Handling databases that have added extra SQL code

When you have unit tests that check some of the advanced SQL features that EF Core
supports, such as computed columns and sequences (see chapter 8), you need a real
database. If you’re also interested in the SQL that EF Core produces, then again, you’ll
use an SQL Server database. Because of these requirements, the EfCore.TestSupport
library contains several useful tools for handling real databases.

All the following examples use an SQL Server database, but the approach works
equally well with other database types.

15.5.1	 How to set up a real database for unit testing

For an SQL Server database, you need a connection string. You could define a connec-
tion string as a constant and use that, but as you’ll see, that isn’t as flexible as you’d want.
You’ll mimic what ASP.NET Core does, and add a simple appsettings.json file that holds
the connection string, and use some of the ASP.NET Core packages to access the connec-
tion string in our application. The appsettings.json file looks something like this:

{
 "ConnectionStrings": {
 "UnitTestConnection": "Server=(localdb)\\mssqllocaldb;Database=... etc"
 }
}

The following listing shows the GetConfiguration method from my EfCore.Test-
Support library. This loads an appsettings.json file from the top-level directory of the
assembly that calls this method, which would be the assembly in which you’re running
your unit tests.

Listing 15.9   GetConfiguration method allowing access to the appsettings.json file

public static IConfigurationRoot GetConfiguration()
{
 var callingProjectPath =
 TestData.GetCallingAssemblyTopLevelDir();

Returns IConfigurationRoot, from which you can use
methods, such as GetConnectionString("ConnectionName"),

to access the configuration information

In the TestSupport library, a method returns the absolute
path of the calling assembly’s top-level directory. That’s
the assembly that you’re running your tests in.

	 433Using a real database in your unit tests

 var builder = new ConfigurationBuilder()
 .SetBasePath(callingProjectPath)
 .AddJsonFile("appsettings.json", optional: true);
 return builder.Build();
}

You can use the GetConfigration method to access the connection string, and then
use this to create an SQLServer DbContext, as shown in this code snippet:

var config = AppSettings.GetConfiguration();
config.GetConnectionString("UnitTestConnection");
var builder = new DbContextOptionsBuilder<EfCoreContext>();
builder.UseSqlServer(connectionString);
using (var context = new EfCoreContext(builder.Options))
{
 … etc.

You’ll build a range of methods that do this, and add extra magic to sort out the issues
around running your unit tests in parallel, which is the default execution policy of
xUnit. The following section explains these extra methods.

15.5.2	 Running unit tests in parallel—uniquely named databases

You’ll use xUnit, which runs each class of unit tests in parallel. If all your unit tests
access one database, it’d be difficult to know what test was doing what. Good unit tests
need a known starting point and should return a known result, so you need to over-
come the problem of using one database for all unit tests.

Our solution (which is also used by many others) is to have separately named data-
bases for each unit test class, or possibly each unit test method. You’ll create two meth-
ods that produce an SQL Server DbContextOptions<T> result in which the database
name is unique to a test class or method. Figure 15.3 shows the two methods: the first
one creates a database with a name unique to this class, and the second one produces a
database with a name that’s unique to that class and method.

NOTE   The database name must end with Test. This is a safety measure, because
in section 15.5.3 you’ll provide a method that can delete all the databases that
start with the database name in your appsettings.json file. Forcing the database
name to end in Test makes it much less likely that that method will delete a pro-
duction database.

The result of using either of these classes is that each test class or method has its own
uniquely named database. Running all the unit tests in parallel won’t end up with differ-
ent test classes writing to the same database.

TIP   xUnit runs each test class in parallel; but within a class, it runs each test serially.
Because of this, I normally use a class-unique database. I use a class-and-method-
unique database when I want a new, empty database for a specific test method.

Uses ASP.NET Core’s ConfigurationBuilder to read
that appsettings.json file. It’s optional, so no error

is thrown if the configuration file doesn’t exist.
Calls the Build method, which returns
the IConfigurationRoot type

434 Chapter 15  Unit testing EF Core applications

public class MyTestClass
{
 [Fact]
 public oid MyTest1()
 {
 //SETUP
 var options = this
 .CreateUniqueClassOptions<EfCoreContext>();
 using(var context = new EfCoreContext(options))
 {
 //...etc.
 }
 }

 [Fact]
 public void MyTest2 ()
 {
 //SETUP
 var options= this
 .CreateUniqueMethodOptions<EfCoreContext>();
 using (var context = new EfCoreContext(options))
 {
 //... etc.
 }
 }
}

{
 "ConnectionStrings": {
 "UnitTestConnection":
 "Server=(localdb)\\mssqllocaldb;
 Database=MyApp-Test;
 Trusted_Connection=True;
 MultipleActiveResultSets=true"

}
}

The EfCore.TestSupport library needs an
appsettings.json file in the top level of your
unit test project. It must
• Contain a connection string called
 UnitTestConnection
• That connection string must have a
 database name ending in Test.

The CreateUniqueClassOptions
method takes the database
name from the appsettings.json
file and combines that with the
class name to create a database
name unique to this test class:
MyApp-Test.MyTestClass

The CreateUniqueMethodOptions
method takes the database name
from the appsettings.json file, the
class name, and the method name
to create a database name unique
to this test class:
MyApp-Test.MyTestClass.MyTest2

Figure 15.3   Two methods that set up the database options for an SQL Server database, but alter the
database name to be either class-unique, or class-and-method-unique. When you run multiple unit test
classes, they’ll have their own databases, which means they won’t interfere with each other.

This listing shows the code inside the CreateUniqueClassOptions extension method.
It encapsulates all the settings of the DbContext options to save you from having to
include them in every unit test.

Listing 15.10   CreateUniqueClassOptions extension method with a helper

public static DbContextOptions<T>
 CreateUniqueClassOptions<T>(
 this object callingClass,

Returns options for an SQL Server database with a
name starting with the database name in the original
connection string in the appsettings.json file, but
with the name of the class of the instance provided
in the first parameter.

It’s expected that the object instance
provided will be “this”—the class in
which the unit test is running.

	 435Using a real database in your unit tests

 bool throwOnClientServerWarning = true)
 where T : DbContext
{
 return CreateOptionWithDatabaseName<T>
 (callingClass, throwOnClientServerWarning);
}

private static DbContextOptions<T>
 CreateOptionWithDatabaseName<T>(
 object callingClass,
 bool throwOnClientServerWarning,
 string callingMember = null)
 where T : DbContext
{
 var connectionString = callingClass
 .GetUniqueDatabaseConnectionString(
 callingMember);
 var builder =
 new DbContextOptionsBuilder<T>();
 builder.UseSqlServer(connectionString);
 builder.ApplyOtherOptionSettings(
 throwOnClientServerWarning);

 return builder.Options;
}

xUnit’s parallel running feature brings some constraints. For instance, the use of static
variables to carry information causes problems, as different tests may set a static variable
to different values in parallel. That’s why running in parallel wasn’t viable in .NET 4.x,
which used statics for things such as the user information (Thread.CurrentPrincipal).
Thankfully .NET Core doesn’t use static variables, but uses dependency injection for all
variables, so running your code in parallel isn’t a problem. If you use static variables in
your code, you should either turn off parallel running in xUnit or use NUnit, which runs
unit tests serially.

15.5.3	 Tips on how to speed up the database creation stage of a unit test

The preceding section showed how to create unique databases for your tests, but you still
have the problem of making sure that its schema is up-to-date and it’s empty of data when
you rerun a test. There’s an easy way to do this, but it takes a long time (on my PC it takes
10 seconds). This section covers the approaches and tools I’ve built to try to speed this up.

Throws an exception if QueryClientEvaluationWarning
is logged. You can turn this off by setting it to false
if you don’t want that to happen.

Calls a private method shared between this method
and the CreateUniqueMethodOptions options

Builds the SQL Server part of the options,
with the correct database name

These parameters are passed
from CreateUniqueClassOptions.
For CreateUniqueClassOptions,
the calling method is left as null.

Returns the connection string from
the appsetting.json file, but with the
database name modified with the
callingClass’s type name as a suffix

Sets up OptionsBuilder and creates
an SQL Server database provider
with the connection string

Calls a general method used on all your
option builders. This enables sensitive
logging and throwOnClientServerWarning if
a QueryClientEvaluationWarning is logged.

Returns the DbContextOptions<T> to
configure the application’s DbContext

436 Chapter 15  Unit testing EF Core applications

Let’s start with the foolproof, but slow, method. The following listing shows Micro-
soft’s recommended way of creating an empty database with the correct schema.

Listing 15.11   The foolproof way to create a database that’s up-to-date and empty

[Fact]
public void TestExampleSqlDatabaseOk()
{
 //SETUP
 var options = this
 .CreateUniqueClassOptions<EfCoreContext>();
 using (var context = new EfCoreContext(options))
 {
 context.Database.EnsureDeleted();
 context.Database.EnsureCreated();
 //… rest of test removed

That works every time, and you’re welcome to use it. But if you’re debugging a method
by using a unit test that uses this approach, you’ll have a 10-second or so wait before
the database is ready for the test. I find that frustrating, so I’ve come up with another
approach.

NOTE   How long EnsureDeleted/EnsureCreated takes depends on the data-
base. On my development PC, a delete/create of an SQL Server database takes
about 10 seconds, but a MySQL database takes only 1 second.

My approach isn’t as foolproof as the EnsureDeleted/EnsureCreated approach, but
typically takes only about 100 ms. I’ve created a method called CreateEmptyViaWipe
that wipes the database instead of deleting and re-creating it. I use the WipeAllData-
FromDatabase method created in section 9.6.1 to wipe the database, coupled with a
call to Database.EnsureCreated to make sure the database exists in the first place.
The following listing shows an example of this approach.

Listing 15.12   Using CreateEmptyViaWipe to get an empty database quickly

[Fact]
public void TestExampleSqlDatabaseOk()
{
 //SETUP
 var options = this
 .CreateUniqueClassOptions<EfCoreContext>();
 using (var context = new EfCoreContext(options))
 {
 context.CreateEmptyViaWipe();
 //… rest of test removed

Deletes the currect
database (if present)

Creates a new database, using the configuration
inside your application’s DbContext

This ensures the database exists. If it does
exist, it uses the WipeAllDataFromDatabase

method to wipe all the data from the database.

	 437Using a real database in your unit tests

The CreateEmptyViaWipe method has two limitations:

¡	The “wipe database” part can’t handle circular references in the entity classes. For
instance, if class A links to B, which links back to A, then the method will throw an
exception. There are ways around this, but you must write code to handle that.

¡	It saves time by creating the database only once, at the start. If you change the
application’s DbContext configuration, or alter the entity classes, the database
won’t be in the correct format, and your tests will fail.

This last point could be a showstopper, but I have a way around it. I’ve created a method
that will delete all the unit test databases, so the next time you run a test, it’ll create a
new database using the new application’s DbContext configuration. After a change
that will affect my database schema, I run this method to delete all the test databases;
on the next run of a unit test, it creates a fresh database with the correct schema.

To help with support methods like this “delete all unit test databases,” I created unit
commands (instead of unit tests). Unit commands are methods that you can run by using
the unit test runner, but aren’t normal unit tests and shouldn’t be run normally. There-
fore, I place all my unit command methods in a directory, called UnitCommands, which
is separate from the normal unit tests. I also decorate each unit command method with
a RunnableInDebugOnly attribute, so that they aren’t accidentally run if I run all my unit
tests. The RunnableInDebugOnly attribute is available in the EFCore.TestSupport library.

Listing 15.13 shows the unit command called DeleteAllTestDatabasesOk, which
does just that: it deletes all the databases that start with the default connection string.

WARNING   You must ensure that your unit test connection string in your test
project’s appsettings.json file is unique, because it’ll delete all database files
that start with that name. That’s why the EfCore.TestSupport library insists that
the database name ends with Test, as it makes it much less likely that a produc-
tion database will have that name.

Listing 15.13 The unit command that deletes all the test databases

[RunnableInDebugOnly]
public void DeleteAllTestDatabasesOk()
{
 var numDeleted = DatabaseTidyHelper
 .DeleteAllUnitTestDatabases();
 _output.WriteLine(
 "This deleted {0} databases.", numDeleted);
}

Makes sure the unit command isn’t run by accident
when the main unit tests are run. You must
manually run this method in debug mode.

This has the format of a unit test: it’s a
public method that returns void.

Calls the DeleteAllUnitTestDatabases method from
your EcCore.TestSupport library. This returns the
number of databases that it deleted.

Writes out how many databases
were deleted by this method

438 Chapter 15  Unit testing EF Core applications

15.5.4	 How to handle databases in which you’ve added extra SQL code

One problem I came across in unit testing occurred when my database had extra SQL
commands that EF Core doesn’t add. For instance, if I use a UDF in my code, I need to add
it to my unit test database manually because EF Core’s context.Database.EnsureCreated
method won’t have added that. I have three ways around this:

¡	For simple SQL, such as a UDF, I execute a script file as part of the startup.
¡	If you’ve added your SQL to the EF Core migration files (see section 11.2), you

should call context.Database.Migrate instead of ….EnsureCreated.
¡	If you’re using script-based migrations (see section 11.4), you should execute the

scripts to build the database.

The last two items have a solution, which I detailed in the list, but the first item needs
something to handle this. I created a method called ExecuteScriptFileInTransaction
that executes the SQL inside an SQL script file on the database that the application’s
DbContext is connected to. The format of the script is in a Microsoft SQL Server Manage-
ment Studio format: a set of SQL commands, each ending with a single line containing the
SQL command GO. This shows an SQL change script file that adds a UDF to a database.

Listing 15.14   An example SQL script file with GO at the end of each SQL command

IF OBJECT_ID('dbo.AuthorsStringUdf') IS NOT NULL
	 DROP FUNCTION dbo.AuthorsStringUdf
GO

CREATE FUNCTION AuthorsStringUdf (@bookId int)
RETURNS NVARCHAR(4000)
-- … SQL commands removed to make the example shorter
RETURN @Names
END
GO

The EfCore.TestSupport library contains an extension method called ExecuteScript-
FileInTransaction, which can apply a script like this to a database. This listing shows
a typical way to apply this script to a unit test database.

Listing 15.15   An example of applying an SQL script to a unit test database

[Fact]
public void TestApplyScriptExampleOk()
{
 var options = this
 .CreateUniqueClassOptions<EfCoreContext>();
 var filepath = TestData.GetFilePath(
 "AddUserDefinedFunctions.sql");
 using (var context = new EfCoreContext(options))

Removes existing version of the UDF
you want to add. This is optional.

ExecuteScriptFileInTransaction
looks for a line starting with GO
to split out each SQL command
to send to the database

Adds a user-defined function
to the database

Gets the file path of the SQL script file via
your TestData’s GetFilePath method

	 439Unit testing a disconnected state update properly

 {
 if (context.CreateEmptyViaWipe())
 {
 context
 .ExecuteScriptFileInTransaction(
 filepath);
 }
	 //… the rest of the unit test left out
 }
}

In this example, you execute the SQL script file only if the database was created, which
you can do because the CreateEmptyViaWipe method returns true only if a new data-
base was created.

15.6	 Unit testing a disconnected state update properly
Before moving on from using databases in unit tests, I want to talk about the issues of
simulating the disconnected state in a unit test (see section 3.4 for more on the discon-
nected state and updates). The disconnected state happens when an update is done in
a web application consisting of two HTTP requests, as listed here:

1	 In the first HTTP request, the web application reads data from the database and
sends it to the user for inspection.

2	 The user then changes the data and clicks the Submit button to send the data
back to the web application to update the database. This is done in a new HTTP
request, so a new instance of the application’s DbContext is created to handle the
database update.

You must be careful how you write unit tests that check a disconnected state update. To
test this properly, you need to use two separate instances of the application’s DbCon-
text: one to set up the database ready for the test, and a second to run the test. The
reason for this is that the setting up of the database leaves tracked data inside the appli-
cation’s DbContext. The state of the application’s DbContext isn’t the same as what
the method under test would encounter in your web application. Sometimes it doesn’t
matter, but sometimes it does—which can lead to subtle bugs being missed.

Let me give you an example that illustrates the problem. Say you want to test the fol-
lowing code snippet, which should add a new review to a book:

var book = context.Books.Last();
book.Reviews.Add(new Review{NumStars = 5});
context.SaveChanges();

The problem is, it has a bug. The code should have Include(b => b.Reviews) added
to the first line to ensure that the current reviews are loaded first.

In the first unit test, which is incorrect, you don’t properly simulate the disconnected
state because you set up the database in the same application’s DbContext as you run
your test. When the code under test loads the Book entity, EF Core applies the relational

Uses your CreateEmptyViaWipe to ensure
the database is empty. This returns true if
a new database was created.

A new database was created, so you need to
apply your script to the database by using
the ExecuteScriptFileInTransaction method.

440 Chapter 15  Unit testing EF Core applications

fix-up stage. This stage is clever and will try to link up all the entities it’s tracking, which
means the Book entity that was just loaded picks up the Reviews from the setup stage.
That isn’t what would happen in your disconnected state, and has the effect of incor-
rectly saying that the code worked.

