

C#	Cookbook
Modern	Recipes	for	Professional	Developers

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	author’s	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

Joe	Mayo

C#	Cookbook
by	Joe	Mayo

Copyright	©	2021	Mayo	Software,	LLC.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com).	For
more	information,	contact	our	corporate/institutional	sales	department:	800-998-
9938	or	corporate@oreilly.com.

Editors:	Angela	Rufino	and	Amanda	Quinn
Production	Editor:	Katherine	Tozer
Interior	Designer:	David	Futato
Cover	Designer:	Karen	Montgomery
Illustrator:	Rebecca	Demarest
October	2021:	First	Edition

Revision	History	for	the	Early	Release
2020-11-11:	First	Release
2021-02-03:	Second	Release
2021-03-16:	Third	Release
2021-05-11:	Fourth	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781492093695	for	release
details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	C#
Cookbook,	the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly
Media,	Inc.

The	views	expressed	in	this	work	are	those	of	the	author,	and	do	not	represent
the	publisher’s	views.	While	the	publisher	and	the	author	have	used	good	faith
efforts	to	ensure	that	the	information	and	instructions	contained	in	this	work	are
accurate,	the	publisher	and	the	author	disclaim	all	responsibility	for	errors	or
omissions,	including	without	limitation	responsibility	for	damages	resulting

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492093695

from	the	use	of	or	reliance	on	this	work.	Use	of	the	information	and	instructions
contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other
technology	this	work	contains	or	describes	is	subject	to	open	source	licenses	or
the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-492-09363-3

Chapter	1.	Constructing	Types
and	Apps

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	author’s	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

1.1	Overview
One	of	the	first	things	we	do	as	developers	is	to	design,	organize,	and	create	new
types.	This	chapter	helps	with	these	tasks	by	offering	several	useful	recipes	for
initial	project	setup,	managing	object	lifetime,	and	establishing	patterns.

Establishing	Architecture
When	you’re	first	setting	up	a	project,	you	have	to	think	about	the	overall
architecture.	There’s	a	concept	called	separation	of	concerns	where	each	part	of
an	application	has	a	specific	purpose.	e.g.	The	UI	layer	interacts	with	users,	a
business	logic	layer	manages	rules,	and	a	data	layer	interacts	with	a	data	source.
Each	layer	has	a	purpose	or	responsibilities	and	contains	the	code	to	perform	its
operations.

In	addition	to	promoting	more	loosely	coupled	code,	separation	of	concerns
makes	it	easier	for	developers	to	work	with	that	code	because	it’s	easier	to	find
where	a	certain	operation	occurs.	This	makes	it	easier	to	add	new	features	and
maintain	existing	code.	The	benefits	of	this	are	higher	quality	applications	and
more	productive	work.	It	pays	to	get	started	right,	which	is	why	we	have	a
section	on	Designing	Application	Layers	later	in	this	chapter.

Applying	Patterns
A	lot	of	the	code	we	write	is	Transaction	Script,	where	the	user	interacts	with	a

UI	and	the	code	performs	some	time	of	Create,	Read,	Update,	or	Delete	(CRUD)
operation	in	the	database	and	returns	the	result.	Other	times,	we	have	complex
interactions	between	objects	that	are	difficult	to	organize.	In	that	case,	we	need
other	patterns	to	solve	these	hard	problems.

This	chapter	presents	a	few	useful	patterns	in	a	rather	informal	manner.	The
purpose	is	so	you	can	have	some	code	to	rename	and	adapt	to	your	purposes	and
rationale	on	when	a	given	pattern	would	be	useful.	As	you	read	through	each
pattern,	try	to	think	about	other	code	you’ve	written	or	other	situations	where
that	pattern	would	have	simplified	the	code.

First,	there’s	Inversion	of	Control	(IoC),	which	helps	decouple	code	and
promotes	testability.	The	section	on	Removing	Explicit	Dependencies	explains
how	this	works.	When	we	look	at	Ensuring	Quality,	in	Chapter	3,	you’ll	see	how
IoC	fits	in	to	unit	testing.

If	you	run	into	the	problem	of	having	different	APIs	to	different	systems	and
needing	to	switch	between	them,	you’ll	be	interested	in	reading	the	Making
Classes	Adapt	to	your	Interface	section.	This	shows	how	to	build	a	single
interface	to	solve	this	problem.

Managing	Object	Lifetime
Other	important	tasks	we	perform	are	creating	objects	and	managing	their
lifetime.	The	Delegating	Object	Creation	sections	show	a	couple	nice	factory
patterns	that	let	you	decouple	object	creation	from	code.	This	fits	in	with	the	IoC
concepts,	just	discussed.

Another	way	to	manage	object	creation	is	through	a	fluid	interface,	where	you
can	include	optional	settings,	via	methods,	and	validate	before	object
construction.

Another	important	object	lifetime	consideration	is	disposal.	Think	about	the
drawbacks	to	excessive	resource	consumption;	whether	excessive	memory	use,
file	locks,	or	any	other	object	that	holds	operating	system	resources.	These
problems	often	result	in	application	crashes	and	are	difficult	to	detect	and	fix.
Performing	proper	resource	cleanup	is	so	important	that	it’s	the	first	section	of
this	chapter.

1.2	1.1	Managing	Object	End-of-Lifetime

Problem
Your	application	is	crashing	because	of	excessive	resource	usage.

Solution
Here’s	the	object	with	the	original	problem:

using	System;

using	System.IO;

public	class	DeploymentProcess

{

				StreamWriter	report	=	new	StreamWriter("DeploymentReport.txt");

				public	bool	CheckStatus()

				{

								report.WriteLine($"{DateTime.Now}	Application	Deployed.");

								return	true;

				}

}

And	here’s	how	to	fix	the	problem:

using	System;

using	System.IO;

public	class	DeploymentProcess	:	IDisposable

{

				private	bool	disposedValue;

				StreamWriter	report	=	new	StreamWriter("DeploymentReport.txt");

				public	bool	CheckStatus()

				{

								report.WriteLine($"{DateTime.Now}	Application	Deployed.");

								return	true;

				}

				protected	virtual	void	Dispose(bool	disposing)

				{

								if	(!disposedValue)

								{

												if	(disposing)

												{

																report?.Close();

												}

												disposedValue	=	true;

								}

				}

				//	~DeploymentProcess()

				//	{

				//					Dispose(disposing:	false);

				//	}

				public	void	Dispose()

				{

								Dispose(disposing:	true);

								GC.SuppressFinalize(this);

				}

}

Discussion
The	problem	in	this	code	was	with	the	StreamWriter,	report.	Whenever
you’re	using	some	type	of	resource,	such	as	the	report	file	reference,	you	need	to
release	(or	dispose)	that	resource.	The	specific	problem	here	occurs	because	the
Windows	OS	adds	locks	to	files,	supposedly	to	protect	the	application	that	has
ownership.	However,	what	happens	all	too	often	is	that	the	OS	doesn’t	release
that	file	lock	on	its	own.	That’s	the	responsibility	of	your	application	-	to	tell
Windows	to	release	that	file	lock.	So,	the	next	time	you	run	this	application,	it
might	not	be	able	to	write	to	the	file.	Further,	if	another	application	in	a
processing	pipeline	wanted	to	read	that	file,	it	wouldn’t	be	able	to.	In	the	worst
case,	everything	crashes	in	a	hard-to-find	scenario	that	involved	multiple	people
over	a	number	of	hours	debugging	a	critical	production	problem.

The	solution	is	to	implement	the	Dispose	pattern,	which	involves	adding	code
that	makes	it	easy	to	release	resources.	The	solution	code	implements	the
IDisposable	interface.	IDisposable	only	specifies	the	Dispose()
method,	without	parameters	and	there’s	more	to	be	done	than	just	adding	that
method,	including	another	Dispose	method	overload	that	keeps	track	of	what
type	if	disposal	to	do	and	an	optional	finalizer.

Complicating	the	implementation	is	a	field	and	parameter	that	control	disposal
logic:	disposed	and	disposing.	The	disposed	field	ensures	that	this
object	gets	disposed	only	one	time.	Inside	the	Dispose(bool)	method,
there’s	an	if	statement,	ensuring	that	if	disposed	is	true	(the	object	has
been	disposed)	then	it	won’t	execute	any	disposal	logic.	The	first	time	through
Dispose(bool),	disposed	will	be	false	and	the	code	in	the	if	block	will
execute.	Make	sure	that	you	also	set	disposed	to	true	to	ensure	this	code
doesn’t	run	any	more	-	the	consequences	of	not	doing	so	bring	exposure	to
unpredictable	errors	like	NullReferenceException	or
ObjectDisposedException.

The	disposing	parameter	tells	Dispose(bool)	how	it’s	being	called.	Notice
that	Dispose(),	without	parameters,	and	the	finalizer	call	Dispose(bool).
When	Dispose()	calls	Dispose(bool),	disposing	is	true.	This
means	that	calling	code	is	acting	properly	by	instantiating
DeploymentProcess	in	a	using	statement	or	wrapping	it	in	the	finally
block	of	a	try/finally.

The	finalizer	calls	Dispose(bool)	with	disposing	set	to	false,
meaning	that	it	isn’t	being	run	by	calling	application	code.	The
Dispose(bool)	method	uses	the	disposing	value	to	determine	whether	it
should	release	managed	resources.	If	you	have	unmanaged	resources,	you	can
release	them	any	time.

Let’s	clarify	what	is	happening	with	the	finalizer.	The	.NET	CLR	Garbage
Collector	(GC)	executes	an	object’s	finalizer	when	it	cleans	that	object	from
memory.	The	GC	can	make	multiple	passes	over	objects	and	calling	finalizers	is
one	of	the	last	things	it	does.	Managed	objects	are	instantiated	and	managed	by
the	.NET	CLR	and	you	don’t	have	control	over	when	they’re	released,	which
could	potentially	be	out-of-order.	That’s	why	you	have	to	check	the	disposing
value,	to	prevent	an	ObjectDisposedException	in	case	the	dependent
object	was	disposed	by	the	GC	first.

What	the	finalizer	gives	you	is	a	way	to	clean	up	unmanaged	resources.	An
unmanaged	resource	doesn’t	belong	to	the	.NET	CLR,	it	belongs	to	the	Windows
OS.	There	are	situations	where	developers	might	need	to	call	into	a	Win32/64
DLL	to	get	a	handle	to	an	OS	or	3rd	party	device.	The	reason	you	need	the
finalizer	is	because	if	your	object	doesn’t	get	disposed	properly,	there’s	no	other

way	to	release	that	handle,	which	could	crash	your	system	for	the	same	reason
we	need	to	release	managed	objects.	So,	the	finalizer	is	a	just-in-case	mechanism
to	ensure	the	code	that	needs	to	release	the	unmanaged	resource	will	execute.

A	lot	of	applications	don’t	have	objects	that	use	unmanaged	resources.	In	that
case,	don’t	even	add	the	finalizer.	Having	the	finalizer	adds	overhead	to	the
object	because	the	GC	has	to	do	accounting	to	recognize	objects	that	do	have
finalizers	and	call	them	in	a	multi-pass	collection.	Omitting	the	finalizer	avoids
this.

On	a	related	note,	remember	to	call	GC.SuppressFinalize	in	the
Dispose()	method.	This	is	another	optimization	telling	the	GC	to	not	call	the
finalizer	for	this	object,	because	all	resources,	managed	and	unmanaged,	are
released	when	the	application	calls	IDisposable.Dispose().

1.3	1.2	Removing	Explicit	Dependencies

Problem
Your	application	is	tightly	coupled	and	difficult	to	maintain.

Solution
Define	the	types	you	need:

public	class	DeploymentArtifacts

{

				public	void	Validate()

				{

								System.Console.WriteLine("Validating...");

				}

}

public	class	DeploymentRepository

{

				public	void	SaveStatus(string	status)

				{

								System.Console.WriteLine("Saving	status...");

				}

}

interface	IDeploymentService

{

				void	PerformValidation();

}

public	class	DeploymentService	:	IDeploymentService

{

				readonly	DeploymentArtifacts	artifacts;

				readonly	DeploymentRepository	repository;

				public	DeploymentService(

								DeploymentArtifacts	artifacts,

								DeploymentRepository	repository)

				{

								this.artifacts	=	artifacts;

								this.repository	=	repository;

				}

				public	void	PerformValidation()

				{

								artifacts.Validate();

								repository.SaveStatus("status");

				}

}

And	start	the	application	like	this:

using	Microsoft.Extensions.DependencyInjection;

using	System;

class	Program

{

				public	readonly	IDeploymentService	service;

				public	Program(IDeploymentService	service)

				{

								this.service	=	service;

				}

				static	void	Main()

				{

								var	services	=	new	ServiceCollection();

								services.AddTransient<DeploymentArtifacts>();

								services.AddTransient<DeploymentRepository>();

								services.AddTransient<IDeploymentService,	DeploymentService>

();

								ServiceProvider	serviceProvider	=	

services.BuildServiceProvider();

								IDeploymentService	deploymentService	=

												serviceProvider.GetRequiredService<IDeploymentService>();

								var	program	=	new	Program(deploymentService);

								program.StartDeployment();

				}

				public	void	StartDeployment()

				{

								service.PerformValidation();

								Console.WriteLine("Validation	complete	-	continuing...");

				}

}

Discussion
The	term,	Tightly	Coupled,	often	means	that	one	piece	of	code,	is	overburdened
with	the	responsibility	of	instantiating	the	types	(dependencies)	it	uses.	This
requires	the	code	to	know	how	to	construct,	manage	lifetime,	and	contain	logic
for	dependencies.	This	distracts	from	the	purpose	of	the	code	in	solving	the
problem	it	exists	for.	It	duplicates	instantiation	of	dependencies	in	different
classes.	This	makes	the	code	brittle	because	changes	in	dependency	interfaces
affects	all	other	code	that	needs	to	instantiate	that	dependency.	Additionally,
code	that	instantiates	its	dependencies	makes	it	difficult,	if	not	impossible,	to
perform	proper	unit	testing.

The	solution	is	Dependency	Injection,	which	is	a	technique	to	define	dependency
type	instantiation	in	one	place	and	expose	a	service	that	other	types	can	use	to
obtain	instances	of	those	dependencies.	There	are	a	couple	ways	to	perform
dependency	injection:	Service	Locator	and	Inversion	of	Control	(IoC).	Which	to
use	and	when	is	an	active	debate	and	we	avoid	venturing	into	theoretical
territory.	To	keep	things	simple,	this	solution	uses	IoC,	which	is	a	common	and
straight-forward	approach.

The	specific	solution	requires	that	you	have	types	that	rely	on	other	dependency
types,	configure	type	constructors	to	accept	dependencies,	reference	a	library	to
help	manage	IoC	container,	and	use	the	container	to	declare	how	to	instantiate
types.	The	following	paragraphs	explain	how	this	works.

The	solution	is	a	utility	to	help	manage	a	deployment	process,	validating
whether	the	deployment	process	is	configured	properly.	It	has	a
DeploymentService	class	that	runs	the	process.	Notice	that	the
DeploymentService	constructor	accepts	DeploymentArtifacts	and
DeploymentRepository	classes.	DeploymentService	does	not
instantiate	these	classes	-	rather,	they	are	injected.

To	inject	these	classes,	you	can	use	an	IoC	container,	which	is	a	library	that
helps	to	automatically	instantiate	types	and	to	automatically	instantiate	and
provide	instances	of	dependency	types.	The	IoC	container	in	the	solution,	as
shown	in	the	using	declaration,	is
Microsoft.Extensions.DependencyInjection,	which	you	can
reference	as	the	NuGet	package	by	the	same	name.

While	we	want	to	inject	all	dependencies	for	every	type	in	the	application,	you
must	still	instantiate	the	IoC	container	directly,	which	is	why	the	Main	method
instantiates	ServiceCollection	as	services.	Then	use	the	services
instance	to	add	all	of	the	dependencies,	including	DeploymentService.

The	IoC	container	can	help	manage	the	lifetime	of	objects.	This	solution	uses
AddTransient,	which	means	that	the	container	should	create	a	new	instance
every	time	it’s	type	is	requested.	A	couple	other	examples	of	managing	object
lifetime	are	AddSingleton,	which	instantiates	an	object	only	one	time	and
passes	that	one	instance	to	all	objects,	and	AddScoped,	which	gives	more
control	over	the	lifetime	of	the	object.	In	ASP.NET,	AddScoped	is	set	to	the
current	request.	Over	time,	you’ll	want	to	think	more	about	what	the	lifetime	of
your	objects	should	be	and	investigate	these	options	in	more	depth.	For	now,	it’s
simple	to	get	started	with	AddTransient.

The	call	to	BuildServiceProvider	converts	services,	a
ServiceCollection,	into	a	ServiceProvider.	The	term,	IoC
Container	refers	to	this	ServiceProvider	instance — it	instantiates	and
locates	types	to	be	injected.

You	can	see	the	container	in	action,	calling	GetRequiredService	to	return
an	instance	that	implements	IDeploymentService.	Going	back	to	the
ServiceCollection,	notice	that	there’s	an	AddTransient	associating
the	DeploymentService	class	with	the	IDeploymentService	interface.

This	means	that	GetRequiredService	will	return	an	instance	of
DeploymentService.

Finally,	Main	instantiates	Program,	with	the	new	DeploymentService
instance.

Going	back	to	the	constructor	for	DeploymentService,	you	can	see	that	it
expects	to	be	instantiated	with	instances	for	DeploymentArtifacts	and
DeploymentRepository.	Because	we	used	the	IoC	container	to	instantiate
DeploymentService,	the	IoC	Container	also	knows	how	to	instantiate	it’s
dependencies,	which	were	also	added	to	the	ServiceCollection,	with	calls
to	AddTransient.	This	solution	only	used	three	types	and	you	can	build
object	dependency	graphs	much	deeper	than	this.

Also,	notice	how	the	DeploymentService	constructor	saves	the	injected
instances	in	readonly	fields,	making	them	available	for	use	by
DependencyService	members.

The	beauty	of	IoC	is	that	instantiation	only	happens	in	one	place	and	you	don’t
have	to	code	all	of	that	in	your	constructors	or	in	members	that	need	a	new
instance	of	a	dependency.	This	makes	your	code	more	loosely	coupled	and
maintainable.	It	also	opens	the	opportunity	for	higher	quality	by	making	the	type
more	unit	testable.

See	Also
3.1	Writing	a	Unit	Test

1.4	1.3	Delegating	Object	Creation	to	a	Class

Problem
You’re	using	IoC,	the	type	you’re	trying	to	instantiate	doesn’t	have	an	interface,
and	you	have	complex	construction	requirements.

Solution
We	want	to	instantiate	this	class:

using	System;

public	class	ThirdPartyDeploymentService

{

				public	void	Validate()

				{

								Console.WriteLine("Validated");

				}

}

We’ll	use	this	class	for	IoC:

public	interface	IValidatorFactory

{

				ThirdPartyDeploymentService	CreateDeploymentService();

}

And	here’s	the	IValidatorFactory	implementation:

public	class	ValidatorFactory	:	IValidatorFactory

{

				public	ThirdPartyDeploymentService	CreateDeploymentService()

				{

								return	new	ThirdPartyDeploymentService();

				}

}

Then	instantiate	the	factory	like	this:

public	class	Program

{

				ThirdPartyDeploymentService	service;

				public	Program(IValidatorFactory	factory)

				{

								service	=	factory.CreateDeploymentService();

				}

				static	void	Main()

				{

								var	factory	=	new	ValidatorFactory();

								var	program	=	new	Program(factory);

								program.PerformValidation();

				}

				void	PerformValidation()

				{

								service.Validate();

				}

}

Discussion
As	discussed	in	Section	1.2,	IoC	is	a	best-practice	because	it	decouples
dependencies,	making	code	easier	to	maintain,	more	adaptable,	and	easier	to	test.
The	problem	is	that	there	are	exceptions	and	situations	that	cause	difficulties
with	the	best	of	plans.	One	of	these	problems	is	when	trying	to	use	a	3rd	party
API	without	an	interface.

The	solution	shows	a	ThirdPartyDeploymentService	class.	Obviously,
you	can	see	the	code	and	what	it	does.	In	reality,	even	if	you	can	read	the	code
through	reflection	or	disassembler,	it	doesn’t	help	because	you	can’t	add	your
interface.	Even	if	a	ThirdPartyDeploymentService	was	open-source,
you	would	have	to	weigh	the	decision	to	fork	the	library	for	your	own
modifications	-	the	tradeoff	being	that	your	modifications	are	brittle	in	the	face
of	new	features	and	maintenance	to	the	original	open-source	library.	An	example
is	the	System.Net.HttpClient	class	in	the	.NET	Framework,	which
doesn’t	have	an	interface.	Ultimately,	you’ll	need	to	evaluate	the	situation	and
make	a	decision	that	works	for	you,	but	the	Factory	Class	described	here	can	be
an	effective	work-around.

To	see	how	a	Factory	Class	works,	observe	the	IValidatorFactory
interface.	This	is	the	interface	we’ll	use	for	IoC.

Next,	examine	how	the	ValidatorFactory	class	implements	the
IValidatorFactory	interface.	It’s	CreateDeploymentService
instantiates	and	returns	the	ThirdPartyDeploymentService.	This	is
what	a	factory	does	-	it	creates	objects	for	us.

To	simplify	this	example,	the	code	doesn’t	use	an	IoC	container.	Instead,	the
Main	method	instantiates	ValidatorFactory	and	passes	that	instance	to
the	Program	constructor,	which	is	the	important	part	of	this	example.

Examine	how	the	constructor	takes	the	IValidatorFactory	reference	and
calls	CreateDeploymentService.	Now	we’ve	been	able	to	inject	the
dependency	and	maintain	the	loose	coupling	we	sought.

Another	benefit	is	since	the	ThirdPartyDeploymentService	is
instantiated	in	the	factory	class,	you	can	make	any	future	changes	to	class
instantiation	without	affecting	consuming	code.

See	Also
1.2	Removing	Explicit	Dependencies

1.5	1.4	Delegating	Object	Creation	to	a	Method

Problem
You	want	a	plug-in	framework	and	need	to	structure	object	instantiation	some
place	other	than	application	logic.

Solution
Here’s	the	abstract	base	class	with	the	object	creation	contract:

public	abstract	class	DeploymentManagementBase

{

				private	IDeploymenPlugin	deploymentService;

				protected	abstract	IDeploymentPlugin	CreateDeploymentService();

				public	bool	Validate()

				{

								if	(deploymentService	==	null)

												deploymentService	=	CreateDeploymentService();

								return	deploymentService.Validate();

				}

}

These	are	a	couple	derived	classes	that	instantiate	associated	plug-in	classes:

public	class	DeploymentManager1	:	DeploymentManagementBase

{

				protected	override	IDeploymentPlugin	CreateDeploymentService()

				{

								return	new	DeploymentPlugin1();

				}

}

public	class	DeploymentManager2	:	DeploymentManagementBase

{

				protected	override	IDeploymentPlugin	CreateDeploymentService()

				{

								return	new	DeploymentPlugin2();

				}

}

The	plug-in	classes	implement	the	IDeploymentPlugin	interface:

public	interface	IDeploymentPlugin

{

				bool	Validate();

}

And	here	are	the	plug-in	classes	being	instantiated:

public	class	DeploymentPlugin1	:	IDeploymentPlugin

{

				public	bool	Validate()

				{

								Console.WriteLine("Validated	Plugin	1");

								return	true;

				}

}

public	class	DeploymentPlugin2	:	IDeploymentPlugin

{

				public	bool	Validate()

				{

								Console.WriteLine("Validated	Plugin	2");

								return	true;

				}

}

Finally,	here’s	how	it	all	fits	together:

class	Program

{

				DeploymentManagementBase[]	deploymentManagers;

				public	Program(DeploymentManagementBase[]	deploymentManagers)

				{

								this.deploymentManagers	=	deploymentManagers;

				}

				static	DeploymentManagementBase[]	GetPlugins()

				{

								return	new	DeploymentManagementBase[]

												{

																new	DeploymentManager1(),

																new	DeploymentManager2()

												};

				}

				static	void	Main()

				{

								DeploymentManagementBase[]	deploymentManagers	=	GetPlugins();

								var	program	=	new	Program(deploymentManagers);

								program.Run();

				}

				void	Run()

				{

								foreach	(var	manager	in	deploymentManagers)

												manager.Validate();

				}

}

Discussion
Plug-In	systems	are	all	around	us.	Excel	can	consume	and	emit	different
document	types,	Adobe	works	with	multiple	image	types,	and	Visual	Studio
Code	has	numerous	extensions.	These	are	all	plug-in	systems	and	whether	the
only	plug-ins	available	are	via	vendor	or	3rd	party,	they	all	leverage	the	same
concept	-	the	code	must	be	able	to	adapt	to	handling	a	new	abstract	object	type.

While	the	previous	examples	are	ubiquitous	in	our	daily	lives,	many	developers
won’t	be	building	those	types	of	systems.	That	said,	the	plug-in	model	is	a
powerful	opportunity	for	making	our	applications	extensible.	Application
integration	is	a	frequent	use	case	where	your	application	needs	to	consume
documents	from	customers,	other	departments,	or	other	businesses.	Sure,	Web
services	and	other	types	of	APIs	are	popular,	but	needing	to	consume	an	Excel
spreadsheet	is	normal.	As	soon	as	you	do	that,	someone	has	data	in	a	different
format,	like	CSV,	JSON,	Tab	Delimited,	and	more.	Another	side	of	the	story	is

the	frequent	need	to	export	data	in	a	format	that	multiple	users	need	to	consume.

In	this	spirit,	the	solution	demonstrates	a	situation	where	a	plug-in	system	allows
an	application	to	add	support	for	new	deployment	types.	This	is	a	typical
situation	where	you’ve	built	the	system	to	handle	the	deployment	artifacts	that
you	know	about,	but	the	system	is	so	useful	that	everyone	else	wants	to	add	their
own	deployment	logic,	which	you	never	knew	about	when	original	requirements
were	written.

In	the	solution,	each	of	the	DeploymentManagers	implement	the	abstract
base	class,	DeploymentManagementBase.
DeploymentManagementBase	orchestrates	the	logic	and	the	derived
DeploymentManager	classes	are	simply	factories	for	their	associated
plugins.	Notice	that	DeploymentManagementBase	uses	polymorphism	to
let	derived	classes	instantiate	their	respective	plug-in	classes.

TIP
If	this	is	getting	a	little	complex,	you	might	want	to	review	Section	1.2	Removing	Explicit	Dependencies
and	1.3	Delegating	Object	Creation	to	a	Class.	This	is	one	level	of	abstraction	above	that.

The	Solution	shows	two	classes	that	implement	the	IDeploymentPlugin
interface.	The	DeploymentManagementBase	class	consumes	the
IDeploymentPlugin	interface,	delegating	calls	to	it’s	methods	to	the	plug-in
classes	that	implement	that	interface.	Notice	how	Validate	calls	Validate
on	the	IDeploymentPlugin	instance.

The	Program	has	no	knowledge	of	the	plug-in	classes.	It	operates	on	instances
of	DeploymentManagementBase,	as	demonstrated	where	Main	calls
GetPlugins	and	receives	an	array	of	DeploymentManagementBase
instances.	Program	doesn’t	care	about	the	plug-ins.	For	demo	simplicity,
GetPlugins	is	a	method	in	Program,	but	could	be	another	class	with	a
mechanism	for	selecting	which	plugins	to	use.	Notice	in	the	Run	method,	how	it
iterates	through	DeploymentManagementBase	instances.

NOTE

Making	DeploymentManagementBase	implement	an	interface	might	make	IoC	more	consistent	if
you’re	using	interfaces	everywhere	else.	That	said,	an	abstract	base	class	can	often	work	for	most	IoC
containers,	mocking,	and	unit	testing	tools.

To	re-cap,	the	DeploymentManagementBase	encapsulates	all	functionality
and	delegates	work	to	plug-in	classes.	The	code	that	makes	the	plug-in	are	the
deployment	managers,	plug-in	interface,	and	plug-in	classes.	The	consuming
code	only	works	with	a	collection	of	DeploymentManagementBase	and	is
blissfully	unaware	of	the	specific	plug-in	implementations.

Here’s	where	the	power	comes	in.	Whenever	you,	or	any	3rd	party	you	allow,
wants	to	extend	the	system	for	a	new	type	of	deployment,	they	do	this:

1.	 Create	a	new	DeploymentPlugin	class	that	implements	your
IDeploymentPlugin	interface.

2.	 Create	a	new	DeploymentManagement	class	that	derives	from
DeploymentManagementBase.

3.	 Implement	the
DeploymentManagement.CreateDeploymentService	method
to	instantiate	and	return	the	new	DeploymentPlugin.

Finally,	the	GetPlugins	method,	or	some	other	logic	of	your	choosing,	would
add	that	new	code	to	it’s	collections	of	plug-ins	to	operate	on.

See	Also
1.2	Removing	Explicit	Dependencies

1.3	Delegating	Object	Creation	to	a	Class

1.6	1.5	Designing	Application	Layers

Problem
You’re	setting	up	a	new	application	and	are	unsure	of	how	to	structure	the
project.

Solution
Here’s	a	data	access	layer	class:

public	class	GreetingRepository

{

				public	string	GetNewGreeting()	=>	"Welcome!";

				public	string	GetVisitGreeting()	=>	"Welcome	back!";

}

Here’s	a	business	logic	layer	class:

public	class	Greeting

{

				GreetingRepository	greetRep	=	new	GreetingRepository();

				public	string	GetGreeting(bool	isNew)	=>

								isNew	?	greetRep.GetNewGreeting()	:	

greetRep.GetVisitGreeting();

}

These	two	classes	are	part	of	the	UI	layer:

public	class	SignIn

{

				Greeting	greeting	=	new	Greeting();

				public	void	Greet()

				{

								Console.Write("Is	this	your	first	visit?	(true/false):	");

								string	newResponse	=	Console.ReadLine();

								bool.TryParse(newResponse,	out	bool	isNew);

								string	greetResponse	=	greeting.GetGreeting(isNew);

								Console.WriteLine($"\n*\n*	{greetResponse}	\n*\n");

				}

}

public	class	Menu

{

				public	void	Show()

				{

								Console.WriteLine(

												"*------*\n"	+

												"*	Menu	*\n"	+

												"*------*\n"	+

												"\n"	+

												"1.	...\n"	+

												"2.	...\n"	+

												"3.	...\n"	+

												"\n"	+

												"Choose:	");

				}

}

This	is	the	application	entry	point	(part	of	the	UI	layer):

class	Program

{

				SignIn	signIn	=	new	SignIn();

				Menu	menu	=	new	Menu();

				static	void	Main()

				{

								new	Program().Start();

				}

				void	Start()

				{

								signIn.Greet();

								menu.Show();

				}

}

Discussion
There	are	endless	ways	to	set	up	and	plan	the	structure	of	new	projects,	with
some	approaches	better	than	others.	Rather	than	viewing	this	discussion	as	a
definitive	conclusion,	it’s	rather	meant	as	a	few	options	with	trade-offs	that	help
you	think	about	your	own	approach.

The	anti-pattern	here	is	Ball	of	Mud	(BoM)	architecture.	BoM	is	where	a
developer	opens	a	single	project	and	starts	adding	all	the	code	at	the	same	layer
in	the	application.	While	this	approach	might	help	knock	out	a	quick	prototype,
it	has	severe	complications	in	the	long	run.	Over	time	most	apps	need	new
features	and	maintenance	to	fix	bugs.	What	happens	is	that	the	code	begins	to
run	together	and	there’s	often	much	duplication	-	commonly	referred	to	as

spaghetti	code.	Seriously,	no-one	wants	to	maintain	code	like	this	and	you
should	avoid	it.

WARNING
When	under	time	pressure,	it’s	easy	to	think	that	creating	a	quick	prototype	might	be	an	acceptable	use
of	time.	However,	resist	this	urge.	The	cost	of	maintenance	on	a	BoM	prototype	project	is	high.	The	time
required	to	work	with	spaghetti	code	to	add	a	new	feature	or	fix	a	bug	quickly	wipes	out	any	perceived
up-front	gains	of	a	sloppy	prototype.	Because	of	duplication,	fixing	a	bug	in	one	place	leaves	the	same
bug	in	other	parts	of	the	application.	This	means	that	not	only	a	developer	has	to	do	the	bug	fix	multiple
times,	but	the	entire	lifecycle	of	QA,	deployment,	customer	discovery,	helpdesk	service,	and
management	wastes	time	on	what	would	be	multiple	unnecessary	cycles.	The	content	in	this	section
helps	you	avoid	this	anti-pattern.

The	primary	concept	to	grasp	here	is	separation	of	control.	You’ll	often	hear	this
simplified	as	a	layered	architecture	where	you	have	UI,	business	logic,	and	data
layers,	with	each	section	named	for	the	type	of	code	placed	in	that	layer.	This
section	uses	the	layered	approach	with	the	goal	of	showing	how	to	achieve
separation	of	concerns	and	associated	benefits.

NOTE
Sometimes	the	idea	of	a	layered	architecture	makes	people	think	they	must	route	application
communication	through	the	layers	or	that	certain	operations	are	restricted	to	their	layer.	This	isn’t	quite
true	or	practical.	For	example,	business	logic	can	be	found	in	different	layers,	such	as	rules	for	validating
user	input	in	the	UI	layer	as	well	as	logic	for	how	to	process	a	certain	request.	Another	example	of
exceptions	to	communication	patterns	is	when	a	user	needs	to	select	a	set	of	operations	on	a	form	-	there
isn’t	any	business	logic	involved	and	the	UI	layer	can	request	the	list	of	items	from	the	data	layer
directly.	What	we	want	is	separation	of	concerns	to	enhance	the	maintainability	of	the	code	and	any
dogmatic/idealistic	restrictions	that	don’t	make	sense	runs	counter	to	that	goal.

The	Solution	starts	with	a	data	access	layer,	GreetingRepository.	This
simulates	the	Repository	pattern,	which	is	an	abstraction	so	that	calling	code
doesn’t	need	to	think	about	how	to	retrieve	the	data.	Ideally,	creating	a	separate
data	project	promises	an	additional	benefit	of	reusing	that	data	access	layer	in
another	project	that	needs	access	to	the	same	data.	Sometimes	you	get	reuse	and
other	times	you	don’t,	though	you	always	get	the	benefits	of	reducing
duplication	and	knowing	where	the	data	access	logic	resides.

The	business	logic	layer	has	a	Greeting	class.	Notice	how	it	uses	the	isNew
parameter	to	determine	which	method	of	GreetingRepository	to	call.	Any
time	you	find	yourself	needing	to	write	logic	for	how	to	handle	a	user	request,
consider	putting	that	code	in	another	class	that	is	considered	part	of	the	business
logic	layer.	If	you	already	have	code	like	this,	refactor	it	out	into	a	separate
object	named	for	the	type	of	logic	it	needs	to	handle.

Finally,	there’s	the	UI	layer,	which	is	comprised	of	the	SignIn	and	Menu
classes.	These	classes	handle	the	interaction	with	the	user,	yet	they	delegate	any
logic	to	the	business	logic	layer.	Program	might	be	considered	part	of	the	UI
layer,	though	it’s	only	orchestrating	interaction/navigation	between	other	UI
layer	classes	and	doesn’t	perform	UI	operations	itself.

There	are	a	couple	dimensions	to	separation	of	concerns	in	this	code.
GreetingRepository	is	only	concerned	with	data	and	Greeting	data	in
particular.	For	example,	if	the	app	needed	data	to	show	in	a	Menu,	you	would
need	another	class	called	MenuRepository	that	did	Create,	Read,	Update,
and	Delete	(CRUD)	operations	on	Menu	data.	Greeting	only	handles	business
logic	for	Greeting	data.	If	a	Menu	had	its	own	business	logic,	you	might
consider	a	separate	business	logic	layer	class	for	that,	but	only	if	it	made	sense.
As	you	can	see	in	the	UI	layer,	SignIn	only	handles	interaction	with	the	user
for	signing	into	the	app	and	Menu	only	handles	interaction	with	the	user	for
displaying	and	choosing	what	they	want	to	do.	The	beauty	is	that	now	you	or
anyone	else	can	easily	go	into	the	application	and	find	the	code	concerning	the
subject	you	need	to	address.

Figures	1.1,	1.2,	and	1.3	show	how	you	might	structure	each	layer	into	a	Visual
Studio	solution.	Figure	1.1	is	for	a	very	simple	app,	like	a	utility	that	is	unlikely
to	have	many	features.	In	this	case	it’s	okay	to	keep	the	layers	in	the	same
project	because	there	isn’t	a	lot	of	code	and	anything	extra	doesn’t	have	tangible
benefit.

Figure	1.2	shows	how	you	might	structure	a	project	that’s	a	little	larger	and	will
grow	over	time,	which	I’ll	loosely	call	midsize	for	the	sake	of	discussion.	Notice
that	it	has	a	separate	data	access	layer.	The	purpose	of	that	is	potential	reuse.
Some	projects	offer	different	UIs	for	different	customers.	e.g.	There	might	be	a
chatbot	or	mobile	app	that	accesses	the	data	for	users	but	a	web	app	for
administrators.	Having	the	data	access	layer	as	a	separate	project	makes	this
possible.	Notice	how	SystemApp.Console	has	an	assembly	reference	to
SystemApp.Data.

For	larger	enterprise	apps,	you’ll	want	to	break	the	layers	apart,	as	shown	in
Figure	1.3.	The	problem	to	solve	here	is	that	you	want	a	cleaner	break	between
sections	of	code	to	encourage	loose	coupling.	Large	applications	often	become
complex	and	hard	to	manage	unless	you	control	the	architecture	in	a	way	that
encourages	best	practices.

For	the	enterprise	scenario,	this	example	is	small.	However,	imagine	the
complexity	of	a	growing	application.	As	you	add	new	business	logic,	you’ll
begin	finding	code	that	gets	reused.	Also,	you’ll	naturally	have	some	code	that
can	stand	on	its	own,	like	a	service	layer	for	accessing	an	external	API.	The
opportunity	here	is	to	have	a	reusable	library	that	might	be	useful	in	other
applications.	Therefore,	you’ll	want	to	refactor	anything	reusable	into	its	own
project.	On	a	growing	project,	you	can	rarely	anticipate	every	aspect	or	feature

that	an	app	will	support	and	watching	for	these	changes	and	refactoring	will	help
to	keep	your	code,	project,	and	architecture	healthier.

