

C# 10 and .NET 6 – Modern
Cross-Platform Development
Sixth Edition

Build apps, websites, and services with ASP.NET Core 6,
Blazor, and EF Core 6 using Visual Studio 2022 and
Visual Studio Code

Mark J. Price

BIRMINGHAM—MUMBAI

C# 10 and .NET 6 – Modern Cross-Platform Development
Sixth Edition
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Producer: Suman Sen
Acquisition Editor – Peer Reviews: Saby Dsilva
Project Editor: Amit Ramadas
Content Development Editor: Bhavesh Amin
Copy Editor: Safis Editing
Technical Editor: Aniket Shetty
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Presentation Designer: Pranit Padwal

First published: March 2016
Second edition: March 2017
Third edition: November 2017
Fourth edition: October 2019
Fifth edition: November 2020
Sixth edition: November 2021
Production reference: 1021121

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-736-1

www.packt.com

www.packt.com

Contributors

About the author

Mark J. Price is a Microsoft Specialist: Programming in C# and Architecting Microsoft Azure
Solutions, with over 20 years' experience.

Since 1993, he has passed more than 80 Microsoft programming exams and specializes in
preparing others to pass them. Between 2001 and 2003, Mark was employed to write official
courseware for Microsoft in Redmond, USA. His team wrote the first training courses for C#
while it was still an early alpha version. While with Microsoft, he taught "train-the-trainer"
classes to get other MCTs up to speed on C# and .NET. Currently, Mark creates and delivers
training courses for Optimizely's Digital Experience Platform (DXP). Mark holds a BSc. Hons.
Degree in computer science.

About the reviewers
Damir Arh has many years of experience with software development and maintenance;
from complex enterprise software projects to modern consumer-oriented mobile applications.
Although he has worked with a wide spectrum of different languages, his favorite language
remains C#. In his drive toward better development processes, he is a proponent of test-driven
development, continuous integration, and continuous deployment. He shares his knowledge by
speaking at local user groups and conferences, blogging, and writing articles. He has received
the prestigious Microsoft MVP award for developer technologies 10 times in a row. In his spare
time, he's always on the move: hiking, geocaching, running, and rock climbing.

Geovanny Alzate Sandoval is a system engineer from Medellín, Colombia, and enjoys
everything related to software development, new technologies, design patterns, and software
architecture. He has 14+ years of experience working as a developer, technical leader, and
software architect mostly with Microsoft technologies. He loves contributing to OSS, he has
made contributions to Asp.Net Core SignalR, Polly, and Apollo Server to mention a few. He's
also the co-author of Simmy, an OSS library for chaos engineering for .NET based on Polly.
He's also a DDD lover and a cloud enthusiast. In addition, he's a .Net Foundation member
and a co-organizer of MDE.NET community, which is a community for .NET developers in
Medellín/Colombia. In recent years, he has been focused on building distributed and reliable
systems using distributed architectures and cloud technologies. Last but not least, he strongly
believes in teamwork, as he says: "I wouldn't be here if I wouldn't have learned that much from
all the talented people I've worked with."

Geovanny currently works for Curbit, which is a US startup based in California, as Director of
Engineering.

[v]

Table of Contents
Preface xxv
Chapter 1: Hello, C#! Welcome, .NET! 1

Setting up your development environment 2
Choosing the appropriate tool and application type for learning 3

Pros and cons of the .NET Interactive Notebooks extension 3
Using Visual Studio Code for cross-platform development 4
Using GitHub Codespaces for development in the cloud 4
Using Visual Studio for Mac for general development 4
Using Visual Studio for Windows for general development 5
What I used 5

Deploying cross-platform 6
Downloading and installing Visual Studio 2022 for Windows 6

Microsoft Visual Studio for Windows keyboard shortcuts 7
Downloading and installing Visual Studio Code 7

Installing other extensions 8
Understanding Microsoft Visual Studio Code versions 9
Microsoft Visual Studio Code keyboard shortcuts 9

Understanding .NET 10
Understanding .NET Framework 10
Understanding the Mono, Xamarin, and Unity projects 10
Understanding .NET Core 11
Understanding the journey to one .NET 11
Understanding .NET support 12

Understanding .NET Runtime and .NET SDK versions 13
Removing old versions of .NET 14

What is different about modern .NET? 14
Windows development 14
Web development 15
Database development 15

Themes of modern .NET 15
Understanding .NET Standard 15
.NET platforms and tools used by the book editions 16
Understanding intermediate language 17
Comparing .NET technologies 17

Building console apps using Visual Studio 2022 18
Managing multiple projects using Visual Studio 2022 18
Writing code using Visual Studio 2022 18
Compiling and running code using Visual Studio 20

Table of Contents

[vi]

Understanding the compiler-generated folders and files 21
Writing top-level programs 21
Adding a second project using Visual Studio 2022 22

Implicitly imported namespaces 22
Building console apps using Visual Studio Code 24

Managing multiple projects using Visual Studio Code 24
Writing code using Visual Studio Code 24
Compiling and running code using the dotnet CLI 27
Adding a second project using Visual Studio Code 27
Managing multiple files using Visual Studio Code 29

Exploring code using .NET Interactive Notebooks 29
Creating a notebook 30
Writing and running code in a notebook 31
Saving a notebook 32
Adding Markdown and special commands to a notebook 32
Executing code in multiple cells 33
Using .NET Interactive Notebooks for the code in this book 34

Reviewing the folders and files for projects 34
Understanding the common folders and files 35
Understanding the solution code on GitHub 36

Making good use of the GitHub repository for this book 36
Raising issues with the book 36
Giving me feedback 37
Downloading solution code from the GitHub repository 37
Using Git with Visual Studio Code and the command line 38

Cloning the book solution code repository 38
Looking for help 39

Reading Microsoft documentation 39
Getting help for the dotnet tool 39
Getting definitions of types and their members 40
Looking for answers on Stack Overflow 42
Searching for answers using Google 43
Subscribing to the official .NET blog 43
Watching Scott Hanselman's videos 43

Practicing and exploring 43
Exercise 1.1 – Test your knowledge 43
Exercise 1.2 – Practice C# anywhere 44
Exercise 1.3 – Explore topics 44

Summary 45
Chapter 2: Speaking C# 47

Introducing the C# language 47
Understanding language versions and features 47

C# 1.0 48
C# 2.0 48
C# 3.0 48

Table of Contents

[vii]

C# 4.0 48
C# 5.0 49
C# 6.0 49
C# 7.0 49
C# 7.1 49
C# 7.2 50
C# 7.3 50
C# 8 50
C# 9 50
C# 10 50

Understanding C# standards 51
Discovering your C# compiler versions 51

How to output the SDK version 52
Enabling a specific language version compiler 52

Understanding C# grammar and vocabulary 53
Showing the compiler version 53
Understanding C# grammar 55
Statements 55
Comments 55
Blocks 56
Examples of statements and blocks 56
Understanding C# vocabulary 57
Comparing programming languages to human languages 57
Changing the color scheme for C# syntax 57
Help for writing correct code 58
Importing namespaces 59

Implicitly and globally importing namespaces 59
Verbs are methods 62
Nouns are types, variables, fields, and properties 62
Revealing the extent of the C# vocabulary 63

Working with variables 65
Naming things and assigning values 66
Literal values 66
Storing text 66

Understanding verbatim strings 67
Storing numbers 68

Storing whole numbers 68
Exploring whole numbers 69

Storing real numbers 70
Writing code to explore number sizes 70
Comparing double and decimal types 71

Storing Booleans 73
Storing any type of object 73
Storing dynamic types 74
Declaring local variables 76

Specifying the type of a local variable 76
Inferring the type of a local variable 76
Using target-typed new to instantiate objects 78

Table of Contents

[viii]

Getting and setting the default values for types 78
Storing multiple values in an array 79

Exploring more about console applications 80
Displaying output to the user 81

Formatting using numbered positional arguments 81
Formatting using interpolated strings 82
Understanding format strings 82

Getting text input from the user 84
Simplifying the usage of the console 84
Getting key input from the user 85
Passing arguments to a console app 86
Setting options with arguments 88
Handling platforms that do not support an API 90

Practicing and exploring 91
Exercise 2.1 – Test your knowledge 91
Exercise 2.2 – Test your knowledge of number types 92
Exercise 2.3 – Practice number sizes and ranges 92
Exercise 2.4 – Explore topics 93

Summary 93
Chapter 3: Controlling Flow, Converting Types, and Handling Exceptions 95

Operating on variables 95
Exploring unary operators 96
Exploring binary arithmetic operators 97
Assignment operators 98
Exploring logical operators 98
Exploring conditional logical operators 100
Exploring bitwise and binary shift operators 101
Miscellaneous operators 103

Understanding selection statements 103
Branching with the if statement 104

Why you should always use braces with if statements 105
Pattern matching with the if statement 105
Branching with the switch statement 106
Pattern matching with the switch statement 108
Simplifying switch statements with switch expressions 109

Understanding iteration statements 110
Looping with the while statement 110
Looping with the do statement 111
Looping with the for statement 112
Looping with the foreach statement 112

Understanding how foreach works internally 113
Casting and converting between types 113

Casting numbers implicitly and explicitly 114
Converting with the System.Convert type 115
Rounding numbers 116

Table of Contents

[ix]

Understanding the default rounding rules 116
Taking control of rounding rules 117
Converting from any type to a string 117
Converting from a binary object to a string 118
Parsing from strings to numbers or dates and times 119

Errors using Parse 120
Avoiding exceptions using the TryParse method 120

Handling exceptions 121
Wrapping error-prone code in a try block 121

Catching all exceptions 123
Catching specific exceptions 123
Catching with filters 125

Checking for overflow 125
Throwing overflow exceptions with the checked statement 125
Disabling compiler overflow checks with the unchecked statement 127

Practicing and exploring 128
Exercise 3.1 – Test your knowledge 128
Exercise 3.2 – Explore loops and overflow 129
Exercise 3.3 – Practice loops and operators 129
Exercise 3.4 – Practice exception handling 130
Exercise 3.5 – Test your knowledge of operators 130
Exercise 3.6 – Explore topics 130

Summary 130
Chapter 4: Writing, Debugging, and Testing Functions 131

Writing functions 131
Times table example 132

Writing a times table function 132
Writing a function that returns a value 134
Converting numbers from cardinal to ordinal 136
Calculating factorials with recursion 137
Documenting functions with XML comments 140
Using lambdas in function implementations 141

Debugging during development 144
Creating code with a deliberate bug 144
Setting a breakpoint and start debugging 145

Using Visual Studio 2022 145
Using Visual Studio Code 146

Navigating with the debugging toolbar 148
Debugging windows 149
Stepping through code 150
Customizing breakpoints 151

Logging during development and runtime 153
Understanding logging options 153
Instrumenting with Debug and Trace 154

Writing to the default trace listener 154
Configuring trace listeners 155

Table of Contents

[x]

Switching trace levels 157
Adding packages to a project in Visual Studio Code 157
Adding packages to a project in Visual Studio 2022 158
Reviewing project packages 158

Unit testing 162
Understanding types of testing 162
Creating a class library that needs testing 162
Writing unit tests 164

Running unit tests using Visual Studio Code 165
Running unit tests using Visual Studio 166
Fix the bug 166

Throwing and catching exceptions in functions 167
Understanding usage errors and execution errors 167
Commonly thrown exceptions in functions 167
Understanding the call stack 168
Where to catch exceptions 171
Rethrowing exceptions 171
Implementing the tester-doer pattern 173

Problems with the tester-doer pattern 173
Practicing and exploring 174

Exercise 4.1 – Test your knowledge 174
Exercise 4.2 – Practice writing functions with debugging and unit testing 174
Exercise 4.3 – Explore topics 175

Summary 175
Chapter 5: Building Your Own Types with Object-Oriented Programming 177

Talking about OOP 177
Building class libraries 178

Creating a class library 178
Defining a class in a namespace 179

Simplifying namespace declarations 180
Understanding members 181
Instantiating a class 181

Referencing an assembly 182
Importing a namespace to use a type 182
Understanding objects 183

Inheriting from System.Object 184
Storing data within fields 184

Defining fields 184
Understanding access modifiers 185
Setting and outputting field values 186
Storing a value using an enum type 187
Storing multiple values using an enum type 188

Storing multiple values using collections 189
Understanding generic collections 190
Making a field static 191
Making a field constant 192

Table of Contents

[xi]

Making a field read-only 193
Initializing fields with constructors 194

Defining multiple constructors 195
Writing and calling methods 195

Returning values from methods 195
Combining multiple returned values using tuples 196

Language support for tuples 197
Naming the fields of a tuple 198
Inferring tuple names 198
Deconstructing tuples 198
Deconstructing types 199

Defining and passing parameters to methods 200
Overloading methods 201
Passing optional and named parameters 201

Naming parameter values when calling methods 203
Controlling how parameters are passed 203

Simplified out parameters 204
Understanding ref returns 205
Splitting classes using partial 205

Controlling access with properties and indexers 206
Defining read-only properties 206
Defining settable properties 207
Requiring properties to be set during instantiation 209
Defining indexers 209

Pattern matching with objects 210
Creating and referencing a .NET 6 class library 210
Defining flight passengers 211
Enhancements to pattern matching in C# 9 or later 212

Working with records 213
Init-only properties 213
Understanding records 214
Positional data members in records 215

Simplifying data members in records 215
Practicing and exploring 216

Exercise 5.1 – Test your knowledge 217
Exercise 5.2 – Explore topics 217

Summary 217
Chapter 6: Implementing Interfaces and Inheriting Classes 219

Setting up a class library and console application 220
More about methods 221

Implementing functionality using methods 221
Implementing functionality using operators 223
Implementing functionality using local functions 224

Raising and handling events 225
Calling methods using delegates 226
Defining and handling delegates 227

Table of Contents

[xii]

Defining and handling events 229
Making types safely reusable with generics 230

Working with non-generic types 230
Working with generic types 231

Implementing interfaces 232
Common interfaces 232
Comparing objects when sorting 233
Comparing objects using a separate class 235
Implicit and explicit interface implementations 236
Defining interfaces with default implementations 237

Managing memory with reference and value types 239
Defining reference and value types 239
How reference and value types are stored in memory 240
Equality of types 241
Defining struct types 242
Working with record struct types 243
Releasing unmanaged resources 244
Ensuring that Dispose is called 246

Working with null values 246
Making a value type nullable 246
Understanding nullable reference types 247
Enabling nullable and non-nullable reference types 248
Declaring non-nullable variables and parameters 248
Checking for null 250

Checking for null in method parameters 251
Inheriting from classes 252

Extending classes to add functionality 252
Hiding members 253
Overriding members 254
Inheriting from abstract classes 255
Preventing inheritance and overriding 256
Understanding polymorphism 257

Casting within inheritance hierarchies 259
Implicit casting 259
Explicit casting 259
Avoiding casting exceptions 260

Inheriting and extending .NET types 261
Inheriting exceptions 261
Extending types when you can't inherit 263

Using static methods to reuse functionality 263
Using extension methods to reuse functionality 264

Using an analyzer to write better code 265
Suppressing warnings 267

Fixing the code 268
Understanding common StyleCop recommendations 270

Table of Contents

[xiii]

Practicing and exploring 271
Exercise 6.1 – Test your knowledge 271
Exercise 6.2 – Practice creating an inheritance hierarchy 271
Exercise 6.3 – Explore topics 272

Summary 272
Chapter 7: Packaging and Distributing .NET Types 273

The road to .NET 6 273
.NET Core 1.0 274
.NET Core 1.1 274
.NET Core 2.0 275
.NET Core 2.1 275
.NET Core 2.2 275
.NET Core 3.0 275
.NET Core 3.1 276
.NET 5.0 276
.NET 6.0 276
Improving performance from .NET Core 2.0 to .NET 5 277
Checking your .NET SDKs for updates 277

Understanding .NET components 277
Understanding assemblies, NuGet packages, and namespaces 278

What is a namespace? 278
Understanding dependent assemblies 278

Understanding the Microsoft .NET project SDKs 278
Understanding namespaces and types in assemblies 279
Understanding NuGet packages 280
Understanding frameworks 280
Importing a namespace to use a type 281
Relating C# keywords to .NET types 281

Mapping C# aliases to .NET types 282
Revealing the location of a type 283

Sharing code with legacy platforms using .NET Standard 284
Understanding defaults for class libraries with different SDKs 284
Creating a .NET Standard 2.0 class library 285
Controlling the .NET SDK 286

Publishing your code for deployment 287
Creating a console application to publish 288
Understanding dotnet commands 289

Creating new projects 289
Getting information about .NET and its environment 290
Managing projects 291
Publishing a self-contained app 292
Publishing a single-file app 293
Reducing the size of apps using app trimming 295

Enabling assembly-level trimming 295
Enabling type-level and member-level trimming 295

Table of Contents

[xiv]

Decompiling .NET assemblies 296
Decompiling using the ILSpy extension for Visual Studio 2022 296
Decompiling using the ILSpy extension for Visual Studio Code 297
No, you cannot technically prevent decompilation 301

Packaging your libraries for NuGet distribution 302
Referencing a NuGet package 302

Fixing dependencies 303
Packaging a library for NuGet 304

Publishing a package to a public NuGet feed 306
Publishing a package to a private NuGet feed 307

Exploring NuGet packages with a tool 307
Testing your class library package 308

Porting from .NET Framework to modern .NET 309
Could you port? 309
Should you port? 310
Differences between .NET Framework and modern .NET 311
Understanding the .NET Portability Analyzer 311
Understanding the .NET Upgrade Assistant 311
Using non-.NET Standard libraries 312

Working with preview features 313
Requiring preview features 314
Enabling preview features 314
Generic mathematics 315

Practicing and exploring 315
Exercise 7.1 – Test your knowledge 316
Exercise 7.2 – Explore topics 316
Exercise 7.3 – Explore PowerShell 316

Summary 316
Chapter 8: Working with Common .NET Types 317

Working with numbers 318
Working with big integers 318
Working with complex numbers 319
Understanding quaternions 320

Working with text 320
Getting the length of a string 320
Getting the characters of a string 321
Splitting a string 321
Getting part of a string 322
Checking a string for content 323
Joining, formatting, and other string members 323
Building strings efficiently 324

Working with dates and times 325
Specifying date and time values 325
Globalization with dates and times 327

Table of Contents

[xv]

Working with only a date or a time 329
Pattern matching with regular expressions 330

Checking for digits entered as text 330
Regular expression performance improvements 331
Understanding the syntax of a regular expression 332
Examples of regular expressions 332
Splitting a complex comma-separated string 333

Storing multiple objects in collections 334
Common features of all collections 335
Improving performance by ensuring the capacity of a collection 336
Understanding collection choices 337

Lists 337
Dictionaries 338
Stacks 339
Queues 339
Sets 340
Collection methods summary 340

Working with lists 340
Working with dictionaries 342
Working with queues 344
Sorting collections 346
More specialized collections 347

Working with a compact array of bit values 347
Working with efficient lists 347

Using immutable collections 347
Good practice with collections 348

Working with spans, indexes, and ranges 349
Using memory efficiently using spans 349
Identifying positions with the Index type 349
Identifying ranges with the Range type 350
Using indexes, ranges, and spans 350

Working with network resources 351
Working with URIs, DNS, and IP addresses 352
Pinging a server 353

Working with reflection and attributes 354
Versioning of assemblies 355
Reading assembly metadata 355
Creating custom attributes 358
Doing more with reflection 360

Working with images 360
Internationalizing your code 362

Detecting and changing the current culture 363
Practicing and exploring 365

Exercise 8.1 – Test your knowledge 365
Exercise 8.2 – Practice regular expressions 366
Exercise 8.3 – Practice writing extension methods 366

Table of Contents

[xvi]

Exercise 8.4 – Explore topics 366
Summary 367

Chapter 9: Working with Files, Streams, and Serialization 369
Managing the filesystem 369

Handling cross-platform environments and filesystems 369
Managing drives 371
Managing directories 372
Managing files 374
Managing paths 375
Getting file information 376
Controlling how you work with files 377

Reading and writing with streams 378
Understanding abstract and concrete streams 378

Understanding storage streams 379
Understanding function streams 379
Understanding stream helpers 379

Writing to text streams 380
Writing to XML streams 381
Disposing of file resources 383

Simplifying disposal by using the using statement 385
Compressing streams 386
Compressing with the Brotli algorithm 388

Encoding and decoding text 390
Encoding strings as byte arrays 391
Encoding and decoding text in files 393

Serializing object graphs 394
Serializing as XML 394
Generating compact XML 397
Deserializing XML files 398
Serializing with JSON 399
High-performance JSON processing 400

Controlling JSON processing 401
New JSON extension methods for working with HTTP responses 404
Migrating from Newtonsoft to new JSON 404

Practicing and exploring 405
Exercise 9.1 – Test your knowledge 405
Exercise 9.2 – Practice serializing as XML 405
Exercise 9.3 – Explore topics 406

Summary 406
Chapter 10: Working with Data Using Entity Framework Core 407

Understanding modern databases 407
Understanding legacy Entity Framework 408

Using the legacy Entity Framework 6.3 or later 408
Understanding Entity Framework Core 408

Table of Contents

[xvii]

Creating a console app for working with EF Core 409
Using a sample relational database 409
Using Microsoft SQL Server for Windows 410

Downloading and installing SQL Server 411
Creating the Northwind sample database for SQL Server 412
Managing the Northwind sample database with Server Explorer 413
Using SQLite 414

Setting up SQLite for macOS 414
Setting up SQLite for Windows 414
Setting up SQLite for other OSes 414

Creating the Northwind sample database for SQLite 415
Managing the Northwind sample database with SQLiteStudio 415

Setting up EF Core 417
Choosing an EF Core database provider 417
Connecting to a database 417
Defining the Northwind database context class 418

Defining EF Core models 420
Using EF Core conventions to define the model 421
Using EF Core annotation attributes to define the model 421
Using the EF Core Fluent API to define the model 423

Understanding data seeding with the Fluent API 423
Building an EF Core model for the Northwind tables 423

Defining the Category and Product entity classes 424
Adding tables to the Northwind database context class 426
Setting up the dotnet-ef tool 427
Scaffolding models using an existing database 428
Configuring preconvention models 432

Querying EF Core models 433
Filtering included entities 435

Unicode characters in the Windows console 436
Filtering and sorting products 437
Getting the generated SQL 438
Logging EF Core using a custom logging provider 439

Filtering logs by provider-specific values 442
Logging with query tags 443

Pattern matching with Like 444
Defining global filters 445

Loading patterns with EF Core 446
Eager loading entities 446
Enabling lazy loading 447
Explicit loading entities 448

Manipulating data with EF Core 450
Inserting entities 450
Updating entities 452
Deleting entities 453
Pooling database contexts 454

Table of Contents

[xviii]

Working with transactions 454
Controlling transactions using isolation levels 455
Defining an explicit transaction 455

Code First EF Core models 456
Understanding migrations 463

Practicing and exploring 464
Exercise 10.1 – Test your knowledge 464
Exercise 10.2 – Practice exporting data using different serialization formats 464
Exercise 10.3 – Explore topics 464
Exercise 10.4 – Explore NoSQL databases 465

Summary 465
Chapter 11: Querying and Manipulating Data Using LINQ 467

Writing LINQ expressions 467
What makes LINQ? 467
Building LINQ expressions with the Enumerable class 468

Understanding deferred execution 470
Filtering entities with Where 471
Targeting a named method 473
Simplifying the code by removing the explicit delegate instantiation 474
Targeting a lambda expression 474
Sorting entities 475

Sorting by a single property using OrderBy 475
Sorting by a subsequent property using ThenBy 475

Declaring a query using var or a specified type 476
Filtering by type 476
Working with sets and bags using LINQ 478

Using LINQ with EF Core 480
Building an EF Core model 480
Filtering and sorting sequences 483
Projecting sequences into new types 485
Joining and grouping sequences 486

Joining sequences 487
Group-joining sequences 488

Aggregating sequences 490
Sweetening LINQ syntax with syntactic sugar 491
Using multiple threads with parallel LINQ 492

Creating an app that benefits from multiple threads 492
Using Windows 494
Using macOS 494
For all operating systems 494