Listing 15.16   An INCORRECT simulation of a disconnected state, with the wrong result!

public void INCORRECTtestOfDisconnectedState()
{
 //SETUP
 var options = SQLiteInMemory
 .CreateOptions<EfCoreContext>();
 using (var context = new EfCoreContext(options))
 {
 context.Database.EnsureCreated();
 context.SeedDatabaseFourBooks();

 //ATTEMPT
 var book = context.Books.Last();
 book.Reviews.Add(new Review{NumStars = 5});
 context.SaveChanges();

 //VERIFY
 //THIS IS INCORRECT!!!!!
 context.Books.Last().Reviews
 .Count.ShouldEqual(3);
 }
}

So let’s see the correct way of testing a disconnected state update. The following listing
uses two instances of the application’s DbContext: one to set up the database and one
to run the test. The result is that the unit test correctly simulates in the disconnected
update, and in so doing, the test fails because an exception is thrown as the Reviews
collection is null.

Listing 15.17   Two separate DbContext instances with the same in-memory database

[Fact]
public void CorrectTestOfDisconnectedState()
{
 //SETUP
 var options = SQLiteInMemory
 .CreateOptions<EfCoreContext>();
 using (var context = new EfCoreContext(options))
 {
 context.Database.EnsureCreated();
 context.SeedDatabaseFourBooks();
 }

Sets up the test database with
test data consisting of four books

Reads in the last book from your test set,
which you know has two reviews

Adds another review to the
book. This shouldn’t work,
but it does because the seed
data is still being tracked by
the DbContext instance.

Saves it to the database

Checks that you have three reviews,
which works, but the unit test should
have FAILED with an exception earlier

Creates the in-memory SQLite options in
the same way as the preceding example

Creates the first instance of
the application’s DbContext

Sets up the test database with test data
consisting of four books, but this time in
a separate DbContext instance

	 441Mocking a database repository pattern

 using (var context = new EfCoreContext(options))
 {
 //ATTEMPT
 var book = context.Books.Last();
 book.Reviews.Add(new Review{NumStars = 5});

 //… rest of unit test left out, as has errored
 }
}

I recommend that you use the two-instance approach when testing any create, update,
or delete operation that’s done with a disconnect between the first and second part of
the command.

15.7	 Mocking a database repository pattern
Moving away from using an actual database, let’s look at the third item in the list in
section 15.2.1, where I suggested that one way to simulate the database was to mock the
database Repository pattern. In my business logic I use separate database access code (the
Repository pattern) to isolate the database access from the business logic. This allows me
to mock the repositories and avoid using a database. I find that mocking gives me much
better control over the data into, and out of, the method I’m testing.

This next example is taken from my unit tests in the EfCoreInAction repo; here, you
want to test the PlaceOrderAction’s method developed in chapter 4. The PlaceOrder
Action class’s constructor requires one parameter of type IPlaceOrderDbAccess,
which is normally the PlaceOrderDbAccess class that handles the database accesses.

But for testing, you replace the PlaceOrderDbAccess class with our test class, our
mock, that implements the same IPlaceOrderDbAccess interface. This mock class
allows you to control what the PlaceOrderAction class can read from the database,
and capture what it attempts to write to the database. The following listing shows a unit
test that uses this mock, which captures the order that the PlaceOrderAction’s method
produces so that you can check that the user’s ID was set properly.

Listing 15.18   The unit test providing a mock instance to the BizLogic

[Fact]
public void ExampleOfMockingOk()
{
 //SETUP
 var lineItems = new List<OrderLineItem>
 {
 new OrderLineItem {BookId = 1, NumBooks = 4}
 };
 var userId = Guid.NewGuid();

Closes that last instance and opens a new
instance of the application’s DbContext.
The new instance doesn’t have any tracked
entities that could alter how the test runs.

Reads in the last book from your test set,
which you know has two reviews

When you try to add the new Review, EF Core throws
a NullReferenceException because the Book’s Review

collection isn’t loaded, and is therefore null.

Creates the input to the
PlaceOrderAction method

442 Chapter 15  Unit testing EF Core applications

 var input = new PlaceOrderInDto(true, userId,
 lineItems.ToImmutableList());

 var mockDbA = new MockPlaceOrderDbAccess();
 var service = new PlaceOrderAction(mockDbA);

 //ATTEMPT
 service.Action(input);

 //VERIFY
 service.Errors.Any().ShouldEqual(false);
 mockDbA.AddedOrder.CustomerId
 .ShouldEqual(userId);
}

The mocked class, MockPlaceOrderDbAccess, doesn’t access the database, but it has
properties or methods that you can use to control every part of the reading of data
from the database. This class also captures anything the PlaceOrderAction’s method
tries to write to the database, so you can check that too. This shows the mock database
class, MockPlaceOrderDbAccess.

Listing 15.19   The mock database access code used for unit testing

public class MockPlaceOrderDbAccess
 : IPlaceOrderDbAccess
{
 public ImmutableList<Book> DummyBooks
 { get; private set; }

 public Order AddedOrder { get; private set; }

 public MockPlaceOrderDbAccess(
 bool createLastInFuture = false,
 int? promoPriceFirstBook = null)

 {
 var numBooks = createLastInFuture
 ? DateTime.UtcNow.Year -
 EfTestData.DummyBookStartDate.Year + 2
 : 10;

Creates the input to the
PlaceOrderAction method

Creates an instance of the mock database access
code. This has numerous controls, but in this case,
you use the default settings.

Creates your PlaceOrderAction
instance, providing it with a mock
of the database access code

Runs the PlaceOrderAction’s method
called Action, which takes in the input
data and outputs an order

Checks that the order placement
completed successfully

Your mock database access code has captured the
order that the PlaceOrderAction’s method “wrote”
to the database so you can check it was formed
properly.

Mock MockPlaceOrderDbAccess implements the
IPlaceOrderDbAccess, which allows it to replace
the normal PlaceOrderDbAccess class.

Holds the dummy books that the mock uses.
Can be useful if the test wants to compare
the output with the dummy database.

Will contain the Order built by
the PlaceOrderAction’s method

In this case, you set up the
mock via its constructor.

Allows you to check that it won’t accept an order
for a book that hasn’t yet been published.

Allows you to add a PriceOffer to the first
book so you can check that the correct
price is recorded on the order.

Works out how to create enough books
such that the last one isn’t published yet

	 443Capturing EF Core logging information in unit testing

 var books = EfTestData.CreateDummyBooks
 (numBooks, createLastInFuture);
 if (promotionPriceForFirstBook != null)
 books.First().Promotion = new PriceOffer
 {
 NewPrice = (int) promoPriceFirstBook,
 PromotionalText = "Unit Test"
 };
 DummyBooks = books.ToImmutableList();
 }

 public IDictionary<int, Book>
 FindBooksByIdsWithPriceOffers
 (IEnumerable<int> bookIds)
 {
 return DummyBooks.AsQueryable()
 .Where(x => bookIds.Contains(x.BookId))
 .ToDictionary(key => key.BookId);
 }

 public void Add(Order newOrder)
 {
 AddedOrder = newOrder;
 }
}

This mock may look a bit complicated and hard to write, but because you copied the
real PlaceOrderDbAccess class and then edited it, the job wasn’t that hard. Some
libraries, such as Moq (see www.nuget.org/packages/Moq), help with mock classes,
but in this case, it’s more efficient to write the code yourself.

Because business logic can be complex, often with complex validation rules, I find
mocking a useful approach to replacing the database access. The mock provides a lot
more control over the database access, and you can more easily simulate various error
conditions.

15.8	 Capturing EF Core logging information in unit testing
I’ve found the logging output of EF Core invaluable for seeing what SQL code EF Core
translates my queries to, or the SQL commands it outputs to create the schema in a
database. I have a couple of tools in my EfCore.TestSupport library to help you capture
and check the logs produced by EF Core.

WARNING   A change in EF Core 2.0 seems to have produced a “bleed” between
what should be separate logging contexts. I’ve seen a logging message from
unit test A appear in logs of unit test B when running all the unit tests in paral-
lel. This shouldn’t be a problem if you’re simply listing the logs, but be aware
that this can happen.

Creates dummy books by using one
of the unit test data generators

Adds a PriceOffer to the
first book, if required

Called to get the books that the input
selected. It uses the DummyBooks
generated in the constructor.

Similar code to the original, but in this case it reads
from the DummyBooks, not the database

Called by the PlaceOrderAction’s method to
write the Order to the database. In this case,
you capture it so the unit test can inspect it.

www.nuget.org/packages/Moq

444 Chapter 15  Unit testing EF Core applications

The first thing I added was an optional parameter to all the methods that produced
options—the EfInMemory and SQLiteInMemory static methods and the SqlServerHelpers
extension methods. This optional parameter, called throwOnClientServerWarning,
is set to true by default, which means EF Core will throw an exception if Query
ClientEvaluationWarning is logged. Any suboptimal SQL being produced in any of
your queries will cause an exception in the unit test. The following listing shows this in
action.

Listing 15.20   The CreateOptions method will throw an exception on poor SQL

[Fact]
public void TestQueryClientEvaluationThrowException()
{
 //SETUP
 var options = SQLiteInMemory
 .CreateOptions<EfCoreContext>();
 using (var context = new EfCoreContext(options))
 {
 context.Database.EnsureCreated();

 //ATTEMPT
 var ex = Assert.Throws<InvalidOperationException>(
 () => context.Books.Select(x =>
 new ClientSeverTestDto
 {
 ClientSideProp = x.Price.ToString("C")
 }).OrderBy(x => x.ClientSideProp)
 .ToList());

 //… rest of test left out
 }
}

If you’re only interested in seeing the logging, or you want to look for a specific logged
item, you need to use the extension method SetupLogging. This provides a list of logs,
which your log provider will add to when EF Core generates a new log. This listing cap-
tures the logs and lists them to the unit test runner’s window at the end of the unit test.

Listing 15.21   Capturing EF Core’s logging and outputting it to the unit test console

private readonly ITestOutputHelper _output;

public TestEfLogging(ITestOutputHelper output)

By default, the optional throwOnClientServerWarning
parameter is set to true, which means an exception will
be thrown by EF Core if a QueryClientEvaluationWarning
is logged. You can turn this off by providing a parameter
of false.

xUnit’s assert for catching exceptions. If
no exception happens, it raises a unit
test error.

The query that logs
QueryClientEvaluationWarning

The part of the query that causes
QueryClientEvaluationWarning
to be logged

In xUnit, which runs in parallel, you need to
use the ITestOutputHelper to output to the
unit test runner.

The ITestOutputHelper is injected
by the xUnit test runner.

	 445Capturing EF Core logging information in unit testing

{
 _output = output;
}

[Fact]
public void TestEfCoreLoggingExample()
{
 //SETUP
 var options = SQLiteInMemory
 .CreateOptions<EfCoreContext>();
 using (var context = new EfCoreContext(options))
 {
 context.Database.EnsureCreated();
 context.SeedDatabaseFourBooks();
 var logs = context.SetupLogging();

 //ATTEMPT
 var books = context.Books.ToList();

 //VERIFY
 foreach (var log in logs.ToList())
 {
 _output.WriteLine(log.ToString());
 }
 }
}

The position where you call the SetupLogging method defines what you’ll log. In this
example, you’d log only the book query, but if you moved the setup of the logging
before the context.Database.EnsureCreated call, then you’d log how the database
was created.

The logs returned are a list of LogOutput classes, which you create to hold the log
information. Listing 15.21 simply lists them out, but the LogOutput class has full infor-
mation on each log, as shown in the following listing. This allows you to filter logs or to
look for a specific log in your unit tests as appropriate.

Listing 15.22   The LogOutput class, with the properties available to test against

public class LogOutput
{
 private const string EfCoreEventIdStartWith
 = "Microsoft.EntityFrameworkCore";

 public LogLevel LogLevel { get; }
 public EventId EventId { get; }
 public string Message { get; }

 public string EfEventIdLastName =>

Sets up the logging, which returns a reference
to a list of LogOutput classes. This contains

separate properties for the LogLevel,
EventId, Message, and so on.

The query that you
want to log

Adds a ToList method on the end of the logs. This
stops the unit test from failing if there’s bleed from

another unit test running in parallel
Outputs each log to the unit test runner window

Holds each log captured from EF Core

Uses this string to identify logs
that were produced by EF Core

Holds what LogLevel the log was reported at;
for instance, Information, Warning, Error

Holds the EventId—useful because
EF Core 2.0 has named events

The logged message

Returns the last part of the name, but
only if it’s an EF Core log. Useful, as it’s
a quick way to identify specific events.

446 Chapter 15  Unit testing EF Core applications

 EventId.Name?.StartsWith(
 EfCoreEventIdStartWith) == true
 ? EventId.Name.Split('.').Last()
 : null;

 internal LogOutput(LogLevel logLevel,
 EventId eventId, string message)
 {
 LogLevel = logLevel;
 EventId = eventId;
 Message = message;
 }

 public override string ToString()
 {
 return
 $"{LogLevel},{EfEventIdLastName}: " +
 Message;
 }
}

15.8.1	 Using logging to help you build SQL change scripts

Chapter 11 described a way to update the database by using SQL change scripts that
you write yourself (see section 11.4.2). The scripts need to produce a database that
matches EF Core’s view of the database, and one way to help you write these scripts is
to capture the SQL commands that EF Core produces to create the database. You can
use logging to do that. This listing shows the unit test code that will capture the SQL
commands that EF Core uses to create a new database.

Listing 15.23   Capturing the SQL commands EF Core uses to create a database

[RunnableInDebugOnly]
public void CaptureSqlEfCoreCreatesDatabase()
{
 //SETUP
 var options = this.
 CreateUniqueClassOptions<BookContext>();
 using (var context = new BookContext(options))
 {
 var logs = context.SetupLogging();

 //ATTEMPT
 context.Database.EnsureDeleted();
 context.Database.EnsureCreated();

 //VERIFY
 foreach (var log in logs.ToList())
 {
 _output.WriteLine(log.Message);
 }
 }
}

Gets either the last part of the EF Core
eventid name, or null if not EF CoreThe constructor for the class

Typically, you’ll show the logs as text, so the
ToString method returns a useful string.

You don’t need this to run every time, so you
add the RunnableInDebugOnly attribute so it
isn’t run in the normal unit test run.

Sets up the logging before
the database is created

This combination ensures a new
database is created that matches the
current EF Core’s database Model.

Outputs only the Message part of the
logging, so you can cut and paste the
SQL out of the logged data

	 447Using the EfSchemaCompare tool in your unit tests

The log messages are output to the unit test runner window. Here’s an example of the
type of output you’d see.

Listing 15.24   An example of the SQL code captured when EF Core creates a database

Executed DbCommand (86ms) [Parameters=[], CommandType='Text',
CommandTimeout='60']

CREATE DATABASE [EfCore.TestSupport-Test_TestEfLogging];
Executed DbCommand (30ms) [Parameters=[], CommandType='Text',

CommandTimeout='60']
IF SERVERPROPERTY('EngineEdition') <> 5 EXEC(N'ALTER DATABASE [EfCore.

TestSupport-Test_TestEfLogging] SET READ_COMMITTED_SNAPSHOT ON;');
Executed DbCommand (5ms) [Parameters=[], CommandType='Text',

CommandTimeout='30']
CREATE TABLE [Authors] (
 [AuthorId] int NOT NULL IDENTITY,
 [Name] nvarchar(100) NOT NULL,
 CONSTRAINT [PK_Authors] PRIMARY KEY ([AuthorId])
);
Executed DbCommand (0ms) [Parameters=[], CommandType='Text',

CommandTimeout='30']
CREATE TABLE [Books] (
 [BookId] int NOT NULL IDENTITY,
 [Description] nvarchar(max) NULL,
 [ImageUrl] varchar(512) NULL,
 [Price] decimal(9,2) NOT NULL,
 [PublishedOn] date NOT NULL,
 … etc.
… the rest of the code left out

You should ignore the first parts that delete/create the database, and extract the parts
that create the tables (shown as bold). You then extract the specific parts you need for
the SQL change script. If you were adding a new table called Authors, you’d extract
just that part of the SQL that does that. For more-complex changes, such as adding a
new column to an existing table, the captured SQL will give you the names and types
you need to use in an ALTER TABLE SQL command.

15.9	 Using the EfSchemaCompare tool in your unit tests
Section 11.4.2 explained how the EfSchemaCompare tool, which is part of the EfCore.
TestSupport library, can be used when you want to use the SQL-first approach to data-
base migrations. The EfSchemaCompare tool compares a database with the current
model of the database that EF Core creates based on your entity classes and EF Core
configuration.

I generally include the EfSchemaCompare tool in my normal unit test so that if a
change occurs between my current database and EF Core’s database Model, I’m alerted
immediately (the EfSchemaCompare tool is quick, so it doesn’t slow my unit testing).
The following listing shows an arrangement in which you’re comparing the develop-
ment database you use for running your application with the current software. You’ll be
alerted if a difference exists; say, when you merge in another developer’s changes.