1.7	1.6	Returning	Multiple	Values	from	a	Method

Problem
You	need	to	return	multiple	values	from	a	method	and	using	classic	approaches,
such	as	out	parameters	or	returning	a	custom	type,	doesn’t	feel	intuitive.

Solution
ValidationStatus	has	a	deconstructor:

public	class	ValidationStatus

{

				public	bool	Deployment	{	get;	set;	}

				public	bool	SmokeTest	{	get;	set;	}

				public	bool	Artifacts	{	get;	set;	}

				public	void	Deconstruct(

								out	bool	isPreviousDeploymentComplete,

								out	bool	isSmokeTestComplete,

								out	bool	areArtifactsReady)

				{

								isPreviousDeploymentComplete	=	Deployment;

								isSmokeTestComplete	=	SmokeTest;

								areArtifactsReady	=	Artifacts;

				}

}

The	DeploymentService	shows	how	to	return	a	tuple:

public	class	DeploymentService

{

				public

				(bool	deployment,	bool	smokeTest,	bool	artifacts)

				PrepareDeployment()

				{

								ValidationStatus	status	=	Validate();

								(bool	deployment,	bool	smokeTest,	bool	artifacts)	=	status;

								return	(deployment,	smokeTest,	artifacts);

				}

				ValidationStatus	Validate()

				{

								return	new	ValidationStatus

								{

												Deployment	=	true,

												SmokeTest	=	true,

												Artifacts	=	true

								};

				}

}

And	here’s	how	to	consume	the	returned	tuple:

class	Program

{

				DeploymentService	deployment	=	new	DeploymentService();

				static	void	Main(string[]	args)

				{

								new	Program().Start();

				}

				void	Start()

				{

								(bool	deployed,	bool	smokeTest,	bool	artifacts)	=

												deployment.PrepareDeployment();

								Console.WriteLine(

												$"\nDeployment	Status:\n\n"	+

												$"Is	Previous	Deployment	Complete?	{deployed}\n"	+

												$"Is	Previous	Smoke	Test	Complete?	{smokeTest}\n"	+

												$"Are	artifacts	for	this	deployment	ready?	

{artifacts}\n\n"	+

												$"Can	deploy:	{deployed	&&	smokeTest	&&	artifacts}");

				}

}

Discussion
Historically,	the	typical	way	to	return	multiple	values	from	a	method	was	to
create	a	custom	type	or	add	multiple	out	parameters.	It	always	felt	wasteful	to
create	a	custom	type	that	would	only	be	used	one	time	for	the	purpose	of
returning	values.	The	other	option,	to	use	multiple	out	parameters	felt	clunky
too.

Using	a	tuple	is	more	elegant.	A	tuple	is	a	value	type	that	lets	you	group	data
into	a	single	object	without	declaring	a	separate	type.

The	solution	shows	a	couple	different	aspects	of	Tuples,	deconstruction	and	how
to	return	a	tuple	from	a	method.	The	ValidationStatus	class	has	a
Deconstruct	method	and	C#	uses	that	to	produce	a	tuple.	This	class	wasn’t
strictly	necessary	for	this	example,	but	it	does	demonstrate	an	interesting	way	of
converting	a	class	to	a	tuple.

The	DeploymentService	class	shows	how	to	return	a	tuple.	Notice	that	the
return	type	of	the	PrepareDeployment	method	is	a	tuple.	The	property
names	in	the	tuple	return	type	are	optional,	though	meaningful	variable	names
could	make	the	code	easier	to	read	for	some	developers.

The	code	calls	Validate,	which	returns	an	instance	of
ValidationStatus.	The	next	line,	assigning	status	to	the	tuple	uses	the
deconstructor	to	return	a	tuple	instance.	PrepareDeployment	uses	those
values	to	return	a	tuple	to	the	caller.

The	Start	method,	in	Program,	shows	how	to	call	PrepareDeployment
and	consume	the	tuple	it	returns.

1.8	1.7	Converting	From	Legacy	to	Strongly
Typed	Classes

Problem
You	have	a	legacy	type	that	operates	on	values	of	type	object	and	need	to
modernize	to	a	strongly	typed	implementation.

Solution
Here’s	a	Deployment	class	that	we’ll	be	using:

public	class	Deployment

{

				string	config;

				public	Deployment(string	config)

				{

								this.config	=	config;

				}

				public	bool	PerformHealthCheck()

				{

								Console.WriteLine($"Performed	health	check	for	config	

{config}.");

								return	true;

				}

}

And	here’s	a	legacy	CircularQueue	collection:

public	class	CircularQueue

{

				int	current	=	0;

				int	last	=	0;

				object[]	items;

				public	CircularQueue(int	size)

				{

								items	=	new	object[size];

				}

				public	void	Add(object	obj)

				{

								if	(last	>=	items.Length)

												throw	new	IndexOutOfRangeException();

								items[last++]	=	obj;

				}

				public	object	Next()

				{

								current	%=	last;

								object	item	=	items[current];

								current++;

								return	item;

				}

}

This	code	shows	how	to	use	the	legacy	collection:

public	class	HealthChecksObjects

{

				public	void	PerformHealthChecks(int	cycles)

				{

								CircularQueue	checks	=	Configure();

								for	(int	i	=	0;	i	<	cycles;	i++)

								{

												Deployment	deployment	=	(Deployment)checks.Next();

												deployment.PerformHealthCheck();

								}

				}

				private	CircularQueue	Configure()

				{

								var	queue	=	new	CircularQueue(5);

								queue.Add(new	Deployment("a"));

								queue.Add(new	Deployment("b"));

								queue.Add(new	Deployment("c"));

								return	queue;

				}

}

Next,	here’s	the	legacy	collection	refactored	as	a	generic	collection:

public	class	CircularQueue<T>

{

				int	current	=	0;

				int	last	=	0;

				T[]	items;

				public	CircularQueue(int	size)

				{

								items	=	new	T[size];

				}

				public	void	Add(T	obj)

				{

								if	(last	>=	items.Length)

												throw	new	IndexOutOfRangeException();

								items[last++]	=	obj;

				}

				public	T	Next()

				{

								current	%=	last;

								T	item	=	items[current];

								current++;

								return	item;

				}

}

With	code	that	shows	how	to	use	the	new	generic	collection:

public	class	HealthChecksGeneric

{

				public	void	PerformHealthChecks(int	cycles)

				{

								CircularQueue<Deployment>	checks	=	Configure();

								for	(int	i	=	0;	i	<	cycles;	i++)

								{

												Deployment	deployment	=	checks.Next();

												deployment.PerformHealthCheck();

								}

				}

				private	CircularQueue<Deployment>	Configure()

				{

								var	queue	=	new	CircularQueue<Deployment>(5);

								queue.Add(new	Deployment("a"));

								queue.Add(new	Deployment("b"));

								queue.Add(new	Deployment("c"));

								return	queue;

				}

}

Here’s	demo	code	to	show	both	collections	in	action:

class	Program

{

				static	void	Main(string[]	args)

				{

								new	HealthChecksObjects().PerformHealthChecks(5);

								new	HealthChecksGeneric().PerformHealthChecks(5);

				}

}

Discussion

The	first	version	of	C#	didn’t	have	Generics.	Instead,	we	had	a
System.Collections	namespace	with	collections	like	Dictionary,
List,	and	Stack	that	operated	on	instances	of	type	object.	If	the	instances
in	the	collection	were	reference	types,	the	conversion	performance	to/from
object	was	negligible.	However,	if	you	wanted	to	manage	a	collection	of	value
types,	the	boxing/unboxing	performance	penalty	became	more	excruciating	the
larger	the	collection	got	or	the	more	operations	performed.

Microsoft	had	always	intended	to	add	Generics	and	they	finally	arrived	in	C#
v2.0.	However,	in	the	meantime,	there	was	a	ton	of	non-generic	code	written.
Imagine	all	of	the	new	object-based	collections	that	developers	needed	to	write
on	their	own	for	things	like	sets,	priority	queues,	and	tree	data	structures.	Add	to
that	types	like	Delegates,	which	were	the	primary	means	of	method	reference
and	async	communication	that	operated	on	objects.	There’s	a	long	list	of	non-
generic	code	that’s	been	written	and	chances	are	that	you’ll	encounter	some	of	it
as	you	progress	through	your	career.

As	C#	developers,	we	appreciate	the	benefits	of	strongly	typed	code,	making	it
easier	for	find	and	fix	compile-time	errors,	making	an	application	more
maintainable,	and	improving	quality.	For	this	reason,	you	might	have	a	strong
desire	to	refactor	a	given	piece	of	non-generic	code	so	that	it	too	is	strongly
typed	with	generics.

The	process	is	basically	this	-	whenever	you	see	type	object,	convert	it	to
generic.

The	Solution	shows	a	Deployment	object	that	performs	a	health	check	on	a
deployed	artifact.	Since	we	have	multiple	artifacts,	we	also	need	to	hold	multiple
Deployment	instances	in	a	collection.	The	collection	is	a	circular	queue	and
there’s	a	HealthCheck	class	that	loops	through	the	queue	and	periodically
performs	a	health	check	with	the	next	Deployment	instance.

HealthCheckObject	operates	on	old	non-generic	code	and
HealthCheckGeneric	operates	on	new	generic	code.	The	difference
between	the	two	are	that	the	HealthCheckObject	Configure	method
instantiates	a	non-generic	CircularQueue	and	the	HealthCheckGeneric
Configure	method	instantiates	a	generic	CircularQueue<T>.	Our
primary	task	is	to	convert	CircularQueue	to	CircularQueue<T>.

Since	we’re	working	with	a	collection,	the	first	task	is	to	add	the	type	parameter
to	the	class,	CircularQueue<T>.	Then	look	for	anywhere	the	code	uses	the
object	type	and	convert	that	to	the	class	type	parameter,	T:

1.	 Convert	the	object	items[]	field	to	T	items[].

2.	 In	the	constructor,	instantiate	a	new	T[]	instead	of	object[].

3.	 Change	the	Add	parameter	from	object	to	T.

4.	 Change	the	Next	return	type	from	object	to	T.

5.	 In	Next,	change	the	object	item	variable	to	T	item.

After	changing	object	types	to	T,	you	have	a	new	strongly	typed	generic
collection.

The	Program	class	demonstrates	how	both	of	these	collections	work.

1.9	1.8	Making	Classes	Adapt	to	your	Interface

Problem
You	have	a	3rd	party	library	with	similar	functionality	as	your	code,	but	it
doesn’t	have	the	same	interface.

Solution
This	is	the	interface	we	want	to	work	with:

public	interface	IDeploymentService

{

				void	Validate();

}

Here	are	a	couple	classes	that	implement	that	interface:

public	class	DeploymentService1	:	IDeploymentService

{

				public	void	Validate()

				{

								Console.WriteLine("Deployment	Service	1	Validated");

				}

}

public	class	DeploymentService2	:	IDeploymentService

{

				public	void	Validate()

				{

								Console.WriteLine("Deployment	Service	2	Validated");

				}

}

Here’s	a	3rd	party	class	that	doesn’t	implement	IDeploymentService:

public	class	ThirdPartyDeploymentService

{

				public	void	PerformValidation()

				{

								Console.WriteLine("3rd	Party	Deployment	Service	1	Validated");

				}

}

This	is	the	adapter	that	implements	IDeploymentService:

public	class	ThirdPartyDeploymentAdapter	:	IDeploymentService

{

				ThirdPartyDeploymentService	service	=	new	

ThirdPartyDeploymentService();

				public	void	Validate()

				{

								service.PerformValidation();

				}

}

This	code	shows	how	to	include	the	3rd	party	service	by	using	the	adapter:

class	Program

{

				static	void	Main(string[]	args)

				{

								new	Program().Start();

				}

				void	Start()

				{

								List<IDeploymentService>	services	=	Configure();

								foreach	(var	svc	in	services)

												svc.Validate();

				}

				List<IDeploymentService>	Configure()

				{

								return	new	List<IDeploymentService>

								{

												new	DeploymentService1(),

												new	DeploymentService2(),

												new	ThirdPartyDeploymentAdapter()

								};

				}

}

Discussion
An	adapter	is	a	class	that	wraps	another	class,	but	exposes	the	functionality	of
the	wrapped	class	with	the	interface	you	need.

There	are	various	situations	where	the	need	for	an	adapter	class	comes	into	play.
What	if	you	have	a	group	of	objects	that	implement	an	interface	and	want	to	use
a	3rd	party	class	that	doesn’t	match	the	interface	that	your	code	works	with?
What	if	your	code	is	written	for	a	3rd	party	API,	like	a	payment	service,	and	you
know	you	want	to	eventually	switch	to	a	different	provider	with	a	different	API?
What	if	you	need	to	use	native	code	via	P/Invoke	or	COM	interop	and	didn’t
want	the	details	of	that	interface	to	bleed	into	your	code?	These	are	all	good
candidates	for	considering	an	adapter.

The	solution	code	has	DeploymentService	classes	that	implement
IDeploymentService.	You	can	see	in	the	Program	Start	method	that	it
only	operates	on	instances	that	implement	IDeploymentService.

Sometime	later,	you	encounter	the	need	to	integrate
ThirdPartyDeploymentService	into	the	app.	However,	it	doesn’t
implement	IDeploymentService	and	you	don’t	have	the	code	for
ThirdPartyDeploymentService.

The	ThirdPartyDeploymentServiceAdapter	class	solves	the	problem.
It	implements	IDeploymentService,	instantiates	its	own	copy	of
ThirdPartyDeploymentService,	and	the	Validate	method	delegates
the	call	to	ThirdPartyDeploymentService.	Notice	that	the	Program

Configure	method	adds	an	instance	of
ThirdPartyDeploymentServiceAdapter	to	the	collection	that	Start
operates	on.

This	was	a	demo	to	show	you	how	to	design	an	adapter.	In	practice,	the
PerformValidation	method	of	ThirdPartyDeploymentService
likely	has	different	parameters	and	a	different	return	type.	The
ThirdPartyServiceAdapter	Validate	method	will	be	responsible	for
preparing	arguments	and	reshaping	return	values	to	ensure	they	conform	to	the
proper	IDeploymentService	interface.

1.10	1.9	Designing	a	Custom	Exception

Problem
The	.NET	Framework	library	doesn’t	have	an	Exception	type	that	fits	your
requirements.

Solution
This	is	a	custom	exception:

[Serializable]

public	class	DeploymentValidationException	:	Exception

{

				public	DeploymentValidationException()	:

								this("Validation	Failed!",	null,	

ValidationFailureReason.Unknown)

				{

				}

				public	DeploymentValidationException(

								string	message)	:

								this(message,	null,	ValidationFailureReason.Unknown)

				{

				}

				public	DeploymentValidationException(

								string	message,	Exception	innerException)	:

								this(message,	innerException,	ValidationFailureReason.Unknown)

				{

				}

				public	DeploymentValidationException(

								string	message,	Exception	innerException,	

ValidationFailureReason	reason)	:

								base(message,	innerException)

				{

								Reason	=	reason;

				}

				public	ValidationFailureReason	Reason	{	get;	set;	}

				public	override	string	ToString()

				{

								return

												base.ToString()	+

												$"	-	Reason:	{Reason}	";

				}

}

And	this	is	an	enum	type	for	a	property	on	that	exception:

public	enum	ValidationFailureReason

{

				Unknown,

				PreviousDeploymentFailed,

				SmokeTestFailed,

				MissingArtifacts

}

This	code	shows	how	to	throw	the	custom	exception:

public	class	DeploymentService

{

				public	void	Validate()

				{

								throw	new	DeploymentValidationException(

												"Smoke	test	failed	-	check	with	qa@example.com.",

												null,

												ValidationFailureReason.SmokeTestFailed);

				}

}

And	this	code	catches	the	custom	exception:

class	Program

{

				static	void	Main()

				{

								try

								{

												new	DeploymentService().Validate();

								}

								catch	(DeploymentValidationException	ex)

								{

												Console.WriteLine(

																$"Message:	{ex.Message}\n"	+

																$"Reason:	{ex.Reason}\n"	+

																$"Full	Description:	\n	{ex}");

								}

				}

}

Discussion
The	beautiful	thing	about	C#	exceptions	are	that	they’re	strongly	typed.	When
your	code	catches	them,	you	can	write	specific	handling	logic	for	just	that	type
of	exception.	The	.NET	Framework	has	a	few	exceptions,	like
ArgumentNullException,	that	get	some	reuse	(you	can	throw	yourself)	in
the	average	code	base,	but	often	you’ll	need	to	throw	an	exception	with	the
semantics	and	data	that	gives	a	developer	a	fairer	chance	of	figuring	out	why	a
method	couldn’t	complete	its	intended	purpose.

The	exception	in	the	solution	is	DeploymentValidationException,
which	indicates	a	problem	related	to	the	deployment	process	during	the
validation	phase.	It	derives	from	Exception.	Depending	on	how	extensive
your	custom	exception	framework	is,	you	could	create	your	own	base	exception
for	a	hierarchy	and	classify	a	derived	exception	tree	from	that.	The	benefit	is	that
you	would	have	flexibility	in	catch	blocks	to	catch	more	general	or	specific
exceptions	as	necessary.	That	said,	if	you	only	need	a	couple	custom	exceptions,
the	extra	design	work	of	an	exception	hierarchy	might	be	overkill.

NOTE
In	the	past,	there’s	been	discussion	of	whether	a	custom	exception	should	derive	from	Exception	or
ApplicationException,	where	Exception	was	for	.NET	type	hierarchies	and
ApplicationException	was	for	custom	exception	hierarchies.	However,	the	distinction	blurred
over	time	with	some	.NET	Framework	types	deriving	from	both	with	no	apparent	consistency	or	reason.

So,	deriving	from	Exception	seems	to	be	fine	these	days.

The	first	three	constructors	mirror	the	Exception	class	options	for	message
and	inner	exception.	You’ll	also	want	custom	constructors	for	instantiating	with
your	custom	data.

DeploymentValidationException	has	a	property,	of	the	enum	type
ValidationFailedReason.	Besides	having	semantics	unique	to	the	reason
for	throwing	an	exception,	another	purpose	of	a	custom	exception	is	to	include
important	information	for	exception	handling	and/or	debugging.

Overriding	ToString	is	also	a	good	idea.	Logging	frameworks	might	just
receive	the	Exception	reference,	resulting	in	a	call	to	ToString.	As	in	this
example,	you’ll	want	to	ensure	your	custom	data	gets	included	in	the	string
output.	This	ensures	people	can	read	the	full	state	of	the	exception,	along	with
the	stack	trace.

The	Program	Main	method	demonstrates	how	nice	it	is	to	be	able	to	handle
the	specific	type,	rather	than	another	type	that	might	not	fit	or	the	general
Exception	class.

1.11	1.10	Building	a	Fluid	Interface

Problem
You	need	to	build	a	new	type	with	complex	configuration	options	without	an
unnecessary	expansion	of	constructors.

Solution
Here’s	the	DeploymentService	class	we	want	to	build:

public	class	DeploymentService

{

				public	int	StartDelay	{	get;	set;	}	=	2000;

				public	int	ErrorRetries	{	get;	set;	}	=	5;

				public	string	ReportFormat	{	get;	set;	}	=	"pdf";

				public	void	Start()

				{

								Console.WriteLine(

												$"Deployment	started	with:\n"	+

												$"				Start	Delay:			{StartDelay}\n"	+

												$"				Error	Retries:	{ErrorRetries}\n"	+

												$"				Report	Format:	{ReportFormat}");

				}

}

This	is	the	class	that	builds	the	DeploymentService	instance:

public	class	DeploymentBuilder

{

				DeploymentService	service	=	new	DeploymentService();

				public	DeploymentBuilder	SetStartDelay(int	delay)

				{

								service.StartDelay	=	delay;

								return	this;

				}

				public	DeploymentBuilder	SetErrorRetries(int	retries)

				{

								service.ErrorRetries	=	retries;

								return	this;

				}

				public	DeploymentBuilder	SetReportFormat(string	format)

				{

								service.ReportFormat	=	format;

								return	this;

				}

				public	DeploymentService	Build()

				{

								return	service;

				}

}

Here’s	how	to	use	the	DeploymentBuilder	class:

class	Program

{

				static	void	Main()

				{

								DeploymentService	service	=

												new	DeploymentBuilder()

																.SetStartDelay(3000)

																.SetErrorRetries(3)

																.SetReportFormat("html")

																.Build();

								service.Start();

				}

}

Discussion
In	Section	1.9,	the	DeploymentValidationException	class	has	4
constructors.	This	isn’t	a	problem	because	convention	with	Exceptions
means	that	everyone	expects	the	first	three	constructors	and	the	pattern	of	adding
a	new	parameter	for	a	new	field	in	subsequent	constructors	is	normal.

However,	what	if	the	class	you	were	designing	had	a	lot	of	options	and	there	was
a	strong	possibility	that	new	features	would	require	new	options.	Further,
developers	will	want	to	pick	and	choose	what	options	to	configure	the	class	with.
Imagine	the	exponential	explosion	of	new	constructors	for	every	new	option
added	to	the	class.	In	such	a	scenario,	constructors	are	practically	useless.	The
Builder	pattern	can	solve	this	problem.

An	example	of	an	object	that	implements	the	Builder	Pattern	is	the	ASP.NET
ConfigSettings.	Another	is	the	ServiceCollection	from	Section	1.2
-	the	code	isn’t	entirely	written	in	a	fluid	manner,	but	it	could	be	because	it
follows	the	Builder	pattern.

The	Solution	has	a	DeploymentService	class,	which	is	what	we	want	to
build.	Its	properties	have	default	values	in	case	a	developer	doesn’t	configure	a
given	value.	In	general	terms,	the	class	that	the	Builder	creates	will	also	have
other	methods	and	members	for	its	intended	purpose.

The	DeploymentBuilder	class	implements	the	Builder	pattern.	Notice	that
all	of	the	methods,	except	for	Build,	return	the	same	instance	(this)	of	the
same	type,	DeploymentBuilder.	They	also	use	the	parameter	to	configure
the	DeploymentService	field	that	was	instantiated	with	the
DeploymentBuilder	instance.	The	Build	method	returns	the
DeploymentService	instance.

How	the	configuration	and	instantiation	occur	are	implementation	details	of	the
DeploymentBuilder	and	you	can	vary	them	as	needed.	You	can	also	accept
any	parameter	type	you	need	and	perform	the	configuration.	Additionally,	you
can	collect	configuration	data	and	only	instantiate	the	target	class	when	the
Build	method	runs.	You	have	all	the	flexibility	to	design	the	internals	of	the
builder	for	what	makes	sense	to	you.

Finally,	notice	how	the	Main	method	instantiates	DeploymentBuilder	and
uses	its	fluent	interface	for	configuration	and	finally	calls	Build	to	return	the
DeploymentService	instance.	This	example	used	every	method,	but	that
wasn’t	required	because	you	have	the	option	to	use	some,	none,	or	all.

See	Also
1.2	Removing	Explicit	Dependencies	1.9	Designing	a	Custom	Exception

Chapter	2.	Coding	Algorithms

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	author’s	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

2.1	Overview
We	code	every	day,	thinking	about	the	problem	we’re	solving	and	ensuring	that
our	algorithms	work	correctly.	This	is	how	it	should	be	and	modern	tools	and
SDKs	increasingly	free	our	time	to	do	just	that.	Even	so,	there	are	features	of	C#,
.NET,	and	coding	in	general	that	have	significant	effects	on	efficiency,
performance,	and	maintainability.

Performance
A	few	subjects	in	this	chapter	discuss	application	performance,	such	as	the
efficient	handling	of	strings,	caching	data,	or	delaying	the	instantiation	of	a	type
until	you	need	it.	In	some	simple	scenarios,	these	things	might	not	matter.
However,	in	complex	enterprise	apps	that	need	the	performance	and	scale,
keeping	an	eye	on	these	techniques	can	help	avoid	expensive	problems	in
production.

Maintainability
How	you	organize	code	can	significantly	affect	its	maintainability.	Building	on
the	discussions	in	Chapter	1,	you’ll	see	a	new	pattern,	Strategy,	and	how	it	can
help	simplify	an	algorithm	and	make	an	app	more	extensible.	Another	section
discusses	using	recursion	for	naturally	occurring	hierarchical	data.	Collecting
these	techniques	and	thinking	about	the	best	way	to	approach	an	algorithm	can
make	a	significant	difference	in	the	maintainability	and	quality	of	code.

Mindset
A	couple	sections	of	this	chapter	might	be	interesting	in	specific	contexts	-
different	ways	to	think	about	solving	problems.	You	might	not	use	regular
expressions	every	day,	but	they’re	very	useful	when	you	need	them.	Another
section,	on	converting	to/from	Unix	time,	looks	into	the	future	of	.NET	as	a
cross-platform	language;	knowing	that	we	need	a	certain	mindset	to	think	about
designing	algorithms	in	an	environment	we	might	not	have	ever	considered	in
the	past.

2.2	2.1	Processing	strings	Efficiently

Problem
A	profiler	indicates	a	problem	in	part	of	your	code	that	builds	a	large	string
iteratively	and	you	need	to	improve	performance.

Solution
Here’s	an	InvoiceItem	class	we’ll	be	working	with:

class	InvoiceItem

{

				public	decimal	Cost	{	get;	set;	}

				public	string	Description	{	get;	set;	}

}

This	method	produces	sample	data	for	the	demo:

static	List<InvoiceItem>	GetInvoiceItems()

{

				var	items	=	new	List<InvoiceItem>();

				var	rand	=	new	Random();

				for	(int	i	=	0;	i	<	100;	i++)

								items.Add(

												new	InvoiceItem

												{

																Cost	=	rand.Next(i),

																Description	=	"Invoice	Item	#"	+	(i+1)

												});

				return	items;

}

There	are	two	methods	for	working	with	strings.	First,	the	inefficient	method:

static	string	DoStringConcatenation(List<InvoiceItem>	lineItems)

{

				string	report	=	"";

				foreach	(var	item	in	lineItems)

								report	+=	$"{item.Cost:C}	-	{item.Description}";

				return	report;

}

Next	is	the	more	efficient	method:

static	string	DoStringBuilderConcatenation(List<InvoiceItem>	

lineItems)

{

				var	reportBuilder	=	new	StringBuilder();

				foreach	(var	item	in	lineItems)

								reportBuilder.Append($"{item.Cost:C}	-	{item.Description}");

				return	reportBuilder.ToString();

}

The	Main	method	ties	all	of	this	together:

static	void	Main(string[]	args)

{

				List<InvoiceItem>	lineItems	=	GetInvoiceItems();

				DoStringConcatenation(lineItems);

				DoStringBuilderConcatenation(lineItems);

}

Discussion
There	are	different	reasons	why	we	need	to	gather	data	into	a	longer	string.
Reports,	whether	text	based	or	formatted	via	HTML	or	other	markup,	require
combining	text	strings.	Sometimes	we	add	items	to	an	email	or	manually	build

PDF	content	as	an	email	attachment.	Other	times	we	might	need	to	export	data
in	a	non-standard	format	for	legacy	systems.	Too	often,	developers	use	string
concatenation	when	StringBuilder	is	the	superior	choice.

String	concatenation	is	intuitive	and	quick	to	code,	which	is	why	so	many	people
do	it.	However,	concatenating	strings	can	also	kill	application	performance.	The
problem	occurs	because	each	concatenation	performs	expensive	memory
allocations.	Let’s	examine	both	the	wrong	way	to	build	strings	and	the	right	way.

The	logic	in	the	DoStringConcatenation	method	extracts	Cost	and
Description	from	each	InvoiceItem	and	concatenates	that	to	a	growing
string.	Concatenating	just	a	few	strings	might	go	unnoticed.	However,	imagine	if
this	was	25,	50,	or	100	lines	or	more.	Using	string	concatenation	as	an	example,
Section	3.10	shows	how	string	concatenation	is	an	exponentially	time	intensive
operation	that	destroys	application	performance.

NOTE
When	concatenating	within	the	same	expression,	e.g.	string1	+	string2,	the	C#	compiler	can	optimize	the
code.	It’s	the	loop	with	concatenation	that	causes	the	huge	performance	hit.

The	DoStringBuilderConcatenation	method	fixes	this	problem.	It	uses
the	StringBuilder,	which	is	in	the	System.Text	namespace.	It	uses	the
Builder	pattern,	described	in	section	1.10,	where	each	AppendText	adds	the
new	string	to	the	StringBuilder	instance,	reportsBuilder.	Before
returning,	the	method	calls	ToString	to	convert	the	StringBuilder
contents	to	a	string.

TIP
As	a	rule	of	thumb,	once	you’ve	gone	past	4	string	concatenations,	you’ll	receive	better	performance	by
using	StringBuilder.

Fortunately,	the	.NET	ecosystem	has	many	.NET	Framework	libraries	and	3rd
party	libraries	that	help	with	forming	strings	of	common	format.	You	should	use

one	of	these	libraries	whenever	possible	because	they’re	often	optimized	for
performance	and	will	save	time	and	make	the	code	easier	to	read.	To	give	you	an
idea,	here	are	a	few	libraries	to	consider	for	common	formats:

Data	Format	|	Library

JSON	.NET	5	|	System.Text.Json	JSON	⇐	.NET	4.x	|	Json.NET	XML	|	LINQ	to
XML	CSV	|	LINQ	to	CSV	HTML	|	System.Web.UI.HtmlTextWriter	PDF	|
Various	Commercial	and	Open	Source	Providers	Excel	|	Various	Commercial
and	Open	Source	Providers

One	more	thought	-	Custom	search	and	filtering	panels	are	common	to	give
users	a	simple	way	to	query	corporate	data.	Too	frequently,	developers	use	string
concatenation	to	build	SQL	queries.	While	string	concatenation	is	easier,	beyond
performance,	the	problem	with	that	is	security.	String	concatenated	SQL
statements	open	the	opportunity	for	SQL	Injection	attack.	In	this	case,
StringBuilder	isn’t	a	solution.	Instead,	you	should	use	a	data	library	that
parameterizes	user	input	to	circumvent	SQL	injection.	There’s	ADO.NET,	LINQ
Providers,	and	other	3rd	party	data	libraries	that	do	input	value	parameterization
for	you.	For	dynamic	queries,	using	a	data	library	might	be	harder,	but	it	is
possible.	You	might	want	to	seriously	consider	using	LINQ,	which	I	discuss	in
Chapter	4.

See	Also
Section	1.10	Building	a	Fluid	Interface	Section	3.10	Measuring	Performance
Chapter	4	Querying	with	LINQ

2.3	2.2	Simplifying	Instance	Cleanup

Problem
Old	using	statements	cause	unnecessary	nesting	and	you	want	to	clean	up	and
simplify	code.

Solution
This	program	has	using	statements	for	reading	and	writing	to	a	text	file:

class	Program

{

				const	string	FileName	=	"Invoice.txt";

				static	void	Main(string[]	args)

				{

								Console.WriteLine(

												"Invoice	App\n"	+

												"-----------\n");

								WriteDetails();

								ReadDetails();

				}

				static	void	WriteDetails()

				{

								using	var	writer	=	new	StreamWriter(FileName);

								Console.WriteLine("Type	details	and	press	[Enter]	to	end.\n");

								string	detail	=	string.Empty;

								do

								{

												Console.Write("Detail:	");

												detail	=	Console.ReadLine();

												writer.WriteLine(detail);

								}

								while	(!string.IsNullOrWhiteSpace(detail));

				}

				static	void	ReadDetails()

				{

								Console.WriteLine("\nInvoice	Details:\n");

								using	var	reader	=	new	StreamReader(FileName);

								string	detail	=	string.Empty;

								do

								{

												detail	=	reader.ReadLine();

												Console.WriteLine(detail);

								}

								while	(!string.IsNullOrWhiteSpace(detail));

				}

}

Discussion
Before	C#	8,	using	statement	syntax	required	parenthesis	for	IDisposable
object	instantiation	and	an	enclosing	block.	During	runtime,	when	the	program
reached	the	closing	block,	it	would	call	Dispose	on	the	instantiated	object.	If
you	needed	multiple	using	statements	to	operate	at	the	same	time,	developers
would	often	nest	them,	resulting	in	extra	space	in	addition	to	normal	statement
nesting.	This	pattern	was	enough	of	an	annoyance	to	some	developers	that
Microsoft	added	a	feature	to	the	language	to	simplify	using	statements.

In	the	solution,	you	can	see	a	couple	places	where	the	new	using	statement
syntax	occurs:	instantiating	the	StreamWriter	in	WriteDetails	and
instantiating	the	StreamReader	in	ReadDetails.	In	both	cases,	the	using
statement	is	on	a	single	line.	Gone	are	the	parenthesis	and	curly	braces	and	each
statement	terminates	with	a	semi-colon.

The	scope	of	the	new	using	statement	is	its	enclosing	block,	calling	the	using
object’s	Dispose	method	when	execution	reaches	the	end	of	the	enclosing
block.	In	the	solution,	the	enclosing	block	is	the	method,	which	causes	each
using	object’s	Dispose	method	to	be	called	at	the	end	of	the	method.

What’s	different	about	the	single	line	using	statement	is	that	it	will	work	with
both	IDisposable	objects	and	objects	that	implement	a	disposable	pattern.	In
this	context,	a	disposable	pattern	means	that	the	object	doesn’t	implement
IDisposable,	yet	it	has	a	parameterless	Dispose	method.

See	Also
Section	1.1	Managing	Object	End-of-Lifetime

2.4	2.3	Keeping	Logic	Local

Problem
An	algorithm	has	complex	logic	that	is	better	refactored	to	another	method,	but
the	logic	is	really	only	used	in	one	place.

Solution
The	program	uses	the	CustomerType	and	InvoiceItem:

enum	CustomerType

{

				None,

				Bronze,

				Silver,

				Gold

}

class	InvoiceItem

{

				public	decimal	Cost	{	get;	set;	}

				public	string	Description	{	get;	set;	}

}

This	method	generates	and	returns	a	demo	set	of	invoices:

static	List<InvoiceItem>	GetInvoiceItems()

{

				var	items	=	new	List<InvoiceItem>();

				var	rand	=	new	Random();

				for	(int	i	=	0;	i	<	100;	i++)

								items.Add(

												new	InvoiceItem

												{

																Cost	=	rand.Next(i),

																Description	=	"Invoice	Item	#"	+	(i	+	1)

												});

				return	items;

}

Finally,	the	Main	method	shows	how	to	use	a	local	function:

static	void	Main()

{

				List<InvoiceItem>	lineItems	=	GetInvoiceItems();

				decimal	total	=	0;

				foreach	(var	item	in	lineItems)

								total	+=	item.Cost;

				total	=	ApplyDiscount(total,	CustomerType.Gold);

				Console.WriteLine($"Total	Invoice	Balance:	{total:C}");

				decimal	ApplyDiscount(decimal	total,	CustomerType	customerType)

				{

								switch	(customerType)

								{

												case	CustomerType.Bronze:

																return	total	-	total	*	.10m;

												case	CustomerType.Silver:

																return	total	-	total	*	.05m;

												case	CustomerType.Gold:

																return	total	-	total	*	.02m;

												case	CustomerType.None:

												default:

																return	total;

								}

				}

}

Discussion
Local	methods	are	useful	whenever	code	is	only	relevant	to	a	single	method	and
you	want	to	separate	that	code.	Reasons	for	separating	code	are	to	give	meaning
to	a	set	of	complex	logic,	re-use	logic	and	simplify	calling	code	(perhaps	a	loop),
or	allow	an	async	method	to	throw	an	exception	before	awaiting	the	enclosing
method.

The	Main	method	in	the	solution	has	a	local	method,	named
ApplyDiscount.	This	example	demonstrates	how	a	local	method	can
simplify	code.	If	you	examine	the	code	in	ApplyDiscount,	it	might	not	be
immediately	clear	what	its	purpose	is.	However,	by	separating	that	logic	into	its
own	method,	anyone	can	read	the	method	name	and	know	what	the	purpose	of
the	logic	is.	This	is	a	great	way	to	make	code	more	maintainable,	by	expressing
intent,	and	making	that	logic	local	where	another	developer	won’t	need	to	hunt
for	a	class	method	that	might	move	around	after	future	maintenance.

2.5	2.4	Operating	on	Multiple	Classes	the	Same
Way

Problem
An	application	must	be	extensible,	for	adding	new	plug-in	capabilities,	but	you
don’t	want	to	re-write	existing	code	for	new	classes.

Solution
This	is	a	common	interface	for	several	classes	to	implement:

public	interface	IInvoice

{

				bool	IsApproved();

				void	PopulateLineItems();

				void	CalculateBalance();

				void	SetDueDate();

}

Here	are	a	few	classes	that	implement	IInvoice:

public	class	BankInvoice	:	IInvoice

{

				public	void	CalculateBalance()

				{

								Console.WriteLine("Calculating	balance	for	BankInvoice.");

				}

				public	bool	IsApproved()

				{

								Console.WriteLine("Checking	approval	for	BankInvoice.");

								return	true;

				}

				public	void	PopulateLineItems()

				{

								Console.WriteLine("Populating	items	for	BankInvoice.");

				}

				public	void	SetDueDate()

				{

								Console.WriteLine("Setting	due	date	for	BankInvoice.");

				}

}

public	class	EnterpriseInvoice	:	IInvoice

{

				public	void	CalculateBalance()

				{

								Console.WriteLine("Calculating	balance	for	

EnterpriseInvoice.");

				}

				public	bool	IsApproved()

				{

								Console.WriteLine("Checking	approval	for	EnterpriseInvoice.");

								return	true;

				}

				public	void	PopulateLineItems()

				{

								Console.WriteLine("Populating	items	for	EnterpriseInvoice.");

				}

				public	void	SetDueDate()

				{

								Console.WriteLine("Setting	due	date	for	EnterpriseInvoice.");

				}

}

public	class	GovernmentInvoice	:	IInvoice

{

				public	void	CalculateBalance()

				{

								Console.WriteLine("Calculating	balance	for	

GovernmentInvoice.");

				}

				public	bool	IsApproved()

				{

								Console.WriteLine("Checking	approval	for	GovernmentInvoice.");

								return	true;

				}

				public	void	PopulateLineItems()

				{

								Console.WriteLine("Populating	items	for	GovernmentInvoice.");

				}

				public	void	SetDueDate()

				{

								Console.WriteLine("Setting	due	date	for	GovernmentInvoice.");

				}

}

This	method	populates	a	collection	with	classes	that	implement	IInvoice:

static	List<IInvoice>	GetInvoices()

{

				return	new	List<IInvoice>

				{

								new	BankInvoice(),

								new	EnterpriseInvoice(),

								new	GovernmentInvoice()

				};

}

The	Main	method	has	an	algorithm	that	operates	on	the	IInvoice	interface:

static	void	Main(string[]	args)

{

				List<IInvoice>	invoices	=	GetInvoices();

				foreach	(var	invoice	in	invoices)

				{

								if	(invoice.IsApproved())

								{

												invoice.CalculateBalance();

												invoice.PopulateLineItems();

												invoice.SetDueDate();

								}

				}

}

Discussion
As	a	developer’s	career	progresses,	chances	are	they’ll	encounter	requirements
that	customers	want	an	application	to	be	“extensible”.	Although	the	exact
meaning	is	anomalous	to	even	the	most	seasoned	architects,	there’s	a	general
understanding	that	“extensibility”	should	be	a	theme	in	the	application’s	design.
We	generally	move	in	this	direction	by	identifying	areas	of	the	application	that
can	and	will	change	over	time.	Patterns	can	help	with	this,	such	as	the	factory
classes	of	Section	1.3,	factory	methods	of	Section	1.4,	and	builders	in	Section
1.10.	In	a	similar	light,	the	Strategy	pattern	described	in	this	section	helps
organize	code	for	extensibility.