Creating your own LINQ extension methods 495
Trying the chainable extension method 498
Trying the mode and median methods 498

Working with LINQ to XML 499
Generating XML using LINQ to XML 499
Reading XML using LINQ to XML 500

Table of Contents

[xix]

Practicing and exploring 501
Exercise 11.1 – Test your knowledge 501
Exercise 11.2 – Practice querying with LINQ 502
Exercise 11.3 – Explore topics 503

Summary 503
Chapter 12: Improving Performance and Scalability Using Multitasking 505

Understanding processes, threads, and tasks 505
Monitoring performance and resource usage 506

Evaluating the efficiency of types 506
Monitoring performance and memory using diagnostics 507

Useful members of the Stopwatch and Process types 508
Implementing a Recorder class 508

Measuring the efficiency of processing strings 510
Monitoring performance and memory using Benchmark.NET 512

Running tasks asynchronously 516
Running multiple actions synchronously 516
Running multiple actions asynchronously using tasks 518

Starting tasks 518
Waiting for tasks 519

Using wait methods with tasks 519
Continuing with another task 520
Nested and child tasks 522
Wrapping tasks around other objects 523

Synchronizing access to shared resources 524
Accessing a resource from multiple threads 525
Applying a mutually exclusive lock to a conch 526

Understanding the lock statement 527
Avoiding deadlocks 528

Synchronizing events 529
Making CPU operations atomic 530
Applying other types of synchronization 531

Understanding async and await 532
Improving responsiveness for console apps 532
Improving responsiveness for GUI apps 533
Improving scalability for web applications and web services 537
Common types that support multitasking 537
Using await in catch blocks 537
Working with async streams 538

Practicing and exploring 539
Exercise 12.1 – Test your knowledge 539
Exercise 12.2 – Explore topics 539

Summary 539
Chapter 13: Introducing Practical Applications of C# and .NET 541

Understanding app models for C# and .NET 541
Building websites using ASP.NET Core 542

Table of Contents

[xx]

Building websites using a content management system 542
Building web applications using SPA frameworks 543

Building web and other services 544
Building mobile and desktop apps 545
Alternatives to .NET MAUI 545

Understanding Uno Platform 545
Understanding Avalonia 546

New features in ASP.NET Core 546
ASP.NET Core 1.0 546
ASP.NET Core 1.1 546
ASP.NET Core 2.0 546
ASP.NET Core 2.1 547
ASP.NET Core 2.2 547
ASP.NET Core 3.0 548
ASP.NET Core 3.1 548
Blazor WebAssembly 3.2 548
ASP.NET Core 5.0 548
ASP.NET Core 6.0 548

Building Windows-only desktop apps 549
Understanding legacy Windows application platforms 549
Understanding modern .NET support for legacy Windows platforms 550

Structuring projects 550
Structuring projects in a solution or workspace 551

Using other project templates 552
Installing additional template packs 552

Building an entity data model for the Northwind database 553
Creating a class library for entity models using SQLite 554

Improving the class-to-table mapping 555
Creating a class library for a Northwind database context 559

Creating a class library for entity models using SQL Server 562
Practicing and exploring 565

Exercise 13.1 – Test your knowledge 565
Exercise 13.2 – Explore topics 565

Summary 565
Chapter 14: Building Websites Using ASP.NET Core Razor Pages 567

Understanding web development 567
Understanding HTTP 567

Understanding the components of a URL 568
Assigning port numbers for projects in this book 569

Using Google Chrome to make HTTP requests 569
Understanding client-side web development technologies 572

Understanding ASP.NET Core 572
Classic ASP.NET versus modern ASP.NET Core 573
Creating an empty ASP.NET Core project 574
Testing and securing the website 576

Enabling stronger security and redirect to a secure connection 579

Table of Contents

[xxi]

Controlling the hosting environment 580
Separating configuration for services and pipeline 582
Enabling a website to serve static content 584

Creating a folder for static files and a web page 584
Enabling static and default files 585

Exploring ASP.NET Core Razor Pages 586
Enabling Razor Pages 586
Adding code to a Razor Page 587
Using shared layouts with Razor Pages 588
Using code-behind files with Razor Pages 591

Using Entity Framework Core with ASP.NET Core 593
Configure Entity Framework Core as a service 593
Manipulating data using Razor Pages 596

Enabling a model to insert entities 596
Defining a form to insert a new supplier 597

Injecting a dependency service into a Razor Page 597
Using Razor class libraries 598

Creating a Razor class library 598
Disabling compact folders for Visual Studio Code 599
Implementing the employees feature using EF Core 600
Implementing a partial view to show a single employee 602
Using and testing a Razor class library 603

Configuring services and the HTTP request pipeline 604
Understanding endpoint routing 604

Configuring endpoint routing 605
Reviewing the endpoint routing configuration in our project 605

Registering services in the ConfigureServices method 606
Setting up the HTTP request pipeline in the Configure method 608

Summarizing key middleware extension methods 609
Visualizing the HTTP pipeline 610
Implementing an anonymous inline delegate as middleware 610

Practicing and exploring 612
Exercise 14.1 – Test your knowledge 612
Exercise 14.2 – Practice building a data-driven web page 613
Exercise 14.3 – Practice building web pages for console apps 613
Exercise 14.4 – Explore topics 613

Summary 613
Chapter 15: Building Websites Using the Model-View-Controller Pattern 615

Setting up an ASP.NET Core MVC website 615
Creating an ASP.NET Core MVC website 616
Creating the authentication database for SQL Server LocalDB 617
Exploring the default ASP.NET Core MVC website 618

Understanding visitor registration 619
Reviewing an MVC website project structure 620
Reviewing the ASP.NET Core Identity database 622

Table of Contents

[xxii]

Exploring an ASP.NET Core MVC website 622
Understanding ASP.NET Core MVC initialization 622
Understanding the default MVC route 625
Understanding controllers and actions 626

Understanding the ControllerBase class 626
Understanding the Controller class 627
Understanding the responsibilities of a controller 628

Understanding the view search path convention 629
Understanding logging 630
Understanding filters 631

Using a filter to secure an action method 631
Enabling role management and creating a role programmatically 632
Using a filter to cache a response 635
Using a filter to define a custom route 636

Understanding entity and view models 637
Understanding views 640

Customizing an ASP.NET Core MVC website 643
Defining a custom style 643
Setting up the category images 643
Understanding Razor syntax 643
Defining a typed view 644
Reviewing the customized home page 647
Passing parameters using a route value 648
Understanding model binders in more detail 650

Disambiguating action methods 652
Passing a route parameter 654
Passing a form parameter 654

Validating the model 654
Understanding view helper methods 657

Querying a database and using display templates 659
Improving scalability using asynchronous tasks 662

Making controller action methods asynchronous 662
Practicing and exploring 663

Exercise 15.1 – Test your knowledge 663
Exercise 15.2 – Practice implementing MVC by implementing a
category detail page 664
Exercise 15.3 – Practice improving scalability by understanding
and implementing async action methods 664
Exercise 15.4 – Practice unit testing MVC controllers 665
Exercise 15.5 – Explore topics 665

Summary 665
Chapter 16: Building and Consuming Web Services 667

Building web services using ASP.NET Core Web API 667
Understanding web service acronyms 667

Understanding Windows Communication Foundation (WCF) 668
An alternative to WCF 668

Understanding HTTP requests and responses for Web APIs 669

Table of Contents

[xxiii]

Creating an ASP.NET Core Web API project 671
Reviewing the web service's functionality 674
Creating a web service for the Northwind database 675
Creating data repositories for entities 677
Implementing a Web API controller 681

Understanding action method return types 681
Configuring the customer repository and Web API controller 683
Specifying problem details 687
Controlling XML serialization 688

Documenting and testing web services 688
Testing GET requests using a browser 688
Testing HTTP requests with the REST Client extension 690

Making GET requests using REST Client 690
Making other requests using REST Client 692

Understanding Swagger 693
Testing requests with Swagger UI 694
Enabling HTTP logging 700

Consuming web services using HTTP clients 702
Understanding HttpClient 702
Configuring HTTP clients using HttpClientFactory 702
Getting customers as JSON in the controller 703
Enabling Cross-Origin Resource Sharing 705

Implementing advanced features for web services 707
Implementing a Health Check API 708
Implementing Open API analyzers and conventions 709
Implementing transient fault handling 709
Adding security HTTP headers 710

Building web services using minimal APIs 711
Building a weather service using minimal APIs 712
Testing the minimal weather service 714
Adding weather forecasts to the Northwind website home page 714

Practicing and exploring 716
Exercise 16.1 – Test your knowledge 716
Exercise 16.2 – Practice creating and deleting customers with HttpClient 717
Exercise 16.3 – Explore topics 717

Summary 717
Chapter 17: Building User Interfaces Using Blazor 719

Understanding Blazor 719
JavaScript and friends 720
Silverlight – C# and .NET using a plugin 720
WebAssembly – a target for Blazor 720
Understanding Blazor hosting models 720
Understanding Blazor components 721
What is the difference between Blazor and Razor? 722

Table of Contents

[xxiv]

Comparing Blazor project templates 723
Reviewing the Blazor Server project template 723

Understanding CSS and JavaScript isolation 729
Understanding Blazor routing to page components 729

How to define a routable page component 729
How to navigate Blazor routes 729
How to pass route parameters 730
Understanding base component classes 730
How to use the navigation link component with routes 732

Running the Blazor Server project template 732
Reviewing the Blazor WebAssembly project template 733

Building components using Blazor Server 737
Defining and testing a simple component 737
Making the component a routable page component 738
Getting entities into a component 739

Abstracting a service for a Blazor component 742
Defining forms using the EditForm component 745
Building and using a customer form component 746
Testing the customer form component 749

Building components using Blazor WebAssembly 750
Configuring the server for Blazor WebAssembly 751
Configuring the client for Blazor WebAssembly 754
Testing the Blazor WebAssembly components and service 757

Improving Blazor WebAssembly apps 758
Enabling Blazor WebAssembly AOT 759
Exploring Progressive Web App support 760

Implementing offline support for PWAs 762
Understanding the browser compatibility analyzer for Blazor WebAssembly 762
Sharing Blazor components in a class library 763
Interop with JavaScript 765
Libraries of Blazor components 767

Practicing and exploring 767
Exercise 17.1 – Test your knowledge 768
Exercise 17.2 – Practice by creating a times table component 768
Exercise 17.3 – Practice by creating a country navigation item 768
Exercise 17.4 – Explore topics 769

Summary 769
Epilogue 771

Next steps on your C# and .NET learning journey 771
Polishing your skills with design guidelines 771
Books to take your learning further 772

.NET MAUI delayed 773
Next edition coming November 2022 773
Good luck! 773

Index 775

[xxv]

Preface
There are programming books that are thousands of pages long that aim to be comprehensive
references for the C# language, .NET libraries, app models like websites, services, and desktop,
and mobile apps.

This book is different. It is concise and aims to be a brisk, fun read packed with practical hands-
on walkthroughs of each subject. The breadth of the overarching narrative comes at the cost of
some depth, but you will find many signposts to explore further if you wish.

This book is simultaneously a step-by-step guide to learning modern C# proven practices using
cross-platform .NET and a brief introduction to the main types of practical applications that can
be built with them. This book is best for beginners to C# and .NET, or programmers who have
worked with C# in the past but feel left behind by the changes in the past few years.

If you already have experience with older versions of the C# language, then in the first section
of Chapter 2, Speaking C#, you can review tables of the new language features and jump straight
to them.

If you already have experience with older versions of the .NET libraries, then in the first section
of Chapter 7, Packaging and Distributing .NET Types, you can review tables of the new library
features and jump straight to them.

I will point out the cool corners and gotchas of C# and .NET, so you can impress colleagues
and get productive fast. Rather than slowing down and boring some readers by explaining
every little thing, I will assume that you are smart enough to Google an explanation for topics
that are related but not necessary to include in a beginner-to-intermediate guide that has
limited space in the printed book.

Where to find the code solutions
You can download solutions for the step-by-step guided tasks and exercises from the GitHub
repository at the following link: https://github.com/markjprice/cs10dotnet6.

If you don't know how, then I provide instructions on how to do this at the end of Chapter 1,
Hello, C#! Welcome, .NET!.

https://github.com/markjprice/cs10dotnet6

Preface

[xxvi]

What this book covers
Chapter 1, Hello, C#! Welcome, .NET!, is about setting up your development environment and
using either Visual Studio or Visual Studio Code to create the simplest application possible
with C# and .NET. For simplified console apps, you will see the use of the top-level program
feature introduced in C# 9. For learning how to write simple language constructs and library
features, you will see the use of .NET Interactive Notebooks. You will also learn about some
good places to look for help and ways to contact me to get help with an issue or give me
feedback to improve the book and future editions through its GitHub repository.

Chapter 2, Speaking C#, introduces the versions of C# and has tables showing which versions
introduced new features. I explain the grammar and vocabulary that you will use every day
to write the source code for your applications. In particular, you will learn how to declare and
work with variables of different types.

Chapter 3, Controlling Flow, Converting Types, and Handling Exceptions, covers using operators to
perform simple actions on variables, including comparisons, writing code that makes decisions,
pattern matching in C# 7 to C# 10, repeating a block of statements, and converting between
types. It also covers writing code defensively to handle exceptions when they inevitably occur.

Chapter 4, Writing, Debugging, and Testing Functions, is about following the Don't Repeat
Yourself (DRY) principle by writing reusable functions using both imperative and functional
implementation styles. You will also learn how to use debugging tools to track down and
remove bugs, monitoring your code while it executes to diagnose problems, and rigorously
testing your code to remove bugs and ensure stability and reliability before it gets deployed
into production.

Chapter 5, Building Your Own Types with Object-Oriented Programming, discusses all the different
categories of members that a type can have, including fields to store data and methods
to perform actions. You will use object-oriented programming (OOP) concepts, such as
aggregation and encapsulation. You will learn about language features such as tuple syntax
support and out variables, default literals, and inferred tuple names, as well as how to define
and work with immutable types using the record keyword, init-only properties, and with
expressions introduced in C# 9.

Chapter 6, Implementing Interfaces and Inheriting Classes, explains deriving new types from
existing ones using OOP. You will learn how to define operators and local functions, delegates
and events, how to implement interfaces about base and derived classes, how to override
a member of a type, how to use polymorphism, how to create extension methods, how to
cast between classes in an inheritance hierarchy, and about the big change in C# 8 with the
introduction of nullable reference types.

Chapter 7, Packaging and Distributing .NET Types, introduces the versions of .NET and has tables
showing which versions introduced new library features, and then presents .NET types that
are compliant with .NET Standard and how they relate to C#. You will learn how to write
and compile code on any of the supported operating systems: Windows, macOS, and Linux
variants. You will learn how to package, deploy, and distribute your own apps and libraries.

Preface

[xxvii]

Chapter 8, Working with Common .NET Types, discusses the types that allow your code to
perform common practical tasks, such as manipulating numbers and text, dates and times,
storing items in collections, working with the network and manipulating images, and
implementing internationalization.

Chapter 9, Working with Files, Streams, and Serialization, covers interacting with the filesystem,
reading and writing to files and streams, text encoding, and serialization formats like JSON and
XML, including the improved functionality and performance of the System.Text.Json classes.

Chapter 10, Working with Data Using Entity Framework Core, explains reading and writing to
relational databases, such as Microsoft SQL Server and SQLite, using the object-relational
mapping (ORM) technology named Entity Framework Core (EF Core). You will learn how to
define entity models that map to existing tables in a database, as well as how to define Code
First models that can create the tables and database at runtime.

Chapter 11, Querying and Manipulating Data Using LINQ, teaches you about Language
INtegrated Queries (LINQs)—language extensions that add the ability to work with sequences
of items and filter, sort, and project them into different outputs. You will learn about the special
capabilities of Parallel LINQ (PLINQ) and LINQ to XML.

Chapter 12, Improving Performance and Scalability Using Multitasking, discusses allowing multiple
actions to occur at the same time to improve performance, scalability, and user productivity.
You will learn about the async Main feature and how to use types in the System.Diagnostics
namespace to monitor your code to measure performance and efficiency.

Chapter 13, Introducing Practical Applications of C# and .NET, introduces you to the types of
cross-platform applications that can be built using C# and .NET. You will also build an EF
Core model to represent the Northwind database that will be used throughout the rest of the
chapters in the book.

Chapter 14, Building Websites Using ASP.NET Core Razor Pages, is about learning the basics of
building websites with a modern HTTP architecture on the server side using ASP.NET Core.
You will learn how to implement the ASP.NET Core feature known as Razor Pages, which
simplifies creating dynamic web pages for small websites, and about building the HTTP
request and response pipeline.

Chapter 15, Building Websites Using the Model-View-Controller Pattern, is about learning how
to build large, complex websites in a way that is easy to unit test and manage with teams
of programmers using ASP.NET Core MVC. You will learn about startup configuration,
authentication, routes, models, views, and controllers.

Chapter 16, Building and Consuming Web Services, explains building backend REST architecture
web services using the ASP.NET Core Web API and how to properly consume them using
factory-instantiated HTTP clients.

Chapter 17, Building User Interfaces Using Blazor, introduces how to build web user interface
components using Blazor that can be executed either on the server side or inside the client-side
web browser. You will see the differences between Blazor Server and Blazor WebAssembly and
how to build components that are easier to switch between the two hosting models.

Preface

Three bonus online chapters complete this bumper edition. You can read the following chapters
and the appendix at https://static.packt-cdn.com/downloads/9781801077361_Bonus_
Content.pdf:

Chapter 18, Building and Consuming Specialized Services, introduces you to building services using
gRPC, implementing real-time communications between server and client using SignalR,
exposing an EF Core model using OData, and hosting functions in the cloud that respond to
triggers using Azure Functions.

Chapter 19, Building Mobile and Desktop Apps Using .NET MAUI, introduces you to building
cross-platform mobile and desktop apps for Android, iOS, macOS, and Windows. You will
learn the basics of XAML, which can be used to define the user interface for a graphical app.

Chapter 20, Protecting Your Data and Applications, is about protecting your data from being
viewed by malicious users using encryption, and from being manipulated or corrupted using
hashing and signing. You will also learn about authentication and authorization to protect
applications from unauthorized users.

Appendix, Answers to the Test Your Knowledge Questions, has the answers to the test questions
at the end of each chapter.

What you need for this book
You can develop and deploy C# and .NET apps using Visual Studio Code on many platforms,
including Windows, macOS, and many varieties of Linux.

An operating system that supports Visual Studio Code and an internet connection is all you
need to complete all but one chapter.

If you prefer to use Visual Studio for Windows or macOS, or a third-party tool like JetBrains
Rider, then you can.

You will need macOS to build the iOS app in Chapter 19, Building Mobile and Desktop Apps
Using .NET MAUI, because you must have macOS and Xcode to compile iOS apps.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots and diagrams used
in this book. The color images will help you better understand the changes in the output.

You can download this file from https://static.packt-cdn.com/downloads/9781801077361_
ColorImages.pdf.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

[xxviii]

https://static.packt-cdn.com/downloads/9781801077361_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801077361_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801077361_Bonus_Content.pdf
https://static.packt-cdn.com/downloads/9781801077361_Bonus_Content.pdf

Preface

[xxix]

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. For example; "The
Controllers, Models, and Views folders contain ASP.NET Core classes and the .cshtml files for
execution on the server."

A block of code is set as follows:

// storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are highlighted:

// storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

Any command-line input or output is written as follows:

dotnet new console

Bold: Indicates a new term, an important word, or words that you see on the screen, for
example, in menus or dialog boxes. For example: "Clicking on the Next button moves you to
the next screen."

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title
in the subject of your message and email us at customercare@packtpub.com.

Important notes and links to external sources of further reading
appear in a box like this.

Good Practice: Recommendations for how to program like an expert
appear like this.

customercare@packtpub.com

Preface

[xxx]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report
this to us. Please visit, www.packtpub.com/support/errata, selecting your book, clicking on the
Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name. Please
contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share your thoughts
Once you've read C# 10 and .NET 6 - Modern Cross-Platform Development, Sixth Edition, we'd love
to hear your thoughts! Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

www.packtpub.com/support/errata
copyright@packt.com
authors.packtpub.com
authors.packtpub.com
https://packt.link/r/1801077363

[1]

01
Hello, C#! Welcome, .NET!

In this first chapter, the goals are setting up your development environment, understanding
the similarities and differences between modern .NET, .NET Core, .NET Framework, Mono,
Xamarin, and .NET Standard, creating the simplest application possible with C# 10 and .NET 6
using various code editors, and then discovering good places to look for help.

The GitHub repository for this book has solutions using full application projects for all code
tasks and notebooks when possible:

https://github.com/markjprice/cs10dotnet6

Simply press the . (dot) key or change .com to .dev in the link above to change the GitHub
repository into a live editor using Visual Studio Code for the Web, as shown in Figure 1.1:

Figure 1.1: Visual Studio Code for the Web live editing the book's GitHub repository

https://github.com/markjprice/cs10dotnet6

Hello, C#! Welcome, .NET!

[2]

This is great to run alongside your chosen code editor as you work through the book's coding
tasks. You can compare your code to the solution code and easily copy and paste parts if
needed.

Throughout this book, I use the term modern .NET to refer to .NET 6 and its predecessors like
.NET 5 that come from .NET Core. I use the term legacy .NET to refer to .NET Framework,
Mono, Xamarin, and .NET Standard. Modern .NET is a unification of those legacy platforms
and standards.

After this first chapter, the book can be divided into three parts: first, the grammar and
vocabulary of the C# language; second, the types available in .NET for building app features;
and third, examples of common cross-platform apps you can build using C# and .NET.

Most people learn complex topics best by imitation and repetition rather than reading a
detailed explanation of the theory; therefore, I will not overload you with detailed explanations
of every step throughout this book. The idea is to get you to write some code and see it run.

You don't need to know all the nitty-gritty details immediately. That will be something that
comes with time as you build your own apps and go beyond what any book can teach you.

In the words of Samuel Johnson, author of the English dictionary in 1755, I have committed "a
few wild blunders, and risible absurdities, from which no work of such multiplicity is free." I
take sole responsibility for these and hope you appreciate the challenge of my attempt to lash
the wind by writing this book about rapidly evolving technologies like C# and .NET, and the
apps that you can build with them.

This first chapter covers the following topics:

• Setting up your development environment
• Understanding .NET
• Building console apps using Visual Studio 2022
• Building console apps using Visual Studio Code
• Exploring code using .NET Interactive Notebooks
• Reviewing the folders and files for projects
• Making good use of the GitHub repository for this book
• Looking for help

Setting up your development environment
Before you start programming, you'll need a code editor for C#. Microsoft has a family of code
editors and Integrated Development Environments (IDEs), which include:

• Visual Studio 2022 for Windows
• Visual Studio 2022 for Mac

Chapter 01

[3]

• Visual Studio Code for Windows, Mac, or Linux
• GitHub Codespaces

Third parties have created their own C# code editors, for example, JetBrains Rider.

Choosing the appropriate tool and application type
for learning
What is the best tool and application type for learning C# and .NET?

When learning, the best tool is one that helps you write code and configuration but does not
hide what is really happening. IDEs provide graphical user interfaces that are friendly to use,
but what are they doing for you underneath? A more basic code editor that is closer to the
action while providing help to write your code is better while you are learning.

Having said that, you can make the argument that the best tool is the one you are already
familiar with or that you or your team will use as your daily development tool. For that reason,
I want you to be free to choose any C# code editor or IDE to complete the coding tasks in this
book, including Visual Studio Code, Visual Studio for Windows, Visual Studio for Mac, or even
JetBrains Rider.

In the third edition of this book, I gave detailed step-by-step instructions for both Visual Studio
for Windows and Visual Studio Code for all coding tasks. Unfortunately, that got messy and
confusing quickly. In this sixth edition, I give detailed step-by-step instructions for how to
create multiple projects in both Visual Studio 2022 for Windows and Visual Studio Code only
in Chapter 1. After that, I give names of projects and general instructions that work with all tools
so you can use whichever tool you prefer.