448 Chapter 15  Unit testing EF Core applications

Listing 15.25   Checking that the development database matches the EF Core config

[Fact]
public void CompareDatabaseViaConnectionName()
{
 //SETUP
 const string connectionStringName =
 "BookOrderConnection";
 //... left out option building part to save space
 using (var context = new MyContext(options))
 {
 var comparer = new CompareEfSql();

 //ATTEMPT
 bool hasErrors = comparer.CompareEfWithDb
 (connectionStringName, context);

 //VERIFY
 hasErrors.ShouldBeFalse(comparer.GetAllErrors);
 }
}

If differences exist, the unit test will fail and output human-readable error messages
that show you the differences. There are three types of differences, detailed here:

¡	DIFFERENT: MyEntity->Property 'MyString', nullability. Expected = NOT
NULL, found = NULL

This says it found a difference in one aspect of a column—in this case, its
nullability.

¡	NOT IN DATABASE: Entity 'LineItem', table name. Expected = LineItems

This says the table LineItems that the entity class called LineItem maps to wasn’t
found in the database.

¡	EXTRA IN DATABASE: MyEntity->PrimaryKey 'PK_MyEntites', column name.
Found = MyEntityId

This tells you that a column called MyEntityId, which is (part of) a primary key,
was found in the database but wasn’t in EF Core’s list of primary-key properties in
the entity MyEntity.

Using these, you can alter either your SQL change script or your entity classes and EF
Core configuration to make them match. If the error is in your SQL change scripts,
you need to edit them and re-create the database again.

Adds BookOrderConnection to your unit
test’s appsettings.json file. Points to your
development database.

Creates an instance of your application’s
DbContext, which will contain the latest entity
classes and EF Core configuration

Creates CompareEfSql. It can have
various configurations set, but in this
case, you use the default settings.

Uses the version of the CompareEfWithDb method
that takes a connection string, or a connection
string name.

The hasErrors variable will be true if there were
differences. If there are, the ShouldBeFalse fluent assert
will fail and output the string given in the parameter.

The comparer.GetAllErrors property returns a
string, with each difference on a separate line.

	 449Summary

TIP   If you have a production pipeline, you can add the EfSchemaCompare
tool to ensure that the DbContext in the application you’re about to deploy
matches the production database.

15.9.1	 Features and options for the EfSchemaCompare tool

This isn’t the first time I’ve written an EfSchemaCompare tool. I built one for EF6.x.
Therefore, I knew what worked and what didn’t work in the old, EF6.x version, and I
was able (with the great help from EF Core) to build a much better tool. Here’s a list of
the features of the EfSchemaCompare tool:

¡	It has almost complete coverage of all the EF Core features, including the various
table-mapping features: table per hierarchy, table splitting, and owned types. For
a list of limitations, see http://mng.bz/79hZ.

¡	It can handle multiple applications’ DbContexts, known as bounded contexts (see sec-
tion 10.6) mapped to one database. See http://mng.bz/o2Ip for more information.

¡	You can find the database in two ways when calling the CompareEfWithDb method:

¡	If you provide only an application’s DbContext, it’ll get the connection string
from the (first) application’s DbContext.

¡	If you provide a string as the first parameter, it’ll look for a connection string
of that name in the appsettings.json file. If a connection string of that name
isn’t found, it’ll assume the string is a connection string and use that to access
the database.

In addition, the CompareEfSql class constructor can take an optional parameter of the
CompareEfSqlConfig class. This provides the following options:

¡	You can exclude tables in the database from being scanned. This is useful if you
have tables that EF Core doesn’t access, as it stops the comparison, outputting an
EXTRA IN DATABASE error for those tables.

¡	Because of my experience, I know that the EfSchemaCompare tool can output
errors that I’m not bothered about—say, an extra index that’s found in the data-
base but not in my code. These cause a unit test failure, which isn’t what I want.
I’ve added two methods, AddIgnoreCompareLog and IgnoreTheseErrors, which
provide two ways of suppressing unwanted difference errors.

NOTE   The full documentation of these options can be found at http://mng
.bz/7cb8.

Summary

¡	The best way to simulate a database in unit tests depends on what advanced SQL
features you use.

¡	Using in-memory databases to simulate a database makes your unit tests run faster,
but in-memory databases don’t support all the features available in a real database.

http://mng.bz/o2Ip
http://mng.bz/7cb8
http://mng.bz/7cb8

450 Chapter 15  Unit testing EF Core applications

¡	A DbContext designed to work with an ASP.NET Core application is ready for
unit testing, but any application’s DbContext that uses the OnConfiguring
method to set options needs to be modified to allow unit testing.

¡	If you’re using a real database with the xUnit test runner, which runs each test class
in parallel, then you need to provide separate databases for each unit test class.

¡	Testing a disconnected state update requires using two separate instances of the
application’s DbContext—one to set up the database and one to test the update
method.

¡	When you have a repository pattern for accessing the database, such as in busi-
ness logic as described in section 4.4.3, mocking that repository gives you fast and
comprehensive control of the data for unit testing.

¡	The logging information output by EF Core can be useful. It can show you the
SQL that EF Core produces, and allows you to catch possible suboptimal SQL
problems.

¡	You can obtain access to the SQL commands that EF Core uses to create a
database, which can be useful if you’re using the SQL-first database migration
approach (see section 11.4.2).

¡	The EfSchemaCompare tool provides a way to ensure that the EF Core’s database
Model of your application matches the database you’re using. The same tool also
helps you find those differences and correct them by providing human-readable
difference messages.

For readers who are familiar with EF6.x:

¡	EF Core provides in-memory database techniques that can speed up the unit test-
ing of EF Core database code.

¡	The two EF Core methods context.Database.EnsureDeleted and context
.Database.EnsureCreated are useful methods for creating empty databases, but
they’re quite slow.

451

Aappendix A
A brief introduction to LINQ

This appendix covers
¡	An introduction to the LINQ language

¡	Data manipulation commands in LINQ

¡	An introduction to the IQueryable<T> .NET type

¡	How EF Core translates LINQ to database
commands

¡	The three parts of an EF Core LINQ query

This appendix is for anyone who is new to Microsoft’s Language Integrated Query,
or LINQ, feature or anyone who wants a quick recap on how LINQ works. The LINQ
language bridges the gap between the world of objects and the world of data, and is
used by EF Core to build database queries. Understanding the LINQ language is key
to using EF Core to access a database.

This appendix starts with the two syntaxes you can use to write LINQ code. You’ll
also learn the types of commands available in LINQ, with examples of how those
commands can manipulate collections of in-memory data.

You’ll then explore the related .NET type, IQueryable<T>, which holds LINQ
code in a form that can be executed later. This allows developers to split complex que-
ries into separate parts and dynamically change the LINQ query. The IQueryable<T>

452 appendix A  A brief introduction to LINQ

type also allows EF Core to translate the LINQ code into commands that can be run on
the database server.

Finally, you’ll learn what an EF Core query, with its LINQ part, looks like.

A.1	 An introduction to the LINQ language
You can manipulate collections of data by using LINQ’s methods to sort, filter, select,
and so on. These collections can be in-memory data (such as an array of integers, XML
data, JSON data) and of course on databases, via libraries such as EF Core. The LINQ
feature is available in Microsoft’s languages C#, F#, and Visual Basic; by using LINQ’s
functional programming approach, you can create readable code.

TIP   If you haven’t come across functional programming, it’s worth a look.
Have a look at http://mng.bz/97CY or, for a more in-depth, .NET-focused
book, have a look at Enrico Buonanno’s Functional Programming in C# (Man-
ning, 2017).

A.1.1	 The two ways you can write LINQ queries

LINQ has two syntaxes for writing LINQ queries: the method syntax and the query syn-
tax. This section presents the two syntaxes and points out which syntax is used in this
book. You’ll write the same LINQ query, a filter, and a sort of an array of integers in
both syntaxes.

The following listing uses what is known as the LINQ method, or lambda, syntax. This
code is a simple LINQ statement. Even if you haven’t seen LINQ before, the names of
the LINQ methods, such as Where and OrderBy, provide a good clue to what’s going on.

Listing A.1   Your first look at the LINQ language, using the method/lambda syntax

int[] nums = new[] {1, 5, 4, 2, 3, 0};

int[] result = nums
 .Where(x => x > 3)
 .OrderBy(x => x)
 .ToArray();

The lambda name comes from lambda syntax, introduced in C# 3. The lambda syntax
allows you to write a method without all the standard method definition syntax. The
x => x > 3 part inside the Where method is equivalent to the following method:

private bool AnonymousFunc(int x)
{
 return x > 3;
}

Creates an array of integers
from 0 to 5, but in a random order

Applies LINQ commands and
returns a new array of integers

Filters out all the integers 3 and below

Orders the numbers

Turns the query back into an array. The
result is an array of ints { 4, 5 }.

http://mng.bz/97CY

	 453An introduction to the LINQ language

As you can see, the lambda syntax can save a significant amount of typing. I use lamb-
das in all of my EF Core queries and in lots of other code I wrote for this book.

Listing A.2 shows the other way of writing LINQ code, called the query syntax. This
code achieves the same result as in listing A.1 but returns a slightly different result type.

Listing A.2   Your first look at the LINQ language, using the query syntax

int[] nums = new[] { 1, 5, 4, 2, 3, 0};

IOrderedEnumerable<int> result =
 from num in nums
 where num > 3
 orderby num
 select num;

You can use either syntax—the choice is up to you. Personally, I use the method syntax
because it’s slightly less typing, and I like the way that commands are chained together,
one after the other. The rest of the examples in this book use the method syntax.

Before I leave the topic of the LINQ syntax, I want to introduce the concept of pre-
calculating values in a LINQ query. The query syntax has a feature specifically to handle
this: the let keyword. This allows you to calculate a value once and then use that value
multiple times in the query, which makes the query more efficient. This listing shows
code that converts an integer value to its word/string equivalent and then uses that
string in both the sort and filter part of the query.

Listing A.3   Using the let keyword in a LINQ query syntax

int[] nums = new[] { 1, 5, 4, 2, 3, 0 };
string [] numLookop = new[]
 {"zero","one","two","three","four","five"};

IEnumerable<int> result =
 from num in nums
 let numString = numLookop[num]
 where numString.Length > 3
 orderby numString
 select num;

Creates an array of integers
from 0 to 5, but in a random order

The result returned here is an
IOrderedEnumerable<int>.

The query syntax starts with a
from <item> in <collection>.

Filters out all the
integers 3 and below

Orders the
numbers

Applies a select to choose what you want.
The result is an IOrderedEnumerable<int>
containing { 4, 5 }.

Creates an array of integers from
0 to 5, but in a random order

A lookup to
convert a number
to its word format

The result returned here is
an IEnumerable<int>.

The query syntax starts with a from
<item> in <collection>.

The let syntax that allows you to
calculate a value once and use it multiple
times in the query

Filters out all the numbers indicating
the word is shorter than three letters

Orders the number by
the word form

Applies a select to choose what you want.
The result is an IEnumerable<int>
containing { 5,4,3,0 }.

454 appendix A  A brief introduction to LINQ

The equivalent in the method syntax is to use the LINQ Select operator earlier in
the query, as shown in listing A.4 (section A.2 provides more details about the LINQ
Select operator).

Listing A.4   Using the LINQ Select operator to hold a calculated value

int[] nums = new[] { 1, 5, 4, 2, 3, 0 };
string[] numLookop = new[]
 {"zero","one","two","three","four","five"};

IEnumerable<int> result = nums
 .Select(num => new
 {
 num,
 numString = numLookop[num]
 })
 .Where(r => r.numString.Length > 3)
 .OrderBy(r => r.numString)
 .Select(r => r.num);

EF6   EF6.x used the let or the Select as a hint to precalculate a value only
once in the database. EF Core 2.0 doesn’t have that performance feature, so
it recalculates every occurrence of a value. It’s possible that this performance
feature will be added to EF Core in the future.

A.1.2	 The data operations you can do with LINQ

The LINQ feature has many methods, referred to as operators. Most have names and
functions that clearly indicate what’s going on. Table A.1 lists some of the more com-
mon LINQ operators; similar operators are grouped to help you see where they might
be used. The list is not exhaustive; the aim is to show you some of the more common
operators to give you a feel for what LINQ can do.

Table A.1   Examples of LINQ operators, grouped by their purpose

Group Some examples (not all operators shown)

Sorting OrderBy, OrderByDescending, Reverse

Filtering Where

Select element First, FirstOrDefault

Projection Select

Creates an array of integers from
0 to 5, but in a random order

A lookup to convert
a number to its
word format

The result returned here
is an IEnumerable<int>.

Uses an anonymous type to hold the
original integer value and your
numString word lookup

Filters out all the numbers indicating
the word is shorter than three letters

Orders the number by
the word form

Applies another Select to choose
what you want. The result is an
IEnumerable<int> containing
{ 5,4,3,0 }.

	 455An introduction to the LINQ language

Group Some examples (not all operators shown)

Aggregation Max, Min, Sum, Count, Average

Partition Skip, Take

Boolean tests Any, All, Contains

NOTE   You can get a full list of the LINQ operators at http://mng.bz/rP11. But
be warned: EF Core can’t translate some of the more complex operators to a
database access command that will run on the database server. Because of the
EF Core feature called client vs. server evaluation (see section 2.5), you can use
any LINQ command in an EF Core query, although some won’t be fast.

Listing A.1 showed a sorting and filtering example. Later in this appendix, I’ll show
you a few more examples so you can see some of the other LINQ operators in action.
First, you need to define a new class called Review with data to help with the examples,
as shown here.

Listing A.5   A Review class and a ReviewsList variable containing two reviews

class Review
{
 public string VoterName { get; set; }
 public int NumStars { get; set; }
 public string Comment { get; set; }
}

List<Review> ReviewsList = new List<Review>
{
 new Review
 {
 VoterName = "Jack",
 NumStars = 5,
 Comment = "A great book!"
 },
 new Review
 {
 VoterName = "Jill",
 NumStars = 1,
 Comment = "I hated it!"
 }
};

The ReviewsList field in LINQ code is shown in table A.2. This should give you a feel
for how various LINQ operators work.

http://mng.bz/rP11

456 appendix A  A brief introduction to LINQ

Table A.2   Four usages of LINQ on the ReviewsList field as data. The result of each LINQ operator is
shown in the Result Value column.

LINQ Group Code using LINQ operators Result value

Projection string[] result = ReviewsList

 .Select(p => p.VoterName)

 .ToArray();

string[]{"Jack", "Jill"}

Aggregation double result = ReviewsList

 .Average(p => p.NumStars);

3 (average of 5 and 1)

Select element string result = ReviewsList

 .First().VoterName;

"Jack" (first voter)

Boolean test bool result = ReviewsList

 .Any(p => p.NumStars == 1);
true (Jill voted 1)

A.2	 Introduction to IQueryable<T> type, and why it’s useful
Another important part of LINQ is the generic interface IQueryable<T>. LINQ
is rather special, in that whatever set of LINQ operators you provide isn’t executed
straightaway but is held in a type called IQueryable<T>, awaiting a final command to
execute it. This IQueryable<T> form has two benefits:

¡	You can split a complex LINQ query into separate parts by using the
IQueryable<T> type.

¡	Instead of executing the IQueryable<T>’s internal form, EF Core can translate it
into database access commands.

A.2.1	 Splitting up a complex LINQ query by using the IQueryable<T> type

In the book, you’ll learn about query objects (see section 2.6.1), and you’ll build a com-
plex book list query by chaining together three query objects. This works because of
the IQueryable<T> type’s ability to hold the code in a specialized form, called an expres-
sion tree, so that other LINQ operators can be appended to it.

As an example, you’re going to improve the code from listing A.1 by adding your
own method that contains the sorting part of the query. This allows you to alter the sort
order of the final LINQ query. You’ll create this method as an extension method, which
allows you to chain the method in the same way as the LINQ’s operators do (LINQ
operators are extension methods).

DEFINITION   An extension method is a static method in a static class; the first
parameter of the method has the keyword this in front of it. To allow chaining,
the method must also return a type that other methods can use as an input.

	 457Introduction to IQueryable<T> type, and why it’s useful

The following listing shows the extension method MyOrder, which takes in an IQuery-
able<int> type as its first parameter and returns an IQueryable<int> result. It also
has a second boolean parameter called ascending that sets the sort order to either
ascending or descending, for the results.

Listing A.6   Your method encapsulates part of your LINQ code via IQueryable<int>

public static class LinqHelpers
{
 public static IQueryable<int> MyOrder
 (this IQueryable<int> queryable,
 bool ascending)
 {
 return ascending
 ? queryable
 .OrderBy(num => num)
 : queryable
 .OrderByDescending(num => num);
 }
}

This listing uses this IQueryable<int> extension method to replace the OrderBy LINQ
operator in the original code in listing A.1.

Listing A.7   Using the MyOrder IQueryable<int> method in LINQ code

var numsQ = new[] { 1, 5, 4, 2, 3 }
 .AsQueryable();

var result = numsQ
 .MyOrder(true)
 .Where(x => x > 3)
 .ToArray();

Extension method needs to
be defined in a static class.