The	Strategy	pattern	is	useful	when	there	are	multiple	object	types	to	work	with
at	the	same	time	and	you	want	them	to	be	interchangeable	and	write	code	one

time	that	operates	the	same	way	for	each	object.	The	software	we	use	every	day
are	classic	examples	of	where	a	Strategy	could	work.	Office	applications	have
different	document	types	and	allow	developers	to	write	their	own	add-ins.
Browsers	have	add-ins	that	developers	can	write.	The	editors	and	Integrated
Development	Environments	(IDEs)	you	use	every	day	have	plug-in	capabilities.

The	solution	describes	an	application	that	operates	on	different	types	of	invoices
in	the	domains	of	Banking,	Enterprise,	and	Government.	Each	of	these	domains
have	their	own	business	rules	related	to	legal	or	other	requirements.	What	makes
this	extensible	is	the	fact	that,	in	the	future,	we	can	add	another	object	to	handle
invoices	in	another	domain.

The	glue	to	making	this	work	is	the	IInvoice	interface.	It	contains	the
required	methods	(or	contract)	that	each	implementing	object	must	define.	You
can	see	that	the	BankInvoice,	EnterpriseInvoice,	and
GovernmentInvoices	each	implement	IInvoice.

GetInvoices	simulates	the	situation	where	you	would	write	code	to	populate
invoices	from	a	data	source.	Whenever	you	need	to	extend	the	framework,	by
adding	a	new	IInvoice	derived	type,	this	is	the	only	code	that	changes.
Because	all	classes	are	IInvoice,	they	can	all	be	returned	via	the	same
List<IInvoice>	collection.

Finally,	examine	the	Main	method.	It	iterates	on	each	IInvoice	object,
calling	each	method.	Main	doesn’t	care	what	the	specific	implementation	is	and
so	its	code	never	needs	to	change	to	accommodate	instance	specific	logic.	You
don’t	need	if	or	switch	statements	for	special	cases,	which	blows	up	into
spaghetti	code	in	maintenance.	Any	future	changes	will	be	on	how	Main	works
with	the	IInvoice	interface.	Any	changes	to	business	logic	associated	with
invoices	is	limited	to	the	invoice	types	themselves.	This	is	easy	to	maintain	and
easy	to	figure	out	where	logic	is	and	should	be.	Further,	it’s	also	easy	to	extend
by	adding	a	new	Plug-In	class	that	implements	IInvoice.

See	Also
1.3	Delegating	Object	Creation	to	a	Class	1.4	Delegating	Object	Creation	to	a
Method	1.10	Building	a	Fluid	Interface

2.6	2.5	Checking	for	Type	Equality

Problem
You	need	to	search	for	objects	in	a	collection	and	default	equality	won’t	work.

Solution
The	Invoice	class	implements	IEquatable<T>:

public	class	Invoice	:	IEquatable<Invoice>

{

				public	int	CustomerID	{	get;	set;	}

				public	DateTime	Created	{	get;	set;	}

				public	List<string>	InvoiceItems	{	get;	set;	}

				public	decimal	Total	{	get;	set;	}

				public	bool	Equals(Invoice	other)

				{

								if	(ReferenceEquals(other,	null))

												return	false;

								if	(ReferenceEquals(this,	other))

												return	true;

								if	(GetType()	!=	other.GetType())

												return	false;

								return

												CustomerID	==	other.CustomerID	&&

												Created.Date	==	other.Created.Date;

				}

				public	override	bool	Equals(object	other)

				{

								return	Equals(other	as	Invoice);

				}

				public	override	int	GetHashCode()

				{

								return	(CustomerID	+	Created.Ticks).GetHashCode();

				}

				public	static	bool	operator	==(Invoice	left,	Invoice	right)

				{

								if	(ReferenceEquals(left,	null))

												return	ReferenceEquals(right,	null);

								return	left.Equals(right);

				}

				public	static	bool	operator	!=(Invoice	left,	Invoice	right)

				{

								return	!(left	==	right);

				}

}

This	code	returns	a	collection	of	Invoice	classes:

private	static	List<Invoice>	GetAllInvoices()

{

				return	new	List<Invoice>

				{

								new	Invoice	{	CustomerID	=	1,	Created	=	DateTime.Now	},

								new	Invoice	{	CustomerID	=	2,	Created	=	DateTime.Now	},

								new	Invoice	{	CustomerID	=	1,	Created	=	DateTime.Now	},

								new	Invoice	{	CustomerID	=	3,	Created	=	DateTime.Now	}

				};

}

Here’s	how	to	use	the	Invoice	class:

static	void	Main(string[]	args)

{

				List<Invoice>	allInvoices	=	GetAllInvoices();

				Console.WriteLine($"#	of	All	Invoices:	{allInvoices.Count}");

				var	invoicesToProcess	=	new	List<Invoice>();

				foreach	(var	invoice	in	allInvoices)

				{

								if	(!invoicesToProcess.Contains(invoice))

												invoicesToProcess.Add(invoice);

				}

				Console.WriteLine($"#	of	Invoices	to	Process:	

{invoicesToProcess.Count}");

}

Discussion
The	default	equality	semantics	for	reference	types	is	reference	equality	and	for
value	types	is	value	equality.	Reference	equality	means	that	when	comparing
objects,	do	their	references	refer	to	the	same	exact	object	instance.	Value
equality	occurs	when	each	member	of	an	object	is	compared	before	two	objects
are	considered	equal.	The	problem	with	reference	equality	is	that	sometimes	you
have	two	copies	of	an	object,	referring	to	different	object	instances,	but	you
really	want	to	check	their	values	to	see	if	they	are	equal.	Value	equality	might
also	pose	a	problem	because	you	might	only	want	to	check	part	of	the	object	to
see	if	they’re	equal.

To	solve	the	problem	of	inadequate	default	equality,	the	solution	implements
custom	equality	on	Invoice.	The	Invoice	class	implements	the
IEquatable<T>	interface,	where	T	is	Invoice.	Although
IEquatable<T>	requires	an	Equals(T	other)	method,	you	should	also
implement	Equals(object	other),	GetHashCode(),	and	the	==	and
!=	operators,	resulting	in	a	consistent	definition	of	equals	for	all	scenarios.

There’s	a	lot	of	science	in	picking	a	good	hash	code,	which	is	out	of	scope	for
this	book,	so	the	solution	implementation	is	minimal.

The	equality	implementation	avoids	repeating	code.	The	!=	operator	invokes
(and	negates)	the	==	operator.	The	==	operator	checks	references	and	returns
true	if	both	references	are	null	and	false	if	only	one	reference	is	null.
Both	the	==	operator	and	the	Equals(object	other)	method	call	the
Equals(Invoice	other)	method.

The	current	instance	is	clearly	not	null,	so	Equals(Invoice	other)	only
checks	the	other	reference	and	returns	false	if	it’s	null.	Then	it	checks	to
see	if	this	and	other	have	reference	equality,	which	would	obviously	mean
they	are	equal.	Then	if	the	objects	aren’t	the	same	type,	they	are	not	considered
equal.	Finally,	return	the	results	of	the	values	to	compare.	In	this	example,	the
only	thing	that	makes	sense	is	the	CustomerID	and	Date.

NOTE
One	of	the	places	you	might	change	in	the	Equals(Invoice	other)	method	is	the	type	check.	You
could	have	a	different	opinion,	based	on	the	requirements	of	your	application.	e.g.	What	if	you	wanted	to

check	equality	even	if	other	was	a	derived	type?	Then	change	the	logic	to	accept	derived	types	also.

The	Main	method	processes	invoices,	ensuring	we	don’t	add	duplicate	invoices
to	a	list.	In	the	loop,	it	calls	the	collection	Contains	method,	which	checks	the
object’s	equality.	If	it	doesn’t	find	a	matching	object,	it	adds	it	to	the
invoicesToProcess	list.	When	running	the	program,	there	are	4	invoices
that	exist	in	allInvoices,	but	only	3	are	added	to	invoicesToProcess
because	there’s	one	duplicate	(based	on	CustomerID	and	Date)	in
allInvoices.

NOTE
C#	9.0	Records	give	you	IEquatable<T>	logic	by	default.	However,	Records	give	you	value	equality
and	you	would	want	to	implement	IEquatable<T>	yourself	if	you	needed	to	be	more	specific.	e.g.	if
your	object	has	free-form	text	fields	that	don’t	contribute	to	the	identity	of	the	object,	why	waste
resources	doing	the	unnecessary	field	comparisons?	Another	problem	(maybe	more	rare)	could	be	that
some	parts	of	a	record	might	be	different	for	temporal	reasons,	e.g.	temporary	timestamps,	status,	or
Globally	Unique	Identifiers	(GUIDs),	that	will	cause	the	objects	to	never	be	equal	during	processing.

2.7	2.6	Processing	Data	Hierarchies

Problem
An	app	needs	to	work	with	hierarchical	data	and	an	iterative	approach	is	too
complex	and	unnatural.

Solution
This	is	the	format	of	data	we’re	starting	with:

class	BillingCategory

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	int?	Parent	{	get;	set;	}

}

This	method	returns	a	collection	of	hierarchically	related	records:

static	List<BillingCategory>	GetBillingCategories()

{

				return	new	List<BillingCategory>

				{

								new	BillingCategory	{	ID	=	1,	Name	=	"First	1",		Parent	=	null

},

								new	BillingCategory	{	ID	=	2,	Name	=	"First	2",		Parent	=	null

},

								new	BillingCategory	{	ID	=	4,	Name	=	"Second	1",	Parent	=	1	},

								new	BillingCategory	{	ID	=	3,	Name	=	"First	3",		Parent	=	null

},

								new	BillingCategory	{	ID	=	5,	Name	=	"Second	2",	Parent	=	2	},

								new	BillingCategory	{	ID	=	6,	Name	=	"Second	3",	Parent	=	3	},

								new	BillingCategory	{	ID	=	8,	Name	=	"Third	1",		Parent	=	5	},

								new	BillingCategory	{	ID	=	8,	Name	=	"Third	2",		Parent	=	6	},

								new	BillingCategory	{	ID	=	7,	Name	=	"Second	4",	Parent	=	3	},

								new	BillingCategory	{	ID	=	9,	Name	=	"Second	5",	Parent	=	1	},

								new	BillingCategory	{	ID	=	8,	Name	=	"Third	3",		Parent	=	9	}

				};

}

This	is	a	recursive	algorithm	that	transforms	the	flat	data	into	a	hierarchical
form:

static	List<BillingCategory>	BuildHierarchy(

					List<BillingCategory>	categories,	int?	catID,	int	level)

{

				var	found	=	new	List<BillingCategory>();

				foreach	(var	cat	in	categories)

				{

								if	(cat.Parent	==	catID)

								{

												cat.Name	=	new	string('\t',	level)	+	cat.Name;

												found.Add(cat);

												List<BillingCategory>	subCategories	=

																BuildHierarchy(categories,	cat.ID,	level	+	1);

												found.AddRange(subCategories);

								}

				}

				return	found;

}

The	Main	method	runs	the	program	and	prints	out	the	hierarchical	data:

static	void	Main(string[]	args)

{

				List<BillingCategory>	categories	=	GetBillingCategories();

				List<BillingCategory>	hierarchy	=

								BuildHierarchy(categories,	catID:	null,	level:	0);

				PrintHierarchy(hierarchy);

}

static	void	PrintHierarchy(List<BillingCategory>	hierarchy)

{

				foreach	(var	cat	in	hierarchy)

								Console.WriteLine(cat.Name);

}

Discussion
It’s	hard	to	tell	how	many	times	you	have	or	will	encounter	iterative	algorithms
with	complex	logic	and	conditions	on	how	the	loop	operates.	Loops	like	for,
foreach,	and	while	are	familiar	and	often	used	when	more	elegant	solutions
are	available.	I’m	not	suggesting	there’s	anything	wrong	with	loops,	which	are
integral	parts	of	our	language	toolset.	However,	it’s	useful	to	expand	our	minds
to	other	techniques	that	might	lend	themselves	to	more	elegant	and	maintainable
code	for	given	situations.	Sometimes	a	declarative	approach,	like	a	simple
lambda	on	a	collection’s	ForEach	operator	is	simple	and	clear.	LINQ	is	a	nice
solution	for	working	with	object	collections	in	memory,	which	is	the	subject	of
Chapter	4.	Another	alternative	is	recursion	-	the	subject	of	this	section.

The	main	point	I’m	making	here	is	that	we	need	to	write	algorithms	using	the
techniques	that	are	most	natural	for	a	given	situation.	A	lot	of	algorithms	do	use
loops	naturally,	like	iterating	through	a	collection.	Other	tasks	beckon	for
recursion.	A	class	of	algorithms	that	work	on	hierarchies	might	be	excellent
candidates	for	recursion.

The	solution	demonstrates	one	of	the	areas	where	recursion	simplified
processing	and	makes	the	code	clear.	It	processes	a	list	of	categories	based	on
billing.	Notice	that	the	BillingCategory	class	has	both	an	ID	and	a
Parent.	These	manage	the	hierarchy,	where	the	Parent	identifies	the	parent

category.	Any	BillingCategory	with	a	null	Parent	is	a	top	level
category.	This	is	a	single	table	relational	DB	representation	of	hierarchical	data.

The	GetBillingCategories	represents	how	the	BillingCategories
arrive	from	a	DB.	It’s	a	flat	structure.	Notice	how	the	Parent	properties
reference	the	BillingCategory	IDs	that	are	their	parents.	Another	important
fact	about	the	data	is	that	there	isn’t	a	clean	ordering	between	parents	and
children.	In	a	real	application,	you’ll	start	off	with	a	given	set	of	categories	and
add	new	categories	later.	Again,	maintenance	in	code	and	data	over	time	changes
how	we	approach	algorithm	design	and	this	would	complicate	an	iterative
solution.

The	purpose	of	this	solution	is	to	take	the	flat	category	representation	and
transform	it	into	another	list	that	represents	the	hierarchical	relationship	between
categories.	This	was	a	simple	solution,	but	you	might	imagine	an	object	based
representation	where	parent	categories	contained	a	collection	with	child
categories.	The	BuildHierarchy	method	is	the	recursive	algorithm	that	does
this.

The	BuildHierarchy	method	accepts	3	parameters:	categories,	catID,
and	level.	The	categories	parameter	is	the	flat	collection	from	the	DB	and
every	recursive	call	receives	a	reference	to	this	same	collection.	A	potential
optimization	might	be	to	remove	categories	that	have	already	been	processed,
though	the	demo	avoids	anything	distracting	from	presented	concepts.	The
catID	parameter	is	the	ID	for	the	current	BillingCategory	and	the	code
is	searching	for	all	sub-categories	whose	Parent	matches	catID	-	as
demonstrated	by	the	if	statement	inside	the	foreach	loop.	The	level
parameter	helps	manage	the	visual	representation	of	each	category.	The	first
statement	inside	the	if	block	uses	level	to	determine	how	many	tabs	(\t)	to
prefix	to	the	category	name.	Every	time	we	make	a	recursive	call	to
BuildHierarchy,	we	increment	level	so	that	subcategories	are	indented
more	than	their	parents.

The	algorithm	calls	BuildHierarchy	with	the	same	categories	collection.
Also,	it	uses	the	ID	of	the	current	category,	not	the	catID	parameter.	This
means	that	it	recursively	calls	BuildHierarchy	until	it	reaches	the	bottom
most	categories.	It	will	know	it’s	at	the	bottom	of	the	hierarchy	because	the
foreach	loop	completes	with	no	new	categories	because	there	aren’t	any	sub-

categories	for	the	current	(bottom)	category.

After	reaching	the	bottom,	BuildHierarchy	returns	and	continues	the
foreach	loop,	collecting	all	of	the	categories	under	the	catID	-	that	is,	their
Parent	is	catID.	Then	it	appends	any	matching	sub-categories	to	the	found
collection	to	the	calling	BuildHierchy.	This	continues	until	the	algorithm
reaches	the	top	level	and	all	root	categories	are	processed.

NOTE
The	recursive	algorithm	in	this	solution	is	referred	to	as	Depth	First	Search.

Having	arrived	at	the	top	level,	BuildHierarchy	returns	the	entire	collection
to	its	original	caller,	which	is	Main.	Main	originally	called
BuildHierarchy	with	the	entire	flat	categories	collection.	It	set	catID
to	null,	indicating	that	BuildHierarchy	should	start	at	the	root	level.	The
level	argument	is	0,	indicating	that	we	don’t	want	any	tab	prefixes	on	root
level	category	names.	Here’s	the	output:

First	1	Second	1	Second	5	Third	3	First	2	Second	2	Third	1	First	3	Second	3
Third	2	Second	4

Looking	back	at	the	GetBillingCategories	method,	you	can	see	how	the
visual	representation	matches	the	data.

2.8	2.7	Converting	From/To	Unix	Time

Problem
A	service	is	sending	date	information	in	seconds	or	ticks	since	the	Linux	epoc
that	needs	to	be	converted	to	a	C#/.NET	DateTime.

Solution
Here	are	some	values	we’ll	be	using:

static	readonly	DateTime	LinuxEpoch	=			new	DateTime(1970,	1,	1,	0,	0,

0,	0);

static	readonly	DateTime	WindowsEpoch	=	new	DateTime(0001,	1,	1,	0,	0,

0,	0);

static	readonly	double	EpochMillisecondDifference	=

				new	TimeSpan(LinuxEpoch.Ticks	-	

WindowsEpoch.Ticks).TotalMilliseconds;

These	methods	convert	from	and	to	Linux	epoch	timestamps:

public	static	string	ToLinuxTimestampFromDateTime(DateTime	date)

{

				double	dotnetMilliseconds	=	

TimeSpan.FromTicks(date.Ticks).TotalMilliseconds;

				double	linuxMilliseconds	=	dotnetMilliseconds	-	

EpochMillisecondDifference;

				double	timestamp	=	Math.Round(

								linuxMilliseconds,	0,	MidpointRounding.AwayFromZero);

				return	timestamp.ToString();

}

public	static	DateTime	ToDateTimeFromLinuxTimestamp(string	timestamp)

{

				ulong.TryParse(timestamp,	out	ulong	epochMilliseconds);

				return	LinuxEpoch	+	+TimeSpan.FromMilliseconds(epochMilliseconds);

}

The	Main	method	demonstrates	how	to	use	those	methods:

static	void	Main()

{

				Console.WriteLine(

								$"WindowsEpoch	==	DateTime.MinValue:	"	+

								$"{WindowsEpoch	==	DateTime.MinValue}");

				DateTime	testDate	=	new	DateTime(2021,	01,	01);

				Console.WriteLine($"testDate:	{testDate}");

				string	linuxTimestamp	=	ToLinuxTimestampFromDateTime(testDate);

				TimeSpan	dotnetTimeSpan	=	

TimeSpan.FromMilliseconds(long.Parse(linuxTimestamp));

				DateTime	problemDate	=	new	DateTime(dotnetTimeSpan.Ticks);

				Console.WriteLine($"Accidentally	based	on	.NET	Epoch:	

{problemDate}");

				DateTime	goodDate	=	ToDateTimeFromLinuxTimestamp(linuxTimestamp);

				Console.WriteLine($"Properly	based	on	Linux	Epoch:	{goodDate}");

}

Discussion
Sometimes	developers	represent	date/time	data	as	milliseconds	or	ticks	in	a
database.	Ticks	are	measured	as	100	nanoseconds.	Both	milliseconds	and	Ticks
represent	time	starting	at	a	pre-defined	epoch,	which	is	some	point	in	time	that	is
the	minimum	date	for	a	computing	platform.	For	.NET,	the	epoch	is	01/01/0001
00:00:00,	corresponding	to	the	WindowsEpoch	field	in	the	solution.	This	is	the
same	as	DateTime.MinValue,	but	defining	this	way	makes	the	example
more	explicit.	For	MacOS,	the	epoch	is	1	January	1904	and	for	Linux,	the	epoch
is	1	January	1970,	as	shown	by	the	LinuxEpoch	field	in	the	solution.

NOTE
There	are	various	opinions	on	whether	representing	DateTime	values	as	milliseconds	or	ticks	is	a
proper	design.	However,	I	leave	that	debate	to	other	people	and	venues.	My	habit	is	to	use	the
DateTime	format	of	the	database	I’m	using.	I	also	translate	the	DateTime	to	UTC	because	many
apps	need	to	exist	beyond	the	local	time	zone	and	you	need	a	consistent	translatable	representation.

Increasingly,	developers	are	more	likely	to	encounter	situations	where	they	need
to	build	cross-platform	solutions	or	integrate	with	a	3rd	party	system	with
milliseconds	or	ticks	based	on	a	different	epoch.	e.g.	The	Twitter	API	began
using	milliseconds	based	on	the	Linux	epoch	in	their	2020	version	2.0	release.
The	solution	example	is	inspired	by	code	that	works	with	milliseconds	from
Twitter	API	responses.	The	release	of	.NET	Core	gave	us	cross-platform
capabilities	for	C#	developers	for	Console	and	ASP.NET	MVC	Core
applications.	.NET	5	continues	the	cross-platform	story	and	the	roadmap	for
.NET	6	includes	the	first	rich	GUI	interface,	codenamed	Maui.	If	you’ve	been
accustomed	to	working	solely	in	the	Microsoft	and	.NET	platforms,	this	should
indicate	that	things	continue	to	change	along	the	type	of	thinking	required	for

future	development.

The	ToLinuxTimestampFromDateTime	takes	a	.NET	DateTime	and
converts	it	to	a	Linux	timestamp.	The	Linux	timestamp	is	the	number	of
milliseconds	from	the	Linux	epoch.	Since	we’re	working	in	milliseconds,	the
TimeSpan	converts	the	DateTime	ticks	to	milliseconds.	To	perform	the
conversion,	we	subtract	the	number	of	milliseconds	between	the	.NET	time	and
the	equivalent	Linux	time,	which	we	pre-calculated	in
EpochMillisecondDifference	by	subtracting	the	.NET	(Windows)
epoch	from	the	Linux	epoch.	After	the	conversion,	we	need	to	round	the	value	to
eliminate	excess	precision.	The	default	to	Math.Round	uses	what’s	called
Bankers	rounding,	which	is	often	not	what	we	need,	so	the	overload	with
MidpointRounding.AwayFromZero	does	the	rounding	we	expect.	The
solution	returns	the	final	value	as	a	string	and	you	can	change	that	for	what
makes	sense	for	your	implementation.

The	ToDateTimeFromLinuxTimestamp	method	is	remarkably	simpler.
After	converting	to	a	ulong,	it	creates	a	new	timestamp	from	the	milliseconds
and	adds	that	to	the	LinuxEpoch.	Here’s	the	output	from	the	Main	method:

WindowsEpoch	==	DateTime.MinValue:	True	testDate:	1/1/2021	12:00:00	AM
Accidentally	based	on	.NET	Epoch:	1/2/0052	12:00:00	AM	Properly	based	on
Linux	Epoch:	1/1/2021	12:00:00	AM

As	you	can	see,	DateTime.MinValue	is	the	same	as	the	Windows	epoch.
Using	1/1/2021	as	a	good	date	(at	least	we	hope	so),	Main	starts	by	properly
converting	that	date	to	a	Linux	timestamp.	Then	it	shows	the	wrong	way	to
process	that	date.	Finally,	it	calls	ToDateTimeFromLinuxTimestamp
performing	the	proper	translation.

2.9	2.8	Caching	Frequently	Requested	Data

Problem
Network	latency	is	causing	an	app	to	run	slowly	because	static	frequently	used
data	is	being	fetched	too	often.

Solution
Here’s	the	type	of	data	that	will	be	cached:

public	class	InvoiceCategory

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

}

This	is	the	interface	for	the	repository	that	retrieves	the	data:

public	interface	IInvoiceRepository

{

				List<InvoiceCategory>	GetInvoiceCategories();

}

This	is	the	repository	the	retrieves	and	caches	the	data:

public	class	InvoiceRepository	:	IInvoiceRepository

{

				static	List<InvoiceCategory>	invoiceCategories;

				public	List<InvoiceCategory>	GetInvoiceCategories()

				{

								if	(invoiceCategories	==	null)

												invoiceCategories	=	GetInvoiceCategoriesFromDB();

								return	invoiceCategories;

				}

				List<InvoiceCategory>	GetInvoiceCategoriesFromDB()

				{

								return	new	List<InvoiceCategory>

								{

												new	InvoiceCategory	{	ID	=	1,	Name	=	"Government"	},

												new	InvoiceCategory	{	ID	=	2,	Name	=	"Financial"	},

												new	InvoiceCategory	{	ID	=	3,	Name	=	"Enterprise"	},

								};

				}

}

Here’s	the	program	that	uses	that	repository:

class	Program

{

				readonly	IInvoiceRepository	invoiceRep;

				public	Program(IInvoiceRepository	invoiceRep)

				{

								this.invoiceRep	=	invoiceRep;

				}

				static	void	Main()

				{

								new	Program(new	InvoiceRepository()).Run();

				}

				void	Run()

				{

								List<InvoiceCategory>	categories	=	

invoiceRep.GetInvoiceCategories();

								foreach	(var	category	in	categories)

												Console.WriteLine($"ID:	{category.ID},	Name:	

{category.Name}");

				}

}

Discussion
Depending	on	the	technology	you’re	using,	there	could	be	plenty	of	options	for
caching	data	through	mechanisms	like	CDN,	HTTP,	and	data	source	solutions.
Each	has	a	place	and	purpose	and	this	section	doesn’t	try	to	cover	all	of	those
options.	Rather,	it	just	has	a	quick	and	simple	technique	for	caching	data	that
might	be	helpful.

You	might	have	experienced	a	scenario	where	there’s	a	set	of	data	used	in	a	lot
of	different	places.	The	nature	of	the	data	is	typically	lookup	lists	or	business
rule	data.	In	the	course	of	every	day	work,	we	build	queries	that	includes	this
data	either	in	direct	select	queries	or	in	the	form	of	database	table	joins.	We
forget	about	it	until	someone	starts	complaining	about	application	performance.
Analysis	might	reveal	that	there	are	a	lot	of	queries	that	request	that	same	data
over	and	over	again.	If	it’s	practical,	you	can	cache	that	data	in	memory	to	avoid
network	latency	exacerbated	by	excessive	queries	to	the	same	set	of	data.

This	isn’t	a	blanket	solution	because	you	have	to	think	about	whether	it’s
practical	in	your	situation.	e.g.	it’s	impractical	to	hold	too	much	data	in	memory,

which	will	cause	other	scalability	problems.	Ideally,	it’s	a	finite	and	relatively
small	set	of	data,	like	invoice	categories.	That	data	shouldn’t	change	too	often
because	if	you	need	real-time	access	to	dynamic	data,	this	won’t	work.	e.g.	If	the
underlying	data	source	changes,	the	cache	is	likely	to	be	holding	the	old	stale
data.

The	solution	shows	an	InvoiceCategory	class	that	we’re	going	to	cache.
It’s	for	a	lookup	list,	just	two	values	per	object,	a	finite	and	relatively	small	set	of
values,	and	something	that	doesn’t	change	much.	You	can	imagine	that	every
query	for	invoices	would	require	this	data	as	well	as	admin	or	search	screens
with	lookup	lists.	It	might	speed	up	invoice	queries	by	removing	the	extra	join
and	returning	less	data	over	the	wire	where	you	can	join	the	cached	data	after	the
DB	query.

The	solution	has	an	InventoryRepository	that	implements	the
IInvoiceRepository	interface.	This	wasn’t	strictly	necessary	for	this
example,	though	it	does	support	demonstrating	another	example	of	IoC,	as
discussed	in	Section	1.2.

The	InvoiceRepository	class	has	a	invoiceCategories	field	for
holding	a	collection	of	InvoiceCategory.	The
GetInvoiceCategories	method	would	normally	make	a	DB	query	and
return	the	results.	However,	this	example	only	does	the	DB	query	if
invoiceCategories	is	null	and	caches	the	result	in
invoiceCategories.	This	way,	subsequent	requests	get	the	cached	version
and	doesn’t	require	a	DB	query.

NOTE
The	invoiceCategories	field	is	static	because	you	only	want	a	single	cache.	In	stateless	web
scenarios,	as	in	ASP.NET,	the	IIS	process	recycles	unpredictably	and	developers	are	advised	not	to	rely
on	static	variables.	This	situation	is	different	because	if	the	recycle	clears	out	invoiceCategories,
leaving	it	null,	the	next	query	will	re-populate	it.

The	Main	method	uses	IoC	to	instantiate	InvoiceRepository	and
performs	a	query	for	the	InvoiceCategory	collection.

See	Also
1.2	Removing	Explicit	Dependencies

2.10	2.9	Delaying	Type	Instantiation

Problem
A	class	has	heavy	instantiation	requirements	and	you	can	save	on	resource	usage
by	delaying	the	instantiation	to	only	when	necessary.

Solution
Here’s	the	data	we’ll	work	with:

public	class	InvoiceCategory

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

}

This	is	the	repository	interface:

public	interface	IInvoiceRepository

{

				void	AddInvoiceCategory(string	category);

}

This	is	the	repository	that	we	delay	instantiation	of:

public	class	InvoiceRepository	:	IInvoiceRepository

{

				public	InvoiceRepository()

				{

								Console.WriteLine("InvoiceRepository	Instantiated.");

				}

				public	void	AddInvoiceCategory(string	category)

				{

								Console.WriteLine($"for	category:	{category}");

				}

}

This	program	shows	a	few	ways	to	perform	lazy	initialization	of	the	repository:

class	Program

{

				public	static	ServiceProvider	Container;

				readonly	Lazy<InvoiceRepository>	InvoiceRep	=

								new	Lazy<InvoiceRepository>();

				readonly	Lazy<IInvoiceRepository>	InvoiceRepFactory	=

								new	Lazy<IInvoiceRepository>(CreateInvoiceRepositoryInstance);

				readonly	Lazy<IInvoiceRepository>	InvoiceRepIoC	=

								new	Lazy<IInvoiceRepository>(CreateInvoiceRepositoryFromIoC);

				static	IInvoiceRepository	CreateInvoiceRepositoryInstance()

				{

								return	new	InvoiceRepository();

				}

				static	IInvoiceRepository	CreateInvoiceRepositoryFromIoC()

				{

								return	

Program.Container.GetRequiredService<IInvoiceRepository>();

				}

				static	void	Main()

				{

								Container	=

												new	ServiceCollection()

																.AddTransient<IInvoiceRepository,	InvoiceRepository>()

																.BuildServiceProvider();

								new	Program().Run();

				}

				void	Run()

				{

								IInvoiceRepository	viaLazyDefault	=	InvoiceRep.Value;

								viaLazyDefault.AddInvoiceCategory("Via	Lazy	Default	\n");

								IInvoiceRepository	viaLazyFactory	=	InvoiceRepFactory.Value;

								viaLazyFactory.AddInvoiceCategory("Via	Lazy	Factory	\n");

								IInvoiceRepository	viaLazyIoC	=	InvoiceRepIoC.Value;

								viaLazyIoC.AddInvoiceCategory("Via	Lazy	IoC	\n");

				}

}

Discussion
Sometimes	you	have	objects	with	heavy	startup	overhead.	They	might	need
some	initial	calculation	or	have	to	wait	on	data	that	takes	a	while	because	of
network	latency	or	dependencies	on	poorly	performing	external	systems.	This
can	have	serious	negative	consequences,	especially	on	application	startup.
Imagine	an	app	that	is	losing	potential	customers	during	trial	because	it	starts	too
slow	or	even	enterprise	users	whose	work	is	impacted	by	wait	times.	Although
you	may	or	may	not	be	able	to	fix	the	root	cause	of	the	performance	bottleneck,
another	option	might	be	to	delay	instantiation	of	that	object	until	you	need	it.	e.g.
What	if	you	really	don’t	need	that	object	immediately	and	can	show	a	start
screen	right	away?

The	solution	demonstrates	how	to	use	Lazy<T>	to	delay	object	instantiation.
The	object	in	question	is	the	InvoiceRepository	and	we’re	assuming	it	has
a	problem	in	its	constructor	logic	that	causes	a	delay	in	instantiation.

Program	has	3	fields	whose	type	is	Lazy<InvoiceRepository>,
showing	3	different	ways	to	instantiate.	The	first	field,	InvoiceRep
instantiates	a	Lazy<InvoiceRepository>	with	no	parameters.	It	assumes
that	InvoiceRepository	has	a	default	constructor	(parameterless)	and	will
create	a	new	instance	when	called.

The	InvoiceRepFactory	property	instance	references	the
CreateInvoiceRepositoryInstance	method.	When	code	accesses	this
property,	it	calls	the	CreateInvoiceRepositoryInstance	to	construct
the	object.	Since	it’s	a	method,	you	have	a	lot	of	flexibility	in	building	the	object.

In	addition	to	the	other	two	options,	the	InvoiceRepIoC	property	shows	how
you	can	use	Lazy	instantiation	with	IoC.	Notice	that	the	Main	method	builds	an
IoC	container,	as	described	in	Section	1.2.	The
CreateInvoiceRepositoryFromIoC	method	uses	that	IoC	container	to
request	an	instance	of	InvoiceRepository.

Finally,	the	Run	method	shows	how	to	access	the	fields,	through	the
Lazy<T>.Value	property.

See	Also
1.2	Removing	Explicit	Dependencies

2.11	2.10	Parsing	Data	Files

Problem
The	application	needs	to	extract	data	from	a	custom	external	format	and	string
type	operations	lead	to	complex	and	less	efficient	code.

Solution
Here’s	the	data	types	we’ll	be	working	with:

class	InvoiceItem

{

				public	decimal	Cost	{	get;	set;	}

				public	string	Description	{	get;	set;	}

}

class	Invoice

{

				public	string	Customer	{	get;	set;	}

				public	DateTime	Created	{	get;	set;	}

				public	List<InvoiceItem>	Items	{	get;	set;	}

				public	decimal	Total	{	get;	set;	}

}

This	method	returns	the	raw	string	data	that	we	want	to	extract	and	convert	to
invoices:

static	string	GetInvoiceTransferFile()

{

				return

								"Creator	1::8/05/20::Item	1\t35.05\tItem	2\t25.18\tItem	

3\t13.13::Customer	1::[NOTE]	1\n"	+

								"Creator	2::8/10/20::Item	1\t45.05::Customer	2::[NOTE]	2\n"	+

								"Creator	1::8/15/20::Item	1\t55.05\tItem	2\t65.18::Customer	

3::[NOTE]	3\n";

}

These	are	utility	methods	for	building	and	saving	invoices:

static	Invoice	GetInvoice(string	matchCustomer,	string	matchCreated,	

string	matchItems)

{

				List<InvoiceItem>	lineItems	=	GetLineItems(matchItems);

				DateTime.TryParse(matchCreated,	out	DateTime	created);

				var	invoice	=

								new	Invoice

								{

												Customer	=	matchCustomer,

												Created	=	created,

												Items	=	lineItems

								};

				return	invoice;

}

static	List<InvoiceItem>	GetLineItems(string	matchItems)

{

				var	lineItems	=	new	List<InvoiceItem>();

				string[]	itemStrings	=	matchItems.Split('\t');

				for	(int	i	=	0;	i	<	itemStrings.Length;	i	+=	2)

				{

								decimal.TryParse(itemStrings[i	+	1],	out	decimal	cost);

								lineItems.Add(

												new	InvoiceItem

												{

																Description	=	itemStrings[i],

																Cost	=	cost

												});

				}

				return	lineItems;

}

static	void	SaveInvoices(List<Invoice>	invoices)

{

				Console.WriteLine($"{invoices.Count}	invoices	saved.");

}

This	method	uses	regular	expressions	to	extract	values	from	raw	string	data:

static	List<Invoice>	ParseInvoices(string	invoiceFile)

{

				var	invoices	=	new	List<Invoice>();

				Regex	invoiceRegEx	=	new	Regex(

								@"^.+?::(?<created>.+?)::(?<items>.+?)::(?

<customer>.+?)::.+");

				foreach	(var	invoiceString	in	invoiceFile.Split('\n'))

				{

								Match	match	=	invoiceRegEx.Match(invoiceString);

								if	(match.Success)

								{

												string	matchCustomer	=	match.Groups["customer"].Value;

												string	matchCreated	=	match.Groups["created"].Value;

												string	matchItems	=	match.Groups["items"].Value;

												Invoice	invoice	=	GetInvoice(matchCustomer,	matchCreated,	

matchItems);

												invoices.Add(invoice);

								}

				}

				return	invoices;

}

The	Main	method	runs	the	demo:

static	void	Main(string[]	args)

{

				string	invoiceFile	=	GetInvoiceTransferFile();

				List<Invoice>	invoices	=	ParseInvoices(invoiceFile);

				SaveInvoices(invoices);

}

Discussion
Sometimes,	we’ll	encounter	textual	data	that	doesn’t	fit	standard	data	formats.	It
might	come	from	existing	document	files,	log	files,	or	external	and	legacy
systems.	Often,	we	need	to	ingest	that	data	and	process	it	for	storage	in	a	DB.
This	section	explains	how	to	do	that	with	regular	expressions.