The best application type for learning the C# language constructs and many of the .NET
libraries is one that does not distract with unnecessary application code. For example, there is
no need to create an entire Windows desktop application or a website just to learn how to write
a switch statement.

For that reason, I believe the best method for learning the C# and .NET topics in Chapters 1 to
12 is to build console applications. Then, in Chapter 13 to 19 onward, you will build websites,
services, and graphical desktop and mobile apps.

Pros and cons of the .NET Interactive Notebooks
extension
Another benefit of Visual Studio Code is the .NET Interactive Notebooks extension. This
extension provides an easy and safe place to write simple code snippets. It enables you to create
a single notebook file that mixes "cells" of Markdown (richly formatted text) and code using C#
and other related languages, such as PowerShell, F#, and SQL (for databases).

Hello, C#! Welcome, .NET!

[4]

However, .NET Interactive Notebooks does have some limitations:

• They cannot read input from the user, for example, you cannot use ReadLine or ReadKey.
• They cannot have arguments passed to them.
• They do not allow you to define your own namespaces.
• They do not have any debugging tools (but these are coming in the future).

Using Visual Studio Code for cross-platform development
The most modern and lightweight code editor to choose from, and the only one from Microsoft
that is cross-platform, is Microsoft Visual Studio Code. It can run on all common operating
systems, including Windows, macOS, and many varieties of Linux, including Red Hat
Enterprise Linux (RHEL) and Ubuntu.

Visual Studio Code is a good choice for modern cross-platform development because it has an
extensive and growing set of extensions to support many languages beyond C#.

Being cross-platform and lightweight, it can be installed on all platforms that your apps will be
deployed to for quick bug fixes and so on. Choosing Visual Studio Code means a developer can
use a cross-platform code editor to develop cross-platform apps.

Visual Studio Code has strong support for web development, although it currently has weak
support for mobile and desktop development.

Visual Studio Code is supported on ARM processors so that you can develop on Apple Silicon
computers and Raspberry Pi.

Visual Studio Code is by far the most popular integrated development environment, with over
70% of professional developers selecting it in the Stack Overflow 2021 survey.

Using GitHub Codespaces for development in the cloud
GitHub Codespaces is a fully configured development environment based on Visual Studio
Code that can be spun up in an environment hosted in the cloud and accessed through any web
browser. It supports Git repos, extensions, and a built-in command-line interface so you can
edit, run, and test from any device.

Using Visual Studio for Mac for general development
Microsoft Visual Studio 2022 for Mac can create most types of applications, including console
apps, websites, web services, desktop, and mobile apps.

To compile apps for Apple operating systems like iOS to run on devices like the iPhone and
iPad, you must have Xcode, which only runs on macOS.

Chapter 01

[5]

Using Visual Studio for Windows for general development
Microsoft Visual Studio 2022 for Windows can create most types of applications, including
console apps, websites, web services, desktop, and mobile apps. Although you can use Visual
Studio 2022 for Windows with its Xamarin extensions to write a cross-platform mobile app, you
still need macOS and Xcode to compile it.

It only runs on Windows, version 7 SP1 or later. You must run it on Windows 10 or Windows
11 to create Universal Windows Platform (UWP) apps that are installed from the Microsoft
Store and run in a sandbox to protect your computer.

What I used
To write and test the code for this book, I used the following hardware:

• HP Spectre (Intel) laptop
• Apple Silicon Mac mini (M1) desktop
• Raspberry Pi 400 (ARM v8) desktop

And I used the following software:

• Visual Studio Code on:
• macOS on an Apple Silicon Mac mini (M1) desktop
• Windows 10 on an HP Spectre (Intel) laptop
• Ubuntu 64 on a Raspberry Pi 400

• Visual Studio 2022 for Windows on:
• Windows 10 on an HP Spectre (Intel) laptop

• Visual Studio 2022 for Mac on:
• macOS on an Apple Silicon Mac mini (M1) desktop

I hope that you have access to a variety of hardware and software too, because seeing the
differences in platforms deepens your understanding of development challenges, although any
one of the above combinations is enough to learn the fundamentals of C# and .NET and how to
build practical apps and websites.

More Information: You can learn how to write code with C# and .NET using
a Raspberry Pi 400 with Ubuntu Desktop 64-bit by reading an extra article
that I wrote at the following link: https://github.com/markjprice/
cs9dotnet5-extras/blob/main/raspberry-pi-ubuntu64/README.md.

https://github.com/markjprice/cs9dotnet5-extras/blob/main/raspberry-pi-ubuntu64/README.md
https://github.com/markjprice/cs9dotnet5-extras/blob/main/raspberry-pi-ubuntu64/README.md

Hello, C#! Welcome, .NET!

[6]

Deploying cross-platform
Your choice of code editor and operating system for development does not limit where your
code gets deployed.

.NET 6 supports the following platforms for deployment:

• Windows: Windows 7 SP1, or later. Windows 10 version 1607, or later, including
Windows 11. Windows Server 2012 R2 SP1, or later. Nano Server version 1809, or later.

• Mac: macOS Mojave (version 10.14), or later.
• Linux: Alpine Linux 3.13, or later. CentOS 7, or later. Debian 10, or later. Fedora 32,

or later. openSUSE 15, or later. Red Hat Enterprise Linux (RHEL) 7, or later. SUSE
Enterprise Linux 12 SP2, or later. Ubuntu 16.04, 18.04, 20.04, or later.

• Android: API 21, or later.
• iOS: 10, or later.

Windows ARM64 support in .NET 5 and later means you can develop on, and deploy to,
Windows ARM devices like Microsoft Surface Pro X. But developing on an Apple M1 Mac
using Parallels and a Windows 10 ARM virtual machine is apparently twice as fast!

Downloading and installing Visual Studio 2022 for
Windows
Many professional Microsoft developers use Visual Studio 2022 for Windows in their day-to-
day development work. Even if you choose to use Visual Studio Code to complete the coding
tasks in this book, you might want to familiarize yourself with Visual Studio 2022 for Windows
too.

If you do not have a Windows computer, then you can skip this section and continue to the
next section where you will download and install Visual Studio Code on macOS or Linux.

Since October 2014, Microsoft has made a professional quality edition of Visual Studio for
Windows available to students, open source contributors, and individuals for free. It is called
Community Edition. Any of the editions are suitable for this book. If you have not already
installed it, let's do so now:

1. Download Microsoft Visual Studio 2022 version 17.0 or later for Windows from the
following link: https://visualstudio.microsoft.com/downloads/.

2. Start the installer.
3. On the Workloads tab, select the following:

• ASP.NET and web development
• Azure development
• .NET desktop development
• Desktop development with C++

https://visualstudio.microsoft.com/downloads/

Chapter 01

[7]

• Universal Windows Platform development
• Mobile development with .NET

4. On the Individual components tab, in the Code tools section, select the following:
• Class Designer
• Git for Windows
• PreEmptive Protection - Dotfuscator

5. Click Install and wait for the installer to acquire the selected software and install it.
6. When the installation is complete, click Launch.
7. The first time that you run Visual Studio, you will be prompted to sign in. If you have a

Microsoft account, you can use that account. If you don't, then register for a new one at
the following link: https://signup.live.com/.

8. The first time that you run Visual Studio, you will be prompted to configure your
environment. For Development Settings, choose Visual C#. For the color theme, I
chose Blue, but you can choose whatever tickles your fancy.

9. If you want to customize your keyboard shortcuts, navigate to Tools | Options…, and
then select the Keyboard section.

Microsoft Visual Studio for Windows keyboard shortcuts
In this book, I will avoid showing keyboard shortcuts since they are often customized. Where
they are consistent across code editors and commonly used, I will try to show them. If you
want to identify and customize your keyboard shortcuts, then you can, as shown at the
following link: https://docs.microsoft.com/en-us/visualstudio/ide/identifying-and-
customizing-keyboard-shortcuts-in-visual-studio.

Downloading and installing Visual Studio Code
Visual Studio Code has rapidly improved over the past couple of years and has pleasantly
surprised Microsoft with its popularity. If you are brave and like to live on the bleeding edge,
then there is an Insiders edition, which is a daily build of the next version.

Even if you plan to only use Visual Studio 2022 for Windows for development, I recommend
that you download and install Visual Studio Code and try the coding tasks in this chapter using
it, and then decide if you want to stick with just using Visual Studio 2022 for the rest of the
book.

Let's now download and install Visual Studio Code, the .NET SDK, and the C# and .NET
Interactive Notebooks extensions:

1. Download and install either the Stable build or the Insiders edition of Visual Studio
Code from the following link: https://code.visualstudio.com/.

https://signup.live.com/
https://docs.microsoft.com/en-us/visualstudio/ide/identifying-and-customizing-keyboard-shortcuts-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/identifying-and-customizing-keyboard-shortcuts-in-visual-studio
https://code.visualstudio.com/

Hello, C#! Welcome, .NET!

[8]

2. Download and install the .NET SDKs for versions 3.1, 5.0, and 6.0 from the following
link: https://www.microsoft.com/net/download.

3. To install the C# extension, you must first launch the Visual Studio Code application.
4. In Visual Studio Code, click the Extensions icon or navigate to View | Extensions.
5. C# is one of the most popular extensions available, so you should see it at the top of the

list, or you can enter C# in the search box.
6. Click Install and wait for supporting packages to download and install.
7. Enter .NET Interactive in the search box to find the .NET Interactive Notebooks

extension.
8. Click Install and wait for it to install.

Installing other extensions
In later chapters of this book, you will use more extensions. If you want to install them now, all
the extensions that we will use are shown in the following table:

Extension name and identifier Description
C# for Visual Studio Code (powered by
OmniSharp)

ms-dotnettools.csharp

C# editing support, including syntax highlighting,
IntelliSense, Go to Definition, Find All References,
debugging support for .NET, and support for csproj
projects on Windows, macOS, and Linux.

.NET Interactive Notebooks

ms-dotnettools.dotnet-interactive-
vscode

This extension adds support for using .NET Interactive
in a Visual Studio Code notebook. It has a dependency
on the Jupyter extension (ms-toolsai.jupyter).

MSBuild project tools

tinytoy.msbuild-project-tools

Provides IntelliSense for MSBuild project files,
including autocomplete for <PackageReference>
elements.

REST Client

humao.rest-client

Send an HTTP request and view the response directly
in Visual Studio Code.

More Information: If you need more help installing Visual Studio
Code, you can read the official setup guide at the following link:
https://code.visualstudio.com/docs/setup/setup-overview.

To fully learn how to control .NET SDKs, we need multiple versions
installed. .NET Core 3.1, .NET 5.0, and .NET 6.0 are the three currently
supported versions. You can safely install multiple ones side by side.
You will learn how to target the one you want throughout this book.

https://www.microsoft.com/net/download
https://code.visualstudio.com/docs/setup/setup-overview

Chapter 01

[9]

ILSpy .NET Decompiler

icsharpcode.ilspy-vscode

Decompile MSIL assemblies – support for modern
.NET, .NET Framework, .NET Core, and .NET
Standard.

Azure Functions for Visual Studio Code

ms-azuretools.vscode-azurefunctions

Create, debug, manage, and deploy serverless
apps directly from VS Code. It has dependencies
on Azure Account (ms-vscode.azure-account)
and Azure Resources (ms-azuretools.vscode-
azureresourcegroups) extensions.

GitHub Repositories

github.remotehub

Browse, search, edit, and commit to any remote GitHub
repository directly from within Visual Studio Code.

SQL Server (mssql) for Visual Studio Code

ms-mssql.mssql

For developing Microsoft SQL Server, Azure SQL
Database, and SQL Data Warehouse everywhere with
a rich set of functionalities.

Protobuf 3 support for Visual Studio Code

zxh404.vscode-proto3

Syntax highlighting, syntax validation, code snippets,
code completion, code formatting, brace matching, and
line and block commenting.

Understanding Microsoft Visual Studio Code versions
Microsoft releases a new feature version of Visual Studio Code (almost) every month and bug
fix versions more frequently. For example:

• Version 1.59, August 2021 feature release
• Version 1.59.1, August 2021 bug fix release

The version used in this book is 1.59, but the version of Microsoft Visual Studio Code is less
important than the version of the C# for Visual Studio Code extension that you installed.

While the C# extension is not required, it provides IntelliSense as you type, code navigation,
and debugging features, so it's something that's very handy to install and keep updated to
support the latest C# language features.

Microsoft Visual Studio Code keyboard shortcuts
In this book, I will avoid showing keyboard shortcuts used for tasks like creating a new file
since they are often different on different operating systems. The situations where I will
show keyboard shortcuts are when you need to repeatedly press the key, for example, while
debugging. These are also more likely to be consistent across operating systems.

If you want to customize your keyboard shortcuts for Visual Studio Code, then you can, as
shown at the following link: https://code.visualstudio.com/docs/getstarted/keybindings.

I recommend that you download a PDF of keyboard shortcuts for your operating system from
the following list:

• Windows: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.
pdf

https://code.visualstudio.com/docs/getstarted/keybindings
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf

Hello, C#! Welcome, .NET!

[10]

• macOS: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
• Linux: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf

Understanding .NET
.NET 6, .NET Core, .NET Framework, and Xamarin are related and overlapping platforms for
developers used to build applications and services. In this section, I'm going to introduce you
to each of these .NET concepts.

Understanding .NET Framework
.NET Framework is a development platform that includes a Common Language Runtime
(CLR), which manages the execution of code, and a Base Class Library (BCL), which provides
a rich library of classes to build applications from.

Microsoft originally designed .NET Framework to have the possibility of being cross-platform,
but Microsoft put their implementation effort into making it work best with Windows.

Since .NET Framework 4.5.2, it has been an official component of the Windows operating
system. Components have the same support as their parent products, so 4.5.2 and later follow
the life cycle policy of the Windows OS on which it is installed. .NET Framework is installed
on over one billion computers, so it must change as little as possible. Even bug fixes can cause
problems, so it is updated infrequently.

For .NET Framework 4.0 or later, all of the apps on a computer written for .NET Framework
share the same version of the CLR and libraries stored in the Global Assembly Cache (GAC),
which can lead to issues if some of them need a specific version for compatibility.

Understanding the Mono, Xamarin, and Unity
projects
Third parties developed a .NET Framework implementation named the Mono project. Mono is
cross-platform, but it fell well behind the official implementation of .NET Framework.

Mono has found a niche as the foundation of the Xamarin mobile platform as well as cross-
platform game development platforms like Unity.

Good Practice: Practically speaking, .NET Framework is Windows-only and a
legacy platform. Do not create new apps using it.

https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf

Chapter 01

[11]

Microsoft purchased Xamarin in 2016 and now gives away what used to be an expensive
Xamarin extension for free with Visual Studio. Microsoft renamed the Xamarin Studio
development tool, which could only create mobile apps, to Visual Studio for Mac and gave
it the ability to create other types of projects like console apps and web services. With Visual
Studio 2022 for Mac, Microsoft has replaced parts of the Xamarin Studio editor with parts from
Visual Studio 2022 for Windows to provide closer parity of experience and performance. Visual
Studio 2022 for Mac was also rewritten to be a truly native macOS UI app to improve reliability
and work with macOS's built-in assistive technologies.

Understanding .NET Core
Today, we live in a truly cross-platform world where modern mobile and cloud development
have made Windows, as an operating system, much less important. Because of that, Microsoft
has been working on an effort to decouple .NET from its close ties with Windows. While
rewriting .NET Framework to be truly cross-platform, they've taken the opportunity to refactor
and remove major parts that are no longer considered core.

This new product was branded .NET Core and includes a cross-platform implementation of the
CLR known as CoreCLR and a streamlined BCL known as CoreFX.

Scott Hunter, Microsoft Partner Director Program Manager for .NET, has said that "Forty
percent of our .NET Core customers are brand-new developers to the platform, which is what
we want with .NET Core. We want to bring new people in."

.NET Core is fast-moving, and because it can be deployed side by side with an app, it can
change frequently, knowing those changes will not affect other .NET Core apps on the same
machine. Most improvements that Microsoft makes to .NET Core and modern .NET cannot be
easily added to .NET Framework.

Understanding the journey to one .NET
At the Microsoft Build developer conference in May 2020, the .NET team announced that their
plans for the unification of .NET had been delayed. They said that .NET 5 would be released on
November 10, 2020, and it would unify all the various .NET platforms except mobile. It would
not be until .NET 6 in November 2021 that mobile will also be supported by the unified .NET
platform.

.NET Core has been renamed .NET and the major version number has skipped the number
four to avoid confusion with .NET Framework 4.x. Microsoft plans on annual major version
releases every November, rather like Apple does major version number releases of iOS every
September.

Hello, C#! Welcome, .NET!

[12]

The following table shows when the key versions of modern .NET were released, when future
releases are planned, and which version is used by the various editions of this book:

Version Released Edition Published

.NET Core RC1 November 2015 First March 2016

.NET Core 1.0 June 2016

.NET Core 1.1 November 2016

.NET Core 1.0.4 and .NET Core 1.1.1 March 2017 Second March 2017

.NET Core 2.0 August 2017

.NET Core for UWP in Windows 10 Fall
Creators Update October 2017 Third November 2017

.NET Core 2.1 (LTS) May 2018

.NET Core 2.2 (Current) December 2018

.NET Core 3.0 (Current) September 2019 Fourth October 2019

.NET Core 3.1 (LTS) December 2019

Blazor WebAssembly 3.2 (Current) May 2020

.NET 5.0 (Current) November 2020 Fifth November 2020

.NET 6.0 (LTS) November 2021 Sixth November 2021

.NET 7.0 (Current) November 2022 Seventh November 2022

.NET 8.0 (LTS) November 2023 Eighth November 2023

.NET Core 3.1 included Blazor Server for building web components. Microsoft had
also planned to include Blazor WebAssembly in that release, but it was delayed. Blazor
WebAssembly was later released as an optional add-on for .NET Core 3.1. I include it in the
table above because it was versioned as 3.2 to exclude it from the LTS of .NET Core 3.1.

Understanding .NET support
.NET versions are either Long Term Support (LTS) or Current, as described in the
following list:

• LTS releases are stable and require fewer updates over their lifetime. These are a good
choice for applications that you do not intend to update frequently. LTS releases will
be supported for 3 years after general availability, or 1 year after the next LTS release
ships, whichever is longer.

• Current releases include features that may change based on feedback. These are a good
choice for applications that you are actively developing because they provide access
to the latest improvements. After a 6-month maintenance period, or 18 months after
general availability, the previous minor version will no longer be supported.

Chapter 01

[13]

Both receive critical fixes throughout their lifetime for security and reliability. You must stay up
to date with the latest patches to get support. For example, if a system is running 1.0 and 1.0.1
has been released, 1.0.1 will need to be installed to get support.

To better understand your choices of Current and LTS releases, it is helpful to see it visually,
with 3-year-long black bars for LTS releases, and variable-length gray bars for Current releases
that end with cross-hatching for the 6 months after a new major or minor release that they
retain support for, as shown in Figure 1.2:

Figure 1.2: Support for various versions

For example, if you had created a project using .NET Core 3.0, then when Microsoft released
.NET Core 3.1 in December 2019, you had to upgrade your project to .NET Core 3.1 by March
2020. (Before .NET 5, the maintenance period for Current releases was only three months.)

If you need long-term support from Microsoft, then choose .NET 6.0 today and stick with it
until .NET 8.0, even once Microsoft releases .NET 7.0. This is because .NET 7.0 will be a current
release and it will therefore lose support before .NET 6.0 does. Just remember that even with
LTS releases you must upgrade to bug fix releases like 6.0.1.

All versions of .NET Core and modern .NET have reached their end of life except those shown
in the following list:

• .NET 5.0 will reach end of life in May 2022.
• .NET Core 3.1 will reach end of life on December 3, 2022.
• .NET 6.0 will reach end of life in November 2024.

Understanding .NET Runtime and .NET SDK versions
.NET Runtime versioning follows semantic versioning, that is, a major increment indicates
breaking changes, minor increments indicate new features, and patch increments indicate bug
fixes.

.NET SDK versioning does not follow semantic versioning. The major and minor version
numbers are tied to the runtime version it is matched with. The patch number follows a
convention that indicates the major and minor versions of the SDK.

Hello, C#! Welcome, .NET!

[14]

You can see an example of this in the following table:

Change Runtime SDK
Initial release 6.0.0 6.0.100
SDK bug fix 6.0.0 6.0.101
Runtime and SDK bug fix 6.0.1 6.0.102
SDK new feature 6.0.1 6.0.200

Removing old versions of .NET
.NET Runtime updates are compatible with a major version such as 6.x, and updated releases
of the .NET SDK maintain the ability to build applications that target previous versions of the
runtime, which enables the safe removal of older versions.

You can see which SDKs and runtimes are currently installed using the following commands:

• dotnet --list-sdks

• dotnet --list-runtimes

On Windows, use the App & features section to remove .NET SDKs. On macOS or Windows,
use the dotnet-core-uninstall tool. This tool is not installed by default.

For example, while writing the fourth edition, I used the following command every month:

dotnet-core-uninstall remove --all-previews-but-latest --sdk

What is different about modern .NET?
Modern .NET is modularized compared to the legacy .NET Framework, which is monolithic.
It is open source and Microsoft makes decisions about improvements and changes in the open.
Microsoft has put particular effort into improving the performance of modern .NET.

It is smaller than the last version of .NET Framework due to the removal of legacy and non-
cross-platform technologies. For example, workloads such as Windows Forms and Windows
Presentation Foundation (WPF) can be used to build graphical user interface (GUI)
applications, but they are tightly bound to the Windows ecosystem, so they are not included
with .NET on macOS and Linux.

Windows development
One of the features of modern .NET is support for running old Windows Forms and WPF
applications using the Windows Desktop Pack that is included with the Windows version of
.NET Core 3.1 or later, which is why it is bigger than the SDKs for macOS and Linux. You can
make some small changes to your legacy Windows app if necessary, and then rebuild it for
.NET 6 to take advantage of new features and performance improvements.

Chapter 01

[15]

Web development
ASP.NET Web Forms and Windows Communication Foundation (WCF) are old web
application and service technologies that fewer developers are choosing to use for new
development projects today, so they have also been removed from modern .NET. Instead,
developers prefer to use ASP.NET MVC, ASP.NET Web API, SignalR, and gRPC. These
technologies have been refactored and combined into a platform that runs on modern .NET,
named ASP.NET Core. You'll learn about the technologies in Chapter 14, Building Websites
Using ASP.NET Core Razor Pages, Chapter 15, Building Websites Using the Model-View-Controller
Pattern, Chapter 16, Building and Consuming Web Services, and Chapter 18, Building and Consuming
Specialized Services.

Database development
Entity Framework (EF) 6 is an object-relational mapping technology that is designed to work
with data that is stored in relational databases such as Oracle and Microsoft SQL Server. It has
gained baggage over the years, so the cross-platform API has been slimmed down, has been
given support for non-relational databases like Microsoft Azure Cosmos DB, and has been
renamed Entity Framework Core. You will learn about it in Chapter 10, Working with Data Using
Entity Framework Core.

If you have existing apps that use the old EF, then version 6.3 is supported on .NET Core 3.0 or
later.

Themes of modern .NET
Microsoft has created a website using Blazor that shows the major themes of modern .NET:
https://themesof.net/.

Understanding .NET Standard
The situation with .NET in 2019 was that there were three forked .NET platforms controlled by
Microsoft, as shown in the following list:

• .NET Core: For cross-platform and new apps
• .NET Framework: For legacy apps
• Xamarin: For mobile apps

More Information: Some .NET Framework developers are upset that ASP.NET
Web Forms, WCF, and Windows Workflow (WF) are missing from modern
.NET and would like Microsoft to change their minds. There are open source
projects to enable WCF and WF to migrate to modern .NET. You can read
more at the following link: https://devblogs.microsoft.com/dotnet/
supporting-the-community-with-wf-and-wcf-oss-projects/. There is
an open source project for Blazor Web Forms components at the following
link: https://github.com/FritzAndFriends/BlazorWebFormsComponents.

https://themesof.net/
https://devblogs.microsoft.com/dotnet/supporting-the-community-with-wf-and-wcf-oss-projects/
https://devblogs.microsoft.com/dotnet/supporting-the-community-with-wf-and-wcf-oss-projects/
https://github.com/FritzAndFriends/BlazorWebFormsComponents

Hello, C#! Welcome, .NET!