Static method Order returns an
IQueryable<int> so other extension
methods can chain on.

Extension method’s first
parameter is of IQueryable, and
starts with the this keyword.

Provides a second parameter
that allows you to change the
order of the sorting

Uses the boolean parameter ascending
to control whether you add the OrderBy
or OrderByDescending LINQ operator to
the IQueryable result

Ascending parameter is true, so
you add the OrderBy LINQ
operator to the IQueryable input.

Ascending parameter is false, so you
add the OrderByDescending LINQ
operator to the IQueryable input.

Turns an array of integers
into a queryable object.

Calls the MyOrder IQueryable<int>
method, with true. This gives you an
ascending sort of the data.

Filters out all the
numbers 3 and below

Executes the IQueryable and turns
the result into an array. The result
is an array of ints { 4, 5 }.

458 appendix A  A brief introduction to LINQ

Using extension methods, such as the MyOrder example, provides two useful features:

¡	It makes your LINQ code dynamic. By changing the parameter into the MyOrder
method, you can change the sort order of the final LINQ query. If you didn’t
have that parameter, you’d need two LINQ queries, one using OrderBy and one
using OrderByDescending, and then have to pick which one you wanted to run
by using an if statement. That isn’t good software practice, as you’d be need-
lessly repeating some LINQ code, such as the Where part.

¡	It allows you to split complex queries into a series of separate extension methods that you can
chain together. This makes it easier to build, test, and understand complex queries.
In section 2.8, you split your book app book list query, which is rather compli-
cated, into separate query objects. The following listing shows this again, with
each query object highlighted in bold.

Listing A.8   The book list query with select, order, filter, and page query objects

public IQueryable<BookListDto> SortFilterPage
 (SortFilterPageOptions options)
{
 var booksQuery = _context.Books
 .AsNoTracking()
 .MapBookToDto()
 .OrderBooksBy(options.OrderByOptions)
 .FilterBooksBy(options.FilterBy,
 options.FilterValue);

 options.SetupRestOfDto(booksQuery);

 return booksQuery.Page(options.PageNum-1,
 options.PageSize);
}

The book list query uses both features I’ve mentioned. First, it allows you to dynami-
cally change the sorting, filtering, and paging of the book list. Second, it hides some
of the more complex code behind an aptly named method, which tells you what it’s
doing.

A.2.2	 How EF Core translates IQueryable<T> into database code

EF Core translates your LINQ code into database code that can run on the database
server. It can do this because the IQueryable<T> type holds all the LINQ code as an
expression tree, which EF Core can translate into database access code. Figure A.1 shows
what EF Core is doing behind the scenes when it translates a LINQ query into database
access code.

EF Core provides many extra extension methods to extend the LINQ operators avail-
able to you. EF Core methods add to the LINQ expression tree, such as Include, Then-
Include (see section 2.4.1), and so on. Other EF methods provide async versions (see
section 5.10) of the LINQ methods, such as ToListAsync and LastAsync.

	 459Querying an EF Core database by using LINQ

LINQ Query Translation

1. EF Core translates the LINQ expression tree
 (shown below, as elipses) into an internal
 form ready for the database provider.

2. Then the EF Core’s database provider converts
 the translated expression tree into the correct
 database access commands for the database
 it supports.

Database commands, e.g.
SELECT
 Books.BookId, ...
WHERE
 Books.AvailableFrom
 ... etc.

var books = context
 .Books
 .Where(p =>
 p.AvailableFrom
 < DateTime.Today
 .ToList();

Database Provider

Database
SQL

server

DateTime
constant

AvailableFrom

Where

Book

Figure A.1   Some book query code (bottom left) with its expression tree above it. EF Core takes the
expression tree through two stages of translation before it ends up in the right form for the database that
the application is targeting.

A.3	 Querying an EF Core database by using LINQ
Using LINQ in an EF Core database query requires three parts, as shown in figure A.2.
The query relies on an application’s DbContext, which is described in section 2.2.1.
This section concentrates on just the format of an EF Core database query, with the
LINQ operators shown in bold.

Application’s DbContext
property access

LINQ operators and/or
EF Core LINQ methods

An execute
command

context.Books.Where(p => p.Title.StartsWith(“Quantum”).ToList()

Figure A.2   An example database access, with the three parts

These three component parts of an EF Core database query are as follows:

¡	Application’s DbContext property access —In your application’s DbContext, you
define a property by using a DbSet<T> type. This returns an IQueryable<T> data
source to which you can add LINQ operators to create a database query.

¡	LINQ operators and/or EF Core LINQ methods —This is where your database LINQ
query code goes.

¡	The execute command —Commands such as ToList and First trigger EF Core to
translate the LINQ commands into database access commands that are run on
the database server.

460 appendix A  A brief introduction to LINQ

In chapter 2 and onward, you’ll see much more complex queries, but they all use the
three parts shown in figure A.2.

Summary
¡	The LINQ language provides data manipulation features for the C#, F#, and

Visual Basic languages.
¡	The LINQ feature manipulates a collection of data by using methods, called oper-

ators, that sort, filter, select, project, aggregate, partition, and so on.
¡	The IQueryable<T> type holds LINQ commands in a specialized form called an

expression tree.
¡	The IQueryable<T> type allows developers to split complex queries into separate

parts. This allows a LINQ query to be dynamically changed by adding different
LINQ operators to the end of the current expression tree.

¡	The IQueryable<T> type allows EF Core to translate the expression tree into
database access code that runs on the database server.

¡	An EF Core database access consists of three parts:

¡	The IQueryable<T> source from the application’s DbContext.

¡	 The LINQ code that sorts, filters, selects, and so on that IQueryable<T>
source.

¡	 A command that triggers the translation and execution of the LINQ query on
the database.

461

Bappendix B
Early information on EF Core

version 2.1

This appendix covers
¡	What does a 2.1 release of EF Core mean?

¡	The new features in EF Core 2.1

¡	The improvements in EF Core 2.1

All books need to be finished, and this book went into the print process phase
before EF Core 2.1 was released. Thankfully, version 2.1 is a minor update, so it
doesn’t change the code in this book that much, but it does add new features and
improvements. The changes are welcome, especially some of the new features;
hence, I added this appendix and various EF Core 2.1 notes to the book before it
went to print.

NOTE   You can find the latest information on EF Core 2.1 at https://docs
.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.1.

My evaluation of EF Core 2.1’s new features is that they’re well thought through and
follow the overall architectural approach used in EF Core. It would be easy to quickly
tack on a new feature that people are asking for, which would make the design of
EF Core messy or hard to follow. But I don’t see that happening. For instance, the
new lazy-loading feature in version 2.1 has an implementation that uses the existing

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.1
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.1

462 Appendix B  Early information on EF Core version 2.1

backing-fields feature, which makes it quite natural to use. Similarly, EF Core 2.1’s new
data-seeding implementation improves on EF6.x’s data-seeding approach, which had
some limitations.

This appendix gives you an overview of the new features and changes in EF Core 2.1
and how you might use them. I’ll limit the information to the new feature changes with
only a few code examples. The idea of this appendix is to alert you to the new features so
you know about them when you are developing an application.

TIP   I recommend a video from Microsoft’s Build 2018 conference on EF Core
2.1 given by Diego Vaga and Andrews Peters from the EF Core team. As well
as explaining some of the new 2.1 features the video starts with the vision that
drives the developer of EF Core. See www.youtube.cm/watch?v=k55kDH_ixrQ.

B.1	 What does the 2.1 in the EF Core
release number mean?
The .NET Core platform and the associated packages, such as ASP.NET Core and
EF Core, are on a rolling improvement program. All the .NET Core packages use a
semantic versioning approach for releases (see https://mng.bz/L2t1), with the version
number made up of three parts: Major.Minor.Patch—for instance, 2.1.0. With a minor
update, such as this step from EF Core 2.0 to 2.1, new features are added, but existing
features/APIs aren’t changed.

This book was written around EF Core 2.0. Because EF Core 2.1 is a minor release,
everything in the book is still relevant for EF Core 2.1. But the new features in EF Core
2.1 do offer some new ways of working, so you’ll find prerelease notes throughout this
book on other options that might be available after EF Core 2.1 is released, and this
appendix provides a list of the changes that have been pre-announced.

Clearly, things could change in EF Core 2.1 before release, with features added or
removed. So don’t treat this appendix and the EF Core 2.1 notes as the definitive truth,
but more like signposts about new features that you might like to look up on the Mic-
rosoft EF Core documentation site—see https://docs.microsoft.com/en-gb/ef/core/
what-is-new/ef-core-2.1.

B.2	 Brand-new features
 EF Core 2.1’s features offer you new ways to use EF Core. Some, such as lazy loading
and data seeding, have been a user-led request for EF6.x features to be included in EF
Core. Other features, like the Azure Cosmos NoSQL database provider, continue the
general improvement of EF Core. The new features are as follows:

¡	Lazy loading—loading relationships when you need them
¡	Parameters in entity class constructors
¡	Value conversion—defining the mapping of value types to the database
¡	Data seeding—adding initial data to a new/updated database

www.youtube.cm/watch?v=k55kDH_ixrQ
https://mng.bz/L2t1
https://docs.microsoft.com/en-gb/ef/core/what-is-new/ef-core-2.1
https://docs.microsoft.com/en-gb/ef/core/what-is-new/ef-core-2.1

	 463Brand-new features

¡	Query types—using non-entity classes in read-only queries
¡	Including derived types when using table per hierarchy
¡	Linking to entity class state change events
¡	Supporting NoSQL—Cosmos NoSQL database provider (preview)

B.2.1	 Lazy loading—loading relationships when you need them

Lazy loading is a way to load relationships only when you access that relationship. In
chapter 2, I talked about the four ways of loading relationships in a query: eager load-
ing, explicit loading, select loading, and lazy loading. Many EF6.x developers are used
to lazy loading and find it useful, mainly because you can read in a relationship without
needing a copy of the application’s DbContext. There are two ways to use lazy loading:

1	 Using the LazyLoader class with backing fields.

2	 Using proxy classes by adding the keyword virtual to your relationships

Using the LazyLoader class with backing fields

This listing shows how to use the LazyLoader service to load the navigational collection
property Many, only if you read that property. The ILazyLoader service is injected via a
private constructor on the entity class (see B.2.2).

Listing B.1 Using the LazyLoader class for lazy loading of navigational properties

public class MyEntity
{
 private readonly ILazyLoader _lazyLoader;

 private MyEntity(ILazyLoader lazyLoader)
 {
 LazyLoader = lazyLoader;
 }

 public MyEntity() {}

 private Collection<ManyEntity> _many =
 new Collection<ManyEntity>();

 //… other properties left out
 public Collection<ManyEntity> Many
 {
 get => _lazyLoader?.Load(this, ref _many);
 set => _many = value;
 }
}

#A The LazyLoader class is used for
any navigational properties that
you want to lazy load.

The LazyLoader instance is injected
by EF Core via the constructor. The
constructor can be private.

Normal public constructor used by your
code to obtain an instance of MyEntity

The collection you
want lazy loaded is set
up as a backing field.

The collection navigational property
is accessed via a getter and a setter.

An attempt to load the property
triggers the lazy loader, which
reads in the collection from the
database. You need to provide a
reference to the field for lazy
loading to work.

464 Appendix B  Early information on EF Core version 2.1

The basic idea is that an EF Core’s LazyLoader instance will be provided via an entity
class constructor with a parameter (see section B.2.2). As you can see in listing B.1, the
navigational property you want to lazy load must be set up as a backing field (see sec-
tion 8.1). The property’s getter accesses the backing field via a call to the LazyLoader
service, which ensures that the navigation property is loaded on a read.

NOTE   A look at the LazyLoading class in the EF Core GitHub repo shows that
if the navigation property is loaded, it doesn’t load it again, the same behavior
as in EF6.x.

Using the backing-field approach for lazy loading is quite elegant, as you can choose
how and when lazy loading is used. You also still have the option to allow access to the
data only via methods and still use lazy loading if you want to.

Using proxy classes by adding the keyword virtual to your relationships

In EF6.x lazy loading was automatically enabled by adding the keyword virtual to a
navigational property. EF Core provides the same approach but, unlike EF6.x, you do
need to enable it.

EF6   This approach is useful for developers porting EF6.x code to EF Core, as
your entity classes will work the same.

Using this approach in EF Core requires you to add the NuGet package Microsoft.Enti-
tyFrameworkCore.Proxies to your application. You also need to enable lazy loading by
applying the UseLazyLoadingProxies method when configuring your DbContext, as
shown in this code snippet from an ASP.NET Core configuration

 .AddDbContext<EfCoreContext>(
 b => b.UseLazyLoadingProxies()
 .UseSqlServer(myConnectionString));

Listing B.2 shows the Book entity class with the Reviews collection set up for lazy loading

Listing B.2 Using the virtual keyword to lazy loading navigational properties

public class MyEntity
{
 //… other properties left out
 public virtual Collection<ManyEntity>
 Many { get; set; }
}

Clearly this is simpler to write than the ILazyLoader example, but it does require EF
Core to create proxy classes for all entities that use lazy loading.

Comments on the lazy-loading feature and database performance
Many developers like lazy loading because it’s simple to use, but I and others don’t recom-
mend using lazy loading at all. Why? Because each lazy loading requires a separate data-
base access, and, as I said in section 12.5.1, each database access comes with a time
cost. Lazy loading can significantly reduce the performance of your database accesses.

The virtual keyword, coupled with
the Proxies NuGet package,
means that the Many collection
will be lazy loaded if read.

	 465Brand-new features

My impression is that many people need lazy loading because they’re using a Repository
pattern (see section 10.5) for their database accesses, which hides the EF Core code.
The Repository pattern can make writing the database accesses easier, especially if you
use lazy loading, but such repositories don’t always produce well-performing database
access code. This means you might create a lot of your database access code quickly,
but then find yourself caught up in serious performance-tuning issues later.

In this book, I use the Query Object pattern (see section 2.6) to produce tailored code for
each query. I show in section 10.4 how to use a DDD approach to updating entities. Using
these two approaches lets you build well-performing queries quickly, without resorting
to lazy loading. See my article at http://mng.bz/5VH2 for a more detailed discussion on
this topic.

B.2.2	 Parameters in entity class constructors

Prior to version 2.1, EF Core used a parameterless constructor to create an instance of
an entity class before filling in each property or field. EF Core 2.1 provides another way
to create an entity class, using constructors that have parameters. There are two very
different reasons for using constructors with parameters.

1	 Binding the data read from the database to the properties

2	 Injecting services into your entity class, for instance ILazyLoader

Binding the data read from the database to the properties

EF Core 2.1 and above can create an instance of an entity class by using a parameter-
ized constructor. If EF Core finds a parameterized constructor with parameter names
and types that match those of mapped properties, it will use that constructor with val-
ues for those properties and won’t set each property explicitly. Otherwise, it will use a
parameterless constructor and set the properties directly.

NOTE   There are lots of subtle features in binding via parameterized construc-
tors, such as that the navigational properties cannot be set via the constructor.
I recommend you look at the latest EF Core documentation on this topic for
more information—see https://mng.bz/MDpm .

Injecting services into your entity class

To make lazy loading work, you need to provide an instance of EF Core’s ILazyLoader
when the class is created. You need to have an entity class constructor that can take
parameters. EF Core 2.1 can inject the following services when it creates an instance of
an entity class:

¡	ILazyLoader. The lazy-loading service—see section B.2.1.
¡	Action<object, string>. This is a lazy-loading delegate; it will inject the

lazy-loading service—see section B.2.1.

https://mng.bz/MDpm

466 Appendix B  Early information on EF Core version 2.1

¡	DbContext. The current context instance, which can also be typed as your appli-
cation’s DbContext, for instance EfCoreContext.

¡	IEntityType. The EF Core metadata associated with this entity type

The first two are obviously used for lazy loading; the final two provide some interesting
possibilities.

NOTE   Again there as some subtle features, such as what happens if you attach
an existing entity and you need the application’s DbContext. Please look at the
latest EF Core documentation for more information—see http://mng.bz/
aM86.

B.2.3	 Value conversion—defining the mapping of value types to the
database

Before version 2.1, EF Core could only map scalar property types (see chapter 6) that
are natively supported by the underlying database provider. Starting with EF Core
2.1, value conversions can be applied to transform the values obtained from columns
before they’re applied to properties, and vice versa. This provides several new features.
You can do the following:

¡	Store Enum types as strings instead of as the enum value
¡	Provide a mapping for user-defined structs to the database
¡	Transform a property—for instance, transparently encrypting a property on save,

and decrypting that same property on load

EF Core 2.1 provides several conversions that can be applied by convention, as well
as an explicit configuration API that allows registering delegates for the conversions
between columns and properties—see https://docs.microsoft.com/en-gb/ef/core/
modeling/value-conversions for more information.

B.2.4	 Data seeding—adding initial data to a new/updated database

Sometimes you might want to populate a new or updated database with initial data—
for instance, a list of countries you can ship to. EF6.x had such a feature, which was
run at startup, but it had limitations. EF Core 2.1 provides a better implementation of
seeding that incorporates your initial data into the database migrations:

¡	The data is written out only if the migration needs to be applied to the database.
¡	Later database migrations can add, delete, or update data that was applied in

previous migrations.