The	solution	shows	the	data	format	we	want	to	generate	is	an	Invoice	with	a
collection	of	InvoiceItem.	The	GetInvoiceTransferFile	method
shows	the	format	of	the	data.	The	demo	suggests	that	the	data	might	come	from

a	legacy	system	that	already	produced	that	format	and	it’s	easier	to	write	C#
code	to	ingest	that	than	to	add	code	in	that	system	for	a	better	supported	format.
The	specific	data	we’re	interested	in	extracting	are	the	created	date,	invoice
items,	and	customer	name.	Notice	that	newlines	(\n)	separate	records,
double	colons	(::)	separate	invoice	fields,	and	tabs	(\t)	separate	invoice	item
fields.

The	GetInvoice	and	GetLineItems	methods	construct	the	objects	from
extracted	data	and	serve	to	separate	object	construction	from	the	regular
expression	extraction	logic.

The	ParseInvoices	method	uses	regular	expressions	to	extract	values	from
the	input	string.	The	RegEx	constructor	parameter	contains	the	regular
expression	string,	used	to	extract	values.	While	an	entire	discussion	of	regular
expressions	is	out	of	scope,	here’s	what	this	string	does:

^	says	to	start	at	the	beginning	of	the	string

.?::+	matches	all	characters,	up	to	the	next	invoice	field	separator	(::).	That
said,	it	ignores	the	contents	that	were	matched.

(?<created>.?)::+,	(?<items>.?)::+,	and	(?<customer>.?)::+	are
similar	to	.?)::+,	but	go	a	step	further	by	extracting	values	into	groups	based
on	the	given	name.	e.g.	(?<created>.?)::+	means	that	it	will	extract	all
matched	data	and	put	the	data	in	a	group	named	“created”.

.+	matches	all	remaining	characters

The	foreach	loop	relies	on	the	\n	separator	in	the	string	to	work	with	each
invoice.	The	Match	method	executes	the	regular	expression	match,	extracting
values.	If	the	match	was	successful,	the	code	extracts	values	from	groups,	calls
GetInvoice	and	adds	the	new	invoice	to	the	invoices	collection.

You	might	have	noticed	how	we’re	using	GetLineItems	to	extract	data	from
the	matchItems	parameter,	from	the	regular	expression	items	field.	We
could	have	used	a	more	sophisticated	regular	expression	to	take	care	of	that	too.
However,	this	was	intentional	for	contrast	in	demonstrating	how	regular
expression	processing	is	a	more	elegant	solution	in	this	situation.

TIP

As	an	enhancement,	you	might	log	any	situations	where	match.Success	is	false	if	you’re
concerned	about	losing	data	and/or	want	to	know	if	there’s	a	bug	in	the	regular	expression	or	original
data	formatting.

Example	2-1.

Finally,	the	application	returns	the	new	line	items	to	the	calling	code,	Main,	so	it	can	save	them.

Chapter	3.	Ensuring	Quality

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	author’s	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

3.1	Overview
All	the	best	practices,	fancy	algorithms,	and	patterns	in	the	world	mean	nothing
if	the	code	doesn’t	work	properly.	We	all	want	to	build	the	best	app	possible	and
minimize	bugs.	That’s	why	this	entire	chapter	is	about	ways	to	build	a	quality
product.

Maintainability
When	working	on	a	team,	other	developers	must	work	with	the	code	you	write.
They	add	new	features	and	fix	bugs.	If	you	write	code	that’s	easy	to	read,	it	will
be	more	maintainable	-	that	is,	other	developers	will	be	able	to	read	and
understand	it.	Even	if	you’re	the	sole	developer,	coming	back	to	code	you’ve
written	in	the	past	can	be	a	new	experience.	Increased	maintainability	leads	to
less	new	bugs	being	introduced	and	quicker	task	turnaround.	Fewer	bugs	mean
less	software	life-cycle	costs	and	more	time	for	other	value-added	features.	It	is
this	spirit	of	maintainability	motivating	the	content	in	this	chapter.

Catching	Problems
Users	can	and	will	use	apps	in	a	way	that	finds	the	one	bug	that	we	never
thought	would	happen.	The	sections	on	Simplifying	Parameter	Validation	and
Protecting	Against	NullReferenceException	give	essential	tools	to	help.
Proper	exception	handling	is	an	important	skill	and	you’ll	learn	that	too.

Correct	Code

Although	unit	testing	has	been	with	us	for	a	long	time,	it	isn’t	a	solved	problem.
A	lot	of	developers	still	don’t	write	unit	tests.	However,	it’s	such	an	important
topic	that	the	first	section	in	this	chapter	shows	you	how	to	write	a	unit	test.

3.2	3.1	Writing	a	Unit	Test

Problem
Quality	Assurance	professionals	are	continually	finding	problems	during
integration	testing	and	you	want	to	reduce	the	number	of	bugs	that	are	checked
in.

Solution
Here’s	the	code	to	test:

public	enum	CustomerType

{

				Bronze,

				Silver,

				Gold

}

public	class	Order

{

				public	decimal	CalculateDiscount(CustomerType	custType,	decimal	

amount)

				{

								decimal	discount;

								switch	(custType)

								{

												case	CustomerType.Silver:

																discount	=	amount	*	1.05m;

																break;

												case	CustomerType.Gold:

																discount	=	amount	*	1.10m;

																break;

												case	CustomerType.Bronze:

												default:

																discount	=	amount;

																break;

								}

								return	discount;

				}

}

A	separate	test	project	has	unit	tests:

public	class	OrderTests

{

				[Fact]

				public	void	CalculateDiscount_WithBronzeCustomer_GivesNoDiscount()

				{

								const	decimal	ExpectedDiscount	=	5.00m;

								decimal	actualDiscount	=

												new	Order().CalculateDiscount(CustomerType.Bronze,	5.00m);

								Assert.Equal(ExpectedDiscount,	actualDiscount);

				}

				[Fact]

				public	void	

CalculateDiscount_WithSilverCustomer_GivesFivePercentDiscount()

				{

								const	decimal	ExpectedDiscount	=	5.25m;

								decimal	actualDiscount	=

												new	Order().CalculateDiscount(CustomerType.Silver,	5.00m);

								Assert.Equal(ExpectedDiscount,	actualDiscount);

				}

				[Fact]

				public	void	

CalculateDiscount_WithGoldCustomer_GivesTenPercentDiscount()

				{

								const	decimal	ExpectedDiscount	=	5.50m;

								decimal	actualDiscount	=

												new	Order().CalculateDiscount(CustomerType.Gold,	5.00m);

								Assert.Equal(ExpectedDiscount,	actualDiscount);

				}

}

Discussion

The	code	to	test	is	the	System	Under	Test	(SUT)	and	the	code	that	tests	it	is
called	a	unit	test.	Unit	tests	are	typically	in	a	separate	project,	referencing	the
SUT,	avoiding	bloating	the	deliverable	assembly	by	not	shipping	test	code	with
production	code.	The	size	of	the	unit	to	test	is	often	a	type	like	a	class,	record,	or
struct.	The	solution	has	an	Order	class	(SUT)	with	a	CalculateDiscount
method.	The	unit	tests	ensure	CalculateDiscount	operates	correctly.

There	are	several	well-known	unit	test	frameworks	and	you	can	try	a	few	and
use	the	one	you	like	best.	These	examples	use	XUnit.	Most	of	the	unit	test
frameworks	integrate	with	Visual	Studio	and	other	IDE’s.

Unit	test	frameworks	help	identify	unit	test	code	with	attributes.	Some	have	an
attribute	for	the	test	class,	but	XUnit	doesn’t.	With	XUnit,	you	only	need	to	add
a	[Fact]	attribute	to	the	unit	test	and	it	will	work	with	the	IDE	or	other	tooling
you’re	using.

The	naming	convention	of	the	unit	tests	indicate	their	purpose,	making	it	easy	to
read.	The	OrderTests	class	indicates	that	it’s	unit	tests	operate	on	the	Order
class.	Unit	test	method	names	have	the	following	pattern:

				<MethodToTest>_<Condition>_<ExpectedOutcome>

The	first	unit	test,
CalculateDiscount_WithBronzeCustomer_GivesNoDiscount,
follows	this	pattern	where:

CalculateDiscount	is	the	method	to	test

WithBronzeCustomer	specifies	what	is	unique	about	the	input	for	this
particular	test

GivesNoDiscount	is	the	result	to	verify

The	organization	of	the	unit	tests	uses	a	format	called	Arrange,	Act,	and	Assert
(AAA).	The	Arrange	section	creates	all	the	necessary	types	for	the	test	to	occur.
In	these	unit	tests,	the	arrange	creates	a	const	ExpectedDiscount.

In	more	complex	scenarios	the	Arrange	part	will	instantiate	input	parameters	that
establish	the	appropriate	conditions	for	the	test.	In	this	example,	the	conditions
were	so	simple	that	they	are	written	as	constant	parameters	in	the	Act	part.

The	Act	part	is	a	method	call	that	takes	parameters,	if	any,	that	create	the

conditions	to	be	tested.	In	these	examples,	the	Act	part	instantiates	an	Order
instance	and	calls	CalculateDiscount,	assigning	the	response	to
actualDiscount.

The	Assert	class	belongs	to	the	XUnit	testing	framework.	Appropriately
named,	you	use	Assert	statements	in	the	Assert	part	of	the	test.

Notice	the	naming	convention	I	used	for	actualDiscount	and
ExpectedDiscount.	The	Assert	class	has	several	methods,	with	Equal
being	very	popular	because	it	allows	you	to	compare	what	you	expected	to	what
you	actually	received	during	the	Act	part.

The	benefits	you	get	from	unit	tests	potentially	include	better	code	design,
verification	that	the	code	does	what	was	intended,	protection	against	regressions,
deployment	validation,	and	documentation.	The	key	word	here	is	“potential”
because	different	people	and/or	teams	choose	the	benefit	they	want	from	unit
tests.

The	better	code	design	comes	from	writing	tests	before	writing	the	code.	You
might	have	heard	this	technique	discussed	in	agile	or	Behavior	Driven
Development	(BDD)	environments.	In	making	the	developer	think	about
expected	behavior	ahead	of	time,	a	clearer	design	might	evolve.	On	the	other
hand,	you	might	want	to	write	unit	tests	after	the	code	is	written.	Developers
write	code	and	unit	tests	both	ways	and	opinions	differ	on	what	is	preferable.
Ultimately,	having	the	tests,	regardless	of	how	you	arrived	there,	is	more	likely
to	improve	code	quality	better	than	not	having	tests.

The	second	point	of	verifying	that	the	code	does	what	is	intended	is	the	biggest
benefit.	For	simple	methods	that	serve	more	as	code	documentation,	it	isn’t	a	big
deal.	However,	for	complex	algorithms	or	something	critical	like	ensuring
customers	receive	the	right	discount,	unit	tests	save	the	day.

Another	important	benefit	is	protecting	against	regressions.	Not	if,	but	when,	the
code	changes,	you	or	another	developer	could	introduce	bugs	where	the	original
intent	of	the	code	was	accidentally	changed.	By	running	the	unit	tests	after
changing	code,	you	can	find	and	fix	bugs	at	the	source	and	not	later	by	Quality
Assurance	professionals	or	(even	worse)	customers.

With	modern	DevOps,	we	have	the	ability	to	automate	builds	through	continuous
deployment.	You	can	add	unit	test	runs	to	a	DevOps	pipeline,	which	catches

errors	before	they’re	merged	with	the	rest	of	the	code.	The	more	unit	tests	you
have,	the	more	this	technique	reduces	the	possibility	of	any	developers	breaking
the	build.

Finally,	you	have	another	level	of	documentation.	That’s	why	the	naming
conventions	for	unit	tests	are	important.	If	another	developer,	unfamiliar	with	an
application,	needs	to	understand	the	code,	the	unit	tests	can	explain	what	the
correct	behavior	of	that	code	should	be.

This	discussion	was	to	get	you	started	with	unit	tests,	if	you	aren’t	already	using
them.	You	can	learn	more	by	searching	for	XUnit	and	other	unit	testing
frameworks	to	see	how	they	work.	If	you	haven’t	done	so	yet,	please	review
Section	1.2	Removing	Explicit	Dependencies	because	it	describes	techniques
that	make	code	more	testable.

See	Also
1.2	Removing	Explicit	Dependencies

3.3	3.2	Versioning	Interfaces	Safely

Problem
You	need	to	update	an	interface	in	one	of	your	libraries	without	breaking
deployed	code.

Solution
Interface	before	update:

public	interface	IOrder

{

				string	PrintOrder();

}

Interface	after	update:

public	interface	IOrder

{

				string	PrintOrder();

				decimal	GetRewards()	=>	0.00m;

}

CompanyOrder	before	update:

public	class	CompanyOrder	:	IOrder

{

				public	string	PrintOrder()

				{

								return	"Company	Order	Details";

				}

}

CompanyOrder	after	update:

public	class	CompanyOrder	:	IOrder

{

				decimal	total	=	25.00m;

				public	string	PrintOrder()

				{

								return	"Company	Order	Details";

				}

				public	decimal	GetRewards()

				{

								return	total	*	0.01m;

				}

}

CustomerOrder	before	and	after	update:

class	CustomerOrder	:	IOrder

{

				public	string	PrintOrder()

				{

								return	"Customer	Order	Details";

				}

}

Here’s	how	the	types	are	used:

class	Program

{

				static	void	Main()

				{

								var	orders	=	new	List<IOrder>

								{

												new	CustomerOrder(),

												new	CompanyOrder()

								};

								foreach	(var	order	in	orders)

								{

												Console.WriteLine(order.PrintOrder());

												Console.WriteLine($"Reward:	{order.GetRewards()}");

								}

				}

}

Discussion
Prior	to	C#	8,	we	couldn’t	add	new	members	to	an	existing	interface	without
changing	all	the	types	that	implement	that	interface.	If	those	implementing	types
resided	in	the	same	code	base,	it	was	a	recoverable	change.	However,	for
framework	libraries	where	developers	relied	on	an	interface	to	work	with	that
library,	this	would	be	a	breaking	change.

The	solution	describes	how	to	update	interfaces	and	the	effects.	The	scenario	is
for	a	customer	that	might	want	to	apply	some	reward	points,	earned	previously,
to	a	current	order.

Looking	at	IOrder,	you	can	see	that	the	after	update	version	adds	a
GetRewards	method.	Historically,	interfaces	were	not	allowed	to	have
implementations.	However,	in	the	new	version	of	IOrder	The	GetRewards
method	has	a	default	implementation	that	returns	$0.00	as	the	reward.

The	solution	also	has	a	before	and	after	version	of	the	CompanyOrder	class,
where	the	after	version	contains	an	implementation	of	GetRewards.	Now,
instead	of	the	default	implementation,	any	code	invoking	GetRewards	through
a	CompanyOrder	instance	will	execute	the	CompanyOrder	implementation.

In	contrast,	the	solution	shows	a	CustomerOrder	class	that	also	implements
IOrder.	The	difference	here	is	that	CustomerOrder	didn’t	change.	Any
code	invoking	GetRewards	through	a	CompanyOrder	instance	will	execute
the	default	IOrder	implementation.

The	Program	Main	method	shows	how	this	works.	The	orders	is	a	list	of
IOrder,	with	run-time	instances	of	CustomerOrder	and	CompanyOrder.
The	foreach	loops	through	orders,	calling	IOrder	methods.	As	described
earlier,	invoking	GetRewards	for	the	CompanyOrder	instance	uses	that
class’	implementation,	whereas	CustomerOrder	uses	the	default	IOrder
implementation.

Essentially,	the	change	means	that	if	a	developer	implements	IOrder	in	their
own	class,	such	as	CustomerOrder,	their	code	doesn’t	break	when	updating
the	library	to	the	latest	version.

3.4	3.3	Simplifying	Parameter	Validation

Problem
You’re	always	looking	for	ways	to	simplify	code,	including	parameter
validation.

Solution
Verbose	parameter	validation	syntax:

static	void	ProcessOrderOld(

				string	customer,	List<string>	lineItems)

{

				if	(customer	==	null)

				{

								throw	new	ArgumentNullException(nameof(customer),	$"

{nameof(customer)}	is	required.");

				}

				if	(lineItems	==	null)

				{

								throw	new	ArgumentNullException(nameof(lineItems),	$"

{nameof(lineItems)}	is	required.");

				}

				Console.WriteLine($"Processed	{customer}");

}

Brief	parameter	validation	syntax:

static	void	ProcessOrderNew(

				string	customer,	List<string>	lineItems)

{

				_	=	customer	??	throw	new	ArgumentNullException(nameof(customer),	

$"{nameof(customer)}	is	required.");

				_	=	lineItems	??	throw	new	

ArgumentNullException(nameof(lineItems),	$"{nameof(lineItems)}	is	

required.");

				Console.WriteLine($"Processed	{customer}");

}

Discussion
The	first	code	of	a	public	method	is	often	concerned	with	parameter	validation,
which	can	sometimes	be	verbose.	This	section	shows	how	to	save	a	few	lines	of
code	so	they	don’t	obscure	the	code	pertaining	to	the	original	purpose	of	the
method.

The	solution	has	two	parameter	validation	techniques:	verbose	and	brief.	The
verbose	method	is	typical,	where	the	code	ensures	that	a	parameter	isn’t	null
and	throws	otherwise.	The	parenthesis	aren’t	required	in	this	single-line	throws
statement,	but	some	developers/teams	prefer	for	them	to	be	there	anyway.

The	brief	method	is	an	alternative	that	can	save	a	few	lines	of	code.	They	rely	on
newer	features	of	C#	-	the	variable	discard,	_	and	coalescing	operator,	??.

On	the	line	validating	customer,	the	code	starts	with	an	assignment	to	the
discard,	because	we	need	an	expression.	The	coalescing	operator	is	a	guard	that
detects	when	the	expression	is	null.	When	the	expression	is	null	the	next
statement	executes,	throwing	an	exception.

TIP
This	example	was	for	parameter	evaluation.	However,	there	are	other	scenarios	where	the	code
encounters	a	variable	that	was	set	to	null	and	needs	to	throw	for	an	invalid	condition	or	a	situation	that
never	should	have	occurred.	This	technique	lets	you	handle	that	quickly	in	a	single	line	of	code.

See	Also
3.4	Protecting	Code	From	NullReferenceException

3.5	3.4	Protecting	Code	From
NullReferenceException

Problem
You’re	building	a	reusable	library	and	need	to	communicate	nullable	reference
semantics.

Solution
This	is	old-style	code	that	doesn’t	handle	null	references:

class	OrderLibraryNonNull

{

				//	null	property

				public	string	DealOfTheDay	{	get;	set;	}

				//	method	with	null	parameter

				public	void	AddItem(string	item)

				{

								Console.Write(item.ToString());

				}

				//	method	with	null	return	value

				public	List<string>	GetItems()

				{

								return	null;

				}

				//	method	with	null	type	parameter

				public	void	AddItems(List<string>	items)

				{

								foreach	(var	item	in	items)

												Console.WriteLine(item.ToString());

				}

}

The	following	project	file,	turns	on	the	new	nullable	reference	feature:

<Project	Sdk="Microsoft.NET.Sdk">

				<PropertyGroup>

								<OutputType>Exe</OutputType>

								<TargetFramework>netcoreapp3.1</TargetFramework>

								<RootNamespace>Section_03_04</RootNamespace>

								<Nullable>enable</Nullable>

				</PropertyGroup>

</Project>

Here’s	the	updated	library	code	that	communicates	nullable	references:

class	OrderLibraryWithNull

{

				//	null	property

				public	string?	DealOfTheDay	{	get;	set;	}

				//	method	with	null	parameter

				public	void	AddItem(string?	item)

				{

								_	=	item	??	throw	new	ArgumentNullException(nameof(item),	$"

{nameof(item)}	must	not	be	null");

								Console.Write(item.ToString());

				}

				//	method	with	null	return	value

				public	List<string>?	GetItems()

				{

								return	null;

				}

				//	method	with	null	type	parameter

				public	void	AddItems(List<string?>	items)

				{

								foreach	(var	item	in	items)

												Console.WriteLine(item?.ToString()	??	"None");

				}

}

This	is	an	example	of	old-style	consuming	code	that	ignores	nullable	references:

static	void	HandleWithNullNoHandling()

{

				var	orders	=	new	OrderLibraryWithNull();

				string	deal	=	orders.DealOfTheDay;

				Console.WriteLine(deal.ToUpper());

				orders.AddItem(null);

				orders.AddItems(new	List<string>	{	"one",	null	});

				foreach	(var	item	in	orders.GetItems().ToArray())

								Console.WriteLine(item.Trim());

}

This	table	shows	the	warning	wall	the	user	sees	from	consuming	code	that
ignores	nullable	references:

Finally,	here’s	how	the	consuming	code	can	properly	react	to	the	reusable	library
with	the	proper	checks	and	validation	for	nullable	references:

static	void	HandleWithNullAndHandling()

{

				var	orders	=	new	OrderLibraryWithNull();

				string?	deal	=	orders.DealOfTheDay;

				Console.WriteLine(deal?.ToUpper()	??	"Deals");

				orders.AddItem(null);

				orders.AddItems(new	List<string?>	{	"one",	null	});

				List<string>?	items	=	orders.GetItems();

				if	(items	!=	null)

								foreach	(var	item	in	items.ToArray())

												Console.WriteLine(item.Trim());

}

Discussion
If	you’ve	been	programming	C#	for	any	length	of	time,	it’s	likely	that	you’ve
encountered	NullReferenceExceptions.	A
NullReferenceException	occurs	when	referencing	a	member	of	a
variable	that	is	still	null,	essentially	trying	to	use	an	object	that	doesn’t	yet	exist.
Nullable	references,	first	introduced	in	C#	8,	help	write	higher	quality	code	by
reducing	the	number	of	NullReferenceException	exceptions	being
thrown.	The	whole	concept	resolves	around	giving	the	developer	compile-time
notice	of	situations	where	variables	are	null	and	could	potentially	result	in	a
thrown	NullReferenceException.	This	scenario	revolves	around	the	need
to	write	a	reusable	library,	perhaps	a	separate	class	library	or	NuGet	package,	for
other	developers.	Your	goal	is	to	let	them	know	where	a	potential	null	reference
occurs	in	the	library	so	they	can	write	code	to	protect	against	a
NullReferenceException.

To	demonstrate,	the	solution	shows	library	code	that	doesn’t	communicate	null
references.	Essentially,	this	is	old-style	code,	representing	what	developers
would	have	written	before	C#	8.	You’ll	also	see	how	to	configure	a	project	to
support	C#	8	Nullable	References.	Then	you’ll	see	how	to	change	that	library
code	so	it	communicates	null	references	to	a	developer	who	might	consume	it.
Finally,	you’ll	see	two	examples	of	consuming	code:	one	that	doesn’t	handle	null
references	and	another	that	shows	how	to	protect	against	null	references.

In	the	first	solution	example,	the	OrderLibraryNonNull	class	has	members
with	parameters	or	return	types	that	are	reference	types,	such	as	string	and

List<string>,	both	of	which	could	potentially	be	set	to	null.	In	both	a
nullable	and	non-nullable	context,	this	code	won’t	generate	any	warnings.	Even
in	a	nullable	context,	the	reference	types	aren’t	marked	as	nullable	and
dangerously	communicate	to	users	that	they’ll	never	receive	a
NullReferenceException.	However,	because	there	could	be	potential
NullReferenceExceptions,	we	don’t	want	to	write	our	code	like	this
anymore.

The	following	XML	listing	is	the	project	file	with	a
/Project/PropertyGroup/Nullable	element.	Setting	this	to	true
puts	the	project	in	a	nullable	context.	Putting	a	separate	class	library	into	a
nullable	context	might	provide	warnings	for	the	class	library	developer,	but	the
consumer	of	that	code	won’t	ever	see	those	warnings.

The	next	solution	code	snippet	for	OrderLibraryWithNull	fixes	this
problem.	Compare	it	with	OrderLibraryNonNull	to	tell	the	differences.
When	evaluating	null	references,	go	member	by	member	through	a	type	to	think
about	how	parameters	and	return	values	affect	a	consumer	of	your	library	in
regards	to	null	references.	There	are	a	lot	of	different	null	scenarios,	but	this
example	captures	three	common	ones:	property	type,	method	parameter	type,
and	type	parameter	type.

NOTE
There	are	times	when	a	method	genuinely	doesn’t	ever	return	a	null	reference.	Then	it	makes	sense	to
not	use	the	nullable	operator	to	communicate	to	the	consumer	that	they	don’t	need	to	check	for	null.

The	DealOfTheDay	getter	property	returns	a	string,	which	could
potentially	be	a	null	value.	Fix	those	with	the	nullable	operator,	?	and	return
string?.

AddItems	is	similar,	except	it	takes	a	string	parameter.	Since	string
could	be	null,	changing	it	to	string?	lets	the	compiler	know	too.	Notice
how	I	used	the	Simplified	Parameter	Checking	described	in	section	3.3.

The	GetItems	method	returns	a	List<string>	and	List<T>	is	a
reference	type.	Therefore,	changing	that	to	List<string>?	fixes	the

problem.

Finally,	here’s	one	that’s	a	little	tricky.	The	items	parameter	in	AddItems	is	a
List<string>.	It’s	easy	enough	to	do	a	parameter	check	to	test	for	a	null
parameter,	but	leaving	the	nullable	operator	off	is	also	a	good	approach	to	let	the
user	know	that	they	shouldn’t	pass	a	null	value.

That	said,	what	if	one	of	the	values	in	the	List<string>	were	null?	In	this
case,	it’s	a	List<string>,	but	what	about	scenarios	where	the	user	were
allowed	to	pass	in	a	Dictionary<string,	string>	where	the	value
could	be	null.	Then	annotate	the	type	parameter,	as	the	example	does	with
List<string?>	to	say	it’s	okay	for	a	value	to	be	null.	Since	you	know	that
the	parameter	can	be	null,	it’s	important	to	check	before	referencing	its
members	-	to	avoid	a	NullReferenceException.

Now	you	have	library	code	that’s	useful	for	a	consumer.	However,	it	will	only	be
useful	if	the	consumer	puts	their	project	into	a	nullable	context	too,	as	shown	in
the	project	file.

The	HandleWithNullNoHandling	method	shows	how	a	developer	might
have	written	code	before	C#	8.	However,	once	they	put	the	project	into	a
nullable	context,	they	will	receive	several	warnings	as	illustrated	in	the	warning
wall,	showing	the	Visual	Studio	Error	List	window.	Comparing	that	with	the
HandleWithNullAndHandling	method,	the	contrast	is	strong.

The	whole	process	cascades,	so	start	at	the	top	of	the	method	and	work	your	way
down.

1.	 Because	the	DealOfTheDay	getter	can	return	null,	set	deal	type	to
string?.

2.	 Since	deal	can	be	null,	use	the	null	reference	operator	and	a	coalescing
operator	to	ensure	Console.WriteLine	has	something	sensible	to
write.

3.	 The	type	passed	to	AddItems	needs	to	be	List<string?>	to	make	the
statement	that	you’re	aware	that	an	item	can	be	null.

4.	 Instead	of	in-lining	orders.GetItems	in	the	foreach	loop,	refactor
it	out	into	a	new	variable.	This	lets	you	check	for	null	to	avoid
consuming	a	null	iterator.

See	Also
3.3	Simplified	Parameter	Checking

3.6	3.5	Avoiding	Magic	strings

Problem
A	const	string	resides	in	multiple	places	in	the	app	and	you	need	a	way	to
change	it	without	breaking	other	code.

Solution
Here’s	an	Order	object:

class	Order

{

				public	string	DeliveryInstructions	{	get;	set;	}

				public	List<string>	Items	{	get;	set;	}

}

Here	are	some	constants:

class	Delivery

{

				public	const	string	NextDay	=	"Next	Day";

				public	const	string	Standard	=	"Standard";

				public	const	string	LowFare	=	"Low	Fare";

				public	const	int	StandardDays	=	7;

}

This	is	the	program	that	uses	Order	and	constants	to	calculate	number	of	days	of
delivery:

static	void	Main(string[]	args)

{

				var	orders	=	new	List<Order>

				{

								new	Order	{	DeliveryInstructions	=	Delivery.LowFare	},

								new	Order	{	DeliveryInstructions	=	Delivery.NextDay	},

								new	Order	{	DeliveryInstructions	=	Delivery.Standard	},

				};

				foreach	(var	order	in	orders)

				{

								int	days;

								switch	(order.DeliveryInstructions)

								{

												case	Delivery.LowFare:

																days	=	15;

																break;

												case	Delivery.NextDay:

																days	=	1;

																break;

												case	Delivery.Standard:

												default:

																days	=	Delivery.StandardDays;

																break;

								}

								Console.WriteLine(order.DeliveryInstructions);

								Console.WriteLine($"Expected	Delivery	Day(s):	{days}");

				}

}

Discussion
After	developing	software	for	a	while,	most	developers	have	seen	their	share	of
magic	values,	which	are	literal	values,	such	as	strings	and	numbers,	written
directly	into	an	expression.	From	the	perspective	of	the	original	developer,	they
might	not	be	a	huge	problem.	However,	from	the	perspective	of	a	maintenance
developer,	those	literal	values	don’t	immediately	make	sense.	It’s	as	if	they
magically	appeared	out	of	nowhere	or	makes	it	feel	like	magic	that	the	code	even
works	because	the	meaning	of	literal	value	isn’t	obvious.

The	goal	is	to	write	code	that	gives	a	future	maintainer	a	chance	to	understand.
Otherwise,	project	costs	increase	because	of	the	time	wasted	trying	to	figure	out
what	some	seemingly	random	number	is.	The	solution	is	often	to	replace	the
literal	value	with	a	variable	whose	name	expresses	the	semantics	of	the	value	or
why	it’s	there.	A	commonly	held	belief	is	that	readable	code	has	a	more
maintainable	lifetime	than	comments.

Going	further,	a	local	constant	helps	a	method	with	readability,	but	constants	are

often	reusable.	The	solution	example	demonstrates	how	some	reusable	constants
can	be	placed	in	their	own	class	for	reuse	by	other	parts	of	the	code.

In	addition	to	items,	the	Order	class	has	a	DeliveryInstructions
property.	Here,	we	make	the	assumption	that	there	is	a	finite	set	of	delivery
instructions.

The	Delivery	class	has	const	string	values	for	NextDay,	Standard,
and	LowFare,	characterizing	how	an	order	should	be	delivered.	Also,	notice
that	this	class	has	a	StandardDays	value,	set	to	7.	Which	program	would	you
rather	read	-	the	one	that	uses	7	or	the	one	that	uses	a	constant	named
StandardDays?

NOTE
You	might	first	consider	that	the	const	string	values	in	the	Delivery	class	might	be	better
candidates	for	an	enum.	However,	notice	that	they	have	spaces.	Also,	they’ll	be	written	with	the	order.
While	there	are	techniques	for	using	enums	as	string,	this	was	simple.	Also,	sometimes	you	need	a
specific	string	value	for	lookup	in	some	scenarios.	It’s	a	matter	of	opinion	and	what	you	think	the
right	tool	for	the	right	job	is.	If	you	find	a	scenario	where	enums	are	more	convenient,	then	do	that.

The	program	that	uses	Orders	and	Delivery	is	trying	to	calculate	the
number	of	days	for	delivery,	based	on	the	order’s	DeliveryInstructions.
There	are	three	orders	in	a	list,	each	with	a	different	setting	for
DeliveryInstructions.	The	foreach	loop	iterates	over	those	orders
with	a	switch	statement	that	sets	the	number	of	delivery	days,	depending	on
DeliveryInstructions.

Notice	that	both	order	list	construction	and	the	switch	statement	use	constants
from	Delivery.	Had	that	not	been	done,	there	would	have	been	strings
everywhere.	Now,	it’s	easy	to	code	with	Intellisense	support,	there	is	no
duplication	because	the	string	is	in	one	place,	and	the	opportunity	for
mistyping	is	minimized.	Further,	if	the	strings	need	to	change,	that	happens
in	one	place.	Additionally,	you	get	IDE	refactoring	support	to	change	the	name
everywhere	that	constant	appears	in	the	application.

3.7	3.6	Customizing	Class	String	Representation

Problem
The	class	representation	in	the	debugger,	string	parameters,	and	log	files	is
illegible	and	you	want	to	customize	its	appearance.

Solution
Here’s	a	class	with	a	custom	ToString	method:

using	System;

using	System.Text;

namespace	Section_03_06

{

				class	Order

				{

								public	int	ID	{	get;	set;	}

								public	string	CustomerName	{	get;	set;	}

								public	DateTime	Created	{	get;	set;	}

								public	decimal	Amount	{	get;	set;	}

								public	override	string	ToString()

								{

												var	stringBuilder	=	new	StringBuilder();

												stringBuilder.Append(nameof(Order));

												stringBuilder.Append("	{\n");

												if	(PrintMembers(stringBuilder))

																stringBuilder.Append("	");

												stringBuilder.Append("\n}");

												return	stringBuilder.ToString();

								}

	 	 protected	virtual	bool	PrintMembers(StringBuilder	

builder)

	 	 {

	 	 	 builder.Append("		"	+	nameof(ID));

	 	 	 builder.Append("	=	");

	 	 	 builder.Append(ID);

	 	 	 builder.Append(",	\n");

	 	 	 builder.Append("		"	+	nameof(CustomerName));

	 	 	 builder.Append("	=	");

	 	 	 builder.Append(CustomerName);

	 	 	 builder.Append(",	\n");

	 	 	 builder.Append("		"	+	nameof(Created));

	 	 	 builder.Append("	=	");

	 	 	 builder.Append(Created.ToString("d"));

	 	 	 builder.Append(",	\n");

	 	 	 builder.Append("		"	+	nameof(Amount));

	 	 	 builder.Append("	=	");

	 	 	 builder.Append(Amount);

	 	 	 return	true;

	 	 }

	 }

}

Here’s	an	example	of	how	that’s	used:

class	Program

{

				static	void	Main(string[]	args)

				{

								var	order	=	new	Order

								{

												ID	=	7,

												CustomerName	=	"Acme",

												Created	=	DateTime.Now,

												Amount	=	2_718_281.83m

								};

								Console.WriteLine(order);

				}

}

And	here’s	the	output:

Order	{

		ID	=	7,

		CustomerName	=	Acme,

		Created	=	1/23/2021,

		Amount	=	2718281.83

}

Discussion
Some	types	are	complex	and	viewing	an	instance	in	the	debugger	is	cumbersome
because	you	need	to	dig	multiple	levels	to	examine	values.	Modern	IDEs	make
this	easier,	but	sometimes	it’s	nicer	to	have	a	more	readable	representation	of	the
class.

That’s	where	overriding	the	ToString	method	comes	in.	ToString	is	a
method	of	the	Object	type,	which	all	types	derive	from.	The	default
implementation	is	the	fully	qualified	name	of	the	type,	which	is
Section_03_06.Order	for	the	Order	class	in	the	solution.	Since	it’s	a
virtual	method,	you	can	override	it.

In	fact,	the	Order	class	overrides	ToString	with	its	own	representation.	As
covered	in	Section	2.1	Processing	strings	Efficiently,	the	implementation	uses
StringBuilder.	The	format	is	using	the	name	of	the	object	with	properties
inside	of	curly	braces,	as	shown	in	the	output.

The	demo	code,	in	Main	generates	this	output	via	the	Console.WriteLine.
This	works	because	Console.WriteLine	calls	an	object’s	ToString
method	if	a	parameter	isn’t	already	a	string.

See	Also
2.1	Processing	strings	Efficiently

3.8	3.7	Rethrowing	Exceptions

Problem
An	app	is	throwing	exceptions,	yet	the	messages	are	missing	information	and
you	need	to	ensure	all	relevant	data	is	available	during	processing.

Solution
This	object	throws	an	exception:

class	Orders

{

				public	void	Process()

				{

								throw	new	IndexOutOfRangeException(

												"Expected	10	orders,	but	found	only	9.");

				}

}

Here	are	different	ways	to	handle	the	exception:

class	OrderOrchestrator

{

				public	static	void	HandleOrdersWrong()

				{

								try

								{

												new	Orders().Process();

								}

								catch	(IndexOutOfRangeException	ex)

								{

												throw	new	ArgumentException(ex.Message);

								}

				}

				public	static	void	HandleOrdersBetter1()

				{

								try

								{

												new	Orders().Process();

								}

								catch	(IndexOutOfRangeException	ex)

								{

												throw	new	ArgumentException("Error	Processing	Orders",	

ex);

								}

				}

				public	static	void	HandleOrdersBetter2()

				{

								try

								{

												new	Orders().Process();

								}

								catch	(IndexOutOfRangeException)

								{

												throw;

								}

				}

}

This	program	tests	each	exception	handling	method:

class	Program

{

				static	void	Main(string[]	args)

				{

								try

								{

												OrderOrchestrator.HandleOrdersWrong();

								}

								catch	(ArgumentException	ex)

								{

												Console.WriteLine("Handle	Orders	Wrong:\n"	+	ex);

								}

								try

								{

												OrderOrchestrator.HandleOrdersBetter1();

								}

								catch	(ArgumentException	ex)

								{

												Console.WriteLine("\n\nHandle	Orders	Better	#1:\n"	+	ex);

								}

								try

								{

												OrderOrchestrator.HandleOrdersBetter2();

								}

								catch	(IndexOutOfRangeException	ex)

								{

												Console.WriteLine("\n\nHandle	Orders	Better	#2:\n"	+	ex);

								}

				}

}

Here’s	the	output:

				Handle	Orders	Wrong:

				System.ArgumentException:	Expected	10	orders,	but	found	only	9.

							at	Section_03_07.OrderOrchestrator.HandleOrdersWrong()	in	

C:\Projects\CSharp9Cookbook\CSharp9Cookbook\Chapter03\Section-03-

07\OrderOrchestrator.cs:line	15

							at	Section_03_07.Program.Main(String[]	args)	in	

C:\Projects\CSharp9Cookbook\CSharp9Cookbook\Chapter03\Section-03-

07\Program.cs:line	11

				Handle	Orders	Better	#1:

				System.ArgumentException:	Error	Processing	Orders

					--->	System.IndexOutOfRangeException:	Expected	10	orders,	but	

found	only	9.

							at	Section_03_07.Orders.Process()	in	

C:\Projects\CSharp9Cookbook\CSharp9Cookbook\Chapter03\Section-03-

07\Orders.cs:line	9

							at	Section_03_07.OrderOrchestrator.HandleOrdersBetter1()	in	

C:\Projects\CSharp9Cookbook\CSharp9Cookbook\Chapter03\Section-03-

07\OrderOrchestrator.cs:line	23

							---	End	of	inner	exception	stack	trace	---

							at	Section_03_07.OrderOrchestrator.HandleOrdersBetter1()	in	

C:\Projects\CSharp9Cookbook\CSharp9Cookbook\Chapter03\Section-03-

07\OrderOrchestrator.cs:line	27

							at	Section_03_07.Program.Main(String[]	args)	in	

C:\Projects\CSharp9Cookbook\CSharp9Cookbook\Chapter03\Section-03-

07\Program.cs:line	20

				Handle	Orders	Better	#2:

				System.IndexOutOfRangeException:	Expected	10	orders,	but	found	

only	9.

							at	Section_03_07.Orders.Process()	in	

C:\Projects\CSharp9Cookbook\CSharp9Cookbook\Chapter03\Section-03-

07\Orders.cs:line	9

							at	Section_03_07.OrderOrchestrator.HandleOrdersBetter2()	in	

C:\Projects\CSharp9Cookbook\CSharp9Cookbook\Chapter03\Section-03-

07\OrderOrchestrator.cs:line	35

							at	Section_03_07.Program.Main(String[]	args)	in	

C:\Projects\CSharp9Cookbook\CSharp9Cookbook\Chapter03\Section-03-

07\Program.cs:line	29

Discussion
There	are	various	ways	to	handle	exceptions,	with	some	being	better	than	others.
From	a	troubleshooting	perspective,	we	generally	want	a	log	of	exceptions	with
enough	meaningful	information	to	help	solve	the	problem.	That	is	the	guide	of
this	section	in	determining	what	the	better	solution	should	be.