[16]

Each had strengths and weaknesses because they were all designed for different scenarios. This
led to the problem that a developer had to learn three platforms, each with annoying quirks
and limitations.

Because of that, Microsoft defined .NET Standard – a specification for a set of APIs that all .NET
platforms could implement to indicate what level of compatibility they have. For example,
basic support is indicated by a platform being compliant with .NET Standard 1.4.

With .NET Standard 2.0 and later, Microsoft made all three platforms converge on a modern
minimum standard, which made it much easier for developers to share code between any
flavor of .NET.

For .NET Core 2.0 and later, this added most of the missing APIs that developers need to
port old code written for .NET Framework to the cross-platform .NET Core. However, some
APIs are implemented but throw an exception to indicate to a developer that they should not
actually be used! This is usually due to differences in the operating system on which you run
.NET. You'll learn how to handle these exceptions in Chapter 2, Speaking C#.

It is important to understand that .NET Standard is just a standard. You are not able to install
.NET Standard in the same way that you cannot install HTML5. To use HTML5, you must
install a web browser that implements the HTML5 standard.

To use .NET Standard, you must install a .NET platform that implements the .NET Standard
specification. The last .NET Standard, version 2.1, is implemented by .NET Core 3.0, Mono,
and Xamarin. Some features of C# 8.0 require .NET Standard 2.1. .NET Standard 2.1 is not
implemented by .NET Framework 4.8, so we should treat .NET Framework as legacy.

With the release of .NET 6 in November 2021, the need for .NET Standard has reduced
significantly because there is now a single .NET for all platforms, including mobile. .NET 6 has
a single BCL and two CLRs: CoreCLR is optimized for server or desktop scenarios like websites
and Windows desktop apps, and the Mono runtime is optimized for mobile and web browser
apps that have limited resources.

Even now, apps and websites created for .NET Framework will need to be supported, so it is
important to understand that you can create .NET Standard 2.0 class libraries that are backward
compatible with legacy .NET platforms.

.NET platforms and tools used by the book editions
For the first edition of this book, which was written in March 2016, I focused on .NET Core
functionality but used .NET Framework when important or useful features had not yet been
implemented in .NET Core because that was before the final release of .NET Core 1.0. Visual
Studio 2015 was used for most examples, with Visual Studio Code shown only briefly.

The second edition was (almost) completely purged of all .NET Framework code examples so
that readers were able to focus on .NET Core examples that truly run cross-platform.

Chapter 01

[17]

The third edition completed the switch. It was rewritten so that all of the code was pure .NET
Core. But giving step-by-step instructions for both Visual Studio Code and Visual Studio 2017
for all tasks added complexity.

The fourth edition continued the trend by only showing coding examples using Visual Studio
Code for all but the last two chapters. In Chapter 20, Building Windows Desktop Apps, it used
Visual Studio running on Windows 10, and in Chapter 21, Building Cross-Platform Mobile Apps,
it used Visual Studio for Mac.

In the fifth edition, Chapter 20, Building Windows Desktop Apps, was moved to Appendix B to
make space for a new Chapter 20, Building Web User Interfaces Using Blazor. Blazor projects can
be created using Visual Studio Code.

In this sixth edition, Chapter 19, Building Mobile and Desktop Apps Using .NET MAUI, was
updated to show how mobile and desktop cross-platform apps can be created using Visual
Studio 2022 and .NET MAUI (Multi-platform App UI).

By the seventh edition and the release of .NET 7, Visual Studio Code will have an extension
to support .NET MAUI. At that point, readers will be able to use Visual Studio Code for all
examples in the book.

Understanding intermediate language
The C# compiler (named Roslyn) used by the dotnet CLI tool converts your C# source code
into intermediate language (IL) code and stores the IL in an assembly (a DLL or EXE file). IL
code statements are like assembly language instructions, which are executed by .NET's virtual
machine, known as CoreCLR.

At runtime, CoreCLR loads the IL code from the assembly, the just-in-time (JIT) compiler
compiles it into native CPU instructions, and then it is executed by the CPU on your machine.

The benefit of this two-step compilation process is that Microsoft can create CLRs for Linux
and macOS, as well as for Windows. The same IL code runs everywhere because of the second
compilation step, which generates code for the native operating system and CPU instruction set.

Regardless of which language the source code is written in, for example, C#, Visual Basic, or
F#, all .NET applications use IL code for their instructions stored in an assembly. Microsoft and
others provide disassembler tools that can open an assembly and reveal this IL code, such as
the ILSpy .NET Decompiler extension.

Comparing .NET technologies
We can summarize and compare .NET technologies today, as shown in the following table:

Technology Description Host operating systems

Modern .NET
A modern feature set, full C# 8, 9, and 10 support, used
to port existing apps or create new desktop, mobile,
and web apps and services

Windows, macOS,
Linux, Android, iOS

Hello, C#! Welcome, .NET!

[18]

.NET Framework A legacy feature set, limited C# 8 support, no C# 9 or
10 support, used to maintain existing applications only Windows only

Xamarin Mobile and desktop apps only Android, iOS, macOS

Building console apps using Visual Studio
2022
The goal of this section is to showcase how to build a console app using Visual Studio 2022 for
Windows.
If you do not have a Windows computer or you want to use Visual Studio Code, then you can
skip this section since the code will be the same, just the tooling experience is different.

Managing multiple projects using Visual Studio 2022
Visual Studio 2022 has a concept named a solution that allows you to open and manage
multiple projects simultaneously. We will use a solution to manage the two projects that you
will create in this chapter.

Writing code using Visual Studio 2022
Let's get started writing code!

1. Start Visual Studio 2022.
2. In the Start window, click Create a new project.
3. In the Create a new project dialog, enter console in the Search for templates box, and

select Console Application, making sure that you have chosen the C# project template
rather than another language, such as F# or Visual Basic, as shown in Figure 1.3:

Figure 1.3: Selecting the Console Application project template

Chapter 01

[19]

4. Click Next.
5. In the Configure your new project dialog, enter HelloCS for the project name, enter C:\

Code for the location, and enter Chapter01 for the solution name, as shown in Figure 1.4:

Figure 1.4: Configuring names and locations for your new project

6. Click Next.

7. In the Additional information dialog, in the Target Framework drop-down list, note
the choices of Current and long-term support versions of .NET, and then select .NET 5.0
(Current) and click Create.

8. In Solution Explorer, double-click to open the file named Program.cs, and note that
Solution Explorer shows the HelloCS project, as shown in Figure 1.5:

Figure 1.5: Editing Program.cs in Visual Studio 2022

We are deliberately going to use the older project template for .NET
5.0 to see what a full console application looks like. In the next section,
you will create a console application using .NET 6.0 and see what has
changed.

Hello, C#! Welcome, .NET!

[20]

9. In Program.cs, modify line 9 so that the text that is being written to the console says
Hello, C#!

Compiling and running code using Visual Studio
The next task is to compile and run the code.

1. In Visual Studio, navigate to Debug | Start Without Debugging.
2. The output in the console window will show the result of running your application, as

shown in Figure 1.6:

Figure 1.6: Running the console app on Windows

3. Press any key to close the console window and return to Visual Studio.
4. Select the HelloCS project and then, in the Solution Explorer toolbar, toggle on the

Show All Files button, and note that the compiler-generated bin and obj folders are
visible, as shown in Figure 1.7:

 Figure 1.7: Showing the compiler-generated folders and files

Chapter 01

[21]

Understanding the compiler-generated folders and files
Two compiler-generated folders were created, named obj and bin. You do not need to look
inside these folders or understand their files yet. Just be aware that the compiler needs to create
temporary folders and files to do its work. You could delete these folders and their files, and
they can be recreated later. Developers often do this to "clean" a project. Visual Studio even has
a command on the Build menu named Clean Solution that deletes some of these temporary
files for you. The equivalent command with Visual Studio Code is dotnet clean.

• The obj folder contains one compiled object file for each source code file. These objects
haven't been linked together into a final executable yet.

• The bin folder contains the binary executable for the application or class library. We will
look at this in more detail in Chapter 7, Packaging and Distributing .NET Types.

Writing top-level programs
You might be thinking that was a lot of code just to output Hello, C#!.

Although the boilerplate code is written for you by the project template, is there a simpler way?

Well, in C# 9 or later, there is, and it is known as top-level programs.

Let's compare the console app created by the project template, as shown in the following code:

using System;

namespace HelloCS
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

To the new top-level program minimum console app, as shown in the following code:

using System;

Console.WriteLine("Hello World!");

That is a lot simpler, right? If you had to start with a blank file and write all the statements
yourself, this is better. But how does it work?

During compilation, all the boilerplate code to define a namespace, the Program class, and its
Main method, is generated and wrapped around the statements you write.

Hello, C#! Welcome, .NET!

[22]

Key points to remember about top-level programs include the following list:

• Any using statements still must to go at the top of the file.
• There can be only one file like this in a project.

The using System; statement at the top of the file imports the System namespace. This enables
the Console.WriteLine statement to work. You will learn more about namespaces in the next
chapter.

Adding a second project using Visual Studio 2022
Let's add a second project to our solution to explore top-level programs:

1. In Visual Studio, navigate to File | Add | New Project.
2. In the Add a new project dialog, in Recent project templates, select Console

Application [C#] and then click Next.
3. In the Configure your new project dialog, for the Project name, enter TopLevelProgram,

leave the location as C:\Code\Chapter01, and then click Next.
4. In the Additional information dialog, select .NET 6.0 (Long-term support), and then

click Create.
5. In Solution Explorer, in the TopLevelProgram project, double-click Program.cs to open

it.
6. In Program.cs, note the code consists of only a comment and a single statement because

it uses the top-level program feature introduced in C# 9, as shown in the following
code:

// See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World!");

But when I introduced the concept of top-level programs earlier, we needed a using System;
statement. Why don't we need that here?

Implicitly imported namespaces
The trick is that we do still need to import the System namespace, but it is now done for us
using a feature introduced in C# 10. Let's see how:

1. In Solution Explorer, select the TopLevelProgram project and toggle on the Show All
Files button, and note that the compiler-generated bin and obj folders are visible.

2. Expand the obj folder, expand the Debug folder, expand the net6.0 folder, and open the
file named TopLevelProgram.GlobalUsings.g.cs.

3. Note that this file is automatically created by the compiler for projects that target .NET
6, and that it uses a feature introduced in C# 10 called global imports that imports
some commonly used namespaces like System for use in all code files, as shown in the
following code:

Chapter 01

[23]

// <autogenerated />
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Threading;
global using global::System.Threading.Tasks;

4. In the TopLevelProgram project, in Program.cs, modify the statement to output a
different message and the version of the operating system, as shown in the following
code:

Console.WriteLine("Hello from a Top Level Program!");
Console.WriteLine(Environment.OSVersion.VersionString);

5. In Solution Explorer, right-click the Chapter01 solution, select Set Startup Projects…,
set Current selection, and then click OK.

6. In Solution Explorer, click the TopLevelProgram project (or any file or folder within it),
and note that Visual Studio indicates that TopLevelProgram is now the startup project
by making the project name bold.

7. Navigate to Debug | Start Without Debugging to run the TopLevelProgram project,
and note the result, as shown in Figure 1.8:

Figure 1.8: Running a top-level program in a Visual Studio solution with two projects on Windows

I will explain more about this feature in the next chapter. For now,
just note that a significant change between .NET 5 and .NET 6 is that
many of the project templates, like the one for console applications,
use new language features to hide what is really happening.

Hello, C#! Welcome, .NET!

[24]

Building console apps using Visual Studio
Code
The goal of this section is to showcase how to build a console app using Visual Studio Code.

If you never want to try Visual Studio Code or .NET Interactive Notebooks, then please feel
free to skip this section and the next, and then continue with the Reviewing the folders and files for
projects section.

Both the instructions and screenshots in this section are for Windows, but the same actions will
work with Visual Studio Code on the macOS and Linux variants.

The main differences will be native command-line actions such as deleting a file: both the
command and the path are likely to be different on Windows or macOS and Linux. Luckily,
the dotnet command-line tool will be identical on all platforms.

Managing multiple projects using Visual Studio
Code
Visual Studio Code has a concept named a workspace that allows you to open and manage
multiple projects simultaneously. We will use a workspace to manage the two projects that you
will create in this chapter.

Writing code using Visual Studio Code
Let's get started writing code!

1. Start Visual Studio Code.
2. Make sure that you do not have any open files, folders, or workspaces.
3. Navigate to File | Save Workspace As….
4. In the dialog box, navigate to your user folder on macOS (mine is named markjprice),

your Documents folder on Windows, or any directory or drive in which you want to
save your projects.

5. Click the New Folder button and name the folder Code. (If you completed the section
for Visual Studio 2022, then this folder will already exist.)

6. In the Code folder, create a new folder named Chapter01-vscode.
7. In the Chapter01-vscode folder, save the workspace as Chapter01.code-workspace.
8. Navigate to File | Add Folder to Workspace… or click the Add Folder button.

Chapter 01

[25]

9. In the Chapter01-vscode folder, create a new folder named HelloCS.
10. Select the HelloCS folder and click the Add button.
11. Navigate to View | Terminal.

12. In TERMINAL, make sure that you are in the HelloCS folder, and then use the dotnet
command-line tool to create a new console app that targets .NET 5.0, as shown in the
following command:

dotnet new console -f net5.0

13. You will see that the dotnet command-line tool creates a new Console Application
project for you in the current folder, and the EXPLORER window shows the two files
created, HelloCS.csproj and Program.cs, and the obj folder, as shown in Figure 1.9:

Figure 1.9: The EXPLORER window will show that two files and a folder have been created

14. In EXPLORER, click on the file named Program.cs to open it in the editor window. The
first time that you do this, Visual Studio Code may have to download and install C#
dependencies like OmniSharp, .NET Core Debugger, and Razor Language Server, if it
did not do this when you installed the C# extension or if they need updating. Visual
Studio Code will show progress in the Output window and eventually the message
Finished, as shown in the following output:

Installing C# dependencies...
Platform: win32, x86_64

Downloading package 'OmniSharp for Windows (.NET 4.6 / x64)' (36150
KB).................... Done!

We are deliberately going to use the older project template for .NET
5.0 to see what a full console application looks like. In the next section,
you will create a console application using .NET 6.0 and see what has
changed.

Hello, C#! Welcome, .NET!

[26]

Validating download...
Integrity Check succeeded.
Installing package 'OmniSharp for Windows (.NET 4.6 / x64)'

Downloading package '.NET Core Debugger (Windows / x64)' (45048
KB).................... Done!
Validating download...
Integrity Check succeeded.
Installing package '.NET Core Debugger (Windows / x64)'

Downloading package 'Razor Language Server (Windows / x64)' (52344
KB).................... Done!
Installing package 'Razor Language Server (Windows / x64)'

Finished

15. Folders named obj and bin will have been created and when you see a notification
saying that required assets are missing, click Yes, as shown in Figure 1.10:

Figure 1.10: Warning message to add required build and debug assets

16. If the notification disappears before you can interact with it, then you can click the bell
icon in the far-right corner of the status bar to show it again.

The preceding output is from Visual Studio Code on Windows.
When run on macOS or Linux, the output will look slightly different,
but the equivalent components for your operating system will be
downloaded and installed.

Chapter 01

[27]

17. After a few seconds, another folder named .vscode will be created with some files that
are used by Visual Studio Code to provide features like IntelliSense during debugging,
which you will learn more about in Chapter 4, Writing, Debugging, and Testing Functions.

18. In Program.cs, modify line 9 so that the text that is being written to the console says
Hello, C#!

Compiling and running code using the dotnet CLI
The next task is to compile and run the code:

1. Navigate to View | Terminal and enter the following command:
dotnet run

2. The output in the TERMINAL window will show the result of running your
application, as shown in Figure 1.11:

Figure 1.11: The output of running your first console application

Adding a second project using Visual Studio Code
Let's add a second project to our workspace to explore top-level programs:

1. In Visual Studio Code, navigate to File | Add Folder to Workspace….

Good Practice: Navigate to File | Auto Save. This toggle will save the
annoyance of remembering to save before rebuilding your application
each time.

Hello, C#! Welcome, .NET!

[28]

2. In the Chapter01-vscode folder, use the New Folder button to create a new folder
named TopLevelProgram, select it, and click Add.

3. Navigate to Terminal | New Terminal, and in the drop-down list that appears, select
TopLevelProgram. Alternatively, in EXPLORER, right-click the TopLevelProgram folder
and then select Open in Integrated Terminal.

4. In TERMINAL, confirm that you are in the TopLevelProgram folder, and then enter the
command to create a new console application, as shown in the following command:

dotnet new console

5. Navigate to View | Command Palette.
6. Enter omni, and then, in the drop-down list that appears, select OmniSharp: Select

Project.
7. In the drop-down list of two projects, select the TopLevelProgram project, and when

prompted, click Yes to add required assets to debug.

8. In EXPLORER, in the TopLevelProgram folder, select Program.cs, and then change the
existing statement to output a different message and also output the operating system
version string, as shown in the following code:

Console.WriteLine("Hello from a Top Level Program!");
Console.WriteLine(Environment.OSVersion.VersionString);

9. In TERMINAL, enter the command to run a program, as shown in the following
command:

dotnet run

Good Practice: When using workspaces, be careful when entering
commands in TERMINAL. Be sure that you are in the correct folder
before entering potentially destructive commands! That is why I got
you to create a new terminal for TopLevelProgram before issuing the
command to create a new console app.

Good Practice: To enable debugging and other useful features, like
code formatting and Go to Definition, you must tell OmniSharp which
project you are actively working on in Visual Studio Code. You can
quickly toggle active projects by clicking the project/folder to the
right of the flame icon on the left side of the status bar.

Chapter 01

[29]

10. Note the output in the TERMINAL window, as shown in Figure 1.12:

Figure 1.12: Running a top-level program in a Visual Studio Code workspace with two projects on Windows

If you were to run the program on macOS Big Sur, the environment operating system would be
different, as shown in the following output:

Hello from a Top Level Program!
Unix 11.2.3

Managing multiple files using Visual Studio Code
If you have multiple files that you want to work with at the same time, then you can put them
side by side as you edit them:

1. In EXPLORER, expand the two projects.
2. Open both Program.cs files from the two projects.
3. Click, hold, and drag the edit window tab for one of your open files to arrange them so

that you can see both files at the same time.

Exploring code using .NET Interactive
Notebooks
.NET Interactive Notebooks makes writing code even easier than top-level programs.
It requires Visual Studio Code, so if you did not install it earlier, please install it now.

Hello, C#! Welcome, .NET!

[30]

Creating a notebook
First, we need to create a notebook:

1. In Visual Studio Code, close any open workspaces or folders.
2. Navigate to View | Command Palette.
3. Type .net inter, and then select .NET Interactive: Create new blank notebook,

as shown in Figure 1.13:

Figure 1.13: Creating a new blank .NET notebook

4. When prompted to select the file extension, choose Create as '.dib'.

5. Select C# for the default language for code cells in the notebook.
6. If a newer version of .NET Interactive is available, you might have to wait for it to

uninstall the older version and install the newer one. Navigate to View | Output
and select .NET Interactive : diagnostics in the drop-down list. Please be patient. It
can take a few minutes for the notebook to appear because it has to start up a hosting
environment for .NET. If nothing happens after a few minutes, then close Visual Studio
Code and restart it.

.dib is an experimental file format defined by Microsoft to avoid
confusion and compatibility issues with the .ipynb format used by
Python interactive notebooks. The file extension was historically only
for Jupyter notebooks that can contain an interactive (I) mix of data,
Python code (PY), and output in a notebook file (NB). With .NET
Interactive Notebooks, the concept has expanded to allow a mix of
C#, F#, SQL, HTML, JavaScript, Markdown, and other languages.
.dib is polyglot, meaning it supports mixed languages. Conversion
between the .dib and .ipynb file formats is supported.

Chapter 01

[31]

7. Once the .NET Interactive Notebooks extension is downloaded and installed, the
OUTPUT window diagnostics will show that a Kernel process has started (your process
and port number will be different from the output below), as shown in the following
output, which has been edited to save space:

Extension started for VS Code Stable.
...
Kernel process 12516 Port 59565 is using tunnel uri http://
localhost:59565/

Writing and running code in a notebook
Next, we can write code in the notebook cells:

1. The first cell should already be set to C# (.NET Interactive), but if it is set to anything
else, then click the language selector in the bottom-right corner of the code cell and then
select C# (.NET Interactive) as the language mode for that cell, and note your other
choices of language for a code cell, as shown in Figure 1.14:

Figure 1.14: Changing the language for a code cell in a .NET Interactive notebook

2. Inside the C# (.NET Interactive) code cell, enter a statement to output a message to the
console, and note that you do not need to end the statement with a semicolon, as you
normally would in a full application, as shown in the following code:

Console.WriteLine("Hello, .NET Interactive!")

Hello, C#! Welcome, .NET!

[32]

3. Click the Execute Cell button to the left of the code cell and note the output that
appears in the gray box under the code cell, as shown in Figure 1.15:

Figure 1.15: Running code in a notebook and seeing the output below

Saving a notebook
Like any other file, we should save the notebook before continuing further:

1. Navigate to File | Save As….
2. Change to the Chapter01-vscode folder and save the notebook as Chapter01.dib.
3. Close the Chapter01.dib editor tab.

Adding Markdown and special commands to a
notebook
We can mix and match cells containing Markdown and code with special commands:

1. Navigate to File | Open File…, and select the Chapter01.dib file.
2. If you are prompted with Do you trust the authors of these files?, click Open.
3. Hover your mouse above the code block and click + Markup to add a Markdown cell.
4. Type a heading level 1, as shown in the following Markdown:

Chapter 1 - Hello, C#! Welcome, .NET!
Mixing *rich* **text** and code is cool!

5. Click the tick in the top-right corner of the cell to stop editing the cell and view the
processed Markdown.

If your cells are in the wrong order, then you can drag and drop to
rearrange them.

Chapter 01

[33]

6. Hover between the Markdown cell and the code cell and click + Code.
7. Type a special command to output version information about .NET Interactive, as

shown in the following code:
#!about

8. Click the Execute Cell button and note the output, as shown in Figure 1.16:

Figure 1.16: Mixing Markdown, code, and special commands in a .NET Interactive notebook

Executing code in multiple cells
When you have multiple code cells in a notebook, you must execute the preceding code cells
before their context becomes available in subsequent code cells:

1. At the bottom of the notebook, add a new code cell, and then type a statement to
declare a variable and assign an integer value, as shown in the following code:

int number = 8;

2. At the bottom of the notebook, add a new code cell, and then type a statement to output
the number variable, as shown in the following code:

Console.WriteLine(number);

Hello, C#! Welcome, .NET!

[34]

3. Note the second code cell does not know about the number variable because it was
defined and assigned in another code cell, aka context, as shown in Figure 1.17:

Figure 1.17: The number variable does not exist in the current cell or context

4. In the first cell, click the Execute Cell button to declare and assign a value to the
variable, and then in the second cell, click the Execute Cell button to output the number
variable, and note that this works. (Alternatively, in the first cell, you can click the
Execute Cell and Below button.)

Using .NET Interactive Notebooks for the code in
this book
Throughout the rest of the chapters, I will not give explicit instructions to use notebooks, but
the GitHub repository for the book has solution notebooks when appropriate. I expect many
readers will want to run my pre-created notebooks for language and library features covered
in Chapters 2 to 12, which they want to see in action and learn about without having to write a
complete application, even if it is just a console app:

https://github.com/markjprice/cs10dotnet6/tree/main/notebooks

Reviewing the folders and files for projects
In this chapter, you created two projects named HelloCS and TopLevelProgram.

Good Practice: If you have related code split between two cells,
remember to execute the preceding cell before executing the
subsequent cell. At the top of the notebook, there are the following
buttons – Clear Outputs and Run All. These are very handy because
you can click one and then the other to ensure that all code cells are
executed properly, as long as they are in the correct order.

https://github.com/markjprice/cs10dotnet6/tree/main/notebooks

Chapter 01

[35]

Visual Studio Code uses a workspace file to manage multiple projects. Visual Studio 2022 uses
a solution file to manage multiple projects. You also created a .NET Interactive notebook.