EF Core 2.1’s data-seeding feature is associated with an entity type as part of the model
configuration. The seeding configuration code is then turned into database migration
code when you use the design-time method to add a new migration. See https://docs.
microsoft.com/en-gb/ef/core/modeling/data-seeding for more information.

http://mng.bz/aM86
http://mng.bz/aM86
https://docs.microsoft.com/en-gb/ef/core/modeling/data-seeding
https://docs.microsoft.com/en-gb/ef/core/modeling/data-seeding

	 467Brand-new features

B.2.5	 Query types—using non-entity classes in read-only queries

EF Core 2.1 introduces a feature called query types, which has several possible appli-
cations. Query types are .NET classes that can be mapped to the database, but unlike
entity classes, query types are only for read-only queries (which is where the query part
of its name comes from). Query types work in the same way as the DTOs described
in section 2.6.1, in that query types contain the specific data needed by the frontend
system.

EF Core 2.1 allows query types to be used in several places. For instance, you can do
the following:

¡	Define a LINQ query in your configuration code, such that you can use that
query type, via the Query<T> method, in a LINQ-based query.

¡	Use a query type in a FromSQL method. This allows you to write SQL that maps
to a class that isn’t an entity class.

¡	Map a query type to a database view. A database view is an SQL SELECT state-
ment stored in the database and associated with a name.

¡	You can map a query type to a table that has no primary key. A relational table
without a primary key is unusual, but they can occur. Before EF Core 2.1, you
couldn’t map to it, but now you can.

This feature makes select-type queries, which this book has shown can produce effi-
cient database queries, into a first-class citizen. You can predefine a LINQ-based query,
use an SQL-based query, or you can use a database view and define the SQL query
in your database. See https://docs.microsoft.com/en-gb/ef/core/modeling/que-
ry-types for more information.

B.2.6	 Include derived types when using table per hierarchy

When using a table-per-hierarchy (TPH) table mapping (see section 7.8.2), you might
have a relationship in one of the inherited types. Say you have two types, PaymentCash
and PaymentCard, and only the PaymentCard type has a relationship of type CardType.
Before EF Core 2.1, you couldn’t eager load this sort of relationship. But in EF Core
2.1, this has been fixed, and you can include relationships in one part of a TPH class.
The following code snippet shows you one way of doing this

var orders = context.Payments.Include(p => ((CardType)p).Card)

B.2.7	 Ability to link to entity class state change events

In section 9.4 we overrode the SaveChanges method in your application’s DbContext
to capture changes to entities and implement some of your own logic. The downside of
that approach was you needed to override all four versions of the SaveChanges method
to do that properly.

In EF Core 2.1 there is a new feature where you can link to entity state changes,
which makes intercepting state changes much simpler to implement. In addition, there
is a Tracked event which allows you to react to entities becoming tracked.

https://docs.microsoft.com/en-gb/ef/core/modeling/query-types
https://docs.microsoft.com/en-gb/ef/core/modeling/query-types

468 Appendix B  Early information on EF Core version 2.1

B.2.8	 Supporting NoSQL—Cosmos NoSQL Database provider (preview)

From the start, EF Core was designed to handle SQL and NoSQL databases, but in the
first releases, no NoSQL database providers were available. In EF Core 2.1, you’ll find a
preview version of a database provider for Azure’s Cosmos NoSQL database. The idea
is that you can use all the same tools and techniques you’ve used in EF Core on rela-
tional databases and apply them to NoSQL, nonrelational databases.

Personally, I’m pleased to see EF Core supporting NoSQL databases, because NoSQL
databases have a role to play in modern applications. In section 14.2, I use a CQRS
architecture with a NoSQL database handling the read-side to provide improved per-
formance and scalability over an SQL-only implementation. Allowing EF Core to work
with both SQL and NoSQL databases is a significant step forward.

NOTE   The Cosmos database provider in EF Core 2.1 is a preview version and
may well have limitations and/or bugs. This Cosmos database provider is there
to expose and improve EF Core’s current implementation of NoSQL data-
bases. Also, it will act as a template to help other developers produce EF Core
database providers for other NoSQL databases, such as MongoDB.

B.3	 Improvements to existing features
This section lists changes in EF Core 2.1 that add to or modify existing features in
EF Core. There’s a slight overlap with the “new features” section, but I group these
changes as improvements because in each case you could already use the feature in EF
Core 2. But EF Core 2.1 brings better capabilities or performance to each feature. The
items are as follows:

¡	LINQ GroupBy translation to SQL GROUP BY command
¡	Optimization of correlated subqueries—the N + 1 SQL query problem
¡	.NET Core global tools—installing design-time tools locally
¡	Column ordering in a database now follows entity-class property order
¡	System.Transactions support
¡	Specifying an owned type via an attribute

B.3.1	 LINQ GroupBy translation to SQL GROUP BY command

One downside of EF Core before version 2.0 was that the LINQ GroupBy operator was
evaluated in memory, whereas EF6.x translated it to the SQL GROUP BY command. In
EF Core 2.1 and above, the common uses of the LINQ GroupBy operator are now con-
verted to SQL. This is a welcome improvement, as some projects needed this feature.

B.3.2	 Optimization of correlated subqueries—
the N + 1 SQL query problem

In section 13.2, I show that in EF Core 2.0, the loading of the Author’s names collec-
tion for a book causes a new database access for each book. The book list query that

	 469Improvements to existing features

reads in 10 books has 1 + 10 trips to the database: one for the book information of
all 10 books, and then a single database access for each book’s list of authors. This is
known as the N + 1 query problem.

In EF Core 2.1, more work has gone into finding and fixing these N + 1 query prob-
lems. This should mean that any query that contains a collection should perform more
quickly. To take advantage of this you need to add an execute method, such as ToList,
to any subquery that loads a collection. For instance, to improve the performance of the
book list select query in listing 2.10 you need to add the ToList method to the end of
the subquery than reads in the Author’s Name properties, as shown in bold in this code
snippet.

public static IQueryable<BookListDto>
 MapBookToDto(this IQueryable<Book> books)
{
 return books.Select(p => new BookListDto
 {
 //… other parts of select removed
 AuthorsOrdered = string.Join(", ",
 p.AuthorsLink
 .OrderBy(q => q.Order)
 .Select(q => q.Author.Name).ToList()),
 });
}

According to the documentation this improvement turns the N + 1 into a 1 + 1 access,
meaning the multiple accesses are reduced to just one access. Section 12.5.1 shows that
each database access has a performance cost, so this improvement to N + 1 queries
gives you a welcome performance boost with little effort.

B.3.3	 .NET Core global tools—installing design-time tools locally

Microsoft has been looking at the design-time tools that various .NET Core librar-
ies use, such as EF Core’s migration commands, and developed a new way to handle
design-time tools, called global tools. The idea behind .NET Core global tools is that
you can install a tool from NuGet on your local machine and run that tool from any
directory.

As a result, in EF Core 2.1, you will see the release of NuGet tools for handling data-
base migrations. These new global tools are likely to be the same as the CLI tools, but
will be independently loaded and will run without the dotnet prefix. The benefit is that
the migration tools will be updateable in the normal NuGet way, and you won’t need
the tools in your .csprog file.

B.3.4	 Column ordering in database now follows
entity-class property order

Before EF Core 2.1, the order of the columns in the database was sorted alphabetically.
Users have asked that the properties be declared in the same order as appear in the
entity class, which EF Core 2.1 now implements.

470 Appendix B  Early information on EF Core version 2.1

B.3.5	 System.Transactions support

EF Core 2.1 supports System.Transactions features and is linked to changes in .NET
Core 2.1. This allows you to create an instance of your application’s DbContext within
an existing TransactionScope. This is an advanced feature and not many application’s
will need this.

B.3.6	 Specifying an owned type via an attribute

In section 7.8.1 you created what EF Core calls an owned type class called Address,
which could be added to entity class. You needed to use Fluent API to configure each
use of the owned type Address class in an entity class.

In EF Core 2.1 there is a quicker way to do this. If you apply the [Owned] attribute to
the class definition of your owned types, then EF Core will automatically configure any
entity classes that uses that owned type.

Summary

¡	All .NET Core packages use sematic versioning, so the step from EF Core 2.0 to
2.1 is a minor release. Because EF Core 2.1 is a minor release, it doesn’t change
the content of this book. It only adds new features and improvements.

¡	In addition to this appendix on EF Core 2.1, you’ll find notes in the chapters indi-
cating where EF Core 2.1 offers new options over what’s taught in those chapters.

¡	EF Core 2.1 has welcome improvements that EF6.x developers have been wait-
ing for, such as lazy loading, LINQ GroupBy query translation to SQL, and data
seeding.

¡	New features, such as a database provider for the NoSQL database Cosmos and
value conversions, extend what you can do with EF Core.

471

Symbols

% character  53
.NET Core global tools  469
_ (underscore) character  53

A

ab tool  341
access modifiers  284, 379
action methods  123
ActiveProvider property  307
Adapter pattern  98
AddAsync method  219
AddColToMyTable  309
AddDbContext method  123
Added state  58
AddError method  95
AddIgnoreCompareLog  449
Add method  59, 61, 81, 240–242
Add-Migration command  35, 133, 136,

304–306, 325
AdminController  141
advanced features  206–237

backing fields, using with relationships  207–209
computed columns  213–215
default value for column  215–219

adding constant as default constraint  216–217
adding SQL fragment as default

constraint  217
creating value generator to generate default

value dynamically  217–219

marking database-generated properties  220–221
column as normal  222
column’s value as set on insert of new row  221
column that’s generated on addition or

update  220
sequences  219
type, size, and nullability, setting  159
user-defined functions (UDFs)  209–213

adding code to database  212–213
registered scalar UDF in database queries  213
scalar, configuring  210–212

aggregates  207, 278
AI (artificial intelligence) code  89
alternate key  175
Amazon Web Services (AWS)  116
anemic domain model  91
AppDbContext  14
appsetting.json file  121
appsettings.Development.json file  121
appsettings.Production.json file  121
artificial intelligence (AI) code  89
ascending parameter  457
AsNoTracking method  19, 55, 58, 342, 344
ASP.NET Core  115–143

architecture of book app  116
async/await  137–139

changing over to async/await versions of EF
Core commands  138–139

used with database accesses  138
usefullness in web application using EF Core 

137–138
calling database access code from  123–125

index

472 index

DbContext, providing  139–143
dependency injection (DI) in  117–120

basic example  118–119
implementing database methods as DI

service  127
importance in ASP.NET Core  118
lifetime of service created by  119–120
making application’s DbContext available via

DI  120–123
deploying ASP.NET Core application with

database  131–133
creating and migrating database  132–133
knowing where database is on web server  132

implementing book list query page  125–126
overview  116
terminology  123
using migrate feature to change database

structure  133–136
migrating database on startup  134–136
updating production database  133

ASPNETCORE_ENVIRONMENT variable  132
async/await  137–139

changing over to async/await versions of EF Core
commands  138–139

used with database accesses  138
usefullness in web application using EF

Core  137–138
asynchronous programming  137
async method  355–356
async version of commands  344
atomic unit  22, 109
Attach method  250–251
Autofac  130
AutoMapper  275–277
AutoMapper.Extensions.Microsoft.

DependencyInjection  277
autoproperty feature  215
Average method  361, 387
AVG command  361
AWS (Amazon Web Services)  116
Azure Tables  8

B

backing fields  91, 147, 168–173, 376
configuring  171–173

by convention  171
via Fluent API  171–173

creating simple backing field accessed by read/
write property  168–170

using with relationships  207–209
BindNever attribute  66
BindRequired attribute  66
BizActionErrors class  95
BizLogic layer  93
BizRunner pattern  101
book app  28–33

architecture of  49–50
classes that EF Core maps to database  32–33
final database showing all tables  30
implementing book list query page  125–126
other relationship types  30
placing order on  104–105
relational database  28–30

many-to-many relationship  29–30
one-to-many relationship  29
one-to-one relationship  28–29

bounded contexts  290, 353, 449
breaking changes

applying by stopping application  324–328
using migrate method to update database

schema  325–327
using SQL change scripts to update database

schema  327–328
handling when can’t stop app  328–331

BuildWebHost method  134
business domains  354
business logic  88–114

adding extra features to handling of  105–114
using transactions to daisy-chain sequence of

business logic code  109–114
validating data that written to database 

105–109
difference from other code  89
implementing for processing orders  93–104

disadvantages of  103–104
guidelines  94–101

placing order on book app  104–105
using design pattern to help implement  91–92

By Convention  151–154, 177–182
conventions for entity classes  152
conventions for name, type, and size  152
conventions for parameters in entity class  152
entity class

what makes  177–178
with navigational properties, example of  178

	 473index

foreign keys
found by convention  178–180
if left out  180–181
nullability of  180

naming convention identifies primary keys 
153–154

nullability of property based on .NET type  153
using configuration first  165
when configuration doesn’t work  181–182

C

cached-values  408
caching, of book review values  376–383

ensuring add/remove of reviews to book must go
through access methods  376–380

ensuring concurrent update of book’s reviews
doesn’t invalidate cached values  380–383

calls to database, number of  345–346
Camel case  171
cascade deletes  85
chaining  55
ChangedNotifications  248
ChangePubDateService, injecting into ASP.NET

action method  128–129
ChangeTracker method  254–256
ChangeTracker.TrackGraph method  252
change tracking  239
ChangeTrackingStrategy  248
classes

excluding from database  157–158
via Data Annotations  158
via Fluent API  158

that map to database  13–14, 32–33
CLI (command-line interface)  36
ClientSetNull behavior  190
Client vs. Server  43–45
code

ensuring is isolated/decoupled  344–345
involved in database feature being tuned, finding

all  338
code-first option  12, 301
cohesion  124
collation setting  54
columns

adding indexes to  161–162
data types, mismatching  352
default value for  215–219

adding constant as default constraint  216–217

adding SQL fragment as default
constraint  217

creating value generator to generate default
value dynamically  217–219

loading only needed columns  342–343
marking

as normal  222
column’s value as set on insert of new row  221
column that’s generated on addition or

update  220
names in table  163
ordering following entity-class property order  469

combining query objects  54–56
command-line interface (CLI)  36
command-line method, running migrate by

calling  311
command-line tools, accessing from software 

416–420
accessing EF Core design-time services  417–418
using design-time services to build

EfSchemaCompare tool  418–420
commands

async version of  344
converting to SQL queries  368–372

Commit command  112
CompareEfWithDb method  449
complex queries  45–50

architecture of book app  49–50
book list query, building by using select

loading  45–48
composite keys  67, 80, 153, 176
computed columns  213–215
concurrency conflicts  222, 222–237

DbUpdateConcurrencyException  230–232
disconnected concurrent update issue  233–237
features for handling  224–230

detecting concurrent change via concurrency
token  224–227

detecting concurrent change via
timestamp  227–230

importance of  223–224
concurrency token  224
Configure method  135
ConfigureServices method  122, 401, 416
configuring EF Core

backing fields  168–173
configuring  171–173
creating simple backing field accessed by read/

write property  168–170
By Convention  151–154

474 index

conventions for entity classes  152
conventions for name, type, and size  152
conventions for parameters in an entity

class  152
naming convention identifies primary

keys  153–154
nullability of property based on .NET type  153

database column type, size, and nullability  159
excluding properties and classes from

database  157–158
via Data Annotations  158
via Fluent API  158

indexes, adding to database columns  161–162
model-level query filters  159
naming on database side  162–163

database column names in table  163
schema name, and schema groupings  163
table names  162–163

primary key  160–161
configuring via Data Annotations  160–161
configuring via Fluent API  161

recommendations for  165–166
use By Convention configuration first  165
use Fluent API for anything else  166
use validation Data Annotations wherever

possible  165–166
shadow properties  166–168

accessing  167–168
configuring  166–167

specific database-provider Fluent API
commands  164–165

via Data Annotations  154–155
configuring primary key  160–161
System.ComponentModel.

DataAnnotations  154
System.ComponentModel.DataAnnotations.

Schema  155
via Fluent API  155–161
ways of  148–149
worked example of  149–151

connected state update
one-to-many relationships  76
one-to-one relationships  72–73

connection string  121
console application  10
constant, adding as default constraint  216–217
constructor injection  119

Contains command  53
content download  362
context.Database.EnsureCreated() method  35,

431, 438
context.Database.Migrate method  36, 134
ContextFactoryNeededForMigrations  393
context.Model property  261–263
correctable errors  294
correlated subqueries, optimization of  468–469
Cosmos database provider  468
Cosmos NoSQL Database provider  468
coupling  124
CQRS architecture application  396–412

finding book view changes  405, 403–408
building list of books that need updating 

407–408
getting state and relationships  405–406

implementation of  397–399
out-of-date cached values, less likely to have 

408–409
parts of, interaction with each other  399–403
whether worth effort  409–412

CreatedOn property  255
CreateEmptyViaWipe method  262, 436
Create, Read, Update, and Delete (CRUD)  6, 57
CREATE TABLE command  197
CreateUniqueClassOptions method  434
CRUD (Create, Read, Update, and Delete)  6, 57

D

DAL (database access library)  289
Dapper

overview  368–369
rewriting MapBookToDto and associated EF

queries using  369–372
DataAnnotation attribute  106
data annotations

using whenever possible  165–166
vs. Fluent API, for configuration  314

Data Annotations
configuring EF Core via  154–155

configuring primary key  160–161
System.ComponentModel.