The	Orders	class	Process	method	throws	an
IndexOutOfRangeException	and	the	OrderOrchestrator	class
handles	that	exception	in	a	few	different	ways:	one	which	you	should	avoid	and
two	that	are	better,	depending	on	what	makes	sense	for	your	scenario.

The	HandleOrdersWrong	method	takes	the	Message	property	of	the
original	exception	and	throws	a	new	ArgumentException	with	that	message
as	its	input.	The	scenario	models	a	situation	where	the	handling	analyzes	the

situation	and	tries	to	throw	an	exception	that	makes	more	sense	or	provides	more
information	than	what	the	original	exception	offered.	However,	this	causes
another	problem	where	we	lose	stack	trace	information	that’s	critical	to	fixing
the	problem.	This	example	has	a	relatively	shallow	hierarchy,	but	in	practice	the
exception	could	have	been	thrown	via	multiple	levels	down	and	arrived	via
various	paths.	You	can	see	this	problem	in	the	output	where	the	stack	trace
shows	that	the	exception	originated	in	the
OrderOrchestrator.HandleOrdersWrong	method,	rather	than	it’s	true
source	in	Orders.Process.

The	HandleOrdersBetter1	method	improves	on	this	scenario	by	adding	an
additional	argument,	ex,	to	the	innerException	parameter.	This	provides
the	best	of	both	worlds	because	you	can	now	throw	an	exception	with	additional
data,	as	well	as	preserving	the	entire	stack	trace.	In	the	output,	delimited	by	---
End	of	inner	exception	stack	trace	---,	you	an	see	that	the
path	of	the	exception	originated	in	Orders.Process.

The	HandleOrdersBetter2	simply	throws	the	original	exception.	The
assumption	here	is	that	the	logic	wasn’t	able	to	do	something	intelligent	with	the
exception	or	log	and	rethrow.	As	shown	in	the	output,	the	stack	trace	also
originates	at	Orders.Process.

There	are	a	lot	of	strategies	for	handling	exceptions	and	this	covers	one	aspect	of
that	-	when	you	need	to	re-throw,	what	is	the	best	way	to	handle	that	through	the
consideration	of	preserving	stack	trace	for	later	debugging.	As	always,	think
about	your	scenario	and	what	makes	sense	to	you.

3.9	3.8	Managing	Process	Status

Problem
The	user	started	a	process,	but	after	an	exception	the	user	interface	status	wasn’t
updated.

Solution
This	method	throws	an	exception:

static	void	ProcessOrders()

{

				throw	new	ArgumentException();

}

This	is	the	code	you	should	not	write:

static	void	Main()

{

				Console.WriteLine("Processing	Orders	Started");

				ProcessOrders();

				Console.WriteLine("Processing	Orders	Complete");

}

Here’s	the	code	you	should	write	instead:

static	void	Main()

{

				try

				{

								Console.WriteLine("Processing	Orders	Started");

								ProcessOrders();

				}

				catch	(ArgumentException	ae)

				{

								Console.WriteLine('\n'	+	ae.ToString()	+	'\n');

				}

				finally

				{

								Console.WriteLine("Processing	Orders	Complete");

				}

}

Discussion
The	problem	statement	mentions	there	was	an	exception	that	occurred,	which	is
true.	However,	from	a	user	perspective,	they	won’t	receive	a	message	or	status
explaining	that	a	problem	occurred	and	their	job	didn’t	finish.	That’s	because	in
the	first	Main	method,	which	you	shouldn’t	write,	if	an	exception	throws	during
ProcessOrder,	the	“Processing	Orders	Complete”	message	won’t	appear	to
the	user.

This	is	a	good	use	case	for	a	try/finally	block,	which	the	second	Main
method	uses.	Put	all	the	code	that	should	run	in	a	try	block	and	a	final	status	in
the	finally	block.	If	an	exception	throws,	you	can	catch	it,	log,	and	let	the
user	know	that	their	job	was	unsuccessful.

Although	this	was	an	example	in	a	Console	application,	this	is	a	good	technique
for	UI	code	too.	When	starting	a	process,	you	might	have	a	wait	notification	like
an	hourglass	or	progress	indicator.	Turning	the	notification	off	is	a	task	that	the
finally	block	can	help	with	also.

See	Also
3.9	Building	Resilient	Network	Connections	3.10	Measuring	Performance

3.10	3.9	Building	Resilient	Network	Connections

Problem
The	app	communicates	with	an	unreliable	back-end	service	and	you	want	to
prevent	it	from	failing.

Solution
This	method	throws	an	Exception:

static	async	Task	GetOrdersAsync()

{

				throw	await	Task.FromResult(

								new	HttpRequestException(

												"Timeout",	null,	HttpStatusCode.RequestTimeout));

}

Here’s	a	technique	to	handle	network	errors:

public	static	async	Task	Main()

{

				const	int	DelayMilliseconds	=	500;

				const	int	RetryCount	=	3;

				bool	success	=	false;

				int	tryCount	=	0;

				try

				{

								do

								{

												try

												{

																Console.WriteLine("Getting	Orders");

																await	GetOrdersAsync();

																success	=	true;

												}

												catch	(HttpRequestException	hre)

																when	(hre.StatusCode	==	HttpStatusCode.RequestTimeout)

												{

																tryCount++;

																int	millisecondsToDelay	=	DelayMilliseconds	*	

tryCount;

																Console.WriteLine(

																				$"Exception	during	processing	-	"	+

																				$"delaying	for	{millisecondsToDelay}	

milliseconds");

																await	Task.Delay(millisecondsToDelay);

												}

								}	while	(tryCount	<	RetryCount);

				}

				finally

				{

								if	(success)

												Console.WriteLine("Operation	Succeeded");

								else

												Console.WriteLine("Operation	Failed");

				}

}

And	here’s	the	output:

				Getting	Orders

				Exception	during	processing	-	delaying	for	500	milliseconds

				Getting	Orders

				Exception	during	processing	-	delaying	for	1000	milliseconds

				Getting	Orders

				Exception	during	processing	-	delaying	for	1500	milliseconds

				Operation	Failed

Discussion
Anytime	you’re	doing	out-of-process	work,	there’s	a	possibility	or	errors	or
timeouts.	Often	you	don’t	have	control	of	the	application	you’re	interacting	with
and	it	pays	to	write	defensive	code.	In	particular,	code	that	does	networking	is
prone	to	errors	unrelated	to	the	quality	of	code	at	either	end	of	the	connection
because,	to	name	a	few	causes,	of	latency,	timeouts,	and	hardware	issues.

This	solution	simulates	a	network	connection	issue	through
GetOrdersAsync.	It	throws	an	HttpRequestException	with	a
RequestTimeout	status.	This	is	typical	and	the	Main	method	shows	how	to
mitigate	these	types	of	problems.	The	goal	is	to	retry	the	connection	a	certain
number	of	times	with	delay	between	tries.

First,	notice	that	success	initializes	to	false	and	the	finally,	of	the
try/finally,	lets	the	user	know	the	result	of	the	operation,	based	on
success.	Following	the	nesting	of	try/do/try,	the	last	line	of	the	try
block	sets	success	to	true	because	all	of	the	logic	is	complete	-	if	an
exception	occurred	earlier,	the	program	would	not	have	reached	that	line.

The	do/while	loop	iterates	RetryCount	times.	We	initialize	tryCount	to
0	and	increment	it	in	the	catch	block.	That’s	because	if	there’s	an	error,	we
know	we’ll	retry,	and	want	to	ensure	we	don’t	exceed	a	specified	number	of
retries.	RetryCount	is	a	const,	initialized	to	3.	You	can	adjust
RetryCount	to	as	many	times	as	makes	sense	to	you.	If	the	operation	is	time
sensitive,	you	might	want	to	limit	retries	and	send	a	notification	of	a	critical
error.	Another	scenario	might	be	that	you	know	the	other	end	of	the	connection
will	eventually	come	back	on-line	and	can	set	RetryCount	to	a	very	high
number.

Whenever	there	is	an	exception,	you	often	don’t	want	to	immediately	make	the
request	again.	One	of	the	reasons	why	the	timeout	occurred	might	be	because	the
other	endpoint	might	not	scale	well	and	overloading	it	with	more	requests	can
overwhelm	the	server.	Also,	some	3rd	party	APIs	rate-limit	clients	and
immediate	back-to-back	requests	eat	up	the	rate-limit	count.	Some	API	providers
might	even	block	your	app	for	excessive	connection	requests.

The	DelayMilliseconds	helps	your	retry	policy,	initialized	to	500
milliseconds.	You	might	adjust	this	if	you	find	that	retries	are	still	too	fast.	If	a

single	delay	time	works,	then	you	can	use	that.	However,	a	lot	of	situations	call
for	a	linear	or	exponential	back-off	strategy.	You	can	see	that	the	solution	uses	a
linear	back-off,	multiplying	DelayMilliseconds	by	tryCount.	Since
tryCount	initializes	to	0,	we	increment	it	first.

TIP
You	might	want	to	log	retries	as	Warning,	rather	than	Error.	Administrators,	QA,	or	anyone	looking	at
the	logs	(or	reports)	might	be	unnecessarily	alarmed.	They	see	what	looks	like	errors,	whereas	your
application	is	reacting	and	repairing	appropriately	to	typical	network	behavior.

Alternatively,	you	might	need	to	use	an	exponential	back-off	strategy,	such	as
taking	DelayMilliseconds	to	the	tryCount	power	-
Math.Pow(DelayMilliseconds,	tryCount).	You	might	experiment,
e.g.	log	errors	and	review	periodically,	to	see	what	works	best	for	your	situation.

3.11	3.10	Measuring	Performance

Problem
You	know	a	couple	ways	to	write	an	algorithm	and	need	to	test	which	algorithm
performs	the	best.

Solution
Here’s	the	object	type	we’ll	operate	on:

class	OrderItem

{

				public	decimal	Cost	{	get;	set;	}

				public	string	Description	{	get;	set;	}

}

This	is	the	code	that	creates	a	list	of	OrderItem:

static	List<OrderItem>	GetOrderItems()

{

				const	int	ItemCount	=	10000;

				var	items	=	new	List<OrderItem>();

				var	rand	=	new	Random();

				for	(int	i	=	0;	i	<	ItemCount;	i++)

								items.Add(

												new	OrderItem

												{

																Cost	=	rand.Next(i),

																Description	=	"Order	Item	#"	+	(i	+	1)

												});

				return	items;

}

Here’s	an	inefficient	string	concatenation	method:

static	string	DoStringConcatenation(List<OrderItem>	lineItems)

{

				var	stopwatch	=	new	Stopwatch();

				try

				{

								stopwatch.Start();

								string	report	=	"";

								foreach	(var	item	in	lineItems)

												report	+=	$"{item.Cost:C}	-	{item.Description}";

								Console.WriteLine($"Time	for	String	Concatenation:	

{stopwatch.ElapsedMilliseconds}");

								return	report;

				}

				finally

				{

								stopwatch.Stop();

				}

}

Here’s	the	faster	StringBuilder	method:

static	string	DoStringBuilderConcatenation(List<OrderItem>	lineItems)

{

				var	stopwatch	=	new	Stopwatch();

				try

				{

								stopwatch.Start();

								var	reportBuilder	=	new	StringBuilder();

								foreach	(var	item	in	lineItems)

												reportBuilder.Append($"{item.Cost:C}	-	

{item.Description}");

								Console.WriteLine($"Time	for	String	Builder	Concatenation:	

{stopwatch.ElapsedMilliseconds}");

								return	reportBuilder.ToString();

				}

				finally

				{

								stopwatch.Stop();

				}

}

This	code	drives	the	demo:

static	void	Main()

{

				List<OrderItem>	lineItems	=	GetOrderItems();

				DoStringConcatenation(lineItems);

				DoStringBuilderConcatenation(lineItems);

}

And	here’s	the	output:

				Time	for	String	Concatenation:	1137

				Time	for	String	Builder	Concatenation:	2

Discussion
Section	2.1	discussed	the	benefits	of	StringBuilder	over	string
concatenation,	which	stressed	performance	as	the	primary	driver.	However,	it
didn’t	explain	how	to	measure	the	performance	of	the	code.	This	section	builds
on	that	and	shows	how	to	measure	algorithmic	performance	through	code.

TIP
As	our	computers	become	increasingly	faster	by	the	year	(or	less),	the	results	of	the	StringBuilder
method	will	move	closer	to	0.	To	experience	the	real	magnitude	of	time	difference	between	the	two
methods,	add	another	0	to	ItemCount	in	GetOrderItems.

In	both	the	StringConcatenation	and
StringBuilderConcatenation	methods,	you’ll	find	an	instance	of
StopWatch,	which	is	part	of	the	System.Diagnostics	namespace.

Calling	Start,	starts	the	timer	and	Stop	stops	the	timer.	Notice	that	the
algorithms	use	try/finally,	as	described	in	Section	3.8	Managing	Process
Status,	to	ensure	the	timer	stops.

At	the	end	of	each	algorithm,	Console.WriteLine	uses
stopwatch.ElapsedMilliseconds	to	show	how	much	time	the
algorithm	used.

As	shown	in	the	output,	the	running	time	difference	between	StringBuilder
and	string	concatenation	is	dramatic.

See	Also
2.1	Processing	strings	Efficiently	3.8	Managing	Process	Status

Chapter	4.	Querying	with	LINQ

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	author’s	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

Language	Integrated	Query	(LINQ)	has	been	around	since	C#	v3.0.	It	gives
developers	a	means	to	query	data	sources,	using	syntax	with	accents	of
Structured	Query	Language	(SQL).	Because	LINQ	is	part	of	the	language,	you
experience	features	like	syntax	highlighting	and	Intellisense	in	Integrated
Development	Environments	(IDEs).

LINQ	is	popularly	known	as	a	tool	for	querying	databases,	with	the	goal	of
reducing	what	is	called	inpedence	mismatch,	which	is	the	difference	between
database	representation	of	data	and	C#	objects.	Really,	we	can	build	LINQ
Providers	for	any	data	technology.	In	fact,	the	author	wrote	an	open-source
provider	for	the	Twitter	API	named	LINQ	to	Twitter
(https://github.com/JoeMayo/LinqToTwitter).

The	examples	in	this	chapter	take	a	different	approach.	Instead	of	an	external
data	source,	they	use	an	in-memory	data	source	referred	to	as	LINQ	to	Objects.
While	any	in-memory	data	manipulation	can	be	performed	with	C#	loops	and
imperative	logic,	using	LINQ	instead	can	often	simplify	the	code	because	of	it’s
declarative	nature	-	specifying	what	to	do	rather	than	how	to	do	it.	Each	section
has	a	unique	representation	of	one	or	more	entities	(objects	to	be	queried)	and	an
InMemoryContext	that	sets	up	the	in-memory	data	to	be	queried.

A	couple	recipes	in	this	chapter	are	simple,	such	as	transforming	object	shape
and	simplifying	queries.	However,	there	are	important	points	to	be	made	that
also	clarify	and	simplify	your	code.

Pulling	together	code	from	different	data	sources	can	result	in	confusing	code.
The	sections	on	joins,	left	joins,	and	grouping	describe	how	you	can	simplify
these	scenarios.	There’s	also	a	related	section	for	operating	on	sets.

https://github.com/JoeMayo/LinqToTwitter

A	huge	security	problem	with	search	forms	and	queries	appears	when	developers
build	their	queries	with	concatenated	strings.	While	that	might	sound	like	a
quick	and	easy	solution,	the	cost	is	often	too	high.	This	chapter	has	a	couple
sections	that	show	how	LINQ	deferred	execution	lets	you	build	queries
dynamically.	Another	section	explains	an	important	technique	for	search	queries
and	how	they	give	you	the	ability	to	use	expression	trees	for	dynamic	clause
generation.

4.1	Transforming	Object	Shape

Problem
You	want	data	in	a	custom	shape	that	differs	from	the	original	data	source.

Solution
Here’s	the	entity	to	re-shape:

public	class	SalesPerson

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	string	Address	{	get;	set;	}

				public	string	City	{	get;	set;	}

				public	string	PostalCode	{	get;	set;	}

				public	string	Region	{	get;	set;	}

				public	string	ProductType	{	get;	set;	}

}

This	is	the	data	source:

public	class	InMemoryContext

{

				List<SalesPerson>	salesPeople	=

								new	List<SalesPerson>

								{

												new	SalesPerson

												{

																ID	=	1,

																Address	=	"123	1st	Street",

																City	=	"First	City",

																Name	=	"First	Person",

																PostalCode	=	"45678",

																Region	=	"Region	#1"

												},

												new	SalesPerson

												{

																ID	=	2,

																Address	=	"234	2nd	Street",

																City	=	"Second	City",

																Name	=	"Second	Person",

																PostalCode	=	"56789",

																Region	=	"Region	#2"

												},

												new	SalesPerson

												{

																ID	=	3,

																Address	=	"345	3rd	Street",

																City	=	"Third	City",

																Name	=	"Third	Person",

																PostalCode	=	"67890",

																Region	=	"Region	#3"

												},

								};

				public	List<SalesPerson>	SalesPeople	=>	salesPeople;

}

This	code	performs	the	projection	that	re-shapes	the	data:

class	Program

{

				static	void	Main()

				{

								var	context	=	new	InMemoryContext();

								var	salesPersonLookup	=

												(from	person	in	context.SalesPeople

																select	(person.ID,	person.Name))

												.ToList();

								Console.WriteLine("Sales	People\n");

								salesPersonLookup.ForEach(person	=>

												Console.WriteLine($"{person.ID}.	{person.Name}"));

				}

}

Discussion
Transforming	object	shape	is	referred	to	as	a	projection	in	LINQ.	A	few	common
reasons	you	might	want	to	do	this	is	to	create	lookup	lists,	create	a	view	or	view
model	object,	or	translate	data	transfer	objects	(DTOs)	to	something	your	app
works	with	better.

When	doing	database	queries,	using	LINQ	to	Entities,	or	consuming	DTOs,	data
often	arrives	in	a	format	representing	the	original	data	source.	However,	if	you
want	to	work	with	domain	data	or	bind	to	user	interfaces	(UI),	the	pure	data
representation	doesn’t	have	the	right	shape.	Moreover,	data	representation	often
has	attributes	and	semantics	of	the	object-relational	model	(ORM)	or	data	access
library.	Some	developers	try	to	bind	these	data	objects	to	their	UI	because	they
don’t	want	to	create	a	new	object	type.	While	that’s	understandable,	because
noone	wants	to	do	more	work	than	is	necessary,	problems	occur	because	UI	code
is	often	a	different	shape	than	the	data	and	requires	it’s	own	validation	and
attributes.	So,	the	problem	here	is	that	you’re	using	one	object	for	two	different
purposes.	Ideally,	an	object	should	have	a	single	responsibility	and	mixing	it	up
like	this	often	results	in	confusing	code	that’s	not	as	easy	to	maintain.

Another	scenario,	which	the	solution	demonstrates	is	the	case	where	you	only
want	a	lookup	list,	with	an	ID	and	displayable	value.	This	is	useful	when
populating	UI	elements	such	as	checkbox	lists,	radio	button	groups,	combo
boxes,	or	dropdowns.	Querying	entire	entities	is	wasteful	and	slow	(in	the	case
of	an	out-of-process	or	cross-network	database	connection)	when	you	only	need
the	ID	and	something	to	display	to	the	user.

The	Main	method	of	the	solution	demonstrates	this.	It	queries	the
SalesPeople	property	of	InMemoryContext,	which	is	a	list	of
SalesPerson,	and	the	select	clause	re-shapes	the	result	into	a	tuble	of	ID
and	Name.

NOTE

The	select	clause	in	the	solution	uses	a	tuple.	However,	you	could	project	(only	the	requested	fields)
into	an	anonymous	type,	a	SalesPerson	type,	or	a	new	custom	type.

Although	this	was	an	in-memory	operation,	the	benefit	of	this	technique	comes
when	querying	a	database	with	a	library	like	LINQ	to	Entities.	In	that	case,
LINQ	to	Entities	translates	the	LINQ	query	into	a	database	query	that	only
requests	the	fields	specified	in	the	select	clause.

4.2	Joining	Data

Problem
You	need	to	pull	data	from	different	sources	into	one	record.

Solution
Here	are	the	entities	to	join:

public	class	Product

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	string	Type	{	get;	set;	}

				public	decimal	Price	{	get;	set;	}

				public	string	Region	{	get;	set;	}

}

public	class	SalesPerson

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	string	Address	{	get;	set;	}

				public	string	City	{	get;	set;	}

				public	string	PostalCode	{	get;	set;	}

				public	string	Region	{	get;	set;	}

				public	string	ProductType	{	get;	set;	}

}

This	is	the	data	source:

public	class	InMemoryContext

{

				List<SalesPerson>	salesPeople	=

								new	List<SalesPerson>

								{

												new	SalesPerson

												{

																ID	=	1,

																Address	=	"123	1st	Street",

																City	=	"First	City",

																Name	=	"First	Person",

																PostalCode	=	"45678",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

												new	SalesPerson

												{

																ID	=	2,

																Address	=	"234	2nd	Street",

																City	=	"Second	City",

																Name	=	"Second	Person",

																PostalCode	=	"56789",

																Region	=	"Region	#2",

																ProductType	=	"Type	3"

												},

												new	SalesPerson

												{

																ID	=	3,

																Address	=	"345	3rd	Street",

																City	=	"Third	City",

																Name	=	"Third	Person",

																PostalCode	=	"67890",

																Region	=	"Region	#3",

																ProductType	=	"Type	1"

												},

												new	SalesPerson

												{

																ID	=	4,

																Address	=	"678	9th	Street",

																City	=	"Fourth	City",

																Name	=	"Fourth	Person",

																PostalCode	=	"90123",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

								};

				List<Product>	products	=

								new	List<Product>

								{

												new	Product

												{

																ID	=	1,

																Name	=	"Product	1",

																Price	=	123.45m,

																Type	=	"Type	2",

																Region	=	"Region	#1",

												},

												new	Product

												{

																ID	=	2,

																Name	=	"Product	2",

																Price	=	456.78m,

																Type	=	"Type	2",

																				Region	=	"Region	#2",

												},

												new	Product

												{

																ID	=	3,

																Name	=	"Product	3",

																Price	=	789.10m,

																Type	=	"Type	3",

																Region	=	"Region	#1",

												},

												new	Product

												{

																ID	=	4,

																Name	=	"Product	4",

																Price	=	234.56m,

																Type	=	"Type	2",

																Region	=	"Region	#1",

												},

								};

				public	List<SalesPerson>	SalesPeople	=>	salesPeople;

				public	List<Product>	Products	=>	products;

}

This	is	the	code	that	joins	the	entities:

class	Program

{

				static	void	Main()

				{

								var	context	=	new	InMemoryContext();

								var	salesProducts	=

												(from	person	in	context.SalesPeople

																join	product	in	context.Products	on

																(person.Region,	person.ProductType)

																equals

																(product.Region,	product.Type)

																select	new

																{

																				Person	=	person.Name,

																				Product	=	product.Name,

																				product.Region,

																				product.Type

																})

												.ToList();

								Console.WriteLine("Sales	People\n");

								salesProducts.ForEach(salesProd	=>

												Console.WriteLine(

																$"Person:	{salesProd.Person}\n"	+

																$"Product:	{salesProd.Product}\n"	+

																$"Region:	{salesProd.Region}\n"	+

																$"Type:	{salesProd.Type}\n"));

				}

}

Discussion
LINQ	joins	are	useful	when	data	comes	from	more	than	one	source.	A	company
might	have	merged	and	you	need	to	pull	in	data	from	each	of	their	databases,
you	might	be	using	a	micro-service	architecture	where	the	data	comes	from
different	services,	or	some	of	the	data	was	created	in-memory	and	you	need	to
correlate	it	with	database	records.

Often,	you	can’t	use	an	ID	because	if	the	data	comes	from	different	sources
they’ll	never	match	anyway.	The	best	you	can	hope	for	is	if	some	of	the	fields
line	up.	That	said,	if	you	have	a	single	field	that	matches,	that’s	great.	The	Main

method	of	the	solution	uses	a	composite	key	of	Region	and	ProductType.

NOTE
The	select	clause	uses	an	anonymous	type	for	a	custom	projection.	Another	example	of	shaping
object	data	as	discussed	in	Section	4.1.

Even	though	this	example	uses	a	tuple	for	the	composite	key,	you	could	use	an
anonymous	type	for	the	same	results.	The	tuple	is	a	little	less	syntax.

See	Also
4.1	Transforming	Object	Shape

4.3	Performing	Left	Joins

Problem
You	need	a	join	on	two	data	sources,	but	one	of	those	data	sources	doesn’t	have
a	matching	record.

Solution
Here	are	the	entities	to	perform	a	left	join	with:

public	class	Product

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	string	Type	{	get;	set;	}

				public	decimal	Price	{	get;	set;	}

				public	string	Region	{	get;	set;	}

}

public	class	SalesPerson

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	string	Address	{	get;	set;	}

				public	string	City	{	get;	set;	}

				public	string	PostalCode	{	get;	set;	}

				public	string	Region	{	get;	set;	}

				public	string	ProductType	{	get;	set;	}

}

This	is	the	data	source:

public	class	InMemoryContext

{

				List<SalesPerson>	salesPeople	=

								new	List<SalesPerson>

								{

												new	SalesPerson

												{

																ID	=	1,

																Address	=	"123	1st	Street",

																City	=	"First	City",

																Name	=	"First	Person",

																PostalCode	=	"45678",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

												new	SalesPerson

												{

																ID	=	2,

																Address	=	"234	2nd	Street",

																City	=	"Second	City",

																Name	=	"Second	Person",

																PostalCode	=	"56789",

																Region	=	"Region	#2",

																ProductType	=	"Type	3"

												},

												new	SalesPerson

												{

																ID	=	3,

																Address	=	"345	3rd	Street",

																City	=	"Third	City",

																Name	=	"Third	Person",

																PostalCode	=	"67890",

																Region	=	"Region	#3",

																ProductType	=	"Type	1"

												},

												new	SalesPerson

												{

																ID	=	3,

																Address	=	"678	9th	Street",

																City	=	"Fourth	City",

																Name	=	"Fourth	Person",

																PostalCode	=	"90123",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

								};

				List<Product>	products	=

								new	List<Product>

								{

												new	Product

												{

																ID	=	1,

																Name	=	"Product	1",

																Price	=	123.45m,

																Type	=	"Type	2",

																Region	=	"Region	#1",

												},

												new	Product

												{

																ID	=	2,

																Name	=	"Product	2",

																Price	=	456.78m,

																Type	=	"Type	2",

																				Region	=	"Region	#2",

												},

												new	Product

												{

																ID	=	3,

																Name	=	"Product	3",

																Price	=	789.10m,

																Type	=	"Type	3",

																Region	=	"Region	#1",

												},

												new	Product

												{

																ID	=	4,

																Name	=	"Product	4",

																Price	=	234.56m,

																Type	=	"Type	2",

																Region	=	"Region	#1",

												},

								};

				public	List<SalesPerson>	SalesPeople	=>	salesPeople;

				public	List<Product>	Products	=>	products;

}

The	following	code	performs	the	left	join	operation:

class	Program

{

				static	void	Main()

				{

								var	context	=	new	InMemoryContext();

								var	salesProducts	=

												(from	product	in	context.Products

																join	person	in	context.SalesPeople	on

																(product.Region,	product.Type)

																equals

																(person.Region,	person.ProductType)

																into	prodPersonTemp

																from	prodPerson	in	prodPersonTemp.DefaultIfEmpty()

																select	new

																{

																				Person	=	prodPerson?.Name	??	"(none)",

																				Product	=	product.Name,

																				product.Region,

																				product.Type

																})

												.ToList();

								Console.WriteLine("Sales	People\n");

								salesProducts.ForEach(salesProd	=>

												Console.WriteLine(

																$"Person:	{salesProd.Person}\n"	+

																$"Product:	{salesProd.Product}\n"	+

																$"Region:	{salesProd.Region}\n"	+

																$"Type:	{salesProd.Type}\n"));

				}

}

Discussion

This	solution	is	similar	to	the	join,	discussed	in	Section	4.3.	The	difference	is
in	the	LINQ	query	in	the	Main	method.	Notice	the	into	prodPersonTemp
clause.	This	is	a	temporary	holder	for	the	joined	data.	The	from	clause	(below
into)	queries	prodPersonTemp.DefaultIfEmpty().

The	DefaultIfEmpty()	performs	the	left	join,	where	the	prodPerson
range	variable	receives	all	of	the	product	objects	and	only	the	matching	person
objects.

Order	on	the	first	from	clause	is	important	here	because	it	specifies	the	left	side
of	the	query.	the	join	clause	specifies	the	right	side	of	the	query,	which	might
not	have	matching	values.

Notice	how	the	select	clause	checks	prodPerson?.Name	for	null	and
replaces	it	with	(none).	This	ensures	the	output	indicates	that	there	wasn’t	a
match,	rather	than	relying	on	later	code	to	check	for	null.

4.4	Grouping	Data

Problem
You	need	to	aggregate	data	into	custom	groups.

Solution
Here’s	the	entity	to	group:

public	class	SalesPerson

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	string	Address	{	get;	set;	}

				public	string	City	{	get;	set;	}

				public	string	PostalCode	{	get;	set;	}

				public	string	Region	{	get;	set;	}

				public	string	ProductType	{	get;	set;	}

}

This	is	the	data	source:

public	class	InMemoryContext

{

				List<SalesPerson>	salesPeople	=

								new	List<SalesPerson>

								{

												new	SalesPerson

												{

																ID	=	1,

																Address	=	"123	1st	Street",

																City	=	"First	City",

																Name	=	"First	Person",

																PostalCode	=	"45678",

																Region	=	"Region	#1"

												},

												new	SalesPerson

												{

																ID	=	2,

																Address	=	"234	2nd	Street",

																City	=	"Second	City",

																Name	=	"Second	Person",

																PostalCode	=	"56789",

																Region	=	"Region	#2"

												},

												new	SalesPerson

												{

																ID	=	3,

																Address	=	"345	3rd	Street",

																City	=	"Third	City",

																Name	=	"Third	Person",

																PostalCode	=	"67890",

																Region	=	"Region	#3"

												},

												new	SalesPerson

												{

																ID	=	4,

																Address	=	"678	9th	Street",

																City	=	"Second	City",

																Name	=	"Fourth	Person",

																PostalCode	=	"56788",

																Region	=	"Region	#2"

												},

								};

				public	List<SalesPerson>	SalesPeople	=>	salesPeople;

}

The	following	code	groups	the	data:

class	Program

{

				static	void	Main()

				{

								var	context	=	new	InMemoryContext();

								var	salesPeopleByRegion	=

												(from	person	in	context.SalesPeople

																group	person	by	person.Region	into	personGroup

																select	personGroup)

												.ToList();

								Console.WriteLine("Sales	People	by	Region");

								foreach	(var	region	in	salesPeopleByRegion)

								{

												Console.WriteLine($"\nRegion:	{region.Key}");

												foreach	(var	person	in	region)

																Console.WriteLine($"		{person.Name}");

								}

				}

}

Discussion
Grouping	is	useful	when	you	need	a	hierarchy	of	data.	It	creates	a
parent/children	relationship	between	data	where	the	parent	is	the	main	category
and	the	children	are	objects	(representing	data	records)	in	that	category.

In	the	solution,	each	SalesPerson	has	a	Region	property,	which	is
duplicated	in	the	InMemoryContext	data	source.	This	helps	see	how	multiple
SalesPerson	entities	can	be	grouped	into	a	single	region.

In	the	Main	method	query,	there’s	a	group	by	clause,	specifying	the	range
variable,	person,	to	group	and	the	key,	Region,	to	group	by.	The
personGroup	holds	the	result.	In	this	example,	the	select	clause	uses	the
entire	personGroup,	rather	than	doing	a	custom	projection.

Inside	of	salesPeopleByRegion	is	a	set	of	top-level	objects,	representing

each	group.	Each	of	those	groups	has	a	collection	of	objects	belonging	to	that
group,	like	this:

Key	(Region):

				Items	(IEnumerable<SalesPerson>)

The	foreach	loop	demonstrates	this	group	structure	and	how	it	could	be	used.
At	the	top	level,	each	object	has	a	Key	property.	Because	the	original	query	was
by	Region,	that	key	will	have	the	name	of	the	Region.

The	nested	foreach	loop	iterates	on	the	group,	reading	each	SalesPerson
instance	in	that	group.	You	can	see	where	it	prints	out	the	Name	of	each
SalesPerson	instance	in	that	group.

4.5	Building	Incremental	Queries

Problem
You	need	to	customize	a	query	based	on	a	user’s	search	criteria,	but	don’t	want
to	concatenate	strings.

Solution
This	is	the	type	to	query:

public	class	SalesPerson

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	string	Address	{	get;	set;	}

				public	string	City	{	get;	set;	}

				public	string	PostalCode	{	get;	set;	}

				public	string	Region	{	get;	set;	}

				public	string	ProductType	{	get;	set;	}

}

Here’s	the	data	source:

public	class	InMemoryContext

{

				List<SalesPerson>	salesPeople	=

								new	List<SalesPerson>

								{

												new	SalesPerson

												{

																ID	=	1,

																Address	=	"123	1st	Street",

																City	=	"First	City",

																Name	=	"First	Person",

																PostalCode	=	"45678",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

												new	SalesPerson

												{

																ID	=	2,

																Address	=	"234	2nd	Street",

																City	=	"Second	City",

																Name	=	"Second	Person",

																PostalCode	=	"56789",

																Region	=	"Region	#2",

																ProductType	=	"Type	3"

												},

												new	SalesPerson

												{

																ID	=	3,

																Address	=	"345	3rd	Street",

																City	=	"Third	City",

																Name	=	"Third	Person",

																PostalCode	=	"67890",

																Region	=	"Region	#3",

																ProductType	=	"Type	1"

												},

												new	SalesPerson

												{

																ID	=	4,

																Address	=	"678	9th	Street",

																City	=	"Fourth	City",

																Name	=	"Fourth	Person",

																PostalCode	=	"90123",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

								};

				public	List<SalesPerson>	SalesPeople	=>	salesPeople;

}

This	code	builds	a	dynamic	query:

class	Program

{

				static	void	Main()

				{

								SalesPerson	searchCriteria	=	GetCriteriaFromUser();

								List<SalesPerson>	salesPeople	=	

QuerySalesPeople(searchCriteria);

								PrintResults(salesPeople);

				}

				static	SalesPerson	GetCriteriaFromUser()

				{

								var	person	=	new	SalesPerson();

								Console.WriteLine("Sales	Person	Search");

								Console.WriteLine("(press	Enter	to	skip	an	entry)\n");

								Console.Write($"{nameof(SalesPerson.Address)}:	");

								person.Address	=	Console.ReadLine();

								Console.Write($"{nameof(SalesPerson.City)}:	");

								person.City	=	Console.ReadLine();

								Console.Write($"{nameof(SalesPerson.Name)}:	");

								person.Name	=	Console.ReadLine();

								Console.Write($"{nameof(SalesPerson.PostalCode)}:	");

								person.PostalCode	=	Console.ReadLine();

								Console.Write($"{nameof(SalesPerson.ProductType)}:	");

								person.ProductType	=	Console.ReadLine();

								Console.Write($"{nameof(SalesPerson.Region)}:	");

								person.Region	=	Console.ReadLine();

								return	person;

				}

				static	List<SalesPerson>	QuerySalesPeople(SalesPerson	criteria)

				{

								var	ctx	=	new	InMemoryContext();

								IEnumerable<SalesPerson>	salesPeopleQuery	=

												from	people	in	ctx.SalesPeople

												select	people;

								if	(!string.IsNullOrWhiteSpace(criteria.Address))

												salesPeopleQuery	=	salesPeopleQuery.Where(

																person	=>	person.Address	==	criteria.Address);

								if	(!string.IsNullOrWhiteSpace(criteria.City))

												salesPeopleQuery	=	salesPeopleQuery.Where(

																person	=>	person.City	==	criteria.City);

								if	(!string.IsNullOrWhiteSpace(criteria.Name))

												salesPeopleQuery	=	salesPeopleQuery.Where(

																person	=>	person.Name	==	criteria.Name);

								if	(!string.IsNullOrWhiteSpace(criteria.PostalCode))

												salesPeopleQuery	=	salesPeopleQuery.Where(

																person	=>	person.PostalCode	==	criteria.PostalCode);

								if	(!string.IsNullOrWhiteSpace(criteria.ProductType))

												salesPeopleQuery	=	salesPeopleQuery.Where(

																person	=>	person.ProductType	==	criteria.ProductType);

								if	(!string.IsNullOrWhiteSpace(criteria.Region))

												salesPeopleQuery	=	salesPeopleQuery.Where(

																person	=>	person.Region	==	criteria.Region);

								List<SalesPerson>	salesPeople	=	salesPeopleQuery.ToList();

								return	salesPeople;

				}

				static	void	PrintResults(List<SalesPerson>	salesPeople)

				{

								Console.WriteLine("\nSales	People\n");

								salesPeople.ForEach(person	=>

												Console.WriteLine($"{person.ID}.	{person.Name}"));

				}

}

Discussion
One	of	the	worst	things	a	developer	can	do	from	a	security	perspective	is	to
build	a	concatenated	string	from	user	input	to	send	as	a	SQL	statement	to	a
database.	The	problem	is	that	string	concatenation	allows	the	user’s	input	to	be

interpreted	as	part	of	the	query.	In	most	cases,	people	just	want	to	perform	a
search.	However,	there	are	malicious	users	who	intentionally	probe	systems	for
this	type	of	vulnerability.	They	don’t	have	to	be	professional	hackers	as	there	are
plenty	of	novices	(often	referred	to	as	script	kiddies)	who	want	to	practice	and
have	fun.	In	the	worst	case,	hackers	can	access	private	or	proprietary	information
or	even	take	over	a	machine.	Once	into	one	machine	on	a	network,	the	hacker	is
on	the	inside	and	can	monkey	bar	into	other	computers	and	take	over	your
network.	This	particular	problem	is	called	a	SQL	Injection	attack	and	this	section
explains	how	to	avoid	it.