The result is a folder structure and files that will be repeated in subsequent chapters, although
with more than just two projects, as shown in Figure 1.18:

Figure 1.18: Folder structure and files for the two projects in this chapter

Understanding the common folders and files
Although .code-workspace and .sln files are different, the project folders and files such as
HelloCS and TopLevelProgram are identical for Visual Studio 2022 and Visual Studio Code. This
means that you can mix and match between both code editors if you like:

• In Visual Studio 2022, with a solution open, navigate to File | Add Existing Project…
to add a project file created by another tool.

• In Visual Studio Code, with a workspace open, navigate to File | Add Folder to
Workspace… to add a project folder created by another tool.

Good Practice: Although the source code, like the .csproj and
.cs files, is identical, the bin and obj folders that are automatically
generated by the compiler could have mismatched file versions
that give errors. If you want to open the same project in both Visual
Studio 2022 and Visual Studio Code, delete the temporary bin and
obj folders before opening the project in the other code editor. This is
why I asked you to create a different folder for the Visual Studio Code
solutions in this chapter.

Hello, C#! Welcome, .NET!

[36]

Understanding the solution code on GitHub
The solution code in the GitHub repository for this book includes separate folders for Visual
Studio Code, Visual Studio 2022, and .NET Interactive notebook files, as shown in the following
list:

• Visual Studio 2022 solutions: https://github.com/markjprice/cs10dotnet6/tree/main/
vs4win

• Visual Studio Code solutions: https://github.com/markjprice/cs10dotnet6/tree/
main/vscode

• .NET Interactive Notebook solutions: https://github.com/markjprice/cs10dotnet6/
tree/main/notebooks

Making good use of the GitHub repository for
this book
Git is a commonly used source code management system. GitHub is a company, website, and
desktop application that makes it easier to manage Git. Microsoft purchased GitHub in 2018, so
it will continue to get closer integration with Microsoft tools.

I created a GitHub repository for this book, and I use it for the following:

• To store the solution code for the book that can be maintained after the print
publication date.

• To provide extra materials that extend the book, like errata fixes, small improvements,
lists of useful links, and longer articles that cannot fit in the printed book.

• To provide a place for readers to get in touch with me if they have issues with the book.

Raising issues with the book
If you get stuck following any of the instructions in this book, or if you spot a mistake in the
text or the code in the solutions, please raise an issue in the GitHub repository:

Good Practice: If you need to, return to this chapter to remind
yourself how to create and manage multiple projects in the code
editor of your choice. The GitHub repository has step-by-step
instructions for four code editors (Visual Studio 2022 for Windows,
Visual Studio Code, Visual Studio 2022 for Mac, and JetBrains
Rider), along with additional screenshots: https://github.com/
markjprice/cs10dotnet6/blob/main/docs/code-editors/.

https://github.com/markjprice/cs10dotnet6/tree/main/vs4win
https://github.com/markjprice/cs10dotnet6/tree/main/vs4win
https://github.com/markjprice/cs10dotnet6/tree/main/vscode
https://github.com/markjprice/cs10dotnet6/tree/main/vscode
https://github.com/markjprice/cs10dotnet6/tree/main/notebooks
https://github.com/markjprice/cs10dotnet6/tree/main/notebooks
https://github.com/markjprice/cs10dotnet6/blob/main/docs/code-editors/
https://github.com/markjprice/cs10dotnet6/blob/main/docs/code-editors/

Chapter 01

[37]

1. Use your favorite browser to navigate to the following link: https://github.com/
markjprice/cs10dotnet6/issues.

2. Click New Issue.
3. Enter as much detail as possible that will help me to diagnose the issue. For example:

1. Your operating system, for example, Windows 11 64-bit, or macOS Big Sur
version 11.2.3.

2. Your hardware, for example, Intel, Apple Silicon, or ARM CPU.
3. Your code editor, for example, Visual Studio 2022, Visual Studio Code, or

something else, including the version number.
4. As much of your code and configuration that you feel is relevant and necessary.
5. Description of expected behavior and the behavior experienced.
6. Screenshots (if possible).

Writing this book is a side hustle for me. I have a full-time job, so I mostly work on the book
at weekends. This means that I cannot always respond immediately to issues. But I want all
my readers to be successful with my book, so if I can help you (and others) without too much
trouble, then I will gladly do so.

Giving me feedback
If you'd like to give me more general feedback about the book, then the GitHub repository
README.md page has links to some surveys. You can provide the feedback anonymously, or if
you would like a response from me, then you can supply an email address. I will only use this
email address to answer your feedback.

I love to hear from my readers about what they like about my book, as well as suggestions for
improvements and how they are working with C# and .NET, so don't be shy. Please get in
touch!

Thank you in advance for your thoughtful and constructive feedback.

Downloading solution code from the GitHub
repository
I use GitHub to store solutions to all the hands-on, step-by-step coding examples throughout
chapters and the practical exercises that are featured at the end of each chapter. You will find
the repository at the following link: https://github.com/markjprice/cs10dotnet6.

https://github.com/markjprice/cs10dotnet6/issues
https://github.com/markjprice/cs10dotnet6/issues
https://github.com/markjprice/cs10dotnet6

Hello, C#! Welcome, .NET!

[38]

If you just want to download all the solution files without using Git, click the green Code
button and then select Download ZIP, as shown in Figure 1.19:

Figure 1.19: Downloading the repository as a ZIP file

I recommend that you add the preceding link to your favorite bookmarks because I also use the
GitHub repository for this book for publishing errata (corrections) and other useful links.

Using Git with Visual Studio Code and the
command line
Visual Studio Code has support for Git, but it will use your operating system's Git installation,
so you must install Git 2.0 or later first before you get these features.

You can install Git from the following link: https://git-scm.com/download.

If you like to use a GUI, you can download GitHub Desktop from the following link: https://
desktop.github.com.

Cloning the book solution code repository
Let's clone the book solution code repository. In the steps that follow, you will use the Visual
Studio Code terminal, but you could enter the commands at any command prompt or terminal
window:

1. Create a folder named Repos-vscode in your user or Documents folder, or wherever you
want to store your Git repositories.

2. In Visual Studio Code, open the Repos-vscode folder.
3. Navigate to View | Terminal, and enter the following command:

git clone https://github.com/markjprice/cs10dotnet6.git

https://git-scm.com/download
https://desktop.github.com
https://desktop.github.com

Chapter 01

[39]

4. Note that cloning all the solutions for all of the chapters will take a minute or so, as
shown in Figure 1.20:

Figure 1.20: Cloning the book solution code using Visual Studio Code

Looking for help
This section is all about how to find quality information about programming on the web.

Reading Microsoft documentation
The definitive resource for getting help with Microsoft developer tools and platforms is
Microsoft Docs, and you can find it at the following link: https://docs.microsoft.com/.

Getting help for the dotnet tool
At the command line, you can ask the dotnet tool for help with its commands:

1. To open the official documentation in a browser window for the dotnet new command,
enter the following at the command line or in the Visual Studio Code terminal:

dotnet help new

2. To get help output at the command line, use the -h or --help flag, as shown in
the following command:

dotnet new console -h

3. You will see the following partial output:

Console Application (C#)
Author: Microsoft
Description: A project for creating a command-line application that can
run on .NET Core on Windows, Linux and macOS

https://docs.microsoft.com/

Hello, C#! Welcome, .NET!

[40]

Options:
 -f|--framework. The target framework for the project.
 net6.0 - Target net6.0
 net5.0 - Target net5.0
 netcoreapp3.1. - Target netcoreapp3.1
 netcoreapp3.0. - Target netcoreapp3.0
 Default: net6.0

--langVersion Sets langVersion in the created project file text –
Optional

Getting definitions of types and their members
One of the most useful features of a code editor is Go To Definition. It is available in Visual
Studio Code and Visual Studio 2022. It will show what the public definition of the type or
member looks like by reading the metadata in the compiled assembly.

Some tools, such as ILSpy .NET Decompiler, will even reverse-engineer from the metadata and
IL code back into C# for you.

Let's see how to use the Go To Definition feature:

1. In Visual Studio 2022 or Visual Studio Code, open the solution/workspace named
Chapter01.

2. In the HelloCS project, in Program.cs, in Main, enter the following statement to declare
an integer variable named z:

int z;

3. Click inside int and then right-click and choose Go To Definition.
4. In the code window that appears, you can see how the int data type is defined, as

shown in Figure 1.21:

 Figure 1.21: The int data type metadata

Chapter 01

[41]

You can see that int:
• Is defined using the struct keyword
• Is in the System.Runtime assembly
• Is in the System namespace
• Is named Int32
• Is therefore an alias for the System.Int32 type
• Implements interfaces such as IComparable
• Has constant values for its maximum and minimum values
• Has methods such as Parse

Right now, the Go To Definition feature is not that useful to you because you do not
yet know what all of this information means.
By the end of the first part of this book, which consists of Chapters 2 to 6, and which
teaches you about C#, you will know enough for this feature to become very handy.

5. In the code editor window, scroll down to find the Parse method with a single string
parameter on line 106, and the comments that document it on lines 86 to 105, as shown
in Figure 1.22:

Figure 1.22: The comments for the Parse method with a string parameter

Good Practice: When you try to use Go To Definition in Visual
Studio Code, you will sometimes see an error saying No definition
found. This is because the C# extension does not know about the
current project. To fix this issue, navigate to View | Command
Palette, enter omni, select OmniSharp: Select Project, and then select
the project that you want to work with.

Hello, C#! Welcome, .NET!

[42]

In the comments, you will see that Microsoft has documented the following:

• A summary that describes the method.
• Parameters like the string value that can be passed to the method.
• The return value of the method, including its data type.
• Three exceptions that might occur if you call this method, including

ArgumentNullException, FormatException, and OverflowException. Now, we know that
we could choose to wrap a call to this method in a try statement and which exceptions
to catch.

Hopefully, you are getting impatient to learn what all this means!

Be patient for a little longer. You are almost at the end of this chapter, and in the next chapter,
you will dive into the details of the C# language. But first, let's see where else you can look for
help.

Looking for answers on Stack Overflow
Stack Overflow is the most popular third-party website for getting answers to difficult
programming questions. It's so popular that search engines such as DuckDuckGo have a
special way to write a query to search the site:

1. Start your favorite web browser.
2. Navigate to DuckDuckGo.com, enter the following query, and note the search results,

which are also shown in Figure 1.23:

 !so securestring

Figure 1.23: Stack Overflow search results for securestring

DuckDuckGo.com

Chapter 01

[43]

Searching for answers using Google
You can search Google with advanced search options to increase the likelihood of finding what
you need:

1. Navigate to Google.
2. Search for information about garbage collection using a simple Google query, and

note that you will probably see a lot of ads for garbage collection services in your local
area before you see the Wikipedia definition of garbage collection in computer science.

3. Improve the search by restricting it to a useful site such as Stack Overflow, and
by removing languages that we might not care about, such as C++, Rust, and Python, or
by adding C# and .NET explicitly, as shown in the following search query:

garbage collection site:stackoverflow.com +C# -Java

Subscribing to the official .NET blog
To keep up to date with .NET, an excellent blog to subscribe to is the official .NET Blog, written
by the .NET engineering teams, and you can find it at the following link: https://devblogs.
microsoft.com/dotnet/.

Watching Scott Hanselman's videos
Scott Hanselman from Microsoft has an excellent YouTube channel about computer stuff they
didn't teach you: http://computerstufftheydidntteachyou.com/.

I recommend it to everyone working with computers.

Practicing and exploring
Let's now test your knowledge and understanding by trying to answer some questions, getting
some hands-on practice, and going into the topics covered throughout this chapter in greater
detail.

Exercise 1.1 – Test your knowledge
Try to answer the following questions, remembering that although most answers can be found
in this chapter, you should do some online research or code writing to answer others:

1. Is Visual Studio 2022 better than Visual Studio Code?
2. Is .NET 6 better than .NET Framework?

https://devblogs.microsoft.com/dotnet/
https://devblogs.microsoft.com/dotnet/
http://computerstufftheydidntteachyou.com/

Hello, C#! Welcome, .NET!

[44]

3. What is .NET Standard and why is it still important?
4. Why can a programmer use different languages, for example, C# and F#, to write

applications that run on .NET?
5. What is the name of the entry point method of a .NET console application and how

should it be declared?
6. What is a top-level program and how do you access any command-line arguments?
7. What do you type at the prompt to build and execute C# source code?
8. What are some benefits of using .NET Interactive Notebooks to write C# code?
9. Where would you look for help for a C# keyword?
10. Where would you look for solutions to common programming problems?

Exercise 1.2 – Practice C# anywhere
You don't need Visual Studio Code or even Visual Studio 2022 for Windows or Mac to write
C#. You can go to .NET Fiddle – https://dotnetfiddle.net/ – and start coding online.

Exercise 1.3 – Explore topics
A book is a curated experience. I have tried to find the right balance of topics to include in the
printed book. Other content that I have written can be found in the GitHub repository for this
book.

I believe that this book covers all the fundamental knowledge and skills a C# and .NET
developer should have or be aware of. Some longer examples are best included as links to
Microsoft documentation or third-party article authors.

Use the links on the following page to learn more details about the topics covered in this
chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-1---hello-
c-welcome-net

Appendix, Answers to the Test Your Knowledge Questions, is available
to download from a link in the README on the GitHub repository:
https://github.com/markjprice/cs10dotnet6.

https://dotnetfiddle.net/
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-1---hello-c-welcome-net
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-1---hello-c-welcome-net
https://github.com/markjprice/cs10dotnet6

Chapter 01

[45]

Summary
In this chapter, we:

• Set up your development environment.
• Discussed the similarities and differences between modern .NET, .NET Core, .NET

Framework, Xamarin, and .NET Standard.
• Used Visual Studio Code with the .NET SDK and Visual Studio 2022 for Windows to

create some simple console applications.
• Used .NET Interactive Notebooks to execute snippets of code for learning.
• Learned how to download the solution code for this book from a GitHub repository.
• And, most importantly, learned how to find help.

In the next chapter, you will learn how to "speak" C#.

[47]

02
Speaking C#

This chapter is all about the basics of the C# programming language. Over the course of
this chapter, you'll learn how to write statements using the grammar of C#, as well as being
introduced to some of the common vocabulary that you will use every day. In addition to this,
by the end of the chapter, you'll feel confident in knowing how to temporarily store and work
with information in your computer's memory.

This chapter covers the following topics:

• Introducing the C# language
• Understanding C# grammar and vocabulary
• Working with variables
• Exploring more about console applications

Introducing the C# language
This part of the book is about the C# language—the grammar and vocabulary that you will use
every day to write the source code for your applications.

Programming languages have many similarities to human languages, except that in
programming languages, you can make up your own words, just like Dr. Seuss!

In a book written by Dr. Seuss in 1950, If I Ran the Zoo, he states this:

"And then, just to show them, I'll sail to Ka-Troo And Bring Back an It-Kutch, a Preep, and a
Proo, A Nerkle, a Nerd, and a Seersucker, too!"

Understanding language versions and features
This part of the book covers the C# programming language and is written primarily for
beginners, so it covers the fundamental topics that all developers need to know, from declaring
variables to storing data to how to define your own custom data types.

Speaking C#

[48]

This book covers features of the C# language from version 1.0 up to the latest version 10.0.

If you already have some familiarity with older versions of C# and are excited to find out
about the new features in the most recent versions of C#, I have made it easier for you to jump
around by listing language versions and their important new features below, along with the
chapter number and topic title where you can learn about them.

C# 1.0
C# 1.0 was released in 2002 and included all the important features of a statically typed object-
oriented modern language, as you will see throughout Chapters 2 to 6.

C# 2.0
C# 2.0 was released in 2005 and focused on enabling strong data typing using generics, to
improve code performance and reduce type errors, including the topics listed in the following
table:

Feature Chapter Topic

Nullable value types 6 Making a value type nullable

Generics 6 Making types more reusable with generics

C# 3.0
C# 3.0 was released in 2007 and focused on enabling declarative coding with Language
INtegrated Queries (LINQ) and related features like anonymous types and lambda
expressions, including the topics listed in the following table:

Feature Chapter Topic
Implicitly typed local variables 2 Inferring the type of a local variable

LINQ 11 All topics in Chapter 11, Querying and Manipulating Data
Using LINQ

C# 4.0
C# 4.0 was released in 2010 and focused on improving interoperability with dynamic languages
like F# and Python, including the topics listed in the following table:

Feature Chapter Topic
Dynamic types 2 Storing dynamic types
Named/optional arguments 5 Optional parameters and named arguments

Chapter 02

[49]

C# 5.0
C# 5.0 was released in 2012 and focused on simplifying asynchronous operation support
by automatically implementing complex state machines while writing what looks like
synchronous statements, including the topics listed in the following table:

Feature Chapter Topic
Simplified asynchronous tasks 12 Understanding async and await

C# 6.0
C# 6.0 was released in 2015 and focused on minor refinements to the language, including the
topics listed in the following table:

Feature Chapter Topic
static imports 2 Simplifying the usage of the console
Interpolated strings 2 Displaying output to the user
Expression bodied members 5 Defining read-only properties

C# 7.0
C# 7.0 was released in March 2017 and focused on adding functional language features like
tuples and pattern matching, as well as minor refinements to the language, including the topics
listed in the following table:

Feature Chapter Topic
Binary literals and digit separators 2 Storing whole numbers
Pattern matching 3 Pattern matching with the if statement
out variables 5 Controlling how parameters are passed
Tuples 5 Combining multiple values with tuples
Local functions 6 Defining local functions

C# 7.1
C# 7.1 was released in August 2017 and focused on minor refinements to the language,
including the topics listed in the following table:

Feature Chapter Topic
Default literal expressions 5 Setting fields with default literal
Inferred tuple element names 5 Inferring tuple names
async Main 12 Improving responsiveness for console apps

Speaking C#

[50]

C# 7.2
C# 7.2 was released in November 2017 and focused on minor refinements to the language,
including the topics listed in the following table:

Feature Chapter Topic
Leading underscores in numeric literals 2 Storing whole numbers
Non-trailing named arguments 5 Optional parameters and named arguments
private protected access modifier 5 Understanding access modifiers
You can test == and != with tuple types 5 Comparing tuples

C# 7.3
C# 7.3 was released in May 2018 and focused on performance-oriented safe code that improves
ref variables, pointers, and stackalloc. These are advanced and rarely needed for most
developers, so they are not covered in this book.

C# 8
C# 8 was released in September 2019 and focused on a major change to the language related to
null handling, including the topics listed in the following table:

Feature Chapter Topic
Nullable reference types 6 Making a reference type nullable
Switch expressions 3 Simplifying switch statements with switch expressions
Default interface methods 6 Understanding default interface methods

C# 9
C# 9 was released in November 2020 and focused on record types, refinements to pattern
matching, and minimal-code console apps, including the topics listed in the following table:

Feature Chapter Topic
Minimal-code console apps 1 Top-level programs
Target-typed new 2 Using target-typed new to instantiate objects
Enhanced pattern matching 5 Pattern matching with objects
Records 5 Working with records

C# 10
C# 10 was released in November 2021 and focused on features that minimize the amount of
code needed in common scenarios, including the topics listed in the following table:

Chapter 02

[51]

Feature Chapter Topic
Global namespace imports 2 Importing namespaces
Constant string literals 2 Formatting using interpolated strings
File-scoped namespaces 5 Simplifying namespace declarations
Required properties 5 Requiring properties to be set during instantiation
Record structs 6 Working with record struct types
Null parameter checks 6 Checking for null in method parameters

Understanding C# standards
Over the years, Microsoft has submitted a few versions of C# to standards bodies, as shown in
the following table:

C# version ECMA standard ISO/IEC standard
1.0 ECMA-334:2003 ISO/IEC 23270:2003
2.0 ECMA-334:2006 ISO/IEC 23270:2006
5.0 ECMA-334:2017 ISO/IEC 23270:2018

The standard for C# 6 is still a draft and work on adding C# 7 features is progressing. Microsoft
made C# open source in 2014.

There are currently three public GitHub repositories for making the work on C# and related
technologies as open as possible, as shown in the following table:

Description Link
C# language design https://github.com/dotnet/csharplang
Compiler implementation https://github.com/dotnet/roslyn
Standard to describe the language https://github.com/dotnet/csharpstandard

Discovering your C# compiler versions
.NET language compilers for C# and Visual Basic, also known as Roslyn, along with a separate
compiler for F#, are distributed as part of the .NET SDK. To use a specific version of C#, you
must have at least that version of the .NET SDK installed, as shown in the following table:

.NET SDK Roslyn compiler Default C# language
1.0.4 2.0 - 2.2 7.0
1.1.4 2.3 - 2.4 7.1
2.1.2 2.6 - 2.7 7.2
2.1.200 2.8 - 2.10 7.3
3.0 3.0 - 3.4 8.0
5.0 3.8 9.0
6.0 3.9 - 3.10 10.0

https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn
https://github.com/dotnet/csharpstandard

Speaking C#

[52]

When you create class libraries then you can choose to target .NET Standard as well as versions
of modern .NET. They have default C# language versions, as shown in the following table:

.NET Standard C#
2.0 7.3
2.1 8.0

How to output the SDK version
Let's see what .NET SDK and C# language compiler versions you have available:

1. On macOS, start Terminal. On Windows, start Command Prompt.
2. To determine which version of the .NET SDK you have available, enter the following

command:
dotnet --version

3. Note the version at the time of writing is 6.0.100, indicating that it is the initial version
of the SDK without any bug fixes or new features yet, as shown in the following output:

6.0.100

Enabling a specific language version compiler
Developer tools like Visual Studio and the dotnet command-line interface assume that you
want to use the latest major version of a C# language compiler by default. Before C# 8.0 was
released, C# 7.0 was the latest major version and was used by default. To use the improvements
in a C# point release like 7.1, 7.2, or 7.3, you had to add a <LangVersion> configuration element
to the project file, as shown in the following markup:

<LangVersion>7.3</LangVersion>

After the release of C# 10.0 with .NET 6.0, if Microsoft releases a C# 10.1 compiler and you
want to use its new language features then you will have to add a configuration element to
your project file, as shown in the following markup:

<LangVersion>10.1</LangVersion>

Potential values for the <LangVersion> are shown in the following table:

LangVersion Description
7, 7.1, 7.2, 7.3

8, 9, 10
Entering a specific version number will use that compiler if it has been installed.

latestmajor Uses the highest major number, for example, 7.0 in August 2019, 8.0 in October
2019, 9.0 in November 2020, 10.0 in November 2021.

Chapter 02

[53]

latest Uses the highest major and highest minor number, for example, 7.2 in 2017, 7.3 in
2018, 8 in 2019, perhaps 10.1 in early 2022.

preview Uses the highest available preview version, for example, 10.0 in July 2021 with
.NET 6.0 Preview 6 installed.

After creating a new project, you can edit the .csproj file and add the <LangVersion> element,
as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 <LangVersion>preview</LangVersion>
 </PropertyGroup>

</Project>

Your projects must target net6.0 to use the full features of C# 10.

Understanding C# grammar and vocabulary
To learn simple C# language features, you can use .NET Interactive Notebooks, which remove
the need to create an application of any kind.

To learn some other C# language features, you will need to create an application. The simplest
type of application is a console application.

Let's start by looking at the basics of the grammar and vocabulary of C#. Throughout this
chapter, you will create multiple console applications, with each one showing related features
of the C# language.

Showing the compiler version
We will start by writing code that shows the compiler version:

1. If you've completed Chapter 1, Hello, C#! Welcome, .NET!, then you will already have a
Code folder. If not, then you'll need to create it.

Good Practice: If you are using Visual Studio Code and you have not done
so already, install the Visual Studio Code extension named MSBuild project
tools. This will give you IntelliSense while editing .csproj files, including
making it easy to add the <LangVersion> element with appropriate values.