DataAnnotations  154
System.ComponentModel.DataAnnotations.

Schema  155

configuring EF Core (continued)

	 475index

configuring primary key via  160–161
configuring relationships using  182–184

ForeignKey data annotation  182
InverseProperty data annotation  183–184

excluding properties and classes from database
via  158

database access
calling code from ASP.NET Core  123–125
development of, speeding up  273–274

database access library (DAL)  289
database connection problems  264–267
database content, changing  57–87

deleting entities  82–87
dependent-only entity  84
principal entity that has relationships  84–87
using model-level query filters to hide

entities  83–84
disconnected updates in web application  65–69

sending all data  68–69
with reload  65–68

entity state  58
relationships in updates  70–82

creating new row directly  74–75
principal and dependent relationships  70–71
updating many-to-many relationships  79–81
updating one-to-many relationships  75–79
updating one-to-one relationships  72–75
updating relationships via foreign keys  82

rows
creating  58–63
updating  63–69

Database.EnsureCreated method  301
database-first option  12, 301
database-generated keys  243, 249
[DatabaseGenerated] namespace  155
DatabaseGeneratedOption.Computed setting  220
Database.GetDbConnection method  368
database initializers  136
Database.Migrate method  136, 308, 310
database repository pattern, mocking  426,

441–443
database round-trips  40, 345–346
databases

modeling  15–17
reading data from  17–19
updating  19–22

database to access  12

database types
differences between  391–395

conversion of SQL Server application to
MySQL  393–394

creating instance of application’s DbContext
for MySQL  392–393

EF Core’s ability to work with multiple types  395
database wipe method  261–263
DataLayer  49
data seeding  466
data transfer objects (DTO)  5, 46
data validation patterns  293–294
DateTime.Kind property  170
DbContext  14–15, 238–267

altering to work with ASP.NET core
application  315–316

ChangeTracker method  254–256
commands that change entity’s state  240–254

Add method  58–63, 241–242
Attach method  250–251
DetectChanges method  244
INotifyPropertyChanged interface  246–248
Remove command  243–244
setting state of entity directly  251–252
TrackGraph method  252–254
Update method  248–250

context.Model property  261–263
copy of obtained by migration tools  304
creating from database  312–318

altering or editing output from scaffold
command  314–317

limitations of reverse-engineering
feature  317–318

creating instance of for MySQL  392–393
database connection problems  264–267
database for own application, creating  35–37
defining  33–34
execution strategy

altering or writing own  265–267
handling transactions with  264

getting ready for unit testing
DbContext options, provided via

constructor  427–428
DbContext options, setting via

OnConfiguring  428–430
overview  427

instance of, creating  34–35
making available via DI  120–123

476 index

mocking  426
multiple, splitting database across  290–293

creating DbContexts that contain only subset of
entities/tables  290–292

passing data between bounded contexts 
292–293

pooling to reduce cost of  354–355
properties  239
providing  139–143
raw SQL commands  256–261

ExecuteSqlCommand method  258–259
FromSql method  257–258
GetDbConnection method  260–261
Reload method  259

State property, SaveChanges method  239–240
using one large DbContext  353–354

DbContext class, application’s  33, 37
DbFunction

improving queries by adding  363–368
ensuring query sorting and filtering are

performing well  366–368
updated query  365

overview of  209–213
DbSet<ExampleEntity> property  59
DbUp  318–322
DbUpdateConcurrencyException  224, 226,

230–232, 295
DbUpdateException  191
DDD (domain-driven-design)  91, 273, 278–288

advantages  287–288
disadvantages  288
entity and repository  280–284
how changes business logic design  284–287

decoupled code  344–345
DeleteAllTestDatabasesOk command  437
Deleted state  58
deleting rows  243–244
Demo class  118
dependent relationships  70–71
derived types, including when using table-per-

hierarchy (TPH)  467
design-first option  12
design-time services, accessing  417–418
Detached state  58
DetectChanges method  64, 244, 352–353
development databases  302
development of database access, speeding up 

273–274

development tools  9
DI (dependency injection), in ASP.NET Core 

117–120
basic example  118–119
implementing database methods as DI

service  127
improving registering database access classes as

services  129–131
injecting ChangePubDateService into ASP.NET

action method  128–129
registering class as DI service  128

importance in ASP.NET Core  118
lifetime of service created by  119–120
making application’s DbContext available via

DI  120–123
disconnected concurrent update issue  233–237
disconnected state update

one-to-many relationships  78–79
one-to-one relationships  73–74
unit testing of  439–441

disconnected updates  65–69
overview of  252–254
sending all data  68–69
with reload  65–68

domain rules  88
don’t repeat yourself (DRY)  288
dotnet ef dbcontext scaffold  417
DRY (don’t repeat yourself)  288
DTO (data transfer objects)  5, 46
dynamic code  458

E

eager loading  38, 38–40
EF.CompiledQuery method  350
EfCoreContext class  33–34, 129, 354
EfCore.GenericBizRunner library  101, 103
EfCoreInAction  49
EF Core library

adding to application  10
how works  15–22

modeling database  15–17
reading data from database  17–19
updating database  19–22

EF Core services, accessing and changing  413–416
accessing EF Core service to help in own

application  413–414
replacing EF Core service with own modified

service  414–416

DbContext (continued)

	 477index

EfCore.TestSupport library  339, 424
EF Core version 2.1, features

existing, improvements to  468–470
column ordering in database follows entity-class

property order  469
LINQ GroupBy translation to SQL GROUP BY

command  468
.NET Core global tools  469
optimization of correlated subqueries --> N + 1

SQL query problem  468–469
System.Transactions support  470

new  462–468
data seeding  466
including derived types when using table-per-

hierarchy (TPH)  467
lazy loading-loading relationships  463–464
parameters in entity class constructors  465
supporting NoSQL-Cosmos NoSQL Database

provider  468
using non-entity classes in read-only queries  467
value conversion  466

EF.Function.Like method  53
EF InMemory database  426
EF.Property command  168
EF.Property<T>(string) method  180
EF repository  289
EfSchemaCompare tool  321–322

using design-time services to build  418–420
using in unit testing  447–450

EnableRetryOnFailure  264
EndsWith command  53
EnsureCreated method  261
EnsureDeleted method  261
entity class

adding extra data validation annotations to  314
conventions for  152
conventions for parameters in  152
singularizing entity class names  317
what makes  177–178
with navigational properties, example of  178

entity class constructors, parameters in  465
Entity class (definition)  32–33
Entity Framework Core  3–26

benefits of  22–25
high-performance  25
latest generation  23
multiplatform and open source  23
NuGet libraries, access to  24
O/RM, fully featured  24

rapid development  23
stable library  24–25
well supported  24

coverage of in book  4–5
EF Core library  15–22

modeling database  15–17
reading data from database  17–19
updating database  19–22

first EF Core application  8–10
adding EF Core library to  10
console application  10
database to access  12
development tools  9
setting up  13–15

NoSQL and  8
O/RMs, negative aspects of  7–8
overview of  7–8
when to not use  25–26

EntityTypeConfiguration<T>  156
enum parameter  50
error-handling patterns

catching errors and providing feedback  295–299
checking and returning list of errors  294–295

Errors property  98
event sourcing  224
execute command  38
ExecuteScriptFileInTransaction  438
ExecuteSqlCommand method  212, 257–259, 263
ExecuteValidation method  107
execution strategy

altering or writing own  265–267
handling transactions with  264

explicit loading  38, 40–41, 45
expression tree  456, 458
extension method  48, 456
EXTRA IN DATABASE error  449

F

faking  117
features, advanced  206–237

backing fields, using with relationships  207–209
computed columns  213–215
default value for column  215–219
marking database-generated properties  220–221
sequences  219
type, size, and nullability, setting  159
user-defined functions (UDFs)  209–213

478 index

filtering books  51–54
filtering searches, to reduce rows loaded  343
Find method  67, 351–352
first EF Core application

adding EF Core library to  10
console application  10
database to access  12
development tools  9
setting up  13–15

application’s DbContext  14–15
classes that map to database-Book and

Author  13–14
FKs (foreign keys)

found by convention  178–180
if left out  180–181
nullability of  180
overview  19, 30
updating relationships via  82

flattening  276
Fluent API  166

backing fields, configuring via  171–173
commands  164–165
configuring EF Core via  155–157
configuring primary key via  161
excluding properties and classes from database

via  158
relationships  184–189

HasConstraintName method  195
HasPrincipalKey method  193–195
IsRequired method  191–193
many-to-many relationship  188–189
MetaData property  195
OnDelete method  189–191
one-to-many relationship  187–188
one-to-one relationship  184–187

vs. data annotations, for configuration  314
fluent interface  37
fluent validation  423
ForeignKey data annotation  182
ForSqlServerIsMemoryOptimized  165
FromSql method  257, 257–258, 369
frontend validation  165
fully defined relationship  176

G

GenericServices  6
GetConfigration method  433

GetDbConnection method  257, 260–261
GetFilterDropDownValues method  51
GetTableNamesInOrderForWipe method  262
getutcdate function  217
Glimpse  337
GUID (globally unique identifier)  62, 222

H

HasConstraintName method  195
HasDefaultValue method  216
HasDefaultValueSql method  219
HasForeignKey<T>(string) method  193
HasPrincipalKey method  193–195
hierarchical relationships  30
high cohesion  272
HomeController class  123
HtppRequest property  125
HTTP caching  336

I

IDENTITY command  221
IDesignTimeDbContextFactory<T> interface  37
IDisposable interface  35
IEntityType- Configuration<T> interface  155
IEnumerable<T> collection property  207–209
IEnumerable<T> interface  187
IgnoreQueryFilters method  84, 258
IgnoreTheseErrors  449
ILoggerFactory  339
IModel interface  261
Include method  38, 40, 76, 191
indexes

adding to database columns  161–162
missing from property you want to search on  352

Index method  123
in-memory database  430–431

designed for unit testing using  425
vs. real database, for unit testing  426–427

INoSqlCreators interface  401
INotifyPropertyChanged interface  246–248, 353
INotifyPropertyChanging  64
internal access modifier  379
International Standard Book Number (ISBN) 

175, 193
InverseProperty data annotation  183–184

	 479index

IQueryable mapping  275
IQueryable<T> type  456–458

splitting up complex LINQ query by using 
456–458

translation into database code  458
IRelationalTypeMapper interface  413
ISBN (International Standard Book Number) 

175, 193
IsModified property  240, 251
isolated code  344–345
IsRequired method  181, 191–193
IsSqlServer method  164
IsUnicode method  160
IValidatableObject interface  106, 294
IValidatableObject.Validate  60
IWhen interface  255

K

[Key] attribute  161

L

layered architecture  49
lazy loading

effect of  343
in EF Core version 2.1  463–464
overview  42, 345

let keyword  453
LINQ (Language Integrated Query)  451

commands, series of  37
data operations with  454–455
GroupBy translation to SQL GROUP BY

command  468
IQueryable<T> type  456–458

splitting up complex LINQ query by
using  456–458

translation into database code  458
querying database using  459
suboptimal queries, detecting using

logging  339–340
writing queries, ways of  452–454

LINQ mapper  274–277
live unit testing  424
loading related data  38–42

eager loading  38–40
explicit loading  40–41
select loading  41–42

loading relationships  463–464
logging

accessing information about  338–339
capturing logging information in unit testing

overview  443–446
using logging to help build SQL change

scripts  446–447
extracting SQL commands sent to database via

logging output  340–341
using to detect suboptimal LINQ queries 

339–340
LogOutput classes  445
loosely coupled  117
low coupling  272

M

many-to-many relationships  29–30, 79–81, 188–189
MapBookToDto, rewriting  369–372
mapper  274
marking columns

as normal  222
column’s value as set on insert of new row  221
generated on addition or update  220

[MaxLength] attribute  154
measuring user’s experience  337
MetaData property  195
Microsoft.EntityFrameworkCore.SqlServer  10
Microsoft.EntityFrameworkCore.Tools  303
MigrateDatabase method  134
migrate feature, using to change database

structure  133–136
migrating database on startup  134–136
updating production database  133

Migrate method  300, 325
MigrationBuilder parameter  306
migration code  133
migrations  300–331

applying  308–311
outputting migration as SQL change

script  309
running migrate as part of application 

309–310
running migrate by calling command-line

method  311
running migrate in standalone migration

application  310–311
building code for  303–311

480 index

adding own migration code to migration 
306–307

add-migration command  305–306
copy of DbContext obtained by migration

tools  304
database-provider specific, migrations as 

307–308
creating DbContext from database  312–318

altering or editing output from scaffold
command  314–317

limitations of reverse-engineering
feature  317–318

issues around database schema change  322–331
applying breaking database changes by

stopping application  324–328
applying nonbreaking changes while current

app is running  323–324
handling breaking database changes when

can’t stop app  328–331
methods to change database schema  301–302
SQL change scripts  318–322

EfSchemaCompare to check SQL matches
EF Core’s model  321–322

SQL comparison tool to build  320
undoing migrations  311–312

mismatching column data types  352
mocking  99, 117, 425
modeling databases  15–17
model-level query filters  159
ModelMetadataType attribute  314
Model property  145, 301
Modified state  58
modifying tracked entities  244
MyDbContext class  315
MySQL

conversion of SQL Server application to  393–394
creating instance of DbContext for  392–393

N

named property  172
nameof keyword  182
naming, on database side  162–163

database column names in table  163
schema name, and schema groupings  163
table names  162–163

navigational backing field  207

NHibernate  289
nonbreaking changes, applying while current app is

running  323–324
non-CQRS vs. CQRS solutions

read-side performance in  409–411
software implementation in  412

non-entity classes, using in read-only queries  467
nonrelational databases  8
NoSQL  8, 468
Notification2Entry class  248
NotificationEntity class  247
notional property  172
[NotMapped] attribute  158
NuGet libraries  24
nullability

of foreign keys  180
of property based on .NET type  153
setting  159

nvarchar type  414

O

object-relational impedance mismatch  7
object-to-object mapper  274
ObservableHashSet  246
OnConfiguration method  118
OnConfiguring method

overview of  15, 34, 315
setting DbContext options via  428–430

OnDelete method  71, 180, 189–191
one-to-many relationships  29, 187–188

altering or replacing all  76–78
updating  75–79

altering or replacing all one-to-many
relationships  76–78

connected state update  76
creating new row directly  79
disconnected state update  78–79

OneToOne property  249
one-to-one relationships

overview of  28–29, 184–187
updating  72–75

connected state update  72–73
disconnected state update  73–74

one-to-zero-or-one relationships  187
OnModelCreating method  16, 34, 149, 163
open source, Entity Framework Core as  23

migrations (continued)

	 481index

Optimistic Concurrency pattern  206, 222
optional dependent relationship  86
Optional property  192
OrderDdd class  285
Orders property  94
O/RM (object-relational mapper)

fully featured  24
negative aspects of  7–8

owned types  195, 195–199

P

Package Manager Console (PMC)  36, 133, 303
paging books in list  54
paging of searches, to reduce rows loaded  343
parallel, running unit tests in  433–435
parameter injection  127
parameters, in entity class constructors  465
performance antipatterns

applied to database  345–352
allowing too much of data query to be moved

into software side  347–348
expecting EF Core to build best SQL database

commands  351
mismatching column data types  352
missing indexes from property to search

on  352
not minimizing number of calls to

database  345–346
not precompiling queries that are used

frequently  350
not replacing suboptimal SQL translations with

user-defined functions (UDFs)  348–349
not using Find method when entity might be

already loaded  351–352
SaveChanges, calling multiple times  346–347

applied to software  352–354
making DetectChanges work too hard 

352–353
using one large DbContext  353–354

performance tuning  332–357
cost of  335–336
deciding which performance issues to fix 