NOTE
From	a	security	point	of	view,	no	computer	is	theoreticallly	100%	secure	because	there’s	always	a	level
of	effort,	either	physical	or	virtual,	where	a	computer	can	be	broken	into.	In	practicality,	security	efforts
can	grow	to	a	point	that	they	become	prohibitively	expensive	because	of	the	cost	involved.	Your	goal	is
to	perform	a	threat	assessment	of	a	system	(outside	the	scope	of	this	book)	that’s	strong	enough	to	deter
potential	hackers.	In	most	cases,	having	not	been	able	to	perform	the	typical	attacks,	like	SQL	Injection,
a	hacker	will	assess	their	own	costs	of	attacking	your	system	and	move	on	to	a	different	system	that	is
less	time	consuming	or	expensive.	This	section	offers	a	low	cost	option	to	solve	a	high	cost	security
disaster.

The	scenario	for	this	section	imagines	a	situation	where	the	the	user	can	perform
a	search.	They	fill	in	the	data	and	the	application	dynamically	builds	a	query,
based	on	the	criteria	the	user	entered.

In	the	solution,	the	Program	class	has	a	method	named
GetCriteriaFromUser.	The	purpose	of	this	method	is	to	ask	a	question	for
each	field	inside	of	SalesPerson.	This	becomes	the	criteria	for	building	a
dynamic	query.	Any	fields	left	blank	aren’t	included	in	the	final	query.

The	QuerySalesPeople	method	starts	with	a	LINQ	query	for
ctx.SalesPeople.	However,	notice	that	this	isn’t	in	parenthesis	or	calling
the	ToList	operator,	like	previous	sections.	Calling	ToList	would	have
materialized	the	query,	causing	it	to	execute.	However,	we	aren’t	doing	that	here
-	the	code	is	just	building	a	query.	That’s	why	the	salesPersonQuery	has
the	IEnumerable<SalesPerson>	type,	indicating	that	it’s	a	LINQ	to
Objects	result,	rather	than	a	List<SalesPerson>	we	would	have	gotten
back	via	a	call	to	ToList.

Example	4-1.

This	recipe	takes	advantage	of	a	feature	of	LINQ,	known	as	deferred	query
execution,	which	allows	you	to	build	the	query	that	won’t	execute	until	you	tell
it	to.	In	addition	to	facilitating	dynamic	query	construction,	deferred	execution	is
also	efficient	because	there’s	only	a	single	query	sent	to	the	database,	rather	than
each	time	the	algorithm	calls	a	specific	LINQ	operator.

With	the	salesPersonQuery	reference,	the	code	checks	each
SalesPerson	field	for	a	value.	If	the	user	did	enter	a	value	for	that	field,	the
code	uses	a	Where	operator	to	check	for	equality	with	what	the	user	entered.

NOTE
You’ve	seen	LINQ	queries	with	language	syntax	in	previous	sections.	However,	this	section	takes
advantage	of	another	way	to	use	LINQ,	via	fluent	interface.	This	is	much	like	the	builder	pattern	you
learned	about	in	Section	1.10	Building	a	Fluid	Interface.

So	far	the	only	thing	that	has	happened	is	that	we’ve	dynamically	built	a	LINQ
query	and,	because	of	deferred	execution,	the	query	hasn’t	run	yet.	Finally,	the
code	calls	ToList	on	salesPersonQuery,	materializing	the	query.	As	the
return	type	of	this	method	indicates,	this	returns	a	List<SalesPerson>.

Now,	the	algorithm	has	built	and	executed	a	dynamic	query,	protected	from	SQL
Injection	attack.	This	protection	comes	from	then	fact	that	the	LINQ	provider
parameterized	user	input	so	it	will	be	treated	as	parameter	data,	rather	than	as
part	of	the	query.	As	a	side	benefit,	you	also	have	a	method	with	strongly	typed
code,	where	you	don’t	have	to	worry	about	inadvertent	and	hard	to	find	typos.

See	Also
1.10	Building	a	Fluid	Interface

4.6	Querying	Distinct	Objects

Problem

You	have	a	list	of	objects	with	duplicates	and	need	to	transform	that	to	a	distinct
list	of	unique	objects.

Solution
Here’s	an	object	that	won’t	support	distinct	queries:

public	class	SalesPerson

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	string	Address	{	get;	set;	}

				public	string	City	{	get;	set;	}

				public	string	PostalCode	{	get;	set;	}

				public	string	Region	{	get;	set;	}

				public	string	ProductType	{	get;	set;	}

}

Here’s	how	to	fix	that	object	to	support	distinct	queries:

public	class	SalesPerson	:	IEqualityComparer<SalesPerson>

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	string	Address	{	get;	set;	}

				public	string	City	{	get;	set;	}

				public	string	PostalCode	{	get;	set;	}

				public	string	Region	{	get;	set;	}

				public	string	ProductType	{	get;	set;	}

				public	bool	Equals(SalesPerson	x,	SalesPerson	y)

				{

								return	x.ID	==	y.ID;

				}

				public	int	GetHashCode(SalesPerson	obj)

				{

								return	ID.GetHashCode();

				}

}

Here’s	the	data	source:

public	class	InMemoryContext

{

				List<SalesPerson>	salesPeople	=

								new	List<SalesPerson>

								{

												new	SalesPerson

												{

																ID	=	1,

																Address	=	"123	1st	Street",

																City	=	"First	City",

																Name	=	"First	Person",

																PostalCode	=	"45678",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

												new	SalesPerson

												{

																ID	=	2,

																Address	=	"234	2nd	Street",

																City	=	"Second	City",

																Name	=	"Second	Person",

																PostalCode	=	"56789",

																Region	=	"Region	#2",

																ProductType	=	"Type	3"

												},

												new	SalesPerson

												{

																ID	=	3,

																Address	=	"345	3rd	Street",

																City	=	"Third	City",

																Name	=	"Third	Person",

																PostalCode	=	"67890",

																Region	=	"Region	#3",

																ProductType	=	"Type	1"

												},

												new	SalesPerson

												{

																ID	=	4,

																Address	=	"678	9th	Street",

																City	=	"Fourth	City",

																Name	=	"Fourth	Person",

																PostalCode	=	"90123",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

												new	SalesPerson

												{

																ID	=	4,

																Address	=	"678	9th	Street",

																City	=	"Fourth	City",

																Name	=	"Fourth	Person",

																PostalCode	=	"90123",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

								};

				public	List<SalesPerson>	SalesPeople	=>	salesPeople;

}

This	code	filters	by	distinct	objects:

class	Program

{

				static	void	Main(string[]	args)

				{

								var	salesPeopleWithoutComparer	=

												(from	person	in	new	InMemoryContext().SalesPeople

																select	person)

												.Distinct()

												.ToList();

								PrintResults(salesPeopleWithoutComparer,	"Without	Comparer");

								var	salesPeopleWithComparer	=

												(from	person	in	new	InMemoryContext().SalesPeople

																select	person)

												.Distinct(new	SalesPerson())

												.ToList();

								PrintResults(salesPeopleWithComparer,	"With	Comparer");

				}

				static	void	PrintResults(List<SalesPerson>	salesPeople,	string	

title)

				{

								Console.WriteLine($"\n{title}\n");

								salesPeople.ForEach(person	=>

												Console.WriteLine($"{person.ID}.	{person.Name}"));

				}

}

Discussion
Sometimes	you	have	a	list	of	entities	with	duplicates,	either	because	of	some
application	processing	or	the	type	of	database	query	that	results	in	duplicates.
Often,	you	need	a	list	of	unique	objects.	e.g.	you’re	materializing	into	a
Dictionary	collection	that	doesn’t	allow	duplicates.

The	LINQ	Distinct	operator	helps	get	a	list	of	unique	objects.	At	first	glance,	this
is	easy	as	shown	in	the	first	query	of	the	Main	method	that	uses	the
Distinct()	operator.	Notice	that	it	doesn’t	have	parameters.	However,	an
inspection	of	the	results	shows	that	you	still	have	the	same	duplicates	in	the	data
that	you	started	with.

The	problem,	and	subsequent	solution,	might	not	be	immediately	obvious
because	it	relies	on	combining	a	few	different	C#	concepts.	First,	think	about
how	Distinct	should	be	able	to	tell	the	difference	between	objects	-	it	has	to
perform	a	comparison.	Next,	consider	that	the	type	of	SalesPerson	is	class.
That’s	important	because	classes	are	reference	types,	which	have	reference
equality.	When	Distinct	does	a	reference	comparison,	no	two	object
references	(which	refer	to	an	object	in	memory)	are	the	same	because	each
object	has	a	unique	reference.	Finally,	you	need	to	write	code	to	compare
SalesPerson	instances	to	see	if	they’re	equal	and	tell	Distinct	about	that
code.

There	are	two	implementations	of	SalesPerson	in	the	solution.	The	first	is	a
normal	class	and	the	second	implements
IEqualityComparer<SalesPerson>.	The	normal	class	doesn’t	work
because	it	has	reference	equality.	However	the	SalesPerson	class	that
implements	IEqualityComparer<SalesPerson>	compares	properly
because	it	has	an	Equals	method.	In	this	case,	checking	ID	is	sufficient	to
determine	that	instances	are	equal,	assuming	that	each	entity	comes	from	the
same	data	source	with	unique	ID	fields.

Now,	SalesPerson	knows	how	to	compare	SalesPerson	instances,	but
that	isn’t	the	end	of	the	story.	If	you	ran	the	first	query	in	Main	with
Distinct()	(no	parameter),	the	results	will	still	have	duplicates.	The	problem
is	that	Distinct	doesn’t	know	how	to	compare	the	objects	so	it	defaults	to	the
instance	type,	class,	which,	as	explained	earlier,	is	a	reference	type.

The	solution	is	to	use	the	second	query	in	Main	that	uses	the	call	to
Distinct(new	SalesPerson())	(with	parameter).	This	uses	the
Distinct	operator’s	overload	with	the	IEqualityComparer<T>
overload.	Since	SalesPerson	implements
IEqualityComparer<SalesPerson>	this	works.

See	Also
2.5	Checking	for	Type	Equality

4.7	Simplifying	Queries

Problem
A	query	has	become	too	complex	and	you	need	to	make	it	more	readable.

Solution
Here’s	the	entity	to	query:

public	class	SalesPerson

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	string	Address	{	get;	set;	}

				public	string	City	{	get;	set;	}

				public	string	PostalCode	{	get;	set;	}

				public	string	Region	{	get;	set;	}

				public	string	ProductType	{	get;	set;	}

				public	string	TotalSales	{	get;	set;	}

}

This	is	the	data	source:

public	class	InMemoryContext

{

				List<SalesPerson>	salesPeople	=

								new	List<SalesPerson>

								{

												new	SalesPerson

												{

																ID	=	1,

																Address	=	"123	1st	Street",

																City	=	"First	City",

																Name	=	"First	Person",

																PostalCode	=	"45678",

																Region	=	"Region	#1",

																ProductType	=	"Type	2",

																TotalSales	=	"654.32"

												},

												new	SalesPerson

												{

																ID	=	2,

																Address	=	"234	2nd	Street",

																City	=	"Second	City",

																Name	=	"Second	Person",

																PostalCode	=	"56789",

																Region	=	"Region	#2",

																ProductType	=	"Type	3",

																TotalSales	=	"765.43"

												},

												new	SalesPerson

												{

																ID	=	3,

																Address	=	"345	3rd	Street",

																City	=	"Third	City",

																Name	=	"Third	Person",

																PostalCode	=	"67890",

																Region	=	"Region	#3",

																ProductType	=	"Type	1",

																TotalSales	=	"876.54"

												},

												new	SalesPerson

												{

																ID	=	4,

																Address	=	"678	9th	Street",

																City	=	"Fourth	City",

																Name	=	"Fourth	Person",

																PostalCode	=	"90123",

																Region	=	"Region	#1",

																ProductType	=	"Type	2",

																TotalSales	=	"987.65"

												},

												new	SalesPerson

												{

																ID	=	4,

																Address	=	"678	9th	Street",

																City	=	"Fourth	City",

																Name	=	"Fourth	Person",

																PostalCode	=	"90123",

																Region	=	"Region	#1",

																ProductType	=	"Type	2",

																TotalSales	=	"109.87"

												},

								};

				public	List<SalesPerson>	SalesPeople	=>	salesPeople;

}

The	following	shows	how	to	simplify	a	query	projection:

class	Program

{

				static	void	Main(string[]	args)

				{

								decimal	TotalSales	=	0;

								var	salesPeopleWithAddresses	=

												(from	person	in	new	InMemoryContext().SalesPeople

																let	FullAddress	=

																$"{person.Address}\n"	+

																$"{person.City},	{person.PostalCode}"

																let	salesOkay	=

																				decimal.TryParse(person.TotalSales,	out	

TotalSales)

																select	new

																{

																				person.ID,

																				person.Name,

																				FullAddress,

																				TotalSales

																})

												.ToList();

								Console.WriteLine($"\nSales	People	and	Addresses\n");

								salesPeopleWithAddresses.ForEach(person	=>

												Console.WriteLine(

																$"{person.ID}.	{person.Name}:	{person.TotalSales:C}\n"

+

																$"{person.FullAddress}\n"));

				}

}

Discussion
Sometimes	LINQ	queries	get	complex.	If	the	code	is	still	hard	to	read,	it’s	also
hard	to	maintain.	One	option	is	to	go	imperative	and	re-write	the	query	as	a	loop.
Another	is	to	use	the	let	clause	for	simplification.

In	the	solution,	the	Main	method	has	a	query	with	a	custom	projection	into	an
anonymous	type.	Sometimes	queries	are	complex	because	they	have	sub-queries,
or	other	logic,	inside	of	the	projection.	For	example,	look	at	FullAddress,
being	built	in	a	let	clause.	Without	that	simplification,	the	code	would	have
ended	up	inside	the	projection.

Another	scenario	you	might	face	is	when	parsing	object	input	from	string.	The
example	uses	a	TryParse	in	a	let	clause,	which	is	impossible	to	put	in	the
projection.	This	is	a	little	tricky	because	the	out	parameter,	TotalSales,	is
outside	of	the	query.	We	ignore	the	results	of	TryParse,	but	can	now	assign
TotalSales	in	the	projection.

4.8	Operating	on	Sets

Problem
You	want	to	combine	two	sets	of	objects	without	duplication.

Solution
Here’s	the	entity	to	query:

public	class	SalesPerson	:	IEqualityComparer<SalesPerson>

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	string	Address	{	get;	set;	}

				public	string	City	{	get;	set;	}

				public	string	PostalCode	{	get;	set;	}

				public	string	Region	{	get;	set;	}

				public	string	ProductType	{	get;	set;	}

				public	bool	Equals(SalesPerson	x,	SalesPerson	y)

				{

								return	x.ID	==	y.ID;

				}

				public	int	GetHashCode(SalesPerson	obj)

				{

								return	ID.GetHashCode();

				}

}

Here’s	the	data	source:

public	class	InMemoryContext

{

				List<SalesPerson>	salesPeople	=

								new	List<SalesPerson>

								{

												new	SalesPerson

												{

																ID	=	1,

																Address	=	"123	1st	Street",

																City	=	"First	City",

																Name	=	"First	Person",

																PostalCode	=	"45678",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

												new	SalesPerson

												{

																ID	=	2,

																Address	=	"234	2nd	Street",

																City	=	"Second	City",

																Name	=	"Second	Person",

																PostalCode	=	"56789",

																Region	=	"Region	#2",

																ProductType	=	"Type	3"

												},

												new	SalesPerson

												{

																ID	=	3,

																Address	=	"345	3rd	Street",

																City	=	"Third	City",

																Name	=	"Third	Person",

																PostalCode	=	"67890",

																Region	=	"Region	#3",

																ProductType	=	"Type	1"

												},

												new	SalesPerson

												{

																ID	=	4,

																Address	=	"678	9th	Street",

																City	=	"Fourth	City",

																Name	=	"Fourth	Person",

																PostalCode	=	"90123",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

								};

				public	List<SalesPerson>	SalesPeople	=>	salesPeople;

}

This	code	shows	how	to	perform	set	operations:

class	Program

{

				static	InMemoryContext	ctx	=	new	InMemoryContext();

				static	void	Main()

				{

								System.Console.WriteLine("\nLINQ	Set	Operations");

								DoUnion();

								DoExcept();

								DoIntersection();

								System.Console.WriteLine("\nComplete.\n");

				}

				static	void	DoUnion()

				{

								var	dataSource1	=

												(from	person	in	ctx.SalesPeople

																where	person.ID	<	3

																select	person)

												.ToList();

								var	dataSource2	=

												(from	person	in	ctx.SalesPeople

																where	person.ID	>	2

																select	person)

												.ToList();

								List<SalesPerson>	union	=

												dataSource1

																.Union(dataSource2,	new	SalesPerson())

																.ToList();

								PrintResults(union,	"Union	Results");

				}

				static	void	DoExcept()

				{

								var	dataSource1	=

												(from	person	in	ctx.SalesPeople

																select	person)

												.ToList();

								var	dataSource2	=

												(from	person	in	ctx.SalesPeople

																where	person.ID	==	4

																select	person)

												.ToList();

								List<SalesPerson>	union	=

												dataSource1

																.Except(dataSource2,	new	SalesPerson())

																.ToList();

								PrintResults(union,	"Except	Results");

				}

				static	void	DoIntersection()

				{

								var	dataSource1	=

												(from	person	in	ctx.SalesPeople

																where	person.ID	<	4

																select	person)

												.ToList();

								var	dataSource2	=

												(from	person	in	ctx.SalesPeople

																where	person.ID	>	2

																select	person)

												.ToList();

								List<SalesPerson>	union	=

												dataSource1

																.Intersect(dataSource2,	new	SalesPerson())

																.ToList();

								PrintResults(union,	"Intersect	Results");

				}

				static	void	PrintResults(List<SalesPerson>	salesPeople,	string	

title)

				{

								Console.WriteLine($"\n{title}\n");

								salesPeople.ForEach(person	=>

												Console.WriteLine($"{person.ID}.	{person.Name}"));

				}

}

Discussion
In	Section	4.2,	we	discussed	the	concept	of	joining	data	from	two	separate	data
sources.	The	examples	operate	in	that	same	spirit	and	show	different
manipulations,	based	on	sets.

The	first	method,	DoUnion,	gets	two	sets	of	data,	intentionally	filtering	by	ID
to	ensure	overlap.	From	the	reference	of	the	first	data	source,	the	code	calls	the
Union	operator	with	the	second	data	source	as	the	parameter.	This	results	in	a
set	of	data	from	both	data	sources,	including	duplicates.

The	DoExcept	method	is	similar	to	DoUnion,	but	uses	the	Except	operator.
This	results	in	a	set	of	all	the	objects	in	the	first	data	source.	However,	any
objects	in	the	second	data	source,	even	if	they	were	in	the	first,	won’t	appear	in
the	results.

Finally,	DoIntersect	is	similar	in	structure	to	DoUnion	and	DoExcept.
However,	it	queries	objects	that	are	only	in	both	data	sources.	If	any	object	is	in
one	data	source,	but	not	the	other,	it	won’t	appear	in	the	result.

LINQ	has	many	standard	operators	that,	just	like	the	set	operators,	are	very

powerful.	Before	performing	any	complex	operation	in	a	LINQ	query,	it’s	good
practice	to	review	standard	operators	to	see	if	there	exists	something	that	will
simplify	your	task.

See	Also
4.2	Joining	Data	4.3	Performing	Left	Joins

4.9	Building	a	Query	Filter	with	Expression	Trees

Problem
The	LINQ	where	clause	combines	via	AND	conditions,	but	you	need	a	where
that	works	as	an	OR	condition.

Solution
Here’s	the	entity	to	query:

public	class	SalesPerson

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	string	Address	{	get;	set;	}

				public	string	City	{	get;	set;	}

				public	string	PostalCode	{	get;	set;	}

				public	string	Region	{	get;	set;	}

				public	string	ProductType	{	get;	set;	}

}

This	is	the	data	source:

public	class	InMemoryContext

{

				List<SalesPerson>	salesPeople	=

								new	List<SalesPerson>

								{

												new	SalesPerson

												{

																ID	=	1,

																Address	=	"123	1st	Street",

																City	=	"First	City",

																Name	=	"First	Person",

																PostalCode	=	"45678",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

												new	SalesPerson

												{

																ID	=	2,

																Address	=	"234	2nd	Street",

																City	=	"Second	City",

																Name	=	"Second	Person",

																PostalCode	=	"56789",

																Region	=	"Region	#2",

																ProductType	=	"Type	3"

												},

												new	SalesPerson

												{

																ID	=	3,

																Address	=	"345	3rd	Street",

																City	=	"Third	City",

																Name	=	"Third	Person",

																PostalCode	=	"67890",

																Region	=	"Region	#3",

																ProductType	=	"Type	1"

												},

												new	SalesPerson

												{

																ID	=	4,

																Address	=	"678	9th	Street",

																City	=	"Fourth	City",

																Name	=	"Fourth	Person",

																PostalCode	=	"90123",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

								};

				public	List<SalesPerson>	SalesPeople	=>	salesPeople;

}

Here’s	an	extension	method	for	a	filtered	OR	operation:

public	static	class	CookbookExtensions

{

				public	static	IEnumerable<TParameter>	WhereOr<TParameter>(

								this	IEnumerable<TParameter>	query,

								Dictionary<string,	string>	criteria)

				{

								const	string	ParamName	=	"person";

								ParameterExpression	paramExpr	=

												Expression.Parameter(typeof(TParameter),	ParamName);

								Expression	accumulatorExpr	=	null;

								foreach	(var	criterion	in	criteria)

								{

												MemberExpression	paramMbr	=

																LambdaExpression.PropertyOrField(

																				paramExpr,	criterion.Key);

												MemberExpression	leftExpr	=

																Expression.Property(

																				paramExpr,

																				typeof(TParameter).GetProperty(criterion.Key));

												Expression	rightExpr	=

																Expression.Constant(criterion.Value,	typeof(string));

												Expression	equalExpr	=

																Expression.Equal(leftExpr,	rightExpr);

												accumulatorExpr	=	accumulatorExpr	==	null

																?	equalExpr

																:	Expression.Or(accumulatorExpr,	equalExpr);

								}

								Expression<Func<TParameter,	bool>>	allClauses	=

												Expression.Lambda<Func<TParameter,	bool>>(

																accumulatorExpr,	paramExpr);

								Func<TParameter,	bool>	compiledClause	=	allClauses.Compile();

								return	query.Where(compiledClause);

				}

}

Here’s	the	code	that	consumes	the	new	extension	method:

class	Program

{

				static	void	Main()

				{

								SalesPerson	searchCriteria	=	GetCriteriaFromUser();

								List<SalesPerson>	salesPeople	=	

QuerySalesPeople(searchCriteria);

								PrintResults(salesPeople);

				}

				static	SalesPerson	GetCriteriaFromUser()

				{

								var	person	=	new	SalesPerson();

								Console.WriteLine("Sales	Person	Search");

								Console.WriteLine("(press	Enter	to	skip	an	entry)\n");

								Console.Write($"{nameof(SalesPerson.Address)}:	");

								person.Address	=	Console.ReadLine();

								Console.Write($"{nameof(SalesPerson.City)}:	");

								person.City	=	Console.ReadLine();

								Console.Write($"{nameof(SalesPerson.Name)}:	");

								person.Name	=	Console.ReadLine();

								Console.Write($"{nameof(SalesPerson.PostalCode)}:	");

								person.PostalCode	=	Console.ReadLine();

								Console.Write($"{nameof(SalesPerson.ProductType)}:	");

								person.ProductType	=	Console.ReadLine();

								Console.Write($"{nameof(SalesPerson.Region)}:	");

								person.Region	=	Console.ReadLine();

								return	person;

				}

				static	List<SalesPerson>	QuerySalesPeople(SalesPerson	criteria)

				{

								var	ctx	=	new	InMemoryContext();

								var	filters	=	new	Dictionary<string,	string>();

								IEnumerable<SalesPerson>	salesPeopleQuery	=

												from	people	in	ctx.SalesPeople

												select	people;

								if	(!string.IsNullOrWhiteSpace(criteria.Address))

												filters[nameof(criteria.Address)]	=	criteria.Address;

								if	(!string.IsNullOrWhiteSpace(criteria.City))

												filters[nameof(criteria.City)]	=	criteria.City;

								if	(!string.IsNullOrWhiteSpace(criteria.Name))

												filters[nameof(criteria.Name)]	=	criteria.Name;

								if	(!string.IsNullOrWhiteSpace(criteria.PostalCode))

												filters[nameof(criteria.PostalCode)]	=	

criteria.PostalCode;

								if	(!string.IsNullOrWhiteSpace(criteria.ProductType))

												filters[nameof(criteria.ProductType)]	=	

criteria.ProductType;

								if	(!string.IsNullOrWhiteSpace(criteria.Region))

												filters[nameof(criteria.Region)]	=	criteria.Region;

								salesPeopleQuery	=

												salesPeopleQuery.WhereOr<SalesPerson>(filters);

								List<SalesPerson>	salesPeople	=	salesPeopleQuery.ToList();

								return	salesPeople;

				}

				static	void	PrintResults(List<SalesPerson>	salesPeople)

				{

								Console.WriteLine("\nSales	People\n");

								salesPeople.ForEach(person	=>

												Console.WriteLine($"{person.ID}.	{person.Name}"));

				}

}

Discussion
Section	4.5	showed	the	power	of	dynamic	queries	in	LINQ.	However,	that	isn’t
the	end	of	what	you	can	do.	With	Expression	Trees,	you	can	make	LINQ	to	any
type	of	query.	If	the	standard	operators	don’t	provide	something	you	need,	you
can	use	Expression	Trees.	This	section	does	just	that,	showing	how	to	use
Expression	Trees	to	run	a	dynamic	WhereOr	operation.

The	motivation	for	a	WhereOr	comes	from	the	fact	that	the	standard	Where
operator	combines	in	an	AND	comparison.	In	Section	4.5,	all	of	those	Where
operators	had	an	AND	relationship.	This	means	that	a	given	entity	must	have	a
value	equal	to	each	of	the	fields	(that	the	user	specified	in	the	criteria)	to	get	a

match.	With	the	WhereOr	in	this	section,	all	of	the	fields	have	an	OR
relationship	and	a	match	on	only	one	of	the	fields	is	neccessary	for	inclusion	in
results.

In	the	solution,	the	GetCriteriaFromUser	method	gets	the	values	for	each
SalesPerson	property.	QuerySalesPeople	starts	a	query	for	deferred
execution,	as	explained	in	Section	4.5,	and	builds	a	Dictionary<string,
string>	of	filters.

The	CookbookExtensions	class	has	the	WhereOr	extension	method	that
accepts	the	filters.	The	high	level	description	of	what	WhereOr	is	trying	to
accomplish	comes	from	the	fact	that	it	needs	to	return	an
IEnumerable<SalesPerson>	for	the	caller	to	complete	a	LINQ	query.

First,	go	to	the	bottom	of	WhereOr	and	notice	that	it	returns	the	query	with	the
Where	operator	and	has	a	parameter	named	compiledQuery.	Remember	that
the	LINQ	Where	operator	takes	a	C#	lambda	expression	with	a	parameter	and	a
predicate.	We	want	a	filter	that	returns	an	object	if	any	one	field	of	an	object
matches,	based	on	the	input	criteria.	Therefore,	compiledQuery	must
evaluate	to	a	lambda	of	the	following	form:

person	=>	person.Field1	==	"val1"	||	...	||	person.FieldN	==	"valN"

That’s	a	lambda	with	OR	operators	for	each	value	in	the
Dictionary<string,	string>	criteria	parameter.	To	get	from	the
top	of	this	algorithm	to	the	bottom,	we	need	to	build	an	expression	tree	that
evaluates	to	this	form	of	lambda.

The	first	thing	WhereOr	does	is	create	a	ParameterExpression.	This	is
the	person	parameter	in	the	lambda.	It’s	the	parameter	to	every	comparison
expression	because	is	represents	the	TParameter,	which	is	an	instance	of
SalesPerson	in	this	example.

NOTE
This	example	called	the	ParameterExpression	person.	However,	if	this	is	a	generic	reusable
extension	method,	you	might	give	it	a	more	general	name,	like	parameterTerm	because
TParameter	could	be	any	type.	The	choice	of	person	in	this	example	is	there	to	clarify	that	the
ParameterExpression	represents	a	SalesPerson	instance	in	this	example.

The	Expression	accumulatorExpr,	as	it’s	name	suggests,	gathers	all	of
the	clauses	for	the	lambda	body.

The	foreach	statement	loops	through	the	Dictionary	collection,	which
returns	KeyValuePair	instances,	which	have	Key	and	Value	properties.	As
shown	in	the	QuerySalesPeople	method,	the	Key	property	is	the	name	of
the	SalesPerson	property	and	the	Value	property	is	what	the	user	entered.

For	each	clause	of	the	lambda,	the	left	hand	side	is	a	reference	to	the	property	on
the	SalesPerson	instance.	e.g.	person.Name.	To	create	that,	the	code
instantiates	the	paramMbr	using	the	paramExpr	(which	is	person).	That
becomes	a	parameter	of	leftExpr.

The	rightExpr	expression	is	a	constant	that	holds	the	value	to	compare	and
its	type.

Then	we	need	to	complete	the	expression	with	an	Equals	expression	for	the
left	and	right	expressions,	leftExpr	and	rightExpr,	respectively.

Finally,	we	need	to	OR	that	expression	with	any	others.	The	first	time	through
the	foreach	loop	accumulatorExpr	will	be	null,	so	we	just	assign	the
first	expression.	On	subsequent	expressions,	we	use	an	OR	expression	to	append
the	new	Equals	expression	to	accumulatorExpr.

After	iterating	through	each	input	field,	we	form	the	final
LambdaExpression	that	adds	the	parameter	that	was	used	in	the	left	side	of
each	Equals	expression.	Notice	that	the	result	is	an
Expression<Func<TParameter,	bool>>	which	has	a	parameter	type
matching	the	lambda	delegate	type	for	the	original	query,	which	is
Func<SalesPersion,	bool>.

Now,	we	have	an	expression	tree	that	was	build	dynamically.	However,	we	need
to	convert	that	expression	tree	into	runnable	code,	which	is	a	task	for	the
Expression.Compile	method.	This	gives	us	a	compiled	lambda	that	we	can
assign	to	the	Where	clause.

The	calling	code	receives	the	IEnumerable<SalesPerson>	from	the
WhereOr	method	and	materializes	the	query	with	a	call	to	ToList.	This

produces	a	list	of	any	SalesPerson	objects	that	match	at	least	one	of	the
user’s	specified	criteria.

See	Also
4.5	Building	Incremental	Queries

4.10	Querying	in	Parallel

Problem
You	want	to	improve	performance	and	your	query	could	benefit	from	multi-
threading.

Solution
Here’s	the	entity	to	query:

public	class	SalesPerson

{

				public	int	ID	{	get;	set;	}

				public	string	Name	{	get;	set;	}

				public	string	Address	{	get;	set;	}

				public	string	City	{	get;	set;	}

				public	string	PostalCode	{	get;	set;	}

				public	string	Region	{	get;	set;	}

				public	string	ProductType	{	get;	set;	}

}

This	is	the	data	source:

public	class	InMemoryContext

{

				List<SalesPerson>	salesPeople	=

								new	List<SalesPerson>

								{

												new	SalesPerson

												{

																ID	=	1,

																Address	=	"123	1st	Street",

																City	=	"First	City",

																Name	=	"First	Person",

																PostalCode	=	"45678",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

												new	SalesPerson

												{

																ID	=	2,

																Address	=	"234	2nd	Street",

																City	=	"Second	City",

																Name	=	"Second	Person",

																PostalCode	=	"56789",

																Region	=	"Region	#2",

																ProductType	=	"Type	3"

												},

												new	SalesPerson

												{

																ID	=	3,

																Address	=	"345	3rd	Street",

																City	=	"Third	City",

																Name	=	"Third	Person",

																PostalCode	=	"67890",

																Region	=	"Region	#3",

																ProductType	=	"Type	1"

												},

												new	SalesPerson

												{

																ID	=	4,

																Address	=	"678	9th	Street",

																City	=	"Fourth	City",

																Name	=	"Fourth	Person",

																PostalCode	=	"90123",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

												new	SalesPerson

												{

																ID	=	5,

																Address	=	"678	9th	Street",

																City	=	"Fifth	City",

																Name	=	"Fifth	Person",

																PostalCode	=	"90123",

																Region	=	"Region	#1",

																ProductType	=	"Type	2"

												},

								};

				public	List<SalesPerson>	SalesPeople	=>	salesPeople;

}

This	code	shows	how	to	perform	a	parallel	query:

class	Program

{

				static	void	Main()

				{

								List<SalesPerson>	salesPeople	=	new	

InMemoryContext().SalesPeople;

								var	result	=

												(from	person	in	salesPeople.AsParallel()

																select	ProcessPerson(person))

												.ToList();

				}

				static	SalesPerson	ProcessPerson(SalesPerson	person)

				{

								Console.WriteLine(

												$"Starting	sales	person	"	+

												$"#{person.ID}.	{person.Name}");

								//	complex	in-memory	processing

								Thread.Sleep(500);

								Console.WriteLine(

												$"Completed	sales	person	"	+

												$"#{person.ID}.	{person.Name}");

								return	person;

				}

}

Discussion
This	section	considers	queries	that	can	benefit	from	concurrency.	Imagine	you
have	a	LINQ	to	Objects	query,	where	the	data	is	in	memory.	Perhaps	work	on
each	instance	requires	intensive	processing,	the	code	runs	on	a	multi-
threaded/multi-core	CPU,	and/or	takes	a	non-trivial	amount	of	time.	Running	the
query	in	parallel	might	be	an	option.

The	Main	method	performs	a	query,	similar	to	any	other	query,	except	for	the

AsParallel	operator	on	the	data	source.	What	this	does	is	let	LINQ	figure	out
how	to	split	up	the	work	and	operate	on	each	range	variable	in	parallel.

This	example	also	demonstrates	another	type	of	projection	that	uses	a	method	to
return	an	object.	The	assumption	here	is	that	the	intensive	processing	occurs	in
ProcessPerson,	which	has	a	Thread.Sleep	to	indicate	non-trivial
processing.

In	practice,	you	would	want	to	do	some	testing	to	see	if	you’re	really	benefitting
from	parallelism.	Section	3.10	shows	how	to	measure	performance	with	the
System.Diagnostics.StopWatch	class.	If	successful,	this	could	be	an
easy	way	to	boost	performance.	3.10	Measuring	Performance

Chapter	5.	Implementing	Dynamic
and	Reflection

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the	author’s	raw	and	unedited
content	as	they	write—so	you	can	take	advantage	of	these	technologies	long	before	the	official	release
of	these	titles.

Reflection	allows	code	to	look	inside	of	a	type	and	examine	it’s	details	and
members.	This	is	useful	for	libraries	and	tools	that	want	to	give	the	user
maximum	flexibility	to	submit	objects	to	perform	some	automatic	operation.	A
common	example	of	code	that	does	reflection	are	unit	testing	frameworks.	As
described	in	Section	3.1,	unit	tests	take	classes	whose	members	have	attributes	to
indicate	which	methods	are	tests.	The	unit	testing	framework	uses	reflection	to
find	classes	that	are	tests,	locate	the	test	methods,	and	execute	the	tests.

The	example	in	this	chapter	is	based	on	a	dynamic	report	building	application.	It
uses	reflection	to	read	attributes	of	a	class,	accesses	type	members,	and	executes
methods.	The	first	4	sections	of	this	chapter	show	how	to	do	that.

In	addition	to	reflection,	another	way	to	work	flexibly	with	code	is	via	dynamic
code.	In	C#,	much	of	the	code	we	write	is	strongly	typed	and	that’s	a	huge
benefit	for	productivity	and	maintainability.	That	said,	C#	has	a	dynamic
keyword	that	allows	developers	to	assume	that	objects	have	a	certain	structure.
This	is	much	like	dynamic	programming	langages,	like	JavaScript	and	Python,
where	developers	access	objects	based	on	documentation	that	specifies	what
members	an	object	has.	So,	they	just	write	code	that	uses	those	members.
Dynamic	code	allows	C#	to	do	the	same	thing.

When	performing	operations	requiring	COM	Interop,	dynamic	is	particularly
useful	and	there’s	a	section	explaining	how	that	works.	You’ll	see	how	dynamic
can	be	useful	in	significantly	reducing	and	simplifying	the	code,	as	compared	to
the	verbosity	and	complexity	of	reflection.	There	are	also	types	that	allow	us	to
build	an	inherently	dynamic	type.	Additionally,	there’s	a	Dynamic	Language

Runtime	(DLR)	that	enables	interop	between	C#	and	dynamic	languages,	such	as
Python,	and	you’ll	see	two	sections	on	interoperability	between	C#	and	Python.

5.1	Reading	Attributes	with	Reflection

Problem
You	want	consumers	of	your	library	to	have	maximum	flexibility	when	passing
objects,	but	they	still	need	to	communicate	important	details	of	the	object.