Speaking C#

[54]

2. Use your preferred code editor to create a new console app, as defined in the following
list:

1. Project template: Console Application [C#] / console
2. Workspace/solution file and folder: Chapter02
3. Project file and folder: Vocabulary

3. Open the Program.cs file, and at the top of the file, under the comment, add a statement
to show the C# version as an error, as shown in the following code:

#error version

4. Run the console application:
1. In Visual Studio Code, in a terminal, enter the command dotnet run.
2. In Visual Studio, navigate to Debug | Start Without Debugging. When

prompted to continue and run the last successful build, click No.

5. Note the compiler version and language version appear as a compiler error message
number CS8304, as shown in Figure 2.1:

Figure 2.1: A compiler error that shows the C# language version

6. The error message in the Visual Studio Code PROBLEMS window or Visual Studio
Error List window says Compiler version: '4.0.0...' with language version 10.0.

7. Comment out the statement that causes the error, as shown in the following code:
// #error version

8. Note that the compiler error messages disappear.

Good Practice: If you have forgotten how, or did not complete
the previous chapter, then step-by-step instructions for creating a
workspace/solution with multiple projects are given in Chapter 1,
Hello, C#! Welcome, .NET!.

Chapter 02

[55]

Understanding C# grammar
The grammar of C# includes statements and blocks. To document your code, you can use
comments.

Statements
In English, we indicate the end of a sentence with a full stop. A sentence can be composed of
multiple words and phrases, with the order of words being part of the grammar. For example,
in English, we say "the black cat."

The adjective, black, comes before the noun, cat. Whereas French grammar has a different order;
the adjective comes after the noun: "le chat noir." What's important to take away from this is
that the order matters.

C# indicates the end of a statement with a semicolon. A statement can be composed of multiple
variables and expressions. For example, in the following statement, totalPrice is a variable
and subtotal + salesTax is an expression:

var totalPrice = subtotal + salesTax;

The expression is made up of an operand named subtotal, an operator +, and another operand
named salesTax. The order of operands and operators matters.

Comments
When writing your code, you're able to add comments to explain your code using a double
slash, //. By inserting // the compiler will ignore everything after the // until the end of the
line, as shown in the following code:

// sales tax must be added to the subtotal
var totalPrice = subtotal + salesTax;

To write a multiline comment, use /* at the beginning and */ at the end of the comment, as
shown in the following code:

/*
This is a multi-line comment.
*/

Good Practice: Comments should not be the only way that you document
your code. Choosing sensible names for variables and functions, writing unit
tests, and creating actual documents are other ways to document your code.

Speaking C#

[56]

Your code editor has commands to make it easier to add and remove comment characters, as
shown in the following list:

• Visual Studio 2022 for Windows: Navigate to Edit | Advanced | Comment Selection
or Uncomment Selection

• Visual Studio Code: Navigate to Edit | Toggle Line Comment or Toggle Block
Comment

Blocks
In English, we indicate a new paragraph by starting a new line. C# indicates a block of code
with the use of curly brackets, { }.

Blocks start with a declaration to indicate what is being defined. For example, a block can
define the start and end of many language constructs including namespaces, classes, methods,
or statements like foreach.

You will learn more about namespaces, classes, and methods later in this chapter and
subsequent chapters but to briefly introduce some of those concepts now:

• A namespace contains types like classes to group them together.
• A class contains the members of an object including methods.
• A method contains statements that implement an action that an object can take.

Examples of statements and blocks
In the project template for console apps when targeting .NET 5.0, note that examples of the
grammar of C# have been written for you by the project template. I've added some comments
to the statements and blocks, as shown in the following code:

using System; // a semicolon indicates the end of a statement

namespace Basics
{ // an open brace indicates the start of a block
 class Program
 {

Good Practice: Well-designed code, including function signatures with
well-named parameters and class encapsulation, can be somewhat self-
documenting. When you find yourself putting too many comments and
explanations in your code, ask yourself: can I rewrite, aka refactor, this code to
make it more understandable without long comments?

Good Practice: You comment code by adding descriptive text above
or after code statements. You comment out code by adding comment
characters before or around statements to make them inactive.
Uncommenting means removing the comment characters.

Chapter 02

[57]

 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!"); // a statement
 }
 }
} // a close brace indicates the end of a block

Understanding C# vocabulary
The C# vocabulary is made up of keywords, symbol characters, and types.

Some of the predefined, reserved keywords that you will see in this book include using,
namespace, class, static, int, string, double, bool, if, switch, break, while, do, for, foreach,
and, or, not, record, and init.

Some of the symbol characters that you will see include ", ', +, -, *, /, %, @, and $.

There are other contextual keywords that only have a special meaning in a specific context.

However, that still means that there are only about 100 actual C# keywords in the language.

Comparing programming languages to human
languages
The English language has more than 250,000 distinct words, so how does C# get away with
only having about 100 keywords? Moreover, why is C# so difficult to learn if it has only
0.0416% of the number of words in the English language?

One of the key differences between a human language and a programming language is that
developers need to be able to define the new "words" with new meanings. Apart from the
about 100 keywords in the C# language, this book will teach you about some of the hundreds
of thousands of "words" that other developers have defined, but you will also learn how to
define your own "words."

Programmers all over the world must learn English because most programming languages use
English words such as namespace and class. There are programming languages that use other
human languages, such as Arabic, but they are rare. If you are interested in learning more, this
YouTube video shows a demonstration of an Arabic programming language: https://youtu.
be/dkO8cdwf6v8.

Changing the color scheme for C# syntax
By default, Visual Studio Code and Visual Studio show C# keywords in blue to make them
easier to differentiate from other code. Both tools allow you to customize the color scheme:

1. In Visual Studio Code, navigate to Code | Preferences | Color Theme (it is on the File
menu on Windows).

https://youtu.be/dkO8cdwf6v8
https://youtu.be/dkO8cdwf6v8

Speaking C#

[58]

2. Select a color theme. For reference, I'll use the Light+ (default light) color theme so that
the screenshots look good in a printed book.

3. In Visual Studio, navigate to Tools | Options.
4. In the Options dialog box, select Fonts and Colors, and then select the display items

that you would like to customize.

Help for writing correct code
Plain text editors such as Notepad don't help you write correct English. Likewise, Notepad
won't help you write correct C# either.

Microsoft Word can help you write English by highlighting spelling mistakes with red
squiggles, with Word saying that "icecream" should be ice-cream or ice cream, and grammatical
errors with blue squiggles, such as a sentence should have an uppercase first letter.

Similarly, Visual Studio Code's C# extension and Visual Studio help you write C# code
by highlighting spelling mistakes, such as the method name should be WriteLine with an
uppercase L, and grammatical errors, such as statements that must end with a semicolon.

The C# extension constantly watches what you type and gives you feedback by highlighting
problems with colored squiggly lines, similar to that of Microsoft Word.

Let's see it in action:

1. In Program.cs, change the L in the WriteLine method to lowercase.
2. Delete the semicolon at the end of the statement.
3. In Visual Studio Code, navigate to View | Problems, or in Visual Studio navigate to

View | Error List, and note that a red squiggle appears under the code mistakes and
details are shown, as you can see in Figure 2.2:

Figure 2.2: The Error List window showing two compile errors

4. Fix the two coding errors.

Chapter 02

[59]

Importing namespaces
System is a namespace, which is like an address for a type. To refer to someone's location
exactly, you might use Oxford.HighStreet.BobSmith, which tells us to look for a person named
Bob Smith on the High Street in the city of Oxford.

System.Console.WriteLine tells the compiler to look for a method named WriteLine in a type
named Console in a namespace named System. To simplify our code, the Console Application
project template for every version of .NET before 6.0 added a statement at the top of the code
file to tell the compiler to always look in the System namespace for types that haven't been
prefixed with their namespace, as shown in the following code:

using System; // import the System namespace

We call this importing the namespace. The effect of importing a namespace is that all available
types in that namespace will be available to your program without needing to enter the
namespace prefix and will be seen in IntelliSense while you write code.

Implicitly and globally importing namespaces
Traditionally, every .cs file that needs to import namespaces would have to start with using
statements to import those namespaces. Namespaces like System and System.Linq are needed
in almost all .cs files, so the first few lines of every .cs file often had at least a few using
statements, as shown in the following code:

using System;
using System.Linq;
using System.Collections.Generic;

When creating websites and services using ASP.NET Core, there are often dozens of
namespaces that each file would have to import.

C# 10 introduces some new features that simplify importing namespaces.

First, the global using statement means you only need to import a namespace in one .cs file
and it will be available throughout all .cs files. You could put global using statements in the
Program.cs file but I recommend creating a separate file for those statements named something
like GlobalUsings.cs or GlobalNamespaces.cs, as shown in the following code:

global using System;
global using System.Linq;
global using System.Collections.Generic;

.NET Interactive notebooks have most namespaces imported automatically.

Speaking C#

[60]

Second, any projects that target .NET 6.0 and therefore use the C# 10 compiler generate a.cs
file in the obj folder to implicitly globally import some common namespaces like System. The
specific list of implicitly imported namespaces depends on which SDK you target, as shown in
the following table:

SDK Implicitly imported namespaces

Microsoft.NET.Sdk

System

System.Collections.Generic

System.IO

System.Linq

System.Net.Http

System.Threading

System.Threading.Tasks

Microsoft.NET.Sdk.Web

Same as Microsoft.NET.Sdk and:

System.Net.Http.Json

Microsoft.AspNetCore.Builder

Microsoft.AspNetCore.Hosting

Microsoft.AspNetCore.Http

Microsoft.AspNetCore.Routing

Microsoft.Extensions.Configuration

Microsoft.Extensions.DependencyInjection

Microsoft.Extensions.Hosting

Microsoft.Extensions.Logging

Microsoft.NET.Sdk.Worker

Same as Microsoft.NET.Sdk and:

Microsoft.Extensions.Configuration

Microsoft.Extensions.DependencyInjection

Microsoft.Extensions.Hosting

Microsoft.Extensions.Logging

Good Practice: As developers get used to this new C# feature, I expect one
naming convention for this file to become the standard.

Chapter 02

[61]

Let's see the current auto-generated implicit imports file:

1. In Solution Explorer, select the Vocabulary project, toggle on the Show All Files
button, and note the compiler-generated bin and obj folders are visible.

2. Expand the obj folder, expand the Debug folder, expand the net6.0 folder, and open the
file named Vocabulary.GlobalUsings.g.cs.

3. Note this file is automatically created by the compiler for projects that target .NET 6.0,
and that it imports some commonly used namespaces including System.Threading, as
shown in the following code:

// <autogenerated />
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Threading;
global using global::System.Threading.Tasks;

4. Close the Vocabulary.GlobalUsings.g.cs file.
5. In Solution Explorer, select the project, and then add additional entries to the project

file to control which namespaces are implicitly imported, as shown highlighted in the
following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

 <ItemGroup>
 <Using Remove="System.Threading" />
 <Using Include="System.Numerics" />
 </ItemGroup>

</Project>

6. Save the changes to the project file.
7. Expand the obj folder, expand the Debug folder, expand the net6.0 folder, and open the

file named Vocabulary.GlobalUsings.g.cs.
8. Note this file now imports System.Numerics instead of System.Threading, as shown

highlighted in the following code:
// <autogenerated />
global using global::System;

Speaking C#

[62]

global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Threading.Tasks;
global using global::System.Numerics;

9. Close the Vocabulary.GlobalUsings.g.cs file.

You can disable the implicitly imported namespaces feature for all SDKs by removing an entry
in the project file, as shown in the following markup:

<ImplicitUsings>enable</ImplicitUsings>

Verbs are methods
In English, verbs are doing or action words, like run and jump. In C#, doing or action words
are called methods. There are hundreds of thousands of methods available to C#. In English,
verbs change how they are written based on when in time the action happens. For example,
Amir was jumping in the past, Beth jumps in the present, they jumped in the past, and Charlie will
jump in the future.

In C#, methods such as WriteLine change how they are called or executed based on the
specifics of the action. This is called overloading, which we'll cover in more detail in Chapter 5,
Building Your Own Types with Object-Oriented Programming. But for now, consider the following
example:

// outputs the current line terminator string
// by default, this is a carriage-return and line feed
Console.WriteLine();

// outputs the greeting and the current line terminator string
Console.WriteLine("Hello Ahmed");

// outputs a formatted number and date and the current line terminator string
Console.WriteLine("Temperature on {0:D} is {1}°C.",
 DateTime.Today, 23.4);

A different analogy is that some words are spelled the same but have different meanings
depending on the context.

Nouns are types, variables, fields, and properties
In English, nouns are names that refer to things. For example, Fido is the name of a dog. The
word "dog" tells us the type of thing that Fido is, and so in order for Fido to fetch a ball, we
would use his name.

Chapter 02

[63]

In C#, their equivalents are types, variables, fields, and properties. For example:

• Animal and Car are types; they are nouns for categorizing things.
• Head and Engine might be fields or properties; nouns that belong to Animal and Car.
• Fido and Bob are variables; nouns for referring to a specific object.

There are tens of thousands of types available to C#, though have you noticed how I didn't
say, "There are tens of thousands of types in C#?" The difference is subtle but important.
The language of C# only has a few keywords for types, such as string and int, and strictly
speaking, C# doesn't define any types. Keywords such as string that look like types are
aliases, which represent types provided by the platform on which C# runs.

It's important to know that C# cannot exist alone; after all, it's a language that runs on variants
of .NET. In theory, someone could write a compiler for C# that uses a different platform, with
different underlying types. In practice, the platform for C# is .NET, which provides tens of
thousands of types to C#, including System.Int32, which is the C# keyword alias int maps to,
as well as many more complex types, such as System.Xml.Linq.XDocument.

It's worth taking note that the term type is often confused with class. Have you ever played
the parlor game Twenty Questions, also known as Animal, Vegetable, or Mineral? In the game,
everything can be categorized as an animal, vegetable, or mineral. In C#, every type can be
categorized as a class, struct, enum, interface, or delegate. You will learn what these mean in
Chapter 6, Implementing Interfaces and Inheriting Classes. As examples, the C# keyword string is
a class, but int is a struct. So, it is best to use the term type to refer to both.

Revealing the extent of the C# vocabulary
We know that there are more than 100 keywords in C#, but how many types are there? Let's
write some code to find out how many types (and their methods) are available to C# in our
simple console application.

Don't worry exactly how this code works for now but know that it uses a technique called
reflection:

1. We'll start by importing the System.Reflection namespace at the top of the Program.cs
file, as shown in the following code:

using System.Reflection;

2. Delete the statement that writes Hello World! and replace it with the following code:
Assembly? assembly = Assembly.GetEntryAssembly();
if (assembly == null) return;

// loop through the assemblies that this app references
foreach (AssemblyName name in assembly.GetReferencedAssemblies())
{
 // load the assembly so we can read its details

Speaking C#

[64]

 Assembly a = Assembly.Load(name);

 // declare a variable to count the number of methods
 int methodCount = 0;

 // loop through all the types in the assembly
 foreach (TypeInfo t in a.DefinedTypes)
 {
 // add up the counts of methods
 methodCount += t.GetMethods().Count();
 }

 // output the count of types and their methods
 Console.WriteLine(
 "{0:N0} types with {1:N0} methods in {2} assembly.",
 arg0: a.DefinedTypes.Count(),
 arg1: methodCount, arg2: name.Name);
}

3. Run the code. You will see the actual number of types and methods that are available
to you in the simplest application when running on your OS. The number of types and
methods displayed will be different depending on the operating system that you are
using, as shown in the following outputs:

// Output on Windows
0 types with 0 methods in System.Runtime assembly.
106 types with 1,126 methods in System.Linq assembly.
44 types with 645 methods in System.Console assembly.

// Output on macOS
0 types with 0 methods in System.Runtime assembly.
103 types with 1,094 methods in System.Linq assembly.
57 types with 701 methods in System.Console assembly.

4. Add statements to the top of the file after importing the namespace to declare some
variables, as shown highlighted in the following code:

using System.Reflection;

// declare some unused variables using types
// in additional assemblies

Why does the System.Runtime assembly contain zero types? This
assembly is special because it contains only type-forwarders rather
than actual types. A type-forwarder represents a type that has been
implemented outside of .NET or for some other advanced reason.

Chapter 02

[65]

System.Data.DataSet ds;
HttpClient client;

By declaring variables that use types in other assemblies, those assemblies are loaded
with our application, which allows our code to see all the types and methods in them.
The compiler will warn you that you have unused variables but that won't stop your
code from running.

5. Run the console application again and view the results, which should look similar to
the following outputs:

// Output on Windows
0 types with 0 methods in System.Runtime assembly.
383 types with 6,854 methods in System.Data.Common assembly.
456 types with 4,590 methods in System.Net.Http assembly.
106 types with 1,126 methods in System.Linq assembly.
44 types with 645 methods in System.Console assembly.

// Output on macOS
0 types with 0 methods in System.Runtime assembly.
376 types with 6,763 methods in System.Data.Common assembly.
522 types with 5,141 methods in System.Net.Http assembly.
103 types with 1,094 methods in System.Linq assembly.
57 types with 701 methods in System.Console assembly.

Now, you have a better sense of why learning C# is a challenge, because there are so many
types and methods to learn. Methods are only one category of a member that a type can have,
and you and other programmers are constantly defining new types and members!

Working with variables
All applications process data. Data comes in, data is processed, and then data goes out.

Data usually comes into our program from files, databases, or user input, and it can be put
temporarily into variables that will be stored in the memory of the running program. When the
program ends, the data in memory is lost. Data is usually output to files and databases, or to
the screen or a printer. When using variables, you should think about, firstly, how much space
the variable takes in the memory, and, secondly, how fast it can be processed.

We control this by picking an appropriate type. You can think of simple common types such
as int and double as being different-sized storage boxes, where a smaller box would take less
memory but may not be as fast at being processed; for example, adding 16-bit numbers might
not be processed as fast as adding 64-bit numbers on a 64-bit operating system. Some of these
boxes may be stacked close by, and some may be thrown into a big heap further away.

Speaking C#

[66]

Naming things and assigning values
There are naming conventions for things, and it is good practice to follow them, as shown in
the following table:

Naming convention Examples Used for
Camel case cost, orderDetail, dateOfBirth Local variables, private fields

Title case aka Pascal case String, Int32, Cost,
DateOfBirth, Run

Types, non-private fields, and
other members like methods

The following code block shows an example of declaring a named local variable and assigning
a value to it with the = symbol. You should note that you can output the name of a variable
using a keyword introduced in C# 6.0, nameof:

// let the heightInMetres variable become equal to the value 1.88
double heightInMetres = 1.88;
Console.WriteLine($"The variable {nameof(heightInMetres)} has the value
{heightInMetres}.");

The message in double quotes in the preceding code wraps onto a second line because the
width of a printed page is too narrow. When entering a statement like this in your code editor,
type it all in a single line.

Literal values
When you assign to a variable, you often, but not always, assign a literal value. But what is
a literal value? A literal is a notation that represents a fixed value. Data types have different
notations for their literal values, and over the next few sections, you will see examples of using
literal notation to assign values to variables.

Storing text
For text, a single letter, such as an A, is stored as a char type.

Good Practice: Following a consistent set of naming conventions will enable
your code to be easily understood by other developers (and yourself in the
future!).

Good Practice: Actually, it can be more complicated than that. Egyptian
Hieroglyph A002 (U+13001) needs two System.Char values (known as
surrogate pairs) to represent it: \uD80C and \uDC01. Do not always assume
one char equals one letter or you could introduce weird bugs into your code.

Chapter 02

[67]

A char is assigned using single quotes around the literal value, or assigning the return value of
a fictitious function call, as shown in the following code:

char letter = 'A'; // assigning literal characters
char digit = '1';
char symbol = '$';
char userChoice = GetSomeKeystroke(); // assigning from a fictitious function

For text, multiple letters, such as Bob, are stored as a string type and are assigned using double
quotes around the literal value, or assigning the return value of a function call, as shown in the
following code:

string firstName = "Bob"; // assigning literal strings
string lastName = "Smith";
string phoneNumber = "(215) 555-4256";

// assigning a string returned from a fictitious function
string address = GetAddressFromDatabase(id: 563);

Understanding verbatim strings
When storing text in a string variable, you can include escape sequences, which represent
special characters like tabs and new lines using a backslash, as shown in the following code:

string fullNameWithTabSeparator = "Bob\tSmith";

But what if you are storing the path to a file on Windows, and one of the folder names starts
with a T, as shown in the following code?

string filePath = "C:\televisions\sony\bravia.txt";

The compiler will convert the \t into a tab character and you will get errors!

You must prefix with the @ symbol to use a verbatim literal string, as shown in the following
code:

string filePath = @"C:\televisions\sony\bravia.txt";

To summarize:

• Literal string: Characters enclosed in double-quote characters. They can use escape
characters like \t for tab. To represent a backslash, use two: \\.

• Verbatim string: A literal string prefixed with @ to disable escape characters so that a
backslash is a backslash. It also allows the string value to span multiple lines because
the white space characters are treated as themselves instead of instructions to the
compiler.

• Interpolated string: A literal string prefixed with $ to enable embedded formatted
variables. You will learn more about this later in this chapter.

Speaking C#

[68]

Storing numbers
Numbers are data that we want to perform an arithmetic calculation on, for example,
multiplying. A telephone number is not a number. To decide whether a variable should be
stored as a number or not, ask yourself whether you need to perform arithmetic operations
on the number or whether the number includes non-digit characters such as parentheses or
hyphens to format the number, such as (414) 555-1234. In this case, the number is a sequence of
characters, so it should be stored as a string.

Numbers can be natural numbers, such as 42, used for counting (also called whole numbers);
they can also be negative numbers, such as -42 (called integers); or, they can be real numbers,
such as 3.9 (with a fractional part), which are called single- or double-precision floating-point
numbers in computing.

Let's explore numbers:

1. Use your preferred code editor to add a new Console Application to the Chapter02
workspace/solution named Numbers:

1. In Visual Studio Code, select Numbers as the active OmniSharp project. When
you see the pop-up warning message saying that required assets are missing,
click Yes to add them.

2. In Visual Studio, set the startup project to the current selection.

2. In Program.cs, delete the existing code and then type statements to declare some
number variables using various data types, as shown in the following code:

// unsigned integer means positive whole number or 0
uint naturalNumber = 23;

// integer means negative or positive whole number or 0
int integerNumber = -23;

// float means single-precision floating point
// F suffix makes it a float literal
float realNumber = 2.3F;

// double means double-precision floating point
double anotherRealNumber = 2.3; // double literal

Storing whole numbers
You might know that computers store everything as bits. The value of a bit is either 0 or 1. This
is called a binary number system. Humans use a decimal number system.

The decimal number system, also known as Base 10, has 10 as its base, meaning there are ten
digits, from 0 to 9. Although it is the number base most commonly used by human civilizations,
other number base systems are popular in science, engineering, and computing. The binary
number system, also known as Base 2, has two as its base, meaning there are two digits, 0 and 1.

Chapter 02

[69]

The following table shows how computers store the decimal number 10. Take note of the bits
with the value 1 in the 8 and 2 columns; 8 + 2 = 10:

128 64 32 16 8 4 2 1
0 0 0 0 1 0 1 0

So, 10 in decimal is 00001010 in binary.

Improving legibility by using digit separators
Two of the improvements seen in C# 7.0 and later are the use of the underscore character _ as a
digit separator, and support for binary literals.

You can insert underscores anywhere into the digits of a number literal, including decimal,
binary, or hexadecimal notation, to improve legibility.

For example, you could write the value for 1 million in decimal notation, that is, Base 10, as
1_000_000.

You can even use the 2/3 grouping common in India: 10_00_000.

Using binary notation
To use binary notation, that is, Base 2, using only 1s and 0s, start the number literal with 0b. To
use hexadecimal notation, that is, Base 16, using 0 to 9 and A to F, start the number literal with 0x.