333–336
diagnosing performance issues  336–341

finding all database code involved in feature
being tuned  338

finding database scalability issues  341

inspecting SQL code  338–341
measuring user’s experience  337

fixing performance issues  341–342
patterns use  342–345

AsNoTracking method, adding to read-only
queries  344

async version of commands to improve
scalability  344

ensuring that database access code is isolated/
decoupled  344–345

lazy loading, effect of  343
paging and/or filtering of searches to reduce

rows loaded  343
Select loading to load only needed

columns  342–343
performance antipatterns, applied to

database  345–352
allowing too much of data query to be moved

into software side  347–348
expecting EF Core to build best SQL database

commands  351
mismatching column data types  352
missing indexes from property you want to

search on  352
not minimizing number of calls to

database  345–346
not precompiling queries that are used

frequently  350
not replacing suboptimal SQL translations with

user-defined functions (UDFs)  348–349
not using Find method when entity might be

already loaded  351–352
SaveChanges, calling multiple times  346–347

performance antipatterns, applied to
software  352–354

making DetectChanges work too hard 
352–353

using one large DbContext  353–354
scalability of database accesses  354–357

architecture for applications needing high
scalability  356–357

async/await  355–356
pooling to reduce cost of new application’s

DbContext  354–355
simple queries and  356

performance tuning, worked example of  358–389
converting EF Core commands to SQL

queries  368–372
modifying database to increase

performance  373–386

482 index

analyzing changes  384–386
caching book review values  376–383
calculating AuthorsString when book is first

created  383–384
creating ActualPrice property-changing

promotion process  373–375
queries, improving by adding DbFunction 

363–368
ensuring query sorting and filtering are

performing well  366–368
updated query  365

scalability  388–389
single query, making sure performs well  359–362

analyzing book list query to see potential
performance issues  359–361

turning book’s Votes display into client-side
calculation  361–362

PKs (primary keys)  160–161
configuring

via Data Annotations  160–161
via Fluent API  161

naming convention identifies  153–154
PMC (Package Manager Console)  36, 133, 303
POCOs (plain old CLR objects)  32
polyglot database structure  396
Pomelo.EntityFrameworkCore.MySql  392
pooling, to reduce cost of DbContext  354–355
precalculated views  410
precompiling queries  350
presentation layer  50
primitive types  152
principal key  175, 178
principal relationships  70–71, 175–176
procedural pattern  91
production databases  302
Program class  134
properties

database-generated, marking  220–222
column as normal  222
column’s value as set on insert of new row  221
column that’s generated on addition or

update  220
excluding from database  157–158

via Data Annotations  158
via Fluent API  158

PropertyAccessMode.
FieldDuringConstruction  173

PropertyAccessMode.Property  173
PublishedOn property  64

Q

queries  27–56
book app  28–33

classes that EF Core maps to database  32–33
final database showing all tables  30
other relationship types  30
relational database  28–30

client vs. server evaluation  43–45
display string of book’s authors  43–44
limitations of  44–45

combining query objects  54–56
complex  45–50

architecture of book app  49–50
book list query, building by using select

loading  45–48
DbContext class, application’s  33–37

database for own application, creating  35–37
defining  33–34
instance of, creating  34–35

filtering books  51–54
improving by adding DbFunction  363–368

ensuring query sorting and filtering are
performing well  366–368

updated query  365
LINQ/EF Core commands, series of  37
loading related data  38–42

eager loading  38–40
explicit loading  40–41
Lazy loading  42, 463–465
select loading  41–42

paging books in list  54
simple, scalability of database accesses and  356
single query, making sure performs well 

359–362
analyzing book list query to see potential

performance issues  359–361
turning book’s Votes display into client-side

calculation  361–362
sorting books  50–51
speeding up development of  274–277

QueryClientEvaluationWarning  339, 348, 362, 444
Query method  41
Query Object pattern  48, 465

performance tuning (continued)

	 483index

R

RavenDB  398
raw SQL commands  256–261

ExecuteSqlCommand method  258–259
FromSql method  257–258
GetDbConnection method  260–261
Reload method  259

reading data  17–19
read-only queries

AsNoTracking method, adding to  344
using non-entity classes in  467

Redgate  320
referential integrity  85
RegisterAssemblyTypes method  130
registering services  118
relational database  8, 28–30

many-to-many relationship  29–30
one-to-many relationship  29
one-to-one relationship  28–29

RelationalModelValidator class  414
relationship fixup  19, 107
relationships

configuring  174–205
By Convention  177–182
Fluent API relationships  184–189
navigational properties needed  176
overview  176–177
owned types  195–199
table per hierarchy (TPH)  199
table splitting  203–205
terminology  175–176
using Data Annotations  182–184

in updates  70–82
creating new row directly  74–75
many-to-many relationships  79–81
one-to-many relationships  75–79
one-to-one relationships  72–75
principal and dependent relationships  70–71
relationships via foreign keys  82

loading, in EF Core version 2.1  463–464
using backing fields with  207–209

Reload method  257, 259
Remove command  243–244, 249
Remove-Migration command  311–312
Repository pattern  289, 465
[Required] attribute  154

reverse-engineering feature
limitations of  317–318
overview of  33, 312, 417

RollBack command  110
rows

creating  58–63
book with review  60–63
directly  74–75
single entity on its own  59

deleting  243–244
reducing number loaded  343
updating  63–69

Row Version  227
RunnerTransact2WriteDb class  112, 112–114
RunnerWriteDbWithValidation class  108

S

SaveChangesAsync method  254
SaveChanges method  22, 59, 61–62, 64, 166,

239–240, 346–347
SaveChangesSqlCheck class  298
SaveChangesWithSqlChecks method  296
SaveChangesWithValidation method  107
scaffold command, altering or editing output

from  314–317
adding extra data validation annotations to entity

class  314
altering DbContext to work with ASP.NET core

application  315–316
Fluent API vs. data annotations for

configuration  314
singularizing entity class names  317

scalability  354–357, 388–389
adding, with small effect on speed  355–356
architecture for applications needing high

scalability  356–357
finding issues  341
pooling to reduce cost of new application’s

DbContext  354–355
simple queries and  356

scalar properties  147
scalar UDFs

configuring  210–212
registered in database queries  213

scaling out  133, 336
scaling up  336
schema groupings  163

484 index

schema name  163
schemas  162, 323
scoped DI service  140
scoped lifetime  119, 135
scoped service  142
searches, paging/filtering of  343
seeding databases  136
SELECT command  260
select loading  38, 41–42, 342–343
select-loading approach  45
Select method  41, 342, 454
SELECT query  368
separation of concerns (SoC)  49, 124, 272
sequences  219
ServiceLayer  50
service scope factory  140
setting up EF Core application  13–15

application’s DbContext  14–15
classes that map to database-Book and

Author  13–14
SetWhen method  255
SetWithNotify method  247
shadow properties  166–168

accessing  167–168
configuring  166–167
overview of  147

sharding  388
simple queries, scalability of database accesses

and  356
simulating database  425–427

in-memory vs. real database for unit testing 
426–427

mocking database repository pattern  426
mocking DbContext  426
using in-memory database designed for unit

testing  425
using real database of same type as application

uses  425
single query, performance of  359–362

analyzing book list query to see potential
performance issues  359–361

turning book’s Votes display into client-side
calculation  361–362

singleton  119
singularizing entity class names  317
size

conventions for  152
setting  159

SoC (separation of concerns)  49, 124, 272
SoftDeleted property  406
soft-delete feature  83, 159
soft stop  324
software patterns  271–299

data validation patterns  293–294
domain-driven-design (DDD)  278–288

advantages  287–288
disadvantages  288
entity and repository  280–284
how changes business logic design  284–287

error-handling patterns
catching errors and providing feedback 

295–299
checking and returning list of errors  294–295

Repository pattern  289
separation of concerns (SoC) and  272
speeding up development of database

access  273–274
speeding up query development  274–277
splitting database across multiple

DbContexts  290–293
creating DbContexts that contain only subset of

entities/tables  290–292
passing data between bounded contexts 

292–293
sorting books  50–51
SQL

change scripts  318–322
EfSchemaCompare to check SQL matches EF

Core’s model  321–322
outputting migration as  309
SQL comparison tool to build  320
using to update database schema  327–328

change scripts, using logging to help build 
446–447

commands
expecting EF Core to build best  351
sent to database via logging output,

extracting  340–341
commands, raw  256–261

ExecuteSqlCommand method  258–259
FromSql method  257–258
GetDbConnection method  260–261
Reload method  259

fragments, adding as default constraint  217
inspecting code  338–341

accessing logging information  338–339

	 485index

extracting SQL commands sent to database via
logging output  340–341

using logging to detect suboptimal LINQ
queries  339–340

queries, converting commands to  368–372
unit tesing using real database with added extra

SQL code  438–439
SQL-first option  301
SQL IDENTITY keyword  62, 218
SQLiteInMemory.CreateOptions method  430
Sql method  306
SQL Server application, conversion to

MySQL  393–394
SqlServerExecutionStrategy  266
SQL Server Management Studio (SSMS)  341
SqlServerTypeMapper class  414
SQL UPDATE command  224
SSMS (SQL Server Management Studio)  341
StartsWith command  53
Startup class  122, 135
state of entities, commands that change  240–254

Add method  58–63, 241–242
Attach method  250–251
INotifyPropertyChanged interface  246–248
modifying tracked entity-EF Core’s

DetectChanges  244
Remove command  243–244
setting state of entity directly  251–252
TrackGraph method  252–254
Update method  248–250

State property, SaveChanges method  239–240
stored procedure  256
System.ComponentModel.DataAnnotations  154
System.ComponentModel.DataAnnotations.

Schema  155
System.Data.SqlClient  260
system errors  294
System.Reflection, .NET  24
System.Transactions support, in EF Core

version 2.1  470

T

table names  162–163
table splitting  195, 203–205
T&C (Terms and Conditions) box  105
Terms and Conditions (T&C) box  105

ThenInclude method  38, 40
thread pool  137
throwOnClientServerWarning parameter  444
timestamp

detecting concurrent change via  227–230
overview of  224

ToListAsync method  139
ToList method  139
TPH data  203
TPH (table-per-hierarchy)  199

configuring by convention  199–200
derived types, including when using  467
entities, accessing  202
using Fluent API to improve example  200–201

tracked entities
modifying  244
overview of  58, 120, 239

tracked query  22
TrackGraph method  70, 252–254
tracking changes  239
tracking snapshot  19
transactions  22, 91, 110
transient errors  264
transient lifetime  119
try…catch block  235
type

conventions for  152
setting  159

U

UDFs (user-defined functions)  209–213
adding code to database  212–213
registered scalar UDF in database queries  213
replacing suboptimal SQL translations

with  348–349
scalar, configuring  210–212

Unchanged state  58
underscore character  53
UniqueErrorFormatter method  298
unit commands  437
unit testing  421–450

capturing EF Core logging information in
overview  443–446
using logging to help build SQL change

scripts  446–447

486 index

getting DbContext ready for
DbContext options, provided via

constructor  427–428
DbContext options, setting via

OnConfiguring  428–430
overview  427

mocking database repository pattern 
441–443

of disconnected state update  439–441
setup  422–425

library  424–425
test environment  423–424

simulating database  427–430, 425–431
choosing between in-memory or real database

for unit testing  426–427
mocking database repository pattern  426
mocking DbContext  426
using in-memory database designed for unit

testing  425
using real database of same type as application

uses  425
using EfSchemaCompare tool in  447–450
using real database  432–439

running unit tests in parallel-uniquely named
databases  433–435

setting up  432–433
speeding up database creation stage 

435–437
that has added extra SQL code  438–439

Update command  69, 311–312
Update-Database command  36, 133, 312
UpdatedOn property  168, 170, 255
Update method  248–250
updates  19–22

disconnected  65–69, 252–254
sending all data  68–69
with reload  65–68

updating relationships
many-to-many relationships  79–81

one-to-many relationships  75–79
altering or replacing all one-to-many

relationships  76–78
connected state update  76
creating new row directly  79
disconnected state update  78–79

one-to-one relationships  72–75
connected state update  72–73
disconnected state update  73–74

via foreign keys  82
UseMySql method  393
UsePropertyAccessMode method  173
user’s experience, measuring  337

V

ValidationAttribute class  107
ValidationDbContextServiceProvider class  108
ValidationResult class  95
value conversion  466
value generator  217–219
ValueGenerator feature  62
value-like classes  119
ViewModel  46
Visual Studio 2017 (VS 2017)  9
Visual Studio Code (VS Code)  9
Votes display, turing into client-side

calculation  361–362

W

WHERE clause  226
WipeAllDataFromDatabase method  436
wipe method  261–263
wrt tool  341

X

xUnit unit test library  423–424

unit testing (continued)

EFC Core performance issue checklist: the section that discusses each issue is listed.

Speed performance issues Section

Have you picked the right feature to performance tune? 12.1.2

Are you loading too many columns? 12.4.1

Are you loading too many rows? 12.4.2

Are you using lazy loading? 12.4.3

Are you telling EF Core that your query is read-only? 12.4.4

Are you making too many calls to the database? 12.5.1

Are you calling SaveChanged multiple times? 12.5.2

Is part of your query being run in software? 12.5.3

Could you improve the SQL with a DbFunction? 12.5.4

Could pre-compiled queries help? 12.5.5

Have you checked the SQL that EF Core has produced? 12.5.6

Are you using the Find method to load via primary key? 12.5.7

Would an index help with sorting or filtering? 12.5.8

Do you have a mismatch on database types? 12.5.9

Are you making Detect Changes work too hard? 12.6.1

Would turning one DbContext into multiple DbContexts help? 12.6.2

700

1a. Straight EF Core

530 ms

390 ms

80 ms90 ms80 ms

230 ms

(ms)
Display 100 books, sort by votes

660 ms

1b. + DbFunction 2. Better SQL 3. Cached values

600

500

400

300

200

100

0

Display 100 books

The test data consists
of 100,000 books and
½ million votes.

Worked example of performance improvement with four stages, from Chapter 13

Jon P Smith

T
here’s a mismatch in the way OO programs and relational
databases represent data. Entity Framework is an object-
relational mapper (ORM) that bridges this gap, making it

radically easier to query and write to databases from a .NET
application. EF creates a data model that matches the structure
of your OO code so you can query and write to your database
using standard LINQ commands. It will even automatically
generate the model from your database schema.

Using crystal-clear explanations, real-world examples, and
around 100 diagrams, Entity Framework Core in Action teaches
you how to access and update relational data from .NET
applications. You’ll start with a clear breakdown of Entity
Framework, along with the mental model behind ORM.
Then you’ll discover time-saving patterns and best practices
for security, performance tuning, and even unit testing. As
you go, you’ll address common data access challenges and
learn how to handle them with Entity Framework.

What’s Inside
● Querying a relational database with LINQ
● Using EF Core in business logic
● Integrating EF with existing C# applications
● Applying domain-driven design to EF Core
● Getting the best performance out of EF Core
● Covers EF Core 2.0 and 2.1

For .NET developers with some awareness of how relational
databases work.

Jon P Smith is a full-stack developer with special focus on .NET
Core and Azure.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/entity-framework-core-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Entity Framework Core IN ACTION

MICROSOFT .NET

M A N N I N G

“An expertly written guide
to EF Core—quite

possibly the only reference
 you’ll ever need.”—Stephen Byrne, Action Point

“A solid book that deals
well with the topic at hand,
but also handles the wider

concerns around using EF in
real-world applications.”—Sebastian Rogers

Simple Innovations

“This is the next step
beyond the basics. It’ll help
 you get to the next level!”
—Jeff Smith, Agilify Automation

“Great book with excellent,
real-world examples.”

—Tanya Wilke, Sanlam

See first page

	Entity Framework Core IN ACTION
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the author
	about the cover illustration
	Part 1: Getting started
	1 Introduction to Entity FrameworkCore
	1.1 What you’ll learn from this book
	1.2 My “lightbulb moment” with Entity Framework
	1.3 Some words for existing EF6.x developers
	1.4 An overview of EF Core
	1.4.1 The downsides of O/RMs

	1.5 What about NoSQL?
	1.6 Your first EF Core application
	1.6.1 What you need to install
	1.6.2 Creating your own .NET Core console app with EF Core

	1.7 The database that MyFirstEfCoreApp will access
	1.8 Setting up the MyFirstEfCoreApp application
	1.8.1 The classes that map to the database—Book and Author
	1.8.2 The application’s DbContext

	1.9 Looking under the hood of EF Core
	1.9.1 Modeling the database
	1.9.2 Reading data from the database
	1.9.3 Updating the database

	1.10 Should you use EF Core in your next project?
	1.10.1 Latest generation
	1.10.2 Multiplatform and open source
	1.10.3 Rapid development
	1.10.4 Well supported
	1.10.5 Access to NuGet libraries
	1.10.6 Fully featured O/RM
	1.10.7 Stable library
	1.10.8 Always high-performance

	1.11 When should you not use EF Core?

	2 Querying the database
	2.1 Setting the scene—our book-selling site
	2.12.1	The book app’s relational database
	2.12.2	Other relationship types not covered in this chapter
	2.12.3	The final database showing all the tables
	2.12.4	The classes that EF Core maps to the database

	2.2 Creating the application’s DbContext
	2.2.1 Defining the application’s DbContext: EfCoreContext
	2.2.2 Creating an instance of the application’s DbContext
	2.2.3 Creating a database for your own application

	2.3 Understanding database queries
	2.3.1 Application’s DbContext property access
	2.3.2 A series of LINQ/EF Core commands
	2.3.3 The execute command

	2.15 Loading related data
	2.15.1	Eager loading: loading relationships with the primary entity class
	2.15.2	Explicit loading: loading relationships after the primary entity€class
	2.4.3 Select loading: loading specific parts of primary entity class and any relationships

	2.5 Using client vs. server evaluation: moving part of your query into software
	2.16.1 Creating the display string of a book’s authors
	2.5.2 Understanding the limitations of client vs. server evaluation

	2.6 Building complex queries
	2.6.1 Building the book list query by using select loading
	2.6.2 Introducing the architecture of the book app

	2.7 Adding sorting, filtering, and paging
	2.7.1 Sorting books by price, publication date, and customer ratings
	2.7.2 Filtering books by publication year and customer ratings
	2.7.3 Paging the books in the list

	2.8 Putting it all together: combining query objects

	3 Changing the database content
	3.1 Introducing EF Core’s entity State
	3.2 Creating new rows in a table
	3.2.1 Creating a single entity on its own
	3.2.2 Creating a book with a review

	3.3 Updating database rows
	3.3.1 Handling disconnected updates in a web application

	3.4 Handling relationships in updates
	3.4.1 Principal and dependent relationships
	3.4.2 Updating one-to-one relationships—adding a PriceOffer to a book
	3.4.3 Updating one-to-many relationships—adding a review to a book
	3.4.4 Updating many-to-many relationships—changing a book’s authors
	3.4.5 Advanced feature—updating relationships via foreign keys

	3.5 Deleting entities
	3.5.1 Using a soft delete—using model-level query filters to “hide” entities
	3.5.2 Deleting a dependent-only entity—no relationships
	3.5.3 Deleting a principal entity that has relationships

	4 Using EF Core in business logic
	4.1 Why is business logic so different from other code?
	4.2 Our business need—processing an order for books
	4.2.1 The business rules that you need to implement

	4.3 Using a design pattern to help implement business logic
	4.3.1 Five guidelines for building business logic that uses EF Core

	4.4 Implementing the business logic for processing an order
	4.4.1 Guideline 1: Business logic has first call on defining the database structure
	4.4.2 Guideline 2: Business logic should have no distractions
	4.4.3 Guideline 3: Business logic should think it’s working on in-memory data
	4.4.4 Guideline 4: Isolate the database access code into a separate project
	4.4.5 Guideline 5: Business logic shouldn’t call EF Core’s SaveChanges
	4.4.6 Putting it all together—calling the order-processing business logic
	4.4.7 Any disadvantages of this business logic pattern?