Solution
Here’s	an	Attribute	class,	representing	report	column	metadata:

namespace	Section_05_01

{

				[AttributeUsage(

								AttributeTargets.Property	|	AttributeTargets.Method,

								AllowMultiple	=	false)]

				public	class	ColumnAttribute	:	Attribute

				{

								public	ColumnAttribute(string	name)

								{

												Name	=	name;

								}

								public	string	Name	{	get;	set;	}

								public	string	Format	{	get;	set;	}

				}

}

This	class	represents	a	record	to	display	and	uses	the	attribute:

public	class	InventoryItem

{

				[Column("Part	#")]

				public	string	PartNumber	{	get;	set;	}

				[Column("Name")]

				public	string	Description	{	get;	set;	}

				[Column("Amount")]

				public	int	Count	{	get;	set;	}

				[Column("Price")]

				public	decimal	ItemPrice	{	get;	set;	}

				[Column("Total")]

				public	decimal	CalculateTotal()

				{

								return	ItemPrice	*	Count;

				}

}

The	Main	method	shows	how	to	instantiate	and	pass	the	data:

static	void	Main()

{

				var	inventory	=	new	List<object>

				{

								new	InventoryItem

								{

												PartNumber	=	"1",

												Description	=	"Part	#1",

												Count	=	3,

												ItemPrice	=	5.26m

								},

								new	InventoryItem

								{

												PartNumber	=	"2",

												Description	=	"Part	#2",

												Count	=	1,

												ItemPrice	=	7.95m

								},

								new	InventoryItem

								{

												PartNumber	=	"3",

												Description	=	"Part	#3",

												Count	=	2,

												ItemPrice	=	23.13m

								},

				};

				string	report	=	new	Report().Generate(inventory);

				Console.WriteLine(report);

}

This	method	uses	reflection	to	find	all	type	members:

public	string	Generate(List<object>	items)

{

				_	=	items	??

								throw	new	ArgumentNullException(

												$"{items}	is	required");

				MemberInfo[]	members	=

								items.First().GetType().GetMembers();

				var	report	=	new	StringBuilder("#	Report\n\n");

				report.Append(GetHeaders(members));

				return	report.ToString();

}

This	method	uses	reflection	to	read	attributes	of	a	type:

const	string	ColumnSeparator	=	"	|	";

StringBuilder	GetHeaders(MemberInfo[]	members)

{

				var	columnNames	=	new	List<string>();

				var	underscores	=	new	List<string>();

				foreach	(var	member	in	members)

				{

								var	attribute	=

												member.GetCustomAttribute<ColumnAttribute>();

								if	(attribute	!=	null)

								{

												string	columnTitle	=	attribute.Name;

												string	dashes	=	"".PadLeft(columnTitle.Length,	'-');

												columnNames.Add(columnTitle);

												underscores.Add(dashes);

								}

				}

				var	header	=	new	StringBuilder();

				header.AppendJoin(ColumnSeparator,	columnNames);

				header.Append("\n");

				header.AppendJoin(ColumnSeparator,	underscores);

				header.Append("\n");

				return	header;

}

And	here’s	the	output:

#	Report

Total	|	Part	#	|	Name	|	Amount	|	Price

-----	|	------	|	----	|	------	|	-----

Discussion
Attributes,	which	are	metadata,	typically	exist	to	support	tooling	on	code.	The
solution	in	this	section	takex	a	similar	approach	where	the	ColumnAttribute
is	metadata	for	a	column	of	data	in	a	report.	You	can	see	where	the
AttributeUsage	specifies	that	you	can	apply	ColumnAttribute	to
either	properties	or	methods.	Thinking	of	how	many	features	that	a	report
column	might	be	able	to	support,	this	attribute	boils	down	to	two	typical
features:	Name	and	Format.	Because	a	C#	property	name	might	not	represent
the	text	of	a	column	header,	Name	lets	you	specify	anything	you	want.	Also,
without	specifying	a	string	format,	DateTime	and	decimal	columns	would
take	default	displays,	which	is	often	not	what	you	want.	This	essentially	solves
the	problem	where	a	consumer	of	a	report	library	wants	to	pass	any	type	of
object	they	want,	using	ColumnAttribute	to	share	important	details.

InventoryItem	shows	how	ColumnAttribute	works.	Notice	how	the
positional	property,	Name,	differs	from	the	name	of	the	properties	and	method.
Section	5.2	has	an	example	of	how	the	Format	property	works,	while	this
section	only	concentrates	on	how	to	extract	and	display	the	metadata	as	a
Markdown	formatted	column.

NOTE
Architecurally,	you	should	look	at	this	probject	as	two	separate	applications.	There’s	a	reusable	report
library	that	anyone	can	submit	objects	to.	The	report	library	consists	of	a	Report	class	and	the
ColumnAttribute	attribute.	Then	there’s	a	consumer	application,	which	is	the	Main	method.	For
simplicity,	the	source	code	for	this	demo	puts	all	the	code	into	the	same	project,	but	in	practice,	these
would	be	separate.

The	Main	method	instantiates	a	List<object>	that	contains
InventoryItem	instances.	This	is	data	that	would	typically	come	from	a
database	or	other	data	source.	It	instantiates	the	Report,	passes	the	data,	and
prints	the	result.

The	Generate	method	belongs	to	the	Report	class.	Notice	that	it	accepts	a
List<object>,	which	is	why	Main	passed	a	List<object>.	Essentially,
Report	wants	to	be	able	to	operate	on	any	object	type,	making	it	reusable.

After	validating	input,	items,	Generate	uses	reflection	to	discover	what
members	exist	in	the	objects	passed.	You	see,	we’re	no	longer	able	to	know
because	the	objects	aren’t	strongly	typed	and	we	want	maximum	flexibility	in
what	types	can	be	passed.	This	is	a	good	case	for	reflection.	That	said,	we	no
longer	have	the	guarantee	that	all	instances	in	items	are	the	same	type	and	that
has	to	be	an	implied	contract,	rather	than	enforced	by	code.	Section	5.3	fixes	this
by	showing	how	to	use	generics	so	we	have	both	type	safety	and	the	ability	to
use	generics.

We’re	assuming	all	objects	are	the	same	and	Generate	calls	First	on
items,	because	it	has	the	exact	same	attributes	of	all	objects	in	items.
Generate	then	calls	GetType	on	the	first	item.	The	Type	instance	is	the
gateway	for	performing	reflection.

After	getting	the	Type	instance,	you	can	ask	for	anything	about	a	type	and	work
with	particular	instances.	This	example	calls	GetMembers	to	get	a
MemberInfo[].	A	MemberInfo	has	all	the	information	about	a	particular
type	member,	like	it’s	name	and	type.	In	this	example,	the	MemberInfo[]
contains	the	properties	and	methods	from	the	InventoryItem	that	Main
passed	in:	PartNumber,	Description,	Count,	ItemPrice,	and
CalculateTotal.

Because	the	report	is	a	string	of	Markdown	text	and	there	is	a	lot	of
concatenation,	the	solution	uses	StringBuilder.	Section	2.1,	Processing
Strings	Efficiently,	explains	why	this	is	a	good	approach.

Because	we’re	concerned	with	attributes,	this	solution	only	prints	the	report
header	and	later	sections	in	this	chapter	explain	a	lot	of	different	ways	to
generate	the	report	body,	depending	on	your	needs.	The	GetHeader	method
takes	the	MemberInfo[]	and	uses	reflection	to	learn	what	those	header	titles

should	be.

In	Markdown,	we	separate	table	headers	with	pipes,	|,	and	add	an	underscore,
which	is	why	we	have	two	arrays	for	columnNames	and	underscores.	The
foreach	loop	examines	each	MemberInfo,	calling
GetCustomAttribute.	Notice	that	the	type	parameter	for
GetCustomAttribute	is	ColumnAttribute	-	members	can	have
multiple	attributes,	but	we	only	want	that	one.	The	instance	returned	from
GetCustomAttribute	is	ColumnAttribute,	so	we	have	access	to	it’s
properties,	such	as	Name.	The	code	populates	columnNames	with	Name	and
adds	an	underscore	that	is	the	same	length	as	Name.

Finally,	GetHeaders	concatenates	values	with	pipes,	|,	and	returns	the
resulting	header.	Following	this	back	through	the	call	chain.	Generate
appends	the	GetHeaders	results	and	Main	prints	the	header,	which	you	can
see	in	the	solution	output.

See	Also
Section	2.1	Section	5.2

5.2	Accessing	Type	Members	with	Reflection

Problem
You	need	to	examine	an	object	to	see	what	properties	you	can	read.

Solution
This	class	represents	a	record	to	display:

public	class	InventoryItem

{

				[Column("Part	#")]

				public	string	PartNumber	{	get;	set;	}

				[Column("Name")]

				public	string	Description	{	get;	set;	}

				[Column("Amount")]

				public	int	Count	{	get;	set;	}

				[Column("Price",	Format	=	"{0:c}")]

				public	decimal	ItemPrice	{	get;	set;	}

}

Here’s	a	class	that	contains	metadata	for	each	report	column:

public	class	ColumnDetail

{

				public	string	Name	{	get;	set;	}

				public	ColumnAttribute	Attribute	{	get;	set;	}

				public	PropertyInfo	PropertyInfo	{	get;	set;	}

}

This	method	collects	the	data	to	populate	column	metadata:

Dictionary<string,	ColumnDetail>	GetColumnDetails(

				List<object>	items)

{

					object	itemInstance	=	items.First();

					Type	itemType	=	itemInstance.GetType();

					PropertyInfo[]	itemProperties	=	itemType.GetProperties();

				return

								(from	prop	in	itemProperties

									let	attribute	=	prop.GetCustomAttribute<ColumnAttribute>()

									where	attribute	!=	null

									select	new	ColumnDetail

									{

													Name	=	prop.Name,

													Attribute	=	attribute,

													PropertyInfo	=	prop

									})

								.ToDictionary(

												key	=>	key.Name,

												val	=>	val);

}

Here’s	a	more	streamlined	way	to	get	header	data	with	LINQ:

StringBuilder	GetHeaders(

				Dictionary<string,	ColumnDetail>	details)

{

				var	header	=	new	StringBuilder();

				header.AppendJoin(

								ColumnSeparator,

								from	detail	in	details.Values

								select	detail.Attribute.Name);

				header.Append("\n");

				header.AppendJoin(

								ColumnSeparator,

								from	detail	in	details.Values

								let	length	=	detail.Attribute.Name.Length

								select	"".PadLeft(length,	'-'));

				header.Append("\n");

				return	header;

}

This	method	uses	reflection	to	pull	the	value	out	of	an	object	property:

(object,	Type)	GetReflectedResult(

				object	item,	PropertyInfo	property)

{

				object	result	=	property.GetValue(item);

				Type	type	=	property.PropertyType;

				return	(result,	type);

}

This	method	uses	reflection	to	retrieve	and	format	property	data:

List<string>	GetColumns(

				IEnumerable<ColumnDetail>	details,

				object	item)

{

				var	columns	=	new	List<string>();

				foreach	(var	detail	in	details)

				{

								PropertyInfo	member	=	detail.PropertyInfo;

								string	format	=

												string.IsNullOrWhiteSpace(

																detail.Attribute.Format)	?

																"{0}"	:

																detail.Attribute.Format;

								(object	result,	Type	columnType)	=

												GetReflectedResult(item,	member);

								switch	(columnType.Name)

								{

												case	"Decimal":

																columns.Add(

																				string.Format(format,	(decimal)result));

																break;

												case	"Int32":

																columns.Add(

																				string.Format(format,	(int)result));

																break;

												case	"String":

																columns.Add(

																				string.Format(format,	(string)result));

																break;

												default:

																break;

								}

				}

				return	columns;

}

This	method	combines	and	formats	all	rows	of	data:

StringBuilder	GetRows(

				List<object>	items,

				Dictionary<string,	ColumnDetail>	details)

{

				var	rows	=	new	StringBuilder();

				foreach	(var	item	in	items)

				{

								List<string>	columns	=

												GetColumns(details.Values,	item);

								rows.AppendJoin(ColumnSeparator,	columns);

								rows.Append("\n");

				}

				return	rows;

}

Finally,	this	method	uses	all	of	the	others	to	build	a	complete	report:

const	string	ColumnSeparator	=	"	|	";

public	string	Generate(List<object>	items)

{

				var	report	=	new	StringBuilder("#	Report\n\n");

				Dictionary<string,	ColumnDetail>	columnDetails	=

								GetColumnDetails(items);

				report.Append(GetHeaders(columnDetails));

				report.Append(GetRows(items,	columnDetails));

				return	report.ToString();

}

And	here’s	the	output:

||	Total	|	Part	#	|	Name	|	Amount	|	Price	||

|	$15.78	|	1	|	Part	#1	|	3	|	5.26	|

|	$7.95	|	2	|	Part	#2	|	1	|	7.95	|

|	$46.26	|	3	|	Part	#3	|	2	|	23.13	|

Discussion
The	report	library	in	the	solution	receives	a	List<object>	so	that	consumers
can	send	any	type	they	want.	Since	the	input	objects	aren’t	strongly	typed,	the
Report	class	needs	to	perform	reflection	to	extract	data	from	each	object.
Section	5.1	explained	how	the	Main	method	passes	this	data	and	how	the
solution	generates	the	header.	This	section	concentrates	on	data	and	the	solution
doesn’t	repeat	the	exact	code	from	Section	5.1.

The	InventoryItem	class	uses	ColumnAttribute	attributes.	Notice	that
ItemPrice	now	has	the	named	property,	Format,	specifying	that	this	column
should	be	formatted	in	the	report	as	currency.

During	reflection,	we	need	to	extract	a	set	of	data	from	the	objects	that	helps
with	report	layout	and	formatting.	The	ColumnDetail	helps	with	this	because
when	processing	each	column,	we	need	to	know:

Name	to	ensure	we’re	working	on	the	right	column

Attribute	for	formatting	column	data

PropertyInfo	for	getting	property	data

The	GetColumnDetails	method	populates	a	ColumnDetail	for	each
column.	Getting	the	first	object	in	the	data,	it	gets	the	type	and	then	calls
GetProperties	on	the	types	for	a	PropertyInfo[].	Unlike	Section	5.1,
which	calls	GetMembers	for	a	MemberInfo[],	this	only	gets	the	properties
from	the	type	and	not	any	other	members.

TIP
In	addition	to	GetMembers	and	GetProperties,	Type	has	other	reflection	methods	that	will	only
get	constructors,	fields,	or	methods.	These	would	be	useful	if	you	need	to	restrict	the	type	of	member
you’re	working	with.

Because	reflection	returns	a	collection	of	objects,	PropertyInfo[]	in	this
solution,	we	can	use	LINQ	to	Objects	for	a	more	declarative	approach.	This	is
what	GetColumnDetails	does,	projecting	into	ColumnDetails	instances
and	returning	a	Dictionary	with	the	column	name	as	key	and
ColumnDetail	as	value.

NOTE
As	you’ll	see	later	in	the	solution,	the	code	iterates	through	the	Dictionary<string,
ColumnDetail>,	assuming	that	columns	and	their	data	are	laid	out	in	the	order	returned	by	reflection
queries.	However,	imagine	a	future	implementation	where	ColumnAttribute	had	an	Order
property	or	the	consumer	could	pass	include/exclude	column	metadata	that	didn’t	guarantee	the
order	of	the	columns	match	what	reflection	returned.	In	that	case,	having	the	dictionary	is	essential	to
look	up	ColumnDetail	metadata	based	on	which	column	you’re	working	on.	Although	that’s	left	out
of	this	example	to	reduce	complexity	and	focus	on	the	original	problem	statement,	it	might	give	you
ideas	on	how	something	like	this	could	be	extended.

The	GetHeaders	method	does	exactly	the	same	thing	as	Section	5.1,	except
it’s	written	as	LINQ	statements	to	reduce	and	simplify	the	code.

The	GetReflectedResult	returns	a	tuple,	(object,	type).	It’s	task	is
to	pull	out	the	value	from	the	property	and	the	type	of	that	PropertyInfo,
property.	Here,	item	is	the	actual	object	instance	and	PropertyInfo	is	the

reflected	metadata	for	that	property.	Using	property,	the	code	calls	GetValue
with	item	as	the	paramter	-	it	reads	that	property	from	item.	Again,	we’re	using
reflection	and	don’t	know	the	type	for	the	property,	so	we	put	it	in	type	object.
PropertyInfo	also	has	a	PropertyType,	which	is	where	we	get	the	Type
object.

WARNING
This	application	uses	reflection	to	put	property	data	into	a	variable	of	type	object.	If	the	property	type
is	a	value	type	(e.g.	int,	double,	decimal),	you	incur	a	boxing	penalty,	which	affects	application
performance.	If	you	were	doing	this	millions	of	times,	you	might	take	a	second	look	at	your
requirements	and	analyze	whether	this	was	a	good	approach	for	your	scenario.	That	said,	this	is	a	report.
Think	about	how	many	records	you	might	include	in	a	report	for	the	purpose	of	displaying	the	data	to	a
human	and	any	performance	issues	would	be	negligible.	It’s	a	classic	trade-off	of	flexibility	vs.
performance	and	you	just	need	to	think	about	how	it	affects	your	situation.

The	GetColumns	method	uses	GetReflectedResult	as	it	loops	through
each	column	for	a	given	object.	The	collection	of	ColumnDetail	is	useful
here,	providing	PropertyInfo	for	the	current	column.	The	format	defaults	to
no	format	if	the	ColumnAttribute	for	a	column	doesn’t	include	the
Format	property.	The	switch	statement	applies	the	format	to	the	object	based
on	the	Type	returned	from	GetReflectedResult.

NOTE
For	simlicity,	the	switch,	in	GetColumns,	only	contains	types	in	the	solution,	though	you	might
imagine	it	including	all	built-in	types.	We	might	have	used	reflection	to	invoke	ToString	with	a
format	specifier	and	type,	which	we’ll	discuss	in	Section	5.4,	to	reduce	code.	However,	at	some	point	the
additional	complexity	doesn’t	add	value.	In	this	case,	we’re	just	covering	a	finite	set	of	built-in	types	and
once	that	code	is	written,	it	will	be	unlikely	to	change.	My	thoughts	on	this	tradeoff	is	that	sometimes
being	too	clever	results	in	code	that’s	difficult	to	read	and	takes	longer	to	write.

Finally,	GetRows	calls	GetColumns	for	each	row	and	returns	to	Generate.
Then	Generate,	after	having	called	GetHeaders	and	GetRows,	appends
the	results	to	a	StringBuilder	and	returns	the	string	to	the	caller	with	the
entire	report,	which	you	can	see	in	the	solution	output.

See	Also
Section	5.1	Section	5.4

5.3	Instantiating	Type	Members	with	Reflection

Problem
You	need	to	instantiate	generic	types,	but	don’t	know	the	type	or	type	parameters
ahead	of	time.

Solution
The	solution	generates	a	uniquely	formatted	report,	depending	on	this	enum:

public	enum	ReportType

{

				Html,

				Markdown

}

Here’s	a	reusable	base	class	for	generating	reports:

public	abstract	class	GeneratorBase<TData>

{

				public	string	Generate(List<TData>	items)

				{

								StringBuilder	report	=	GetTitle();

								Dictionary<string,	ColumnDetail>	columnDetails	=

												GetColumnDetails(items);

								report.Append(GetHeaders(columnDetails));

								report.Append(GetRows(items,	columnDetails));

								return	report.ToString();

				}

				protected	abstract	StringBuilder	GetTitle();

				protected	abstract	StringBuilder	GetHeaders(

								Dictionary<string,	ColumnDetail>	details);

				protected	abstract	StringBuilder	GetRows(

								List<TData>	items,

								Dictionary<string,	ColumnDetail>	details);

				Dictionary<string,	ColumnDetail>	GetColumnDetails(

								List<TData>	items)

				{

								TData	itemInstance	=	items.First();

								Type	itemType	=	itemInstance.GetType();

								PropertyInfo[]	itemProperties	=	itemType.GetProperties();

								return

												(from	prop	in	itemProperties

													let	attribute	=	prop.GetCustomAttribute<ColumnAttribute>

()

													where	attribute	!=	null

													select	new	ColumnDetail

													{

																	Name	=	prop.Name,

																	Attribute	=	attribute,

																	PropertyInfo	=	prop

													})

												.ToDictionary(

																key	=>	key.Name,

																val	=>	val);

				}

				protected	List<string>	GetColumns(

								IEnumerable<ColumnDetail>	details,

								TData	item)

				{

								var	columns	=	new	List<string>();

								foreach	(var	detail	in	details)

								{

												PropertyInfo	member	=	detail.PropertyInfo;

												string	format	=

																string.IsNullOrWhiteSpace(

																				detail.Attribute.Format)	?

																				"{0}"	:

																				detail.Attribute.Format;

												(object	result,	Type	columnType)	=

																GetReflectedResult(item,	member);

												switch	(columnType.Name)

												{

																case	"Decimal":

																				columns.Add(

																								string.Format(format,	(decimal)result));

																				break;

																case	"Int32":

																				columns.Add(

																								string.Format(format,	(int)result));

																				break;

																case	"String":

																				columns.Add(

																								string.Format(format,	(string)result));

																				break;

																default:

																				break;

												}

								}

								return	columns;

				}

				(object,	Type)	GetReflectedResult(TData	item,	PropertyInfo	

property)

				{

								object	result	=	property.GetValue(item);

								Type	type	=	property.PropertyType;

								return	(result,	type);

				}

}

This	class	uses	that	base	class	to	generate	Markdown	reports:

public	class	MarkdownGenerator<TData>	:	GeneratorBase<TData>

{

				const	string	ColumnSeparator	=	"	|	";

				protected	override	StringBuilder	GetTitle()

				{

								return	new	StringBuilder("#	Report\n\n");

				}

				protected	override	StringBuilder	GetHeaders(

								Dictionary<string,	ColumnDetail>	details)

				{

								var	header	=	new	StringBuilder();

								header.AppendJoin(

												ColumnSeparator,

												from	detail	in	details.Values

												select	detail.Attribute.Name);

								header.Append("\n");

								header.AppendJoin(

												ColumnSeparator,

												from	detail	in	details.Values

												let	length	=	detail.Attribute.Name.Length

												select	"".PadLeft(length,	'-'));

								header.Append("\n");

								return	header;

				}

				protected	override	StringBuilder	GetRows(

								List<TData>	items,

								Dictionary<string,	ColumnDetail>	details)

				{

								var	rows	=	new	StringBuilder();

								foreach	(var	item	in	items)

								{

												List<string>	columns	=

																GetColumns(details.Values,	item);

												rows.AppendJoin(ColumnSeparator,	columns);

												rows.Append("\n");

								}

								return	rows;

				}

}

And	this	class	uses	that	base	class	to	generate	HTML	reports:

public	class	HtmlGenerator<TData>	:	GeneratorBase<TData>

{

				protected	override	StringBuilder	GetTitle()

				{

								return	new	StringBuilder("<h1>Report</h1>\n");

				}

				protected	override	StringBuilder	GetHeaders(

								Dictionary<string,	ColumnDetail>	details)

				{

								var	header	=	new	StringBuilder("<tr>\n");

								header.AppendJoin(

												"\n",

												from	detail	in	details.Values

												let	columnName	=	detail.Attribute.Name

												select	$"		<th>{columnName}</th>");

								header.Append("\n</tr>\n");

								return	header;

				}

				protected	override	StringBuilder	GetRows(

								List<TData>	items,

								Dictionary<string,	ColumnDetail>	details)

				{

								StringBuilder	rows	=	new	StringBuilder();

								Type	itemType	=	items.First().GetType();

								foreach	(var	item	in	items)

								{

												rows.Append("<tr>\n");

												List<string>	columns	=

																GetColumns(details.Values,	item);

												rows.AppendJoin(

																"\n",

																from	columnValue	in	columns

																select	$"		<td>{columnValue}</td>");

												rows.Append("\n</tr>\n");

								}

								return	rows;

				}

}

This	method	manages	the	report	generation	process:

public	string	Generate(List<TData>	items,	ReportType	reportType)

{

				GeneratorBase<TData>	generator	=	CreateGenerator(reportType);

				string	report	=	generator.Generate(items);

				return	report;

}

Here’s	a	method	that	uses	an	enum	to	figure	out	which	report	format	to	generate:

GeneratorBase<TData>	CreateGenerator(ReportType	reportType)

{

				Type	generatorType;

				switch	(reportType)

				{

								case	ReportType.Html:

												generatorType	=	typeof(HtmlGenerator<>);

												break;

								case	ReportType.Markdown:

												generatorType	=	typeof(MarkdownGenerator<>);

												break;

								default:

												throw	new	ArgumentException(

																$"Unexpected	ReportType:	'{reportType}'");

				}

				Type	dataType	=	typeof(TData);

				Type	genericType	=	generatorType.MakeGenericType(dataType);

				object	generator	=	Activator.CreateInstance(genericType);

				return	(GeneratorBase<TData>)generator;

}

Here’s	another	way,	via	convention,	to	figure	out	which	report	format	to
generate:

GeneratorBase<TData>	CreateGenerator(ReportType	reportType)

{

				Type	dataType	=	typeof(TData);

				string	generatorNamespace	=	"Section_05_03.";

				string	generatorTypeName	=	$"{reportType}Generator`1";

				string	typeParameterName	=	$"[[{dataType.FullName}]]";

				string	fullyQualifiedTypeName	=

								generatorNamespace	+

								generatorTypeName	+

								typeParameterName;

				Type	generatorType	=	Type.GetType(fullyQualifiedTypeName);

				object	generator	=	Activator.CreateInstance(generatorType);

				return	(GeneratorBase<TData>)generator;

}

The	Main	method	passes	data	and	specifies	which	report	format	it	wants:

static	void	Main()

{

				var	inventory	=	new	List<InventoryItem>

				{

								new	InventoryItem

								{

												PartNumber	=	"1",

												Description	=	"Part	#1",

												Count	=	3,

												ItemPrice	=	5.26m

								},

								new	InventoryItem

								{

												PartNumber	=	"2",

												Description	=	"Part	#2",

												Count	=	1,

												ItemPrice	=	7.95m

								},

								new	InventoryItem

								{

												PartNumber	=	"3",

												Description	=	"Part	#3",

												Count	=	2,

												ItemPrice	=	23.13m

								},

				};

				string	report	=

								new	Report<InventoryItem>()

								.Generate(inventory,	ReportType.Markdown);

				Console.WriteLine(report);

}

Discussion
Section	5.2	created	reports,	based	on	a	generic	object	type	and	this	caused	us	to
lose	the	type	safety	we’re	accustomed	to.	This	section	fixes	that	problem	by
using	generics	and	showing	how	to	use	reflection	to	instantiate	objects	with	a
generic	type	parameter.

The	concept	of	the	previous	sections	was	to	generate	a	report	in	Markdown
format.	However,	a	report	generator	could	be	much	more	useful	if	it	had	the
ability	to	generate	reports	in	any	format	of	your	choosing.	This	example

refactors	the	example	in	Section	5.2	to	offer	both	a	Markdown	and	an	HTML
output	report.

The	ReportType	enum	specifies	the	type	of	report	output	to	generate:	Html
or	Markdown.	Because	we	can	generate	multiple	formats,	we	need	separate
classes	for	each	format:	HtmlGenerator	and	MarkdownGenerator.
Further,	we	don’t	want	to	duplicate	code,	so	each	format	generation	class	derives
from	GeneratorBase.

Notice	that	GeneratorBase	is	an	abstract	class	(you	can’t	instantiate	it),	with
both	abstract	and	implemented	methods.	The	implemented	methods	in
GeneratorBase	have	code	that	is	independent	of	output	formated	and	all
derived	generator	classes	will	use:	GetColumns,	GetColumnDetails,	and
GetReflectedResult.	By	definition,	the	derived	generator	classes	must
override	the	abstract	methods,	which	are	format	specific:	GetTitle,
GetHeaders,	GetRows.	Looking	at	HtmlGenerator	and
MarkdownGenerator,	you	can	see	the	override	implementations	for
these	abstract	methods.

Now,	lets	put	this	all	together	so	it	makes	sense.	When	the	program	starts,	the
first	method	called	is	Generate,	in	GeneratorBase.	Notice	how
Generate	calls	the	sequence:	GetTitle,	GetColumnDetails,
GetHeaders,	and	then	GetRows.	This	is	essentially	the	same	sequence	as
described	in	Section	5.2.	You	can	imagine	a	report	being	generated	top	to	bottom
by	writing	the	title,	getting	metadata	for	the	rest	of	the	report,	writing	the	header,
and	then	writing	each	of	the	rows	of	the	report.	To	get	code	reuse	and	create	an
extisible	framework	for	adding	report	formats	in	the	future,	we	have	a	general
abstract	base	class	GeneratorBase,	and	derived	classes	that	understand	the
format.	Using	MarkdownGenerator	as	an	example,	here’s	the	sequence:

1.	 External	code	calls	GeneratorBase.Generate

2.	 Generator.Generate	calls	MarkdownGenerator.GetTitle

3.	 Generator.Generate	calls	Generator.GetColumnDetails

4.	 Generator.Generate	calls	MarkdownGenerator.GetHeader

5.	 Generator.Generate	calls	MarkdownGenerator.GetRows

6.	 MarkdownGenerator.GetRows	calls	Generator.GetColumns

7.	 Generator.GetColumns	calls
Generator.GetReflectedResult

8.	 MarkdownGenerator.GetRows	completes,	returning	to
Generator.Generate

9.	 Generator.Generate	returns	the	report	to	calling	code

The	HtmlGenerator	works	exactly	the	same	way	and	so	would	any	future
report	format.	In	fact,	Section	5.6	extends	this	example	by	adding	a	3rd	format	to
support	creating	an	Excel	report.

NOTE
The	solution	uses	a	pattern	known	as	the	Template	pattern.	This	is	where	a	base	class	implements
common	logic	and	delegates	implementation-specific	work	to	derived	classes.	This	is	the	object-oriented
principle	of	polymorphism	at	work.

The	fact	that	we	can	extend	this	framework	without	needing	to	re-write	boiler	plate	logic	makes	this	a
viable	approach.	Section	5.6	shows	how	that	works.

The	GenerateBase	class	is	intentionally	abstract	because	the	only	way
for	this	to	work	is	via	an	instance	of	a	derived	class.	The	Report.Generate
method	calls	GeneratorBase.Generate.	Before	doing	so,	it	must	figure
out	which	specific	GeneratorBase	derived	class	to	instantiate,	via
CreateGenerator	of	which	are	two	examples.

The	first	example	of	CreateGenerator	examines	the	ReportType	enum
to	see	which	type	of	report	to	generate	via	a	switch	statement.	As	explained	in
earlier	sections,	you	need	a	Type	object	to	perform	reflection,	which	the
typeof	operator	does.	Notice	that	we’re	getting	a	generic	type	with	the	<>
suffix,	without	the	type.	After	that,	we	use	the	typeof	operator	to	get	the	type
of	the	type	parameter	passed	to	the	Report	class,	TData.	Now,	we	have	a	type
for	both	the	generic	type	and	it’s	type	parameter.	Next,	we	need	to	bring	the
generic	type	and	it’s	parameter	type	together	to	get	a	fully	constructed	type.	e.g.
HtmlGenerator<TData>	for	Html.	Once	you	have	a	fully	constructed	type,
you	can	use	the	Activator	class	to	call	CreateInstance,	which
instantiates	the	type.	With	a	new	instance	of	the	GeneratorBase-derived

type,	CreateGenerate	returns	to	ReportGenerate,	which	calls
Generate	on	the	new	instance.	As	you	learned	earlier,	GeneratorBase
implements	Generate	for	all	derived	instances.

That	is	one	way	to	use	reflection	to	instantiate	a	generic	type,	as	specified	by	the
problem	statement.	One	thing	to	consider	though	is	whether	you	want	to	add
more	formats	to	support	in	the	future.	You’ll	have	to	go	back	into	the	Report
class	and	change	the	switch	statement,	which	is	a	configuration	by	code
change.	What	if	you	prefer	to	write	the	Report	class	one	time	and	never	touch
it	again?	Further,	what	if	you	preferred	a	design	by	the	principles	of	convention
over	configuration?	A	good	example	of	convention	over	configuration	in	.NET	is
ASP.NET	MVC.	A	couple	of	ASP.NET	MVC	conventions	are	that	controllers	go
in	a	Controllers	folder	and	views	go	into	a	Views	folder.	Another	is	that
the	controller	name	is	the	URL	path	with	a	Controller	suffix	to	it’s	name.
Things	just	work	because	that’s	the	convention.	The	second	example	of
CreateGenerator	uses	the	convention	over	configuration	approach.

Notice	that	the	second	implementation	of	CreateGenerator	builds	a	fully-
qualified	type	name	with	namespace	and	typename.	e.g.
Section_05_03.HtmlGenerator	for	Html.	Also	notice	that	the
ReportType	enum	members	match	the	class	names	exactly.	This	means	that
any	time	in	the	future,	you	can	create	a	new	formate,	derived	from
GeneratorBase,	and	add	the	prefix	to	ReportType	with	Generator	as
the	suffix	and	it	will	work.	No	need	to	ever	touch	the	Report	class	again,
unless	adding	a	new	feature.

After	getting	type	objects,	both	CreateGenerator	examples	call
Activator.CreateInstance	to	return	a	new	instance	to
Report.Generate.

Finally,	looking	at	the	Main	method,	all	a	user	of	this	report	library	needs	to	do
is	pass	in	the	data	and	the	ReportType	they	want	to	generate.

See	Also
Section	5.2	Section	5.6

5.4	Invoking	Methods	with	Reflection

Problem
An	object	you’re	received	has	methods	that	you	need	to	invoke.

Solution
The	column	metadata	class	has	a	MemberInfo	property:

public	class	ColumnDetail

{

				public	string	Name	{	get;	set;	}

				public	ColumnAttribute	Attribute	{	get;	set;	}

				public	MemberInfo	MemberInfo	{	get;	set;	}

}

This	class,	to	be	reflected	upon,	has	properties	and	a	method:

public	class	InventoryItem

{

				[Column("Part	#")]

				public	string	PartNumber	{	get;	set;	}

				[Column("Name")]

				public	string	Description	{	get;	set;	}

				[Column("Amount")]

				public	int	Count	{	get;	set;	}

				[Column("Price",	Format	=	"{0:c}")]

				public	decimal	ItemPrice	{	get;	set;	}

				[Column("Total",	Format	=	"{0:c}")]

				public	decimal	CalculateTotal()

				{

								return	ItemPrice	*	Count;

				}

}

This	method	calls	GetMembers	to	work	with	MemberInfo	instances:

Dictionary<string,	ColumnDetail>	GetColumnDetails(

				List<object>	items)

{

				return

								(from	member	in

												items.First().GetType().GetMembers()

									let	attribute	=

												member.GetCustomAttribute<ColumnAttribute>()

									where	attribute	!=	null

									select	new	ColumnDetail

									{

													Name	=	member.Name,

													Attribute	=	attribute,

													MemberInfo	=	member

									})

								.ToDictionary(

												key	=>	key.Name,

												val	=>	val);

}

This	method	uses	the	MemberInfo	type	to	determine	how	to	retrieve	a	value:

(object,	Type)	GetReflectedResult(

				Type	itemType,	object	item,	MemberInfo	member)

{

				object	result;

				Type	type;

				switch	(member.MemberType)

				{

								case	MemberTypes.Method:

												MethodInfo	method	=

																itemType.GetMethod(member.Name);

												result	=	method.Invoke(item,	null);

												type	=	method.ReturnType;

												break;

								case	MemberTypes.Property:

												PropertyInfo	property	=

																itemType.GetProperty(member.Name);

												result	=	property.GetValue(item);

												type	=	property.PropertyType;

												break;

								default:

												throw	new	ArgumentException(

																"Expected	property	or	method.");

				}

				return	(result,	type);

}

Discussion
Earlier	sections	in	this	chapter	worked	primarily	with	properties	as	report	inputs.
In	this	section	we’ll	modify	the	example	in	Section	5.2	and	add	a	method	that
we’ll	need	to	invoke	via	reflection.

The	first	change	is	that	ColumnDetail	has	a	MemberInfo	property,	which
holds	metadata	for	any	type	member.

The	InventoryItem	class	has	a	CalculateTotal	method.	It	multiplies
the	ItemPrice	and	Count	to	show	the	total	price	for	that	amount	of	items.

The	change	in	GetColumnDetails	is	in	the	LINQ	statement,	where	it
iterates	on	the	result	of	GetMembers,	which	is	a	MemberInfo[].	Unlike
Section	5.2,	we’re	using	MemberInfo,	which	can	hold	any	type	member.	This
is	required	for	this	solution	because	we	want	information	on	both	properties	and
methods.

Finally,	GetReflectedResult	has	a	switch	statement	to	figure	out	how	to
get	a	member’s	value.	Since	it’s	a	MemberInfo,	we	look	at	the	MemberType
property	to	figure	out	whether	we’re	working	with	a	property	or	method.	In
either	case,	we	have	to	call	GetProperty	or	GetMethod	to	get	a
PropertyInfo	or	MethodInfo,	respectively.	Call	the	Invoke	method	for
methods,	with	item	as	the	object	instance	to	invoke	the	method	on.	The	second
parameter	to	Invoke	is	null,	indicating	that	the	method,	CalculateTotal
in	this	example,	doesn’t	have	arguments.	If	you	need	to	pass	arguments,	put	an
object[]	in	the	second	parameter	of	Invoke	with	the	members	in	the	order
that	the	method	expects.	As	in	Section	5.2,	call	GetValue	on	the
PropertyInfo	instance,	with	item	as	the	object	reference	to	get	the	value	of
that	property.

To	summarize,	any	time	you	need	to	call	a	method	on	an	object,	via	reflection,
get	it’s	Type	object,	get	a	MethodInfo	(even	if	you	nedd	the	intermediate
step	of	pulling	from	a	MemberInfo),	and	call	the	Invoke	method	on	the
MethodInfo	with	the	object	instance	as	the	argument.

See	Also

Section	5.2

5.5	Replacing	Reflection	with	Dynamic	Code

Problem
You’re	using	reflection,	but	know	what	some	of	a	type’s	members	are	and	want
to	simplify	code.