Exploring whole numbers
Let's enter some code to see some examples:

1. In Program.cs, type statements to declare some number variables using underscore
separators, as shown in the following code:

// three variables that store the number 2 million
int decimalNotation = 2_000_000;
int binaryNotation = 0b_0001_1110_1000_0100_1000_0000;
int hexadecimalNotation = 0x_001E_8480;

// check the three variables have the same value
// both statements output true
Console.WriteLine($"{decimalNotation == binaryNotation}");
Console.WriteLine(
 $"{decimalNotation == hexadecimalNotation}");

2. Run the code and note the result is that all three numbers are the same, as shown in the
following output:

True
True

Speaking C#

[70]

Computers can always exactly represent integers using the int type or one of its sibling types,
such as long and short.

Storing real numbers
Computers cannot always represent real, aka decimal or non-integer, numbers precisely. The
float and double types store real numbers using single- and double-precision floating points.

Most programming languages implement the IEEE Standard for Floating-Point Arithmetic.
IEEE 754 is a technical standard for floating-point arithmetic established in 1985 by the Institute
of Electrical and Electronics Engineers (IEEE).

The following table shows a simplification of how a computer represents the number 12.75 in
binary notation. Note the bits with the value 1 in the 8, 4, ½, and ¼ columns.

8 + 4 + ½ + ¼ = 12¾ = 12.75.

128 64 32 16 8 4 2 1 . ½ ¼ 1/8 1/16

0 0 0 0 1 1 0 0 . 1 1 0 0

So, 12.75 in decimal is 00001100.1100 in binary. As you can see, the number 12.75 can
be exactly represented using bits. However, some numbers can't, something that we'll be
exploring shortly.

Writing code to explore number sizes
C# has an operator named sizeof() that returns the number of bytes that a type uses in
memory. Some types have members named MinValue and MaxValue, which return the minimum
and maximum values that can be stored in a variable of that type. We are now going to use
these features to create a console application to explore number types:

1. In Program.cs, type statements to show the size of three number data types, as shown
in the following code:

Console.WriteLine($"int uses {sizeof(int)} bytes and can store numbers in
the range {int.MinValue:N0} to {int.MaxValue:N0}.");
Console.WriteLine($"double uses {sizeof(double)} bytes and can store
numbers in the range {double.MinValue:N0} to {double.MaxValue:N0}.");
Console.WriteLine($"decimal uses {sizeof(decimal)} bytes and can store
numbers in the range {decimal.MinValue:N0} to {decimal.MaxValue:N0}.");

The width of the printed pages in this book makes the string values (in double quotes)
wrap over multiple lines. You must type them on a single line, or you will get compile
errors.

Chapter 02

[71]

2. Run the code and view the output, as shown in Figure 2.3:

Figure 2.3: Size and range information for common number data types

An int variable uses four bytes of memory and can store positive or negative numbers up
to about 2 billion. A double variable uses eight bytes of memory and can store much bigger
values! A decimal variable uses 16 bytes of memory and can store big numbers, but not as big
as a double type.

But you may be asking yourself, why might a double variable be able to store bigger numbers
than a decimal variable, yet it's only using half the space in memory? Well, let's now find out!

Comparing double and decimal types
You will now write some code to compare double and decimal values. Although it isn't hard to
follow, don't worry about understanding the syntax right now:

1. Type statements to declare two double variables, add them together and compare them
to the expected result, and write the result to the console, as shown in the following
code:

Console.WriteLine("Using doubles:");
double a = 0.1;
double b = 0.2;

if (a + b == 0.3)
{
 Console.WriteLine($"{a} + {b} equals {0.3}");
}
else
{
 Console.WriteLine($"{a} + {b} does NOT equal {0.3}");
}

Speaking C#

[72]

2. Run the code and view the result, as shown in the following output:

Using doubles:
0.1 + 0.2 does NOT equal 0.3

In locales that use a comma for the decimal separator the result will look slightly different, as
shown in the following output:

0,1 + 0,2 does NOT equal 0,3

The double type is not guaranteed to be accurate because some numbers like 0.1 literally
cannot be represented as floating-point values.

As a rule of thumb, you should only use double when accuracy, especially when comparing the
equality of two numbers, is not important. An example of this may be when you're measuring
a person's height and you will only compare values using greater than or less than, but never
equals.

The problem with the preceding code is illustrated by how the computer stores the number 0.1,
or multiples of it. To represent 0.1 in binary, the computer stores 1 in the 1/16 column, 1 in the
1/32 column, 1 in the 1/256 column, 1 in the 1/512 column, and so on.

The number 0.1 in decimal is 0.00011001100110011… in binary, repeating forever:

4 2 1 . ½ ¼ 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048
0 0 0 . 0 0 0 1 1 0 0 1 1 0 0

1. Copy and paste the statements that you wrote before (that used the double variables).
2. Modify the statements to use decimal and rename the variables to c and d, as shown in

the following code:
Console.WriteLine("Using decimals:");
decimal c = 0.1M; // M suffix means a decimal literal value
decimal d = 0.2M;

if (c + d == 0.3M)
{
 Console.WriteLine($"{c} + {d} equals {0.3M}");
}
else
{

Good Practice: Never compare double values using ==. During the First
Gulf War, an American Patriot missile battery used double values in its
calculations. The inaccuracy caused it to fail to track and intercept an incoming
Iraqi Scud missile, and 28 soldiers were killed; you can read about this at
https://www.ima.umn.edu/~arnold/disasters/patriot.html.

https://www.ima.umn.edu/~arnold/disasters/patriot.html

Chapter 02

[73]

 Console.WriteLine($"{c} + {d} does NOT equal {0.3M}");
}

3. Run the code and view the result, as shown in the following output:

Using decimals:
0.1 + 0.2 equals 0.3

The decimal type is accurate because it stores the number as a large integer and shifts the
decimal point. For example, 0.1 is stored as 1, with a note to shift the decimal point one place to
the left. 12.75 is stored as 1275, with a note to shift the decimal point two places to the left.

The double type has some useful special values: double.NaN represents not-a-number
(for example, the result of dividing by zero), double.Epsilon represents the smallest
positive number that can be stored in a double, and double.PositiveInfinity and double.
NegativeInfinity represent infinitely large positive and negative values.

Storing Booleans
Booleans can only contain one of the two literal values true or false, as shown in the following
code:

bool happy = true;
bool sad = false;

They are most commonly used to branch and loop. You don't need to fully understand them
yet, as they are covered more in Chapter 3, Controlling Flow, Converting Types, and Handling
Exceptions.

Storing any type of object
There is a special type named object that can store any type of data, but its flexibility comes
at the cost of messier code and possibly poor performance. Because of those two reasons, you
should avoid it whenever possible. The following steps show how to use object types if you
need to use them:

1. Use your preferred code editor to add a new Console Application to the Chapter02
workspace/solution named Variables.

2. In Visual Studio Code, select Variables as the active OmniSharp project. When you see
the pop-up warning message saying that required assets are missing, click Yes to add
them.

Good Practice: Use int for whole numbers. Use double for real numbers that
will not be compared for equality to other values; it is okay to compare double
values being less than or greater than, and so on. Use decimal for money,
CAD drawings, general engineering, and wherever the accuracy of a real
number is important.

Speaking C#

[74]

3. In Program.cs, type statements to declare and use some variables using the object type,
as shown in the following code:

object height = 1.88; // storing a double in an object
object name = "Amir"; // storing a string in an object
Console.WriteLine($"{name} is {height} metres tall.");

int length1 = name.Length; // gives compile error!
int length2 = ((string)name).Length; // tell compiler it is a string
Console.WriteLine($"{name} has {length2} characters.");

4. Run the code and note that the fourth statement cannot compile because the data type
of the name variable is not known by the compiler, as shown in Figure 2.4:

Figure 2.4: The object type does not have a Length property

5. Add comment double slashes to the beginning of the statement that cannot compile to
"comment out" the statement to make it inactive.

6. Run the code again and note that the compiler can access the length of a string if the
programmer explicitly tells the compiler that the object variable contains a string by
prefixing with a cast expression like (string), as shown in the following output:

Amir is 1.88 metres tall.
Amir has 4 characters.

The object type has been available since the first version of C#, but C# 2.0 and later have a
better alternative called generics, which we will cover in Chapter 6, Implementing Interfaces
and Inheriting Classes, which will provide us with the flexibility we want, but without the
performance overhead.

Storing dynamic types
There is another special type named dynamic that can also store any type of data, but even
more than object, its flexibility comes at the cost of performance. The dynamic keyword was
introduced in C# 4.0. However, unlike object, the value stored in the variable can have its
members invoked without an explicit cast. Let's make use of a dynamic type:

Chapter 02

[75]

1. Add statements to declare a dynamic variable and then assign a string literal value, and
then an integer value, and then an array of integer values, as shown in the following
code:

// storing a string in a dynamic object
// string has a Length property
dynamic something = "Ahmed";

// int does not have a Length property
// something = 12;

// an array of any type has a Length property
// something = new[] { 3, 5, 7 };

2. Add a statement to output the length of the dynamic variable, as shown in the following
code:

// this compiles but would throw an exception at run-time
// if you later store a data type that does not have a
// property named Length
Console.WriteLine($"Length is {something.Length}");

3. Run the code and note it works because a string value does have a Length property, as
shown in the following output:

Length is 5

4. Uncomment the statement that assigns an int value.
5. Run the code and note the runtime error because int does not have a Length property,

as shown in the following output:
Unhandled exception. Microsoft.CSharp.RuntimeBinder.
RuntimeBinderException: 'int' does not contain a definition for 'Length'

6. Uncomment the statement that assigns the array.
7. Run the code and note the output because an array of three int values does have a

Length property, as shown in the following output:

Length is 3

One limitation of dynamic is that code editors cannot show IntelliSense to help you write the
code. This is because the compiler cannot check what the type is during build time. Instead, the
CLR checks for the member at runtime and throws an exception if it is missing.

Exceptions are a way to indicate that something has gone wrong at runtime. You will learn
more about them and how to handle them in Chapter 3, Controlling Flow, Converting Types, and
Handling Exceptions.

Speaking C#

[76]

Declaring local variables
Local variables are declared inside methods, and they only exist during the execution of that
method, and once the method returns, the memory allocated to any local variables is released.

Strictly speaking, value types are released while reference types must wait for a garbage
collection. You will learn about the difference between value types and reference types in
Chapter 6, Implementing Interfaces and Inheriting Classes.

Specifying the type of a local variable
Let's explore local variables declared with specific types and using type inference:

1. Type statements to declare and assign values to some local variables using specific
types, as shown in the following code:

int population = 66_000_000; // 66 million in UK
double weight = 1.88; // in kilograms
decimal price = 4.99M; // in pounds sterling
string fruit = "Apples"; // strings use double-quotes
char letter = 'Z'; // chars use single-quotes
bool happy = true; // Booleans have value of true or false

Depending on your code editor and color scheme, it will show green squiggles under each of
the variable names and lighten their text color to warn you that the variable is assigned but its
value is never used.

Inferring the type of a local variable
You can use the var keyword to declare local variables. The compiler will infer the type from
the value that you assign after the assignment operator, =.

A literal number without a decimal point is inferred as an int variable, that is, unless you add a
suffix, as described in the following list:

• L: infers long
• UL: infers ulong
• M: infers decimal
• D: infers double
• F: infers float

A literal number with a decimal point is inferred as double unless you add the M suffix, in
which case, it infers a decimal variable, or the F suffix, in which case, it infers a float variable.

Chapter 02

[77]

Double quotes indicate a string variable, single quotes indicate a char variable, and the true
and false values infer a bool type:

1. Modify the previous statements to use var, as shown in the following code:
var population = 66_000_000; // 66 million in UK
var weight = 1.88; // in kilograms
var price = 4.99M; // in pounds sterling
var fruit = "Apples"; // strings use double-quotes
var letter = 'Z'; // chars use single-quotes
var happy = true; // Booleans have value of true or false

2. Hover your mouse over each of the var keywords and note that your code editor shows
a tooltip with information about the type that has been inferred.

3. At the top of the class file, import the namespace for working with XML to enable us to
declare some variables using types in that namespace, as shown in the following code:

using System.Xml;

4. Under the previous statements, add statements to create some new objects, as shown in
the following code:

// good use of var because it avoids the repeated type
// as shown in the more verbose second statement
var xml1 = new XmlDocument();
XmlDocument xml2 = new XmlDocument();

// bad use of var because we cannot tell the type, so we
// should use a specific type declaration as shown in
// the second statement
var file1 = File.CreateText("something1.txt");
StreamWriter file2 = File.CreateText("something2.txt");

Good Practice: If you are using .NET Interactive Notebooks, then
add using statements in a separate code cell above the code cell
where you write the main code. Then click Execute Cell to ensure the
namespaces are imported. They will then be available in subsequent
code cells.

Good Practice: Although using var is convenient, some developers
avoid using it, to make it easier for a code reader to understand the
types in use. Personally, I use it only when the type is obvious. For
example, in the preceding code statements, the first statement is just
as clear as the second in stating what the type of the xml variables are,
but it is shorter. However, the third statement isn't clear in showing
the type of the file variable, so the fourth is better because it shows
that the type is StreamWriter. If in doubt, spell it out!

Speaking C#

[78]

Using target-typed new to instantiate objects
With C# 9, Microsoft introduced another syntax for instantiating objects known as target-typed
new. When instantiating an object, you can specify the type first and then use new without
repeating the type, as shown in the following code:

XmlDocument xml3 = new(); // target-typed new in C# 9 or later

If you have a type with a field or property that needs to be set, then the type can be inferred, as
shown in the following code:

class Person
{
 public DateTime BirthDate;
}

Person kim = new();
kim.BirthDate = new(1967, 12, 26); // instead of: new DateTime(1967, 12, 26)

Getting and setting the default values for types
Most of the primitive types except string are value types, which means that they must have
a value. You can determine the default value of a type by using the default() operator and
passing the type as a parameter. You can assign the default value of a type by using the default
keyword.

The string type is a reference type. This means that string variables contain the memory
address of a value, not the value itself. A reference type variable can have a null value, which
is a literal that indicates that the variable does not reference anything (yet). null is the default
for all reference types.

You'll learn more about value types and reference types in Chapter 6, Implementing Interfaces and
Inheriting Classes.

Let's explore default values:

1. Add statements to show the default values of an int, bool, DateTime, and string, as
shown in the following code:

Console.WriteLine($"default(int) = {default(int)}");
Console.WriteLine($"default(bool) = {default(bool)}");
Console.WriteLine($"default(DateTime) = {default(DateTime)}");
Console.WriteLine($"default(string) = {default(string)}");

Good Practice: Use target-typed new to instantiate objects unless you must use
a pre-version 9 C# compiler. I have used target-typed new throughout the rest
of this book. Please let me know if you spot any cases that I missed!

Chapter 02

[79]

2. Run the code and view the result, noting that your output for the date and time might
be formatted differently if you are not running it in the UK, and that null values output
as an empty string, as shown in the following output:

default(int) = 0
default(bool) = False
default(DateTime) = 01/01/0001 00:00:00
default(string) =

3. Add statements to declare a number, assign a value, and then reset it to its default
value, as shown in the following code:

int number = 13;
Console.WriteLine($"number has been set to: {number}");
number = default;
Console.WriteLine($"number has been reset to its default: {number}");

4. Run the code and view the result, as shown in the following output:

number has been set to: 13
number has been reset to its default: 0

Storing multiple values in an array
When you need to store multiple values of the same type, you can declare an array. For
example, you may do this when you need to store four names in a string array.

The code that you will write next will allocate memory for an array for storing four string
values. It will then store string values at index positions 0 to 3 (arrays usually have a lower
bound of zero, so the index of the last item is one less than the length of the array).

Finally, it will loop through each item in the array using a for statement, something that
we will cover in more detail in Chapter 3, Controlling Flow, Converting Types, and Handling
Exceptions.

Let's look at how to use an array:

1. Type statements to declare and use an array of string values, as shown in the following
code:

string[] names; // can reference any size array of strings

// allocating memory for four strings in an array

Good Practice: Do not assume that all arrays count from zero. The most
common type of array in .NET is an szArray, a single-dimension zero-indexed
array, and these use the normal [] syntax. But .NET also has mdArray, a
multi-dimensional array, and they do not have to have a lower bound of zero.
These are rarely used but you should know they exist.

Speaking C#

[80]

names = new string[4];

// storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

// looping through the names
for (int i = 0; i < names.Length; i++)
{
 // output the item at index position i
 Console.WriteLine(names[i]);
}

2. Run the code and note the result, as shown in the following output:
Kate
Jack
Rebecca
Tom

Arrays are always of a fixed size at the time of memory allocation, so you need to decide how
many items you want to store before instantiating them.

An alternative to defining the array in three steps as above is to use array initializer syntax, as
shown in the following code:

string[] names2 = new[] { "Kate", "Jack", "Rebecca", "Tom" };

When you use the new[] syntax to allocate memory for the array, you must have at least one
item in the curly braces so that the compiler can infer the data type.

Arrays are useful for temporarily storing multiple items, but collections are a more flexible
option when adding and removing items dynamically. You don't need to worry about
collections right now, as we will cover them in Chapter 8, Working with Common .NET Types.

Exploring more about console applications
We have already created and used basic console applications, but we're now at a stage where
we should delve into them more deeply.

Console applications are text-based and are run at the command line. They typically perform
simple tasks that need to be scripted, such as compiling a file or encrypting a section of a
configuration file.

Equally, they can also have arguments passed to them to control their behavior.

Chapter 02

[81]

An example of this would be to create a new console app using the F# language with a
specified name instead of using the name of the current folder, as shown in the following
command line:

dotnet new console -lang "F#" --name "ExploringConsole"

Displaying output to the user
The two most common tasks that a console application performs are writing and reading data.
We have already been using the WriteLine method to output, but if we didn't want a carriage
return at the end of the lines, we could have used the Write method.

Formatting using numbered positional arguments
One way of generating formatted strings is to use numbered positional arguments.

This feature is supported by methods like Write and WriteLine, and for methods that do not
support the feature, the string parameter can be formatted using the Format method of string.

Let's begin formatting:

1. Use your preferred code editor to add a new Console Application to the Chapter02
workspace/solution named Formatting.

2. In Visual Studio Code, select Formatting as the active OmniSharp project.
3. In Program.cs, type statements to declare some number variables and write them to the

console, as shown in the following code:

int numberOfApples = 12;
decimal pricePerApple = 0.35M;

Console.WriteLine(
 format: "{0} apples costs {1:C}",
 arg0: numberOfApples,
 arg1: pricePerApple * numberOfApples);

string formatted = string.Format(
 format: "{0} apples costs {1:C}",
 arg0: numberOfApples,
 arg1: pricePerApple * numberOfApples);

//WriteToFile(formatted); // writes the string into a file

The first few code examples in this section will work with a .NET Interactive
notebook because they are about outputting to the console. Later in this
section, you will learn about getting input via the console and sadly notebooks
do not support this.

Speaking C#

[82]

The WriteToFile method is a nonexistent method used to illustrate the idea.

Formatting using interpolated strings
C# 6.0 and later have a handy feature named interpolated strings. A string prefixed with $
can use curly braces around the name of a variable or expression to output the current value of
that variable or expression at that position in the string, as the following shows:

1. Enter a statement at the bottom of the Program.cs file, as shown in the following code:
Console.WriteLine($"{numberOfApples} apples costs {pricePerApple *
numberOfApples:C}");

2. Run the code and view the result, as shown in the following partial output:

 12 apples costs £4.20

For short, formatted string values, an interpolated string can be easier for people to read. But
for code examples in a book, where lines need to wrap over multiple lines, this can be tricky.
For many of the code examples in this book, I will use numbered positional arguments.

Another reason to avoid interpolated strings is that they can't be read from resource files to be
localized.

Before C# 10, string constants could only be combined by using concatenation, as shown in the
following code:

private const string firstname = "Omar";
private const string lastname = "Rudberg";
private const string fullname = firstname + " " + lastname;

With C# 10, interpolated strings can now be used, as shown in the following code:

private const string fullname = "{firstname} {lastname}";

This only works for combining string constant values. It cannot work with other types like
numbers that would require runtime data type conversions.

Understanding format strings
A variable or expression can be formatted using a format string after a comma or colon.

An N0 format string means a number with a thousand separators and no decimal places, while a
C format string means currency. The currency format will be determined by the current thread.

Good Practice: Once you become more comfortable with formatting strings,
you should stop naming the parameters, for example, stop using format:,
arg0:, and arg1:. The preceding code uses a non-canonical style to show
where the 0 and 1 came from while you are learning.

Chapter 02

[83]

For instance, if you run this code on a PC in the UK, you'll get pounds sterling with commas as
the thousand separators, but if you run this code on a PC in Germany, you will get euros with
dots as the thousand separators.

The full syntax of a format item is:

{ index [, alignment] [: formatString] }

Each format item can have an alignment, which is useful when outputting tables of values,
some of which might need to be left- or right-aligned within a width of characters. Alignment
values are integers. Positive integers mean right-aligned and negative integers mean left-
aligned.

For example, to output a table of fruit and how many of each there are, we might want to
left-align the names within a column of 10 characters and right-align the counts formatted as
numbers with zero decimal places within a column of six characters:

1. At the bottom of Program.cs, enter the following statements:
string applesText = "Apples";
int applesCount = 1234;

string bananasText = "Bananas";
int bananasCount = 56789;

Console.WriteLine(
 format: "{0,-10} {1,6:N0}",
 arg0: "Name",
 arg1: "Count");

Console.WriteLine(
 format: "{0,-10} {1,6:N0}",
 arg0: applesText,
 arg1: applesCount);

Console.WriteLine(
 format: "{0,-10} {1,6:N0}",
 arg0: bananasText,
 arg1: bananasCount);

2. Run the code and note the effect of the alignment and number format, as shown in the
following output:

Name Count
Apples 1,234
Bananas 56,789

Speaking C#

[84]

Getting text input from the user
We can get text input from the user using the ReadLine method. This method waits for the
user to type some text, then as soon as the user presses Enter, whatever the user has typed is
returned as a string value.

Let's get input from the user:

1. Type statements to ask the user for their name and age and then output what they
entered, as shown in the following code:

Console.Write("Type your first name and press ENTER: ");
string? firstName = Console.ReadLine();

Console.Write("Type your age and press ENTER: ");
string? age = Console.ReadLine();

Console.WriteLine(
 $"Hello {firstName}, you look good for {age}.");

2. Run the code, and then enter a name and age, as shown in the following output:
Type your name and press ENTER: Gary
Type your age and press ENTER: 34
Hello Gary, you look good for 34.

Simplifying the usage of the console
In C# 6.0 and later, the using statement can be used not only to import a namespace but also to
further simplify our code by importing a static class. Then, we won't need to enter the Console
type name throughout our code. You can use your code editor's find and replace feature to
remove the times we have previously written Console:

Good Practice: If you are using a .NET Interactive notebook for this section,
then note that it does not support reading input from the console using
Console.ReadLine(). Instead, you must set literal values, as shown in the
following code: string? firstName = "Gary";. This is often quicker to
experiment with because you can simply change the literal string value and
click the Execute Cell button instead of having to restart a console app each
time you want to enter a different string value.

The question marks at the end of the string? data type declaration
indicate that we acknowledge that a null (empty) value could be
returned from the call to ReadLine. You will learn more about this in
Chapter 6, Implementing Interfaces and Inheriting Classes.

Chapter 02

[85]

1. At the top of the Program.cs file, add a statement to statically import the
System.Console class, as shown in the following code:

using static System.Console;

2. Select the first Console. in your code, ensuring that you select the dot after the word
Console too.

3. In Visual Studio, navigate to Edit | Find and Replace | Quick Replace, or in Visual
Studio Code, navigate to Edit | Replace, and note that an overlay dialog appears ready
for you to enter what you would like to replace Console. with, as shown in Figure 2.5:

Figure 2.5: Using the Replace feature in Visual Studio to simplify your code

4. Leave the replace box empty, click on the Replace all button (the second of the two
buttons to the right of the replace box), and then close the replace box by clicking on the
cross in its top-right corner.

Getting key input from the user
We can get key input from the user using the ReadKey method. This method waits for the user
to press a key or key combination that is then returned as a ConsoleKeyInfo value.