	4.5 Placing an order on the book app
	4.6 Adding extra features to your business logic handling
	4.6.1 Validating the data that you write to the database
	4.6.2 Using transactions to daisy-chain a sequence of business logic code

	5 Using EF Core in ASP.NET Core web applications
	5.1 Introducing ASP.NET Core
	5.2 Understanding the architecture of the book app
	5.3 Understanding dependency injection
	5.3.1 Why you need to learn about DI in ASP.NET Core
	5.3.2 A basic example of dependency injection in ASP.NET Core
	5.3.3 The lifetime of a service created by DI

	5.4 Making the application’s DbContext available via DI
	5.4.1 Providing information on the database’s location
	5.4.2 Registering your application’s DbContext with the DI provider

	5.5 Calling your database access code from ASP.NET Core
	5.5.1 A summary of how ASP.NET Core works and the terms it uses
	5.5.2 Where does the EF Core code live in the book app?

	5.6 Implementing the book list query page
	5.7 Implementing your database methods as a DI service
	5.7.1 Registering your class as a DI service
	5.7.2 Injecting ChangePubDateService into the ASP.NET action method
	5.7.3 Improving registering your database access classes as services

	5.8 Deploying an ASP.NET Core application with a database
	5.8.1 Knowing where the database is on the web server
	5.8.2 Creating and migrating the database

	5.9 Using EF Core’s Migrate to change the database structure
	5.9.1 Updating your production database
	5.9.2 Having your application migrate your database on startup

	5.10 Using async/await for better scalability
	5.10.1 Why async/await is useful in a web application using EF Core
	5.10.2 Where should you use async/await with database accesses?
	5.10.3 Changing over to async/await versions of EF Core commands

	5.11 Running parallel tasks: how to provide the DbContext
	5.11.1 Other ways of obtaining a new instance of the application’s DbContext

	Part 2: Entity Framework in depth
	6 Configuring nonrelational properties
	6.1 Three ways of configuring EF Core
	6.2 A worked example of configuring EF Core
	6.3 Configuring By Convention
	6.3.1 Conventions for entity classes
	6.3.2 Conventions for parameters in an entity class
	6.3.3 Conventions for name, type, and size
	6.3.4 By Convention, the nullability of a property is based on .NET type
	6.3.5 An EF Core naming convention identifies primary keys

	6.4 Configuring via Data Annotations
	6.4.1 System.ComponentModel.DataAnnotations
	6.4.2 System.ComponentModel.DataAnnotations.Schema

	6.5 Configuring via the Fluent API
	6.5.1 A better way to structure your Fluent API commands

	6.6 Excluding properties and classes from the database
	6.6.1 Excluding a class or property via Data Annotations
	6.6.2 Excluding a class or property via the Fluent API

	6.7 Configuring model-level query filters
	6.8 Setting database column type, size, and nullability
	6.9 The different ways of configuring the primary key
	6.9.1 Configuring a primary key via Data Annotations
	6.9.2 Configuring a primary key via the Fluent API

	6.10 Adding indexes to database columns
	6.11 Configuring the naming on the database side
	6.11.1 Configuring table names
	6.11.2 Configuring the schema name, and schema groupings
	6.11.3 Configuring the database column names in a table

	6.12 Using specific database-provider Fluent API commands
	6.13 Recommendations for using EF Core’s configuration
	6.13.1 Use By Convention configuration first—its quick and easy
	6.13.2 Use validation Data Annotations wherever possible
	6.13.3 Use the Fluent API for anything else

	6.14 Shadow properties—hide column data inside EF Core
	6.14.1 Configuring shadow properties
	6.14.2 Accessing shadow properties

	6.15 Backing fields—controlling access to data in an entity class
	6.15.1 Creating a simple backing field accessed by a
	6.15.2 Configuring backing fields

	7 Configuring relationships
	7.1 Defining some relationship terms
	7.2 What navigational properties do you need?
	7.3 Configuring relationships
	7.4 Configuring relationships By Convention
	7.4.1 What makes a class an entity class?
	7.4.2 An example of an entity class with navigational properties
	7.4.3 How EF Core finds foreign keys By Convention
	7.4.4 Nullability of foreign keys—required or optional relationships
	7.4.5 Foreign keys—what happens if you leave them out?
	7.4.6 When does By Convention configuration not work?

	7.5 Configuring relationships by using Data Annotations
	7.5.1 The ForeignKey Data Annotation
	7.5.2 The InverseProperty Data Annotation

	7.6 Fluent API relationship configuration commands
	7.6.1 Creating a one-to-one relationship
	7.6.2 Creating a one-to-many relationship
	7.6.3 Creating a many-to-many relationship

	7.7 Additional methods available in Fluent API relationships
	7.7.1 OnDelete—changing the delete action of a dependent entity
	7.7.2 IsRequired—defining the nullability of the foreign key
	7.7.3 HasPrincipalKey—using an alternate unique key
	7.7.4 Less-used options in Fluent API relationships

	7.8 Alternative ways of mapping entities to database tables
	7.8.1 Owned types—adding a normal class into an entity class
	7.8.2 Table per hierarchy—placing inherited classes into one table
	7.8.3 Table splitting—mapping multiple entity classes

	8 Configuring advanced features and handling concurrency conflicts
	8.1 Advanced feature—using backing fields with relationships
	8.1.1 The problem—the book app performance is too slow
	8.1.2 Our solution—IEnumerable<Review> property

	8.2 DbFunction—using user-defined functions with EF Core
	8.2.1 Configuring a scalar user-defined function
	8.2.2 Adding your UDF code to the database
	8.2.3 Using a registered scalar UDF in your database queries

	8.3 Computed column—a dynamically calculated column value
	8.4 Setting a default value for a database column
	8.4.1 Adding a constant as a default constraint
	8.4.2 Adding an SQL fragment as a default constraint
	8.4.3 Creating a value generator to generate a default value dynamically

	8.5 Sequences—providing numbers in a strict order
	8.6 Marking database-generated properties
	8.6.1 Marking a column that’s generated on an addition or update
	8.6.2 Marking a column’s value as set on insert of a new row
	8.6.3 Marking a column as “normal”

	8.7 Handling simultaneous updates—concurrency conflicts
	8.7.1 Why do concurrency conflicts matter?
	8.7.2 EF Core’s concurrency conflict–handling features
	8.7.3 Handling a DbUpdateConcurrencyException
	8.7.4 The disconnected concurrent update issue

	9 Going deeper into the DbContext
	9.72	Overview of the DbContext class’s properties
	9.2 Understanding how EF Core tracks changes
	9.3 Details on every command that changes an entity’s State
	9.3.1 The Add command--inserting a new row in the database
	9.3.2 The Remove command—deleting a row from the database
	9.3.3 Modifying a tracked entity—EF Core’s DetectChanges
	9.3.4 INotifyPropertyChanged entities—a different way of tracking changes
	9.3.5 The Update method—telling EF Core that everything has changed
	9.3.6 The Attach method—changing an untracked entity into a tracked entity
	9.3.7 Setting the State of an entity directly
	9.3.8 TrackGraph—handling disconnected updates with relationships

	9.4 Using ChangeTracker to detect changes
	9.5 Using raw SQL commands in EF Core
	9.5.1 FromSql—adding raw SQL to an EF Core query
	9.5.2 ExecuteSqlCommand—executing a nonquery command
	9.5.3 Reload—useful after an ExecuteSqlCommand
	9.5.4 GetDbConnection—calling database access commands

	9.6 Using Context.Model to access EF Core’s view of the database
	9.6.1 Using the Model property to build a fast database wipe method

	9.7 Handling database connection problems
	9.7.1 Handling database transactions with EF Core’s execution strategy
	9.7.2 Altering or writing your own execution strategy

	Part 3: Using Entity Framework Core in real-world applications
	10 Useful software patterns for EF Core applications
	10.1 Another look at the separation-of-concerns principle
	10.2 Using patterns to speed development of database access
	10.3 Speed up query development—use a LINQ mapper
	10.4 Domain-driven-design database repository
	10.4.1 Example Book DDD entity and repository
	10.4.2 How the DDD design changes the business logic design
	10.4.3 Impressions from building this DDD design

	10.5 Is the Repository pattern useful with Entity Framework?
	10.5.1 Some forms of Repository patterns to avoid

	10.6 Splitting a database across multiple DbContexts
	10.6.1 Creating DbContexts that contain only a subset of entities/tables
	10.6.2 Passing data between bounded contexts

	10.7 Data validation and error-handling patterns
	10.7.1 Data validation to your entity classes makes for better error feedback
	10.7.2 Business logic should contain checks and return a list of all errors
	10.7.3 Catching database server errors and providing user-friendly feedback

	11 Handling database migrations
	11.1 Part 1—EF Core methods to change the database schema
	11.1.1 A view of what databases need updating

	11.2 Code-first: using EF Core’s migrations
	11.2.1 Stage 1: creating a migration—building the code for migration
	11.2.2 Stage 2: applying migrations—updating a database schema
	11.2.3 Undoing a migration—Remove-Migration or update command

	11.3 Database-first: creating a DbContext from a database
	11.3.1 How to alter or edit the output from the scaffold command
	11.3.2 The limitations of the reverse-engineering feature

	11.4 SQL-first: using SQL change scripts to change the schema
	11.4.1 Using an SQL comparison tool to build an SQL change script
	11.4.2 Using EfSchemaCompare to check your SQL matches EF Core’s model

	11.5 Part 2—Issues around a database schema change
	11.5.1 Applying nonbreaking changes while the current app is running
	11.5.2 Applying breaking database changes by stopping the application
	11.5.3 Handling breaking database changes when you can’t stop the app

	12 EF Core performance tuning
	12.1 Part 1—Deciding which performance issues to fix
	12.1.1 “Don’t performance tune too early” doesn’t mean you stop thinking
	12.1.2 How do you decide what’s slow and needs performance tuning?
	12.1.3 The cost of finding and fixing performance issues

	12.2 Part 2—Techniques for diagnosing a performance issue
	12.2.1 Stage 1: get a good overview—measuring the user’s experience
	12.2.2 Stage 2: find all the database code involved in the feature you’re tuning
	12.2.3 Stage 3: inspecting the SQL code to find poor performance
	12.2.4 Techniques for finding database scalability issues

	12.3 Part 3—Techniques for fixing performance issues
	12.4 Using good patterns makes your application perform well
	12.4.1 Using Select loading to load only the columns you need
	12.4.2 Using paging and/or filtering of searches to reduce the rows you load
	12.4.3 A warning that using lazy loading will affect database performance
	12.4.4 Always adding the AsNoTracking method to read-only queries
	12.4.5 Using the async version of EF Core commands to improve scalability
	12.4.6 Ensuring that your database access code is isolated/decoupled

	12.5 Performance antipatterns—database access
	12.5.1 Not minimizing the number of calls to the database
	12.5.2 Calling SaveChanges multiple times
	12.5.3 Allowing too much of a data query to be moved into the software side
	12.5.4 Not replacing suboptimal SQL translations with user-defined functions
	12.5.5 Not precompiling queries that are used frequently
	12.5.6 Expecting EF Core to build the best SQL database commands
	12.5.7 Not using the Find method when an entity might be already loaded
	12.5.8 Missing indexes from a property that you want to search on
	12.5.9 Mismatching column data types

	12.6 Performance antipatterns—software
	12.6.1 Making DetectChanges work too hard
	12.6.2 Startup issue: using one large DbContext

	12.7 Performance patterns—scalability of database accesses
	12.7.1 Using pooling to reduce the cost of a new application’s DbContext
	12.7.2 Async/await—adding scalability, with small effect on speed
	12.7.3 Helping your database scalability by making your queries simple
	12.7.4 Picking the right architecture for applications that need high scalability

	13 A worked example of performance tuning
	13.1 Part 1a—Making sure a single query performs well
	13.1.1 Analyzing the book list query to see potential performance issues
	13.1.2 Turning the book’s Votes display into a client-side calculation

	13.2 Part 1b—Improving the query by adding a DbFunction
	13.2.1 Looking at the updated query
	13.2.2 Ensuring that the query sorting and filtering are performing well

	13.3 Part 2—Converting EF Core commands to SQL queries
	13.3.1 Introducing Dapper
	13.3.2 Rewriting MapBookToDto and associated EF queries using Dapper

	13.4 Part 3—Modifying the database to increase performance
	13.4.1 Creating an ActualPrice property—changing the promotion process
	13.4.2 Caching the book review values, and not letting them get out-of-date
	13.4.3 Calculating AuthorsString when a book is first created
	13.4.4 Analyzing the changes—Is the performance gain worth the effort?

	13.5 Comparing parts 1a, 1b, 2, and 3
	13.6 Database scalability—what can you do to improve that?

	14 Different database types and EF Core services
	14.1 What differences do other database server types bring?
	14.1.1 Creating an instance of the application’s DbContext for MySQL
	14.1.2 What you have to do to convert the SQL Server application to MySQL
	14.1.3 Looking at other database server types and differences
	14.1.4 Summarizing EF Core’s ability to work with multiple database types

	14.2 Developing a CQRS architecture application with EF Core
	14.2.1 Implementation of a two-database CQRS architecture application
	14.2.2 How the parts of the CQRS solution interact with each other
	14.2.3 Finding book view changes—Part 1, finding the correct state and key
	14.2.4 Finding the book view changes—Part 2, building the correct State
	14.2.5 Why the CQRS solution is less likely to have out-of-date cached values
	14.2.6 Is the two-database CQRS architecture worth the effort?

	14.3 Accessing and changing EF Core services
	14.3.1 Accessing an EF Core service to help in your own application
	14.3.2 Replacing an EF Core service with your own modified service

	14.4 Accessing command-line tools from software
	14.4.1 How to access EF Core design-time services
	14.4.2 How to use design-time services to build the EfSchemaCompare tool

	15 Unit testing EF Core applications
	15.1 Introduction—our unit test setup
	15.1.1 The test environment—the xUnit unit test library
	15.1.2 A library I’ve created to help with unit testing EF Core applications

	15.2 Simulating the database when testing EF Core applications
	15.2.1 The options you have for simulating the database
	15.2.2 Choosing between an in-memory or real database for unit testing

	15.3 Getting your application’s DbContext ready for unit testing
	15.3.1 The application’s DbContext options are provided via its constructor
	15.3.2 Setting an application’s DbContext options via OnConfiguring

	15.4 Simulating a database—using an in-memory database
	15.5 Using a real database in your unit tests
	15.5.1 How to set up a real database for unit testing
	15.5.2 Running unit tests in parallel—uniquely named databases
	15.5.3 Tips on how to speed up the database creation stage of a unit test
	15.5.4 How to handle databases in which you’ve added extra SQL code

	15.6 Unit testing a disconnected state update properly
	15.7 Mocking a database repository pattern
	15.8 Capturing EF Core logging information in unit testing
	15.8.1 Using logging to help you build SQL change scripts

	15.9 Using the EfSchemaCompare tool in your unit tests
	15.9.1 Features and options for the EfSchemaCompare tool

	appendix A A brief introduction to LINQ
	appendix B Early information on EF Core version 2.1
	index