Solution
This	class	contains	the	list	of	data	for	a	report:

public	class	Inventory

{

				public	string	Title	{	get;	set;	}

				public	List<object>	Data	{	get;	set;	}

}

Here’s	the	Main	method	that	populates	the	data:

static	void	Main()

{

				var	inventory	=	new	Inventory

				{

								Title	=	"Inventory	Report",

								Data	=	new	List<object>

								{

												new	InventoryItem

												{

																PartNumber	=	"1",

																Description	=	"Part	#1",

																Count	=	3,

																ItemPrice	=	5.26m

												},

												new	InventoryItem

												{

																PartNumber	=	"2",

																Description	=	"Part	#2",

																Count	=	1,

																ItemPrice	=	7.95m

												},

												new	InventoryItem

												{

																PartNumber	=	"3",

																Description	=	"Part	#3",

																Count	=	2,

																ItemPrice	=	23.13m

												},

								}

				};

				string	report	=	new	Report().Generate(inventory);

				Console.WriteLine(report);

}

This	method	uses	reflection	to	extract	a	property	values:

public	string	Generate(object	reportDetails)

{

				Type	reportType	=	reportDetails.GetType();

				PropertyInfo	titleProp	=	reportType.GetProperty("Title");

				string	title	=	(string)titleProp.GetValue(reportDetails);

				var	report	=	new	StringBuilder($"#	{title}\n\n");

				PropertyInfo	dataProp	=	reportType.GetProperty("Data");

				List<object>	items	=

								(List<object>)dataProp.GetValue(reportDetails);

				Dictionary<string,	ColumnDetail>	columnDetails	=

								GetColumnDetails(items);

				report.Append(GetHeaders(columnDetails));

				report.Append(GetRows(items,	columnDetails));

				return	report.ToString();

}

And	this	class	extracts	the	same	property	values,	but	uses	dynamic:

public	string	Generate(dynamic	reportDetails)

{

				string	title	=	reportDetails.Title;

				var	report	=	new	StringBuilder(

								$"#	{title}\n\n");

				List<object>	items	=	reportDetails.Data;

				Dictionary<string,	ColumnDetail>	columnDetails	=

								GetColumnDetails(items);

				report.Append(GetHeaders(columnDetails));

				report.Append(GetRows(items,	columnDetails));

				return	report.ToString();

}

Discussion
The	concept	of	this	solution	is	again	to	give	the	user	of	the	report	library
maximum	control	over	what	types	they	want	to	work	with.	However,	what	if	you
did	have	some	constraints.	E.g.	there	must	be	some	way	to	set	the	report	title	and
you	would	need	to	know	what	that	property	is.	This	solution	meets	the	user	half-
way	by	telling	them	to	provide	an	object	with	Title	and	Data	properties.
Title	has	the	report	title	and	Data	has	report	rows.	They	can	use	any	object
they	want	as	long	as	they	provide	those	properties.	e.g.	if	the	input	objects	had
other	properties	on	the	object	we	don’t	care	about,	it	won’t	affect	the	report
library.

The	class	we’ll	use	is	Inventory,	with	a	Title	string	and	Data	collection.
The	Main	method	populates	an	Inventory	instance	and	passes	it	to
Generate.

We	have	two	examples	of	Generate:	one	that	uses	reflection	and	the	other
uses	dynamic.	After	getting	the	type,	the	first	example	calls	GetProperty	and
GetValue	to	get	the	value	of	each	property.	the	rest	of	the	method	works	just
like	in	Section	5.2.

As	you	see,	reflection	can	be	verbose,	making	many	method	calls	and	converting
types.	This	is	a	good	case	for	using	dynamic.	We	know	that	Title	and	Data
exist,	so	why	not	just	access	them?	That’s	what	the	second	example	does.	First,
notice	that	the	reportDetails	parameter	type	is	dynamic.	Then	observe
how	the	code	calls	Title	and	Data,	placing	them	in	strongly	typed	variables.

NOTE
The	dynamic	type	is	still	type	object,	but	with	a	little	extra	magic	via	the	DLR.

While	you	don’t	get	Intellisense	during	development,	because	dynamic	doesn’t
know	what	types	it’s	working	with,	you	do	get	readable	code.	Behind	the	scenes,
the	Dynamic	Language	Runtime	(DLR)	did	all	the	work	for	you.	When	you
know	the	members	of	the	types	being	passed	to	the	code,	dynamic	is	a	better
mechanism	for	reflection.

See	Also
Section	5.2

5.6	Performing	Interop	with	Office	Apps

Problem
You	need	to	populate	an	Excel	spreadsheet	with	object	data	with	the	simplest
code	possible.

Solution
Here’s	an	enum	with	extra	members	for	Excel:

public	enum	ReportType

{

				Html,

				Markdown,

				ExcelTyped,

				ExcelDynamic

}

Excel	report	generator	without	dynamic:

public	class	ExcelTypedGenerator<TData>	:	GeneratorBase<TData>

{

				ApplicationClass	excelApp;

				Workbook	wkBook;

				Worksheet	wkSheet;

				public	ExcelTypedGenerator()

				{

								excelApp	=	new	ApplicationClass();

								excelApp.Visible	=	true;

								wkBook	=	excelApp.Workbooks.Add(Missing.Value);

								wkSheet	=	(Worksheet)wkBook.ActiveSheet;

				}

				protected	override	StringBuilder	GetTitle()

				{

								wkSheet.Cells[1,	1]	=	"Report";

								return	new	StringBuilder("Added	Title...\n");

				}

				protected	override	StringBuilder	GetHeaders(

								Dictionary<string,	ColumnDetail>	details)

				{

								ColumnDetail[]	values	=	details.Values.ToArray();

								for	(int	i	=	0;	i	<	values.Length;	i++)

								{

												ColumnDetail	detail	=	values[i];

												wkSheet.Cells[3,	i+1]	=	detail.Attribute.Name;

								}

								return	new	StringBuilder("Added	Header...\n");

				}

				protected	override	StringBuilder	GetRows(

								List<TData>	items,

								Dictionary<string,	ColumnDetail>	details)

				{

								const	int	DataStartRow	=	4;

								int	rows	=	items.Count;

								int	cols	=	details.Count;

								var	data	=	new	string[rows,	cols];

								for	(int	i	=	0;	i	<	rows;	i++)

								{

												List<string>	columns	=

																GetColumns(details.Values,	items[i]);

												for	(int	j	=	0;	j	<	cols;	j++)

												{

																data[i,	j]	=	columns[j];

												}

								}

								int	FirstCol	=	'A';

								int	LastExcelCol	=	FirstCol	+	cols	-	1;

								int	LastExcelRow	=	DataStartRow	+	rows	-	1;

								string	EndRangeCol	=	((char)LastExcelCol).ToString();

								string	EndRangeRow	=	LastExcelRow.ToString();

								string	EndRange	=	EndRangeCol	+	EndRangeRow;

								string	BeginRange	=	"A"	+	DataStartRow.ToString();

								var	dataRange	=	wkSheet.get_Range(BeginRange,	EndRange);

								dataRange.Value2	=	data;

								wkBook.SaveAs(

												"Report.xlsx",	Missing.Value,	Missing.Value,

												Missing.Value,	Missing.Value,	Missing.Value,

												XlSaveAsAccessMode.xlShared,	Missing.Value,	Missing.Value,

												Missing.Value,	Missing.Value,	Missing.Value);

								return	new	StringBuilder(

												"Added	Data...\n"	+

												"Excel	file	created	at	Report.xlsx");

				}

}

Excel	report	generator	with	dynamic:

public	class	ExcelDynamicGenerator<TData>	:	GeneratorBase<TData>

{

				ApplicationClass	excelApp;

				dynamic	wkBook;

				Worksheet	wkSheet;

				public	ExcelDynamicGenerator()

				{

								excelApp	=	new	ApplicationClass();

								excelApp.Visible	=	true;

								wkBook	=	excelApp.Workbooks.Add();

								wkSheet	=	wkBook.ActiveSheet;

				}

				protected	override	StringBuilder	GetTitle()

				{

								wkSheet.Cells[1,	1]	=	"Report";

								return	new	StringBuilder("Added	Title...\n");

				}

				protected	override	StringBuilder	GetHeaders(

								Dictionary<string,	ColumnDetail>	details)

				{

								ColumnDetail[]	values	=	details.Values.ToArray();

								for	(int	i	=	0;	i	<	values.Length;	i++)

								{

												ColumnDetail	detail	=	values[i];

												wkSheet.Cells[3,	i+1]	=	detail.Attribute.Name;

								}

								return	new	StringBuilder("Added	Header...\n");

				}

				protected	override	StringBuilder	GetRows(

								List<TData>	items,

								Dictionary<string,	ColumnDetail>	details)

				{

								const	int	DataStartRow	=	4;

								int	rows	=	items.Count;

								int	cols	=	details.Count;

								var	data	=	new	string[rows,	cols];

								for	(int	i	=	0;	i	<	rows;	i++)

								{

												List<string>	columns	=

																GetColumns(details.Values,	items[i]);

												for	(int	j	=	0;	j	<	cols;	j++)

												{

																data[i,	j]	=	columns[j];

												}

								}

								int	FirstCol	=	'A';

								int	LastExcelCol	=	FirstCol	+	cols	-	1;

								int	LastExcelRow	=	DataStartRow	+	rows	-	1;

								string	EndRangeCol	=	((char)LastExcelCol).ToString();

								string	EndRangeRow	=	LastExcelRow.ToString();

								string	EndRange	=	EndRangeCol	+	EndRangeRow;

								string	BeginRange	=	"A"	+	DataStartRow.ToString();

								var	dataRange	=	wkSheet.get_Range(BeginRange,	EndRange);

								dataRange.Value2	=	data;

								wkBook.SaveAs(

												"Report.xlsx",

												XlSaveAsAccessMode.xlShared);

								return	new	StringBuilder(

												"Added	Data...\n"	+

												"Excel	file	created	at	Report.xlsx");

				}

}

Discussion
This	example	is	based	on	the	multiple	report	format	generation	code	in	Section
5.3,	which	briefly	explains	how	to	add	another	report	type.	This	solution	shows
how	to	do	it.

First,	notice	that	the	ReportType	enum	has	two	extra	members:
ExcelTyped	and	ExcelDynamic.	Both	use	the	convention	where
ExcelTyped	creates	a	ExcelTypedGenerator	instance	and
ExcelDynamic	creates	an	ExcelDynamicGenerator	instance.	The
difference	is	that	ExcelTypedGenerator	uses	strongly	typed	code	to
generate	an	Excel	report	and	ExcelDynamicGenerator	uses	dynamic	code
to	generate	an	Excel	report.

TIP
You	can	use	techniques	like	this	to	automate	any	Microsoft	Office	application.	The	trick	is	to	ensure
you’ve	installed	Visual	Studio	Tools	for	Office	(VSTO),	via	the	Visual	Studio	Installer.	This	will	install
what	is	called	Primary	Interop	Assemblies	(PIA).	After	installation,	you	can	find	these	PIAs	under	your
Visual	Studio	installation	folder.	e.g.	the	folder	on	my	machine	is	C:\Program	Files	(x86)\Microsoft
Visual	Studio\Shared\Visual	Studio	Tools	for	Office\PIA	and	use	the	version	corresponding	to	the
Microsoft	Office	version	you	have	installed.	If	you	have	an	older	version	of	office	that	the	VSTO
couldn’t	install,	you	should	search	the	Microsoft	Downloads	site	(via	Internet	search)	for	Office	PIAs.

To	see	the	differences	between	the	two	examples,	go	member	by	member.	In
particular,	ExcelTypedGenerator	has	strongly	typed	fields,	must	use	the
Missing.Value	placeholder	anytime	it	doesn’t	use	a	parameter,	and	needs	to
perform	a	conversion	on	return	types.	Notice	the	SaveAs	method	call	at	the	end
of	the	GetRows	method,	which	is	particularly	onerous.

In	contrast,	compare	those	examples	with	the	ExcelDynamicGenerator
code.	Making	the	wkBook	field	dynamic,	rather	than	strongly	typed,
transforms	the	code.	No	more	Missing.Value	placeholders	or	type

conversions.	The	code	is	much	easier	to	write	and	easier	to	read.

See	Also
Section	5.3

5.7	Creating	an	Inherently	Dynamic	Type

Problem
You	have	data	in	a	proprietary	format,	but	want	to	access	members	through	an
object	without	parsing	yourself.

Solution
This	class	holds	data	to	display	in	a	report:

public	class	LogEntry

{

				[Column("Log	Date",	Format	=	"{0:yyyy-MM-dd	hh:mm}")]

				public	DateTime	CreatedAt	{	get;	set;	}

				[Column("Severity")]

				public	string	Type	{	get;	set;	}

				[Column("Location")]

				public	string	Where	{	get;	set;	}

				[Column("Message")]

				public	string	Description	{	get;	set;	}

}

These	methods	get	log	data	and	return	a	list	of	DynamicObject	types	with
that	data:

static	List<dynamic>	GetData()

{

				string	headers	=	"Date|Severity|Location|Message";

				string	logData	=	GetLogData();

				return

								(from	line	in	logData.Split('\n')

									select	new	DynamicLog(headers,	line))

								.ToList<dynamic>();

}

static	string	GetLogData()

{

				return

"2022-11-12	12:34:56.7890|INFO|Section_05_07.Program|Got	this	far\n"	+

"2022-11-12	12:35:12.3456|ERROR|Section_05_07.Report|Index	out	of	

range\n"	+

"2022-11-12	12:55:34.5678|WARNING|Section_05_07.Report|Please	check	

this";

}

This	class	is	a	DynamicObject	that	knows	how	to	read	log	files	and
dynamically	expose	properties:

public	class	DynamicLog	:	DynamicObject

{

				Dictionary<string,	string>	members	=

								new	Dictionary<string,	string>();

				public	DynamicLog(string	headerString,	string	logString)

				{

								string[]	headers	=	headerString.Split('|');

								string[]	logData	=	logString.Split('|');

								for	(int	i	=	0;	i	<	headers.Length;	i++)

												members[headers[i]]	=	logData[i];

				}

				public	override	bool	TryGetMember(

								GetMemberBinder	binder,	out	object	result)

				{

								result	=	members[binder.Name];

								return	true;

				}

				public	override	bool	TryInvokeMember(

								InvokeMemberBinder	binder,	object[]	args,	out	object	result)

				{

								return	base.TryInvokeMember(binder,	args,	out	result);

				}

				public	override	bool	TrySetMember(

								SetMemberBinder	binder,	object	value)

				{

								members[binder.Name]	=	(string)value;

								return	true;

				}

}

The	Main	method	consumes	the	dynamic	data,	populates	data	objects,	and	gets
a	new	report:

static	void	Main()

{

				List<dynamic>	logData	=	GetData();

				var	tempDateTime	=	DateTime.MinValue;

				List<object>	inventory	=

								(from	log	in	logData

									let	canParse	=

												DateTime.TryParse(

																log.Date,	out	tempDateTime)

									select	new	LogEntry

									{

													CreatedAt	=	tempDateTime,

													Type	=	log.Severity,

													Where	=	log.Location,

													Description	=	log.Message

									})

								.ToList<object>();

				string	report	=	new	Report().Generate(inventory);

				Console.WriteLine(report);

}

Discussion
The	DynamicObject	type	is	part	of	the	.NET	Framework	and	supports	the
Dynamic	Language	Runtime	(DLR)	for	interoperability	with	dynamic
languages.	It’s	a	peculiar	type	that	lets	anyone	call	type	members	and	it	can
intercept	the	call	and	behave	in	any	way	you’ve	programmed	it	to.	Rather	than
wave	hands	and	enumerate	several	ways	to	use	DynamicObject,	this	solution
focuses	on	the	problem	where	you	need	an	object	to	work	on	proprietary	data.	In
this	solution,	the	data	is	a	log	file	format.	Here,	we’ll	use	the	DynamicObject
to	provide	the	data	and	the	report	library	from	Section	5.2	to	display	the	log	data.

The	LogEntry	class	represents	a	row	in	the	report.	We	can’t	give	a

DynamicObject	instance	to	Report	because	there	isn’t	a	way	to	reflect	on	it
and	extract	attributes.	Any	work-around	is	cumbersome	and	it’s	easier	to	use	the
DynamicObject	for	working	with	the	data,	populate	LogEntry,	and	give
the	collection	of	LogEntry	to	the	Report.

The	GetLogData	method	shows	what	the	log	file	looks	like.	GetData	creates
a	headers	string,	which	is	metadata	for	each	entry	of	the	log	file.	The	LINQ
query	iterates	through	each	line	of	the	log,	resulting	in	a	List<dynamic>.
The	projection	instantiates	a	new	DynamicLog	instance	with	the	header	and
log	entry.

The	DynamicLog	type	derives	from	DynamicObject,	implementing	only
the	methods	it	needs.	The	DynamicLog	implementation	shows	a	few	of	these
members:	TryGetMember,	TryInvokeMember,	and	TrySetMember.	The
solution	doesn’t	use	TryInvokeMember,	but	I	left	it	in	there	to	show	that
DynamicObject	does	more	that	work	with	properties	and	there	are	other
overloads.	The	Dictionary<string,	string>,	members,	hold	a	value
for	each	field	in	the	log	with	the	key	coming	from	the	header	and	the	value
coming	from	the	identially	positioned	string	in	the	log	file.

The	constructor	populates	members.	It	splits	each	field	on	the	pipe,	|,	separator
and	iterates	through	the	headers	until	members	has	an	entry	for	each	column.
The	TryGetMembers	method	reads	from	the	dictionary	to	return	the	value	via
the	out	object	result	parameter.	Remember	to	return	true	when	successful
because	returning	false	indicates	that	you	couldn’t	perform	the	operation	and
the	user	will	receive	a	runtime	exception.	TrySetMember	populates	the
dictionary	with	the	value.

GetMemberBinder	and	SetMemberBinder	contain	metadata	on	the
property	that	is	being	accessed.	For	example,	the	following	would	call
TryGetMember:

string	severity	=	log.Severity;

Assuming	that	log	is	an	instance	of	DynamicLog,	this	the
GetMemberBinder	Name	property	would	be	“Severity”.	It	would	index	into
the	dictionary	and	return	whatever	value	is	assigned	to	that	key.	Similarly,	the
following	would	call	TrySetMember:

log.Severity	=	"ERROR";

In	this	case,	binder.Name	would	be	“Severity”	and	it	would	update	that	key
in	the	dictionary	with	the	value	“ERROR”.

That	means	now	we	have	an	object	where	you	can	set	property	names	of	your
choosing	and	provide	any	log	file	of	the	same	format	(pipe-separated).	No	need
for	a	custom	class	every	time	you	want	to	accommodate	a	pipe-separated	format
log	file.

GetData	returns	a	List<dynamic>.	Because	it’s	a	dynamic	object	and	we
already	know	what	the	property	names	should	be	(they	match	the	header),	we
can	project	into	LogEntry	instances	by	only	specifying	the	property	name	on
the	dynamic	object.	Additionally,	you	could	specify	what	those	headers	should
be	in	a	configuration	file	or	database	where	they	can	be	data	driven	and	change
every	time.	Maybe	you	even	want	the	ability	to	change	the	delimeter	on	the	file
to	accomodate	handling	even	more	file	types.	As	you	can	see,	that’s	easy	to	do
with	DynamicObject.

See	Also
Section	5.2

5.8	Adding	and	Removing	Type	Members
Dynamically

Problem
You	want	a	fully	dynamic	object,	just	like	JavaScript	that	you	can	add	members
to	during	runtime.

Solution
This	method	uses	an	ExpandoObject	to	collect	data:

static	List<dynamic>	GetData()

{

				const	int	Date	=	0;

				const	int	Severity	=	1;

				const	int	Location	=	2;

				const	int	Message	=	3;

				var	logEntries	=	new	List<dynamic>();

				string	logData	=	GetLogData();

				foreach	(var	line	in	logData.Split('\n'))

				{

								string[]	columns	=	line.Split('|');

								dynamic	logEntry	=	new	ExpandoObject();

								logEntry.Date	=	columns[Date];

								logEntry.Severity	=	columns[Severity];

								logEntry.Location	=	columns[Location];

								logEntry.Message	=	columns[Message];

								logEntries.Add(logEntry);

				}

				return	logEntries;

}

static	string	GetLogData()

{

				return

								"2022-11-12	12:34:56.7890|INFO"	+

								"|Section_05_07.Program|Got	this	far\n"	+

								"2022-11-12	12:35:12.3456|ERROR"	+

								"|Section_05_07.Report|Index	out	of	range\n"	+

								"2022-11-12	12:55:34.5678|WARNING"	+

								"|Section_05_07.Report|Please	check	this";

}

The	Main	method	converts	a	List<dynamic>	to	a	List<LogEntry>	and
gets	the	report:

static	void	Main()

{

				List<dynamic>	logData	=	GetData();

				var	tempDateTime	=	DateTime.MinValue;

				List<object>	inventory	=

								(from	log	in	logData

									let	canParse	=

												DateTime.TryParse(

																log.Date,	out	tempDateTime)

									select	new	LogEntry

									{

													CreatedAt	=	tempDateTime,

													Type	=	log.Severity,

													Where	=	log.Location,

													Description	=	log.Message

									})

								.ToList<object>();

				string	report	=	new	Report().Generate(inventory);

				Console.WriteLine(report);

}

Discussion
This	is	similar	to	the	DynamicObject	example	in	Section	5.7,	except	it	covers
a	simpler	case	where	you	don’t	need	as	much	flexibility.	What	if	you	knew	what
the	file	format	was	ahead	of	time	and	know	it	won’t	change,	yet	you	just	want	a
simple	way	to	pull	the	data	into	a	dynamic	object	without	creating	a	new	type
every	time	you	need	to	send	data	to	the	report.

In	this	case,	you	can	use	ExpandoObject,	a	.NET	Framework	type	that	lets
you	add	and	remove	type	members	on-the-fly,	the	same	as	in	JavaScript.

In	the	solution,	the	GetData	method	instantiates	an	ExpandoObject,
assigning	it	to	the	dynamic	logEntry.	Then,	it	adds	properties	on-the-fly	and
populates	them	with	the	parsed	log	file	data.

The	Main	method	accepts	a	List<dynamic>	from	GetData.	As	long	as
each	object	has	the	properties	it	expects,	everything	works	well.

See	Also
Section	5.7

5.9	Calling	Python	Code	from	C#

Problem
You	have	a	C#	program	and	want	to	use	Python	code,	but	don’t	want	to	re-write

it.

Solution
This	Python	file	has	code	that	we	need	to	use:

import	sys

sys.path.append(

				"/System/Library/Frameworks/Python.framework"	+

				"/Versions/Current/lib/python2.7")

from	random	import	*

class	SemanticAnalysis:

				@staticmethod

				def	Eval(text):

								val	=	random()

								return	val	<	.5

This	class	represents	social	media	data:

public	class	Tweet

{

				[Column("Screen	Name")]

				public	string	ScreenName	{	get;	set;	}

				[Column("Date")]

				public	DateTime	CreatedAt	{	get;	set;	}

				[Column("Text")]

				public	string	Text	{	get;	set;	}

				[Column("Semantic	Analysis")]

				public	string	Semantics	{	get;	set;	}

}

The	Main	method	gets	data	and	generates	a	report:

static	void	Main()

{

				List<object>	tweets	=	GetTweets();

				string	report	=	new	Report().Generate(tweets);

				Console.WriteLine(report);

}

These	are	the	required	namespaces	that	are	part	of	the	IronPython	NuGet
package:

using	IronPython.Hosting;

using	Microsoft.Scripting.Hosting;

This	method	sets	up	the	Python	interop:

static	List<object>	GetTweets()

{

				ScriptRuntime	py	=	Python.CreateRuntime();

				dynamic	semantic	=	py.UseFile("../../../Semantic.py");

				dynamic	semanticAnalysis	=	semantic.SemanticAnalysis();

				DateTime	date	=	DateTime.UtcNow;

				var	tweets	=	new	List<object>

				{

								new	Tweet

								{

												ScreenName	=	"SomePerson",

												CreatedAt	=	date.AddMinutes(5),

												Text	=	"Comment	#1",

												Semantics	=	GetSemanticText(semanticAnalysis,	"Comment	

#1")

								},

								new	Tweet

								{

												ScreenName	=	"SomePerson",

												CreatedAt	=	date.AddMinutes(7),

												Text	=	"Comment	#2",

												Semantics	=	GetSemanticText(semanticAnalysis,	"Comment	

#2")

								},

								new	Tweet

								{

												ScreenName	=	"SomePerson",

												CreatedAt	=	date.AddMinutes(12),

												Text	=	"Comment	#3",

												Semantics	=	GetSemanticText(semanticAnalysis,	"Comment	

#3")

								},

				};

				return	tweets;

}

This	method	calls	the	Python	code	via	dynamic	instance:

static	string	GetSemanticText(dynamic	semantic,	string	text)

{

				bool	result	=	semantic.Eval(text);

				return	result	?	"Positive"	:	"Negative";

}

Discussion
The	scenario	in	this	example	is	where	you’re	working	with	social	media	data.
One	of	the	report	items	is	semantics,	telling	whether	a	user’s	tweet	was	positive
or	negative.	You’ve	got	this	great	semantic	analysis	AI	model,	but	it’s	built	with
TensorFlow	in	a	Python	module.	You	really	don’t	want	to	re-write	that	code	and
it	would	be	great	to	reuse	it.

This	is	where	the	Dynamic	Language	Runtime	(DLR)	comes	in	because	it	lets
you	call	Python	(and	other	dynamic	languages)	from	C#.	Considering	that	it
could	have	taken	many	months	to	build	a	machine	learning	model	(or	any	other
type	of	module),	the	advantage	of	reusing	that	code	accross	languages	can	be
huge.

The	SemanticAnalysis	class	in	the	Python	file	simulates	a	model,	returning
true	for	a	positive	result	or	false	for	a	negative	result.

The	Main	method	calls	GetTweets	to	get	data	and	uses	the	Report	class,
which	is	the	same	as	Section	5.2.	The	List<object>	returned	from
GetTweets	contains	Tweet	objects	that	can	work	with	the	report	generator.

TIP
To	set	this	up,	you’ll	need	to	reference	the	IronPython	package,	which	you	can	find	on	NuGet.	You
also	might	find	it	useful	to	install	Python	Tools	for	Visual	Studio	via	the	Visual	Studio	Installer.

The	GetTweets	method	needs	a	reference	to	the	Python
SemanticAnalysis	class.	Calling	CreateRuntime	creates	a	DLR
reference.	Then	you	need	to	specify	the	location	of	the	Python	file	via

UseFile.	After	that,	you	can	instantiate	the	SemanticAnalysis	class.
Each	Tweet	instance	sets	the	Semantics	property	with	a	call	to
GetSemanticText,	passing	the	SemanticAnalysis	reference	and	text
to	evaluate.

The	GetSemanticText	method	calls	Eval	with	text	as	it’s	parameter	and
returns	a	bool	result,	which	it	then	translates	to	a	report-friendly	“Positive”	or
“Negative”	string.

In	just	a	few	lines	of	code,	you	saw	how	easy	it	is	to	reuse	important	code	that
was	written	in	a	dynamic	language.	Other	supported	languages	include	Ruby,
and	JavaScript.

See	Also
Section	5.2

5.10	Calling	C#	Code	from	Python

Problem
You	have	a	Python	program	and	want	to	use	C#	code,	but	don’t	want	to	re-write
it	.

Solution
Here’s	the	main	Python	application	that	needs	to	use	the	report	generator:

import	clr,	sys

sys.path.append(

				r"C:\Path	Where	You	Cloned	The	Project"	+

				"\Chapter05\Section-05-10\bin\Debug")

clr.AddReference(

				r"C:\Path	Where	You	Cloned	The	Project"	+

				\Chapter05\Section-05-10\bin\Debug\PythonToCS.dll")

from	PythonToCS	import	Report

from	PythonToCS	import	InventoryItem

from	System	import	Decimal

inventory	=	[

				InventoryItem("1",	"Part	#1",	3,	Decimal(5.26)),

				InventoryItem("2",	"Part	#2",	1,	Decimal(7.95)),

				InventoryItem("3",	"Part	#1",	2,	Decimal(23.13))]

rpt	=	Report()

result	=	rpt.GenerateDynamic(inventory)

print(result)

This	class	has	a	constructor	to	make	it	easier	to	work	with	in	Python:

public	class	InventoryItem

{

				public	InventoryItem(

								string	partNumber,	string	description,

								int	count,	decimal	itemPrice)

				{

								PartNumber	=	partNumber;

								Description	=	description;

								Count	=	count;

								ItemPrice	=	itemPrice;

				}

				[Column("Part	#")]

				public	string	PartNumber	{	get;	set;	}

				[Column("Name")]

				public	string	Description	{	get;	set;	}

				[Column("Amount")]

				public	int	Count	{	get;	set;	}

				[Column("Price",	Format	=	"{0:c}")]

				public	decimal	ItemPrice	{	get;	set;	}

}

Here’s	the	C#	method	that	the	Python	code	calls	to	generate	the	report:

public	string	GenerateDynamic(dynamic[]	items)

{

				List<object>	inventory	=

								(from	item	in	items

									select	new	InventoryItem

									(

													item.PartNumber,

													item.Description,

													item.Count,

													item.ItemPrice

))

								.ToList<object>();

				return	Generate(inventory);

}

Discussion
In	Section	5.9,	the	scenario	was	to	call	Python	from	C#.	The	scenario	in	this
problem	is	opposite	in	that	I	have	a	Python	application	and	need	to	be	able	to
generate	reports.	However,	the	report	generator	is	written	in	C#.	So	much	work
has	gone	into	the	report	library	and	it	doesn’t	make	sense	to	rewrite	in	Python.
Fortunately,	the	Dynamic	Language	Runtime	(DLR)	allows	us	to	call	that	C#
code	with	Python.

The	report	is	the	same	one	used	in	Section	5.2	and	the	C#	code	has	the	same
InventoryItem	class.

TIP
To	set	this	up,	you	might	need	to	install	the	pythonnet	package:

>pip	install	pythonnet

You	can	find	more	info	at	https://pypi.org/project/pythonnet/

You	set	up	the	Python	code	by	importing	clr	and	sys,	calling
sys.path.append	as	a	reference	to	the	path	where	the	C#	dll	resides	and
then	calling	clr.AddReference	to	add	a	reference	to	the	C#	dll	you	want	to
use.

In	Python,	whenever	you	need	to	use	a	.NET	type	from	either	the	framework	or
custom	assembly,	use	the	from	Namespace	import	type	syntax,	which
is	roughly	equivalent	to	a	C#	using	declaration.	The	namespace	in	the	C#
source	code	is	PythonToCS	and	the	code	uses	that	to	import	a	reference	to
Report	and	InventoryItem.	It	also	uses	System	namespace	to	get	a

https://pypi.org/project/pythonnet/

reference	to	the	Decimal	type,	which	aliases	the	C#	decimal	type.

In	Python,	whenever	you	use	square	brackets,	[],	you’re	creating	a	data
structure	called	a	list.	It’s	a	collection	of	objects	with	Python	semantics.	In
this	example,	we’re	creating	a	list	of	InventoryItem,	assigning	it	to	a
variable	named	inventory.

Notice	how	we’re	using	Decimal	for	the	last	parameter,	itemPrice,	of	the
InventoryItem	constructor.	Python	doesn’t	have	a	concept	of	decimal	and
will	pass	that	value	as	a	float,	which	causes	an	error	because	the	C#
InventoryItem	defines	that	parameter	as	a	decimal.

Next,	the	Python	code	instantiates	Report,	rpt,	and	calls
GenerateDynamic,	passing	inventory.

This	calls	the	GenerateDynamic	in	Report	and	automatically	translates
inventory	from	a	Python	list	into	a	C#	dynamic[],	items.	Because	each
object	in	items	is	dynamic,	we	can	query	with	a	LINQ	statement,	accessing
the	names	of	each	object	dynamically	in	the	projection.

Finally,	GenerateDynamically	calls	Generate,	the	the	application
returns	a	report,	and	the	Python	code	prints	the	report.

See	Also
Section	5.2	Section	5.9

About	the	Author
Joe	Mayo	is	an	author,	instructor,	and	independent	consultant	who	has	been
working	with	C#	and	.NET	since	its	announcement	in	the	summer	of	the	year
2000.	As	an	independent	consultant,	he’s	worked	with	a	variety	of	organizations
from	startup	to	fortune	500	enterprise.	His	experience	in	this	journey	includes
desktop,	web,	mobile,	cloud,	and	AI	technologies.	In	addition	to	practical	hands-
on	application,	he’s	also	taught	C#	and	.NET	for	many	years	via	in-person,	live
video,	and	recorded	video	courses.	His	top	open-source	project	is	LINQ	to
Twitter	(on	GitHub),	with	over	one	million	NuGet	downloads.	When	Joe	isn’t
serving	valued	customers,	he	contributes	to	the	community	through	Q&A
forums,	presenting,	and	(one	of	his	favorite	pastimes)	writing.

1.	 1.	Constructing	Types	and	Apps
a.	 1.1.	Overview
b.	 1.2.	1.1	Managing	Object	End-of-Lifetime
c.	 1.3.	1.2	Removing	Explicit	Dependencies
d.	 1.4.	1.3	Delegating	Object	Creation	to	a	Class
e.	 1.5.	1.4	Delegating	Object	Creation	to	a	Method
f.	 1.6.	1.5	Designing	Application	Layers
g.	 1.7.	1.6	Returning	Multiple	Values	from	a	Method
h.	 1.8.	1.7	Converting	From	Legacy	to	Strongly	Typed	Classes
i.	 1.9.	1.8	Making	Classes	Adapt	to	your	Interface
j.	 1.10.	1.9	Designing	a	Custom	Exception
k.	 1.11.	1.10	Building	a	Fluid	Interface

2.	 2.	Coding	Algorithms
a.	 2.1.	Overview
b.	 2.2.	2.1	Processing	strings	Efficiently
c.	 2.3.	2.2	Simplifying	Instance	Cleanup
d.	 2.4.	2.3	Keeping	Logic	Local
e.	 2.5.	2.4	Operating	on	Multiple	Classes	the	Same	Way
f.	 2.6.	2.5	Checking	for	Type	Equality
g.	 2.7.	2.6	Processing	Data	Hierarchies
h.	 2.8.	2.7	Converting	From/To	Unix	Time
i.	 2.9.	2.8	Caching	Frequently	Requested	Data
j.	 2.10.	2.9	Delaying	Type	Instantiation
k.	 2.11.	2.10	Parsing	Data	Files

3.	 3.	Ensuring	Quality
a.	 3.1.	Overview
b.	 3.2.	3.1	Writing	a	Unit	Test
c.	 3.3.	3.2	Versioning	Interfaces	Safely
d.	 3.4.	3.3	Simplifying	Parameter	Validation
e.	 3.5.	3.4	Protecting	Code	From	NullReferenceException
f.	 3.6.	3.5	Avoiding	Magic	strings

g.	 3.7.	3.6	Customizing	Class	String	Representation
h.	 3.8.	3.7	Rethrowing	Exceptions
i.	 3.9.	3.8	Managing	Process	Status
j.	 3.10.	3.9	Building	Resilient	Network	Connections
k.	 3.11.	3.10	Measuring	Performance

4.	 4.	Querying	with	LINQ
a.	 4.1.	Transforming	Object	Shape
b.	 4.2.	Joining	Data
c.	 4.3.	Performing	Left	Joins
d.	 4.4.	Grouping	Data
e.	 4.5.	Building	Incremental	Queries
f.	 4.6.	Querying	Distinct	Objects
g.	 4.7.	Simplifying	Queries
h.	 4.8.	Operating	on	Sets
i.	 4.9.	Building	a	Query	Filter	with	Expression	Trees
j.	 4.10.	Querying	in	Parallel

5.	 5.	Implementing	Dynamic	and	Reflection
a.	 5.1.	Reading	Attributes	with	Reflection
b.	 5.2.	Accessing	Type	Members	with	Reflection
c.	 5.3.	Instantiating	Type	Members	with	Reflection
d.	 5.4.	Invoking	Methods	with	Reflection
e.	 5.5.	Replacing	Reflection	with	Dynamic	Code
f.	 5.6.	Performing	Interop	with	Office	Apps
g.	 5.7.	Creating	an	Inherently	Dynamic	Type
h.	 5.8.	Adding	and	Removing	Type	Members	Dynamically
i.	 5.9.	Calling	Python	Code	from	C#
j.	 5.10.	Calling	C#	Code	from	Python

	1. Constructing Types and Apps
	1.1. Overview
	1.2. 1.1 Managing Object End-of-Lifetime
	1.3. 1.2 Removing Explicit Dependencies
	1.4. 1.3 Delegating Object Creation to a Class
	1.5. 1.4 Delegating Object Creation to a Method
	1.6. 1.5 Designing Application Layers
	1.7. 1.6 Returning Multiple Values from a Method
	1.8. 1.7 Converting From Legacy to Strongly Typed Classes
	1.9. 1.8 Making Classes Adapt to your Interface
	1.10. 1.9 Designing a Custom Exception
	1.11. 1.10 Building a Fluid Interface

	2. Coding Algorithms
	2.1. Overview
	2.2. 2.1 Processing strings Efficiently
	2.3. 2.2 Simplifying Instance Cleanup
	2.4. 2.3 Keeping Logic Local
	2.5. 2.4 Operating on Multiple Classes the Same Way
	2.6. 2.5 Checking for Type Equality
	2.7. 2.6 Processing Data Hierarchies
	2.8. 2.7 Converting From/To Unix Time
	2.9. 2.8 Caching Frequently Requested Data
	2.10. 2.9 Delaying Type Instantiation
	2.11. 2.10 Parsing Data Files

	3. Ensuring Quality
	3.1. Overview
	3.2. 3.1 Writing a Unit Test
	3.3. 3.2 Versioning Interfaces Safely
	3.4. 3.3 Simplifying Parameter Validation
	3.5. 3.4 Protecting Code From NullReferenceException
	3.6. 3.5 Avoiding Magic strings
	3.7. 3.6 Customizing Class String Representation
	3.8. 3.7 Rethrowing Exceptions
	3.9. 3.8 Managing Process Status
	3.10. 3.9 Building Resilient Network Connections
	3.11. 3.10 Measuring Performance

	4. Querying with LINQ
	4.1. Transforming Object Shape
	4.2. Joining Data
	4.3. Performing Left Joins
	4.4. Grouping Data
	4.5. Building Incremental Queries
	4.6. Querying Distinct Objects
	4.7. Simplifying Queries
	4.8. Operating on Sets
	4.9. Building a Query Filter with Expression Trees
	4.10. Querying in Parallel

	5. Implementing Dynamic and Reflection
	5.1. Reading Attributes with Reflection
	5.2. Accessing Type Members with Reflection
	5.3. Instantiating Type Members with Reflection
	5.4. Invoking Methods with Reflection
	5.5. Replacing Reflection with Dynamic Code
	5.6. Performing Interop with Office Apps
	5.7. Creating an Inherently Dynamic Type
	5.8. Adding and Removing Type Members Dynamically
	5.9. Calling Python Code from C#
	5.10. Calling C# Code from Python