You will not be able to execute the call to the ReadKey method using a .NET Interactive
notebook, but if you have created a console application, then let's explore reading key presses:

1. Type statements to ask the user to press any key combination and then output
information about it, as shown in the following code:

Write("Press any key combination: ");
ConsoleKeyInfo key = ReadKey();
WriteLine();
WriteLine("Key: {0}, Char: {1}, Modifiers: {2}",
 arg0: key.Key,
 arg1: key.KeyChar,
 arg2: key.Modifiers);

Speaking C#

[86]

2. Run the code, press the K key, and note the result, as shown in the following output:
Press any key combination: k
Key: K, Char: k, Modifiers: 0

3. Run the code, hold down Shift and press the K key, and note the result, as shown in the
following output:

Press any key combination: K
Key: K, Char: K, Modifiers: Shift

4. Run the code, press the F12 key, and note the result, as shown in the following output:

Press any key combination:
Key: F12, Char: , Modifiers: 0

Passing arguments to a console app
You might have been wondering how to get any arguments that might be passed to a console
application.

In every version of .NET prior to version 6.0, the console application project template made it
obvious, as shown in the following code:

using System;

namespace Arguments
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

The string[] args arguments are declared and passed in the Main method of the Program class.
They're an array used to pass arguments into a console application. But in top-level programs,
as used by the console application project template in .NET 6.0 and later, the Program class and
its Main method are hidden, along with the declaration of the args string array. The trick is that
you must know it still exists.

Command-line arguments are separated by spaces. Other characters like hyphens and colons
are treated as part of an argument value.

When running a console application in a terminal within Visual Studio
Code, some keyboard combinations will be captured by the code
editor or operating system before they can be processed by your app.

Chapter 02

[87]

To include spaces in an argument value, enclose the argument value in single or double quotes.

Imagine that we want to be able to enter the names of some colors for the foreground and
background, and the dimensions of the terminal window at the command line. We would be
able to read the colors and numbers by reading them from the args array, which is always
passed into the Main method aka the entry point of a console application:

1. Use your preferred code editor to add a new Console Application to the Chapter02
workspace/solution named Arguments. You will not be able to use a .NET Interactive
notebook because you cannot pass arguments to a notebook.

2. In Visual Studio Code, select Arguments as the active OmniSharp project.
3. Add a statement to statically import the System.Console type and a statement to output

the number of arguments passed to the application, as shown in the following code:
using static System.Console;

WriteLine($"There are {args.Length} arguments.");

4. Run the code and view the result, as shown in the following output:
There are 0 arguments.

5. If you are using Visual Studio, then navigate to Project | Arguments Properties, select
the Debug tab, and in the Application arguments box, enter some arguments, save the
changes, and then run the console application, as shown in Figure 2.6:

Figure 2.6: Entering application arguments in Visual Studio project properties

6. If you are using Visual Studio Code, then in a terminal, enter some arguments after the
dotnet run command, as shown in the following command line:

dotnet run firstarg second-arg third:arg "fourth arg"

Good Practice: Remember to statically import the System.Console
type in all future projects to simplify your code, as these instructions
will not be repeated every time.

Speaking C#

[88]

7. Note the result indicates four arguments, as shown in the following output:
There are 4 arguments.

8. To enumerate or iterate (that is, loop through) the values of those four arguments, add
the following statements after outputting the length of the array:

foreach (string arg in args)
{
 WriteLine(arg);
}

9. Run the code again and note the result shows the details of the four arguments, as
shown in the following output:

There are 4 arguments.
firstarg
second-arg
third:arg
fourth arg

Setting options with arguments
We will now use these arguments to allow the user to pick a color for the background,
foreground, and cursor size of the output window. The cursor size can be an integer value from
1, meaning a line at the bottom of the cursor cell, up to 100, meaning a percentage of the height
of the cursor cell.

The System namespace is already imported so that the compiler knows about the ConsoleColor
and Enum types:

1. Add statements to warn the user if they do not enter three arguments and then parse
those arguments and use them to set the color and dimensions of the console window,
as shown in the following code:

if (args.Length < 3)
{
 WriteLine("You must specify two colors and cursor size, e.g.");
 WriteLine("dotnet run red yellow 50");
 return; // stop running
}

ForegroundColor = (ConsoleColor)Enum.Parse(
 enumType: typeof(ConsoleColor),
 value: args[0],
 ignoreCase: true);

BackgroundColor = (ConsoleColor)Enum.Parse(
 enumType: typeof(ConsoleColor),

Chapter 02

[89]

 value: args[1],
 ignoreCase: true);

CursorSize = int.Parse(args[2]);

2. In Visual Studio, navigate to Project | Arguments Properties, and change the
arguments to: red yellow 50, run the console app, and note the cursor is half the size
and the colors have changed in the window, as shown in Figure 2.7:

Figure 2.7: Setting colors and cursor size on Windows

3. In Visual Studio Code, run the code with arguments to set the foreground color to red,
the background color to yellow, and the cursor size to 50%, as shown in the following
command:

dotnet run red yellow 50

On macOS, you'll see an unhandled exception, as shown in Figure 2.8:

Figure 2.8: An unhandled exception on unsupported macOS

Setting the CursorSize is only supported on Windows.

Speaking C#

[90]

Although the compiler did not give an error or warning, at runtime some API calls may fail on
some platforms. Although a console application running on Windows can change its cursor
size, on macOS, it cannot, and complains if you try.

Handling platforms that do not support an API
So how do we solve this problem? We can solve this by using an exception handler. You will
learn more details about the try-catch statement in Chapter 3, Controlling Flow, Converting
Types, and Handling Exceptions, so for now, just enter the code:

1. Modify the code to wrap the lines that change the cursor size in a try statement, as
shown in the following code:

try
{
 CursorSize = int.Parse(args[2]);
}
catch (PlatformNotSupportedException)
{
 WriteLine("The current platform does not support changing the size of
the cursor.");
}

2. If you were to run the code on macOS then you would see the exception is caught, and
a friendlier message is shown to the user.

Another way to handle differences in operating systems is to use the OperatingSystem class in
the System namespace, as shown in the following code:

if (OperatingSystem.IsWindows())
{
 // execute code that only works on Windows
}
else if (OperatingSystem.IsWindowsVersionAtLeast(major: 10))
{
 // execute code that only works on Windows 10 or later
}
else if (OperatingSystem.IsIOSVersionAtLeast(major: 14, minor: 5))
{
 // execute code that only works on iOS 14.5 or later
}
else if (OperatingSystem.IsBrowser())
{
 // execute code that only works in the browser with Blazor
}

Chapter 02

[91]

The OperatingSystem class has equivalent methods for other common operating systems
like Android, iOS, Linux, macOS, and even the browser, which is useful for Blazor web
components.

A third way to handle different platforms is to use conditional compilation statements.

There are four preprocessor directives that control conditional compilation: #if, #elif, #else,
and #endif.

You define symbols using #define, as shown in the following code:

#define MYSYMBOL

Many symbols are automatically defined for you, as shown in the following table:

Target Framework Symbols
.NET Standard NETSTANDARD2_0, NETSTANDARD2_1, and so on
Modern .NET NET6_0, NET6_0_ANDROID, NET6_0_IOS, NET6_0_WINDOWS, and so on

You can then write statements that will compile only for the specified platforms, as shown in
the following code:

#if NET6_0_ANDROID
// compile statements that only works on Android
#elif NET6_0_IOS
// compile statements that only works on iOS
#else
// compile statements that work everywhere else
#endif

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore the topics covered in this chapter with deeper research.

Exercise 2.1 – Test your knowledge
To get the best answer to some of these questions, you will need to do your own research. I want
you to "think outside the book" so I have deliberately not provided all the answers in the book.

I want to encourage you to get in to the good habit of looking for help elsewhere, following the
principle of "teach a person to fish."

1. What statement can you type in a C# file to discover the compiler and language
version?

2. What are the two types of comments in C#?

Speaking C#

[92]

3. What is the difference between a verbatim string and an interpolated string?
4. Why should you be careful when using float and double values?
5. How can you determine how many bytes a type like double uses in memory?
6. When should you use the var keyword?
7. What is the newest way to create an instance of a class like XmlDocument?
8. Why should you be careful when using the dynamic type?
9. How do you right-align a format string?
10. What character separates arguments for a console application?

Exercise 2.2 – Test your knowledge of number
types
What type would you choose for the following "numbers"?

1. A person's telephone number
2. A person's height
3. A person's age
4. A person's salary
5. A book's ISBN
6. A book's price
7. A book's shipping weight
8. A country's population
9. The number of stars in the universe
10. The number of employees in each of the small or medium businesses in the United

Kingdom (up to about 50,000 employees per business)

Exercise 2.3 – Practice number sizes and ranges
In the Chapter02 solution/workspace, create a console application project named Exercise02
that outputs the number of bytes in memory that each of the following number types uses and
the minimum and maximum values they can have: sbyte, byte, short, ushort, int, uint, long,
ulong, float, double, and decimal.

Appendix, Answers to the Test Your Knowledge Questions is available to download
from a link in the README on the GitHub repository: https://github.com/
markjprice/cs10dotnet6.

https://github.com/markjprice/cs10dotnet6
https://github.com/markjprice/cs10dotnet6

Chapter 02

[93]

The result of running your console application should look something like Figure 2.9:

Figure 2.9: The result of outputting number type sizes

Exercise 2.4 – Explore topics
Use the links on the following page to learn more detail about the topics covered in this
chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-2---
speaking-c

Summary
In this chapter, you learned how to:

• Declare variables with a specified or an inferred type.
• Use some of the built-in types for numbers, text, and Booleans.
• Choose between number types.
• Control output formatting in console apps.

In the next chapter, you will learn about operators, branching, looping, converting between
types, and how to handle exceptions.

Code solutions for all exercises are available to download or clone from the
GitHub repository at the following link: https://github.com/markjprice/
cs10dotnet6.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-2---speaking-c
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-2---speaking-c
https://github.com/markjprice/cs10dotnet6
https://github.com/markjprice/cs10dotnet6

[95]

03
Controlling Flow, Converting

Types, and Handling Exceptions
This chapter is all about writing code that performs simple operations on variables, makes
decisions, performs pattern matching, repeats statements or blocks, converts variable or
expression values from one type to another, handles exceptions, and checks for overflows in
number variables.

This chapter covers the following topics:

• Operating on variables
• Understanding selection statements
• Understanding iteration statements
• Casting and converting between types
• Handling exceptions
• Checking for overflow

Operating on variables
Operators apply simple operations such as addition and multiplication to operands such as
variables and literal values. They usually return a new value that is the result of the operation
that can be assigned to a variable.

Most operators are binary, meaning that they work on two operands, as shown in the following
pseudocode:

var resultOfOperation = firstOperand operator secondOperand;

Controlling Flow, Converting Types, and Handling Exceptions

[96]

Examples of binary operators include adding and multiplying, as shown in the following code:

int x = 5;
int y = 3;
int resultOfAdding = x + y;
int resultOfMultiplying = x * y;

Some operators are unary, meaning they work on a single operand, and can apply before or
after the operand, as shown in the following pseudocode:

var resultOfOperation = onlyOperand operator;
var resultOfOperation2 = operator onlyOperand;

Examples of unary operators include incrementors and retrieving a type or its size in bytes, as
shown in the following code:

int x = 5;
int postfixIncrement = x++;
int prefixIncrement = ++x;
Type theTypeOfAnInteger = typeof(int);
int howManyBytesInAnInteger = sizeof(int);

A ternary operator works on three operands, as shown in the following pseudocode:

var resultOfOperation = firstOperand firstOperator
 secondOperand secondOperator thirdOperand;

Exploring unary operators
Two common unary operators are used to increment, ++, and decrement, --, a number. Let us
write some example code to show how they work:

1. If you've completed the previous chapters, then you will already have a Code folder. If
not, then you'll need to create it.

2. Use your preferred coding tool to create a new console app, as defined in the following
list:

1. Project template: Console Application / console
2. Workspace/solution file and folder: Chapter03
3. Project file and folder: Operators

3. At the top of Program.cs, statically import System.Console.
4. In Program.cs, declare two integer variables named a and b, set a to 3, increment a while

assigning the result to b, and then output their values, as shown in the following code:
int a = 3;
int b = a++;
WriteLine($"a is {a}, b is {b}");

Chapter 03

[97]

5. Before running the console application, ask yourself a question: what do you think the
value of b will be when output? Once you've thought about that, run the code, and
compare your prediction against the actual result, as shown in the following output:

a is 4, b is 3

The variable b has the value 3 because the ++ operator executes after the assignment; this
is known as a postfix operator. If you need to increment before the assignment, then use
the prefix operator.

6. Copy and paste the statements, and then modify them to rename the variables and use
the prefix operator, as shown in the following code:

int c = 3;
int d = ++c; // increment c before assigning it
WriteLine($"c is {c}, d is {d}");

7. Rerun the code and note the result, as shown in the following output:

a is 4, b is 3
c is 4, d is 4

Exploring binary arithmetic operators
Increment and decrement are unary arithmetic operators. Other arithmetic operators are
usually binary and allow you to perform arithmetic operations on two numbers, as the
following shows:

1. Add the statements to declare and assign values to two integer variables named e and
f, and then apply the five common binary arithmetic operators to the two numbers, as
shown in the following code:

int e = 11;
int f = 3;
WriteLine($"e is {e}, f is {f}");
WriteLine($"e + f = {e + f}");
WriteLine($"e - f = {e - f}");
WriteLine($"e * f = {e * f}");
WriteLine($"e / f = {e / f}");
WriteLine($"e % f = {e % f}");

Good Practice: Due to the confusion between prefix and postfix for
the increment and decrement operators when combined with an
assignment, the Swift programming language designers decided to
drop support for this operator in version 3. My recommendation
for usage in C# is to never combine the use of ++ and -- operators
with an assignment operator, =. Perform the operations as separate
statements.

Controlling Flow, Converting Types, and Handling Exceptions

[98]

2. Run the code and note the result, as shown in the following output:
e is 11, f is 3
e + f = 14
e - f = 8
e * f = 33
e / f = 3
e % f = 2

To understand the divide / and modulo % operators when applied to integers, you need
to think back to primary school. Imagine you have eleven sweets and three friends.
How can you divide the sweets between your friends? You can give three sweets to
each of your friends, and there will be two left over. Those two sweets are the modulus,
also known as the remainder after dividing. If you have twelve sweets, then each friend
gets four of them, and there are none left over, so the remainder would be 0.

3. Add statements to declare and assign a value to a double variable named g to show
the difference between whole number and real number divisions, as shown in the
following code:

double g = 11.0;
WriteLine($"g is {g:N1}, f is {f}");
WriteLine($"g / f = {g / f}");

4. Run the code and note the result, as shown in the following output:

g is 11.0, f is 3
g / f = 3.6666666666666665

If the first operand is a floating-point number, such as g with the value 11.0, then the divide
operator returns a floating-point value, such as 3.6666666666665, rather than a whole number.

Assignment operators
You have already been using the most common assignment operator, =.

To make your code more concise, you can combine the assignment operator with other
operators like arithmetic operators, as shown in the following code:

int p = 6;
p += 3; // equivalent to p = p + 3;
p -= 3; // equivalent to p = p - 3;
p *= 3; // equivalent to p = p * 3;
p /= 3; // equivalent to p = p / 3;

Exploring logical operators
Logical operators operate on Boolean values, so they return either true or false. Let's explore
binary logical operators that operate on two Boolean values:

Chapter 03

[99]

1. Use your preferred coding tool to add a new console app to the Chapter03 workspace/
solution named BooleanOperators.

1. In Visual Studio Code, select BooleanOperators as the active OmniSharp project.
When you see the pop-up warning message saying that required assets are
missing, click Yes to add them.

2. In Visual Studio, set the start up project for the solution to the current selection.

2. In Program.cs, add statements to declare two Boolean variables with values of true and
false, and then output truth tables showing the results of applying AND, OR, and XOR
(exclusive OR) logical operators, as shown in the following code:

bool a = true;
bool b = false;

WriteLine($"AND | a | b ");
WriteLine($"a | {a & a,-5} | {a & b,-5} ");
WriteLine($"b | {b & a,-5} | {b & b,-5} ");
WriteLine();
WriteLine($"OR | a | b ");
WriteLine($"a | {a | a,-5} | {a | b,-5} ");
WriteLine($"b | {b | a,-5} | {b | b,-5} ");
WriteLine();
WriteLine($"XOR | a | b ");
WriteLine($"a | {a ^ a,-5} | {a ^ b,-5} ");
WriteLine($"b | {b ^ a,-5} | {b ^ b,-5} ");

3. Run the code and note the results, as shown in the following output:

AND | a | b
a | True | False
b | False | False

OR | a | b
a | True | True
b | True | False

XOR | a | b
a | False | True
b | True | False

Good Practice: Remember to statically import the System.Console
type to simplify statements.

Controlling Flow, Converting Types, and Handling Exceptions

[100]

For the AND & logical operator, both operands must be true for the result to be true. For the
OR | logical operator, either operand can be true for the result to be true. For the XOR ^ logical
operator, either operand can be true (but not both!) for the result to be true.

Exploring conditional logical operators
Conditional logical operators are like logical operators, but you use two symbols instead of one,
for example, && instead of &, or || instead of |.

In Chapter 4, Writing, Debugging, and Testing Functions, you will learn about functions in more
detail, but I need to introduce functions now to explain conditional logical operators, also
known as short-circuiting Boolean operators.

A function executes statements and then returns a value. That value could be a Boolean value
like true that is used in a Boolean operation. Let's make use of conditional logical operators:

1. At the bottom of Program.cs, write statements to declare a function that writes a
message to the console and returns true, as shown in the following code:

static bool DoStuff()
{
 WriteLine("I am doing some stuff.");
 return true;
}

2. After the previous WriteLine statements, perform an AND & operation on the a and b
variables and the result of calling the function, as shown in the following code:

WriteLine();
WriteLine($"a & DoStuff() = {a & DoStuff()}");
WriteLine($"b & DoStuff() = {b & DoStuff()}");

3. Run the code, view the result, and note that the function was called twice, once for a
and once for b, as shown in the following output:

I am doing some stuff.
a & DoStuff() = True
I am doing some stuff.
b & DoStuff() = False

4. Change the & operators into && operators, as shown in the following code:
WriteLine($"a && DoStuff() = {a && DoStuff()}");
WriteLine($"b && DoStuff() = {b && DoStuff()}");

Good Practice: If you are using .NET Interactive Notebook, write the
DoStuff function in a separate code cell and then execute it to make
its context available to other code cells.

Chapter 03

[101]

5. Run the code, view the result, and note that the function does run when combined with
the a variable. It does not run when combined with the b variable because the b variable
is false so the result will be false anyway, so it does not need to execute the function,
as shown in the following output:

I am doing some stuff.
a && DoStuff() = True
b && DoStuff() = False // DoStuff function was not executed!

Exploring bitwise and binary shift operators
Bitwise operators affect the bits in a number. Binary shift operators can perform some common
arithmetic calculations much faster than traditional operators, for example, any multiplication
by a factor of 2.

Let's explore bitwise and binary shift operators:

1. Use your preferred coding tool to add a new Console Application to the Chapter03
workspace/solution named BitwiseAndShiftOperators.

2. In Visual Studio Code, select BitwiseAndShiftOperators as the active OmniSharp
project. When you see the pop-up warning message saying that required assets are
missing, click Yes to add them.

3. In Program.cs, type statements to declare two integer variables with values 10 and
6, and then output the results of applying AND, OR, and XOR bitwise operators, as
shown in the following code:

int a = 10; // 00001010
int b = 6; // 00000110

WriteLine($"a = {a}");
WriteLine($"b = {b}");
WriteLine($"a & b = {a & b}"); // 2-bit column only
WriteLine($"a | b = {a | b}"); // 8, 4, and 2-bit columns
WriteLine($"a ^ b = {a ^ b}"); // 8 and 4-bit columns

4. Run the code and note the results, as shown in the following output:
a = 10
b = 6
a & b = 2

Good Practice: Now you can see why the conditional logical operators
are described as being short-circuiting. They can make your apps
more efficient, but they can also introduce subtle bugs in cases where
you assume that the function would always be called. It is safest to
avoid them when used in combination with functions that cause side
effects.

Controlling Flow, Converting Types, and Handling Exceptions

[102]

a | b = 14
a ^ b = 12

5. In Program.cs, add statements to output the results of applying the left-shift operator to
move the bits of the variable a by three columns, multiplying a by 8, and right-shifting
the bits of the variable b by one column, as shown in the following code:

// 01010000 left-shift a by three bit columns
WriteLine($"a << 3 = {a << 3}");

// multiply a by 8
WriteLine($"a * 8 = {a * 8}");

// 00000011 right-shift b by one bit column
WriteLine($"b >> 1 = {b >> 1}");

6. Run the code and note the results, as shown in the following output:

a << 3 = 80
a * 8 = 80
b >> 1 = 3

The 80 result is because the bits in it were shifted three columns to the left, so the 1-bits moved
into the 64- and 16-bit columns and 64 + 16 = 80. This is the equivalent of multiplying by 8,
but CPUs can perform a bit-shift faster. The 3 result is because the 1-bits in b were shifted one
column into the 2- and 1-bit columns.

We can illustrate the operations by converting the integer values into binary strings of zeros
and ones:

1. At the bottom of Program.cs, add a function to convert an integer value into a binary
(Base2) string of up to eight zeros and ones, as shown in the following code:

static string ToBinaryString(int value)
{
 return Convert.ToString(value, toBase: 2).PadLeft(8, '0');
}

2. Above the function, add statements to output a, b, and the results of the various bitwise
operators, as shown in the following code:

WriteLine();
WriteLine("Outputting integers as binary:");

Good Practice: Remember that when operating on integer values, the & and
| symbols are bitwise operators, and when operating on Boolean values like
true and false, the & and | symbols are logical operators.

Chapter 03

[103]

WriteLine($"a = {ToBinaryString(a)}");
WriteLine($"b = {ToBinaryString(b)}");
WriteLine($"a & b = {ToBinaryString(a & b)}");
WriteLine($"a | b = {ToBinaryString(a | b)}");
WriteLine($"a ^ b = {ToBinaryString(a ^ b)}");

3. Run the code and note the results, as shown in the following output:

Outputting integers as binary:
a = 00001010
b = 00000110
a & b = 00000010
a | b = 00001110
a ^ b = 00001100

Miscellaneous operators
nameof and sizeof are convenient operators when working with types:

• nameof returns the short name (without the namespace) of a variable, type, or member
as a string value, which is useful when outputting exception messages.

• sizeof returns the size in bytes of simple types, which is useful for determining the
efficiency of data storage.

There are many other operators; for example, the dot between a variable and its members is
called the member access operator and the round brackets at the end of a function or method
name are called the invocation operator, as shown in the following code:

int age = 47;

// How many operators in the following statement?
char firstDigit = age.ToString()[0];

// There are four operators:
// = is the assignment operator
// . is the member access operator
// () is the invocation operator
// [] is the indexer access operator

Understanding selection statements
Every application needs to be able to select from choices and branch along different code
paths. The two selection statements in C# are if and switch. You can use if for all your code,
but switch can simplify your code in some common scenarios such as when there is a single
variable that can have multiple values that each require different processing.

Controlling Flow, Converting Types, and Handling Exceptions

[104]

Branching with the if statement
The if statement determines which branch to follow by evaluating a Boolean expression. If the
expression is true, then the block executes. The else block is optional, and it executes if the if
expression is false. The if statement can be nested.

The if statement can be combined with other if statements as else if branches, as shown in
the following code:

if (expression1)
{
 // runs if expression1 is true
}
else if (expression2)
{
 // runs if expression1 is false and expression2 if true
}
else if (expression3)
{
 // runs if expression1 and expression2 are false
 // and expression3 is true
}
else
{
 // runs if all expressions are false
}

Each if statement's Boolean expression is independent of the others and, unlike switch
statements, does not need to reference a single value.

Let's write some code to explore selection statements like if:

1. Use your preferred coding tool to add a new Console Application to the Chapter03
workspace/solution named SelectionStatements.

2. In Visual Studio Code, select SelectionStatements as the active OmniSharp project.
3. In Program.cs, type statements to check if a password is at least eight characters, as

shown in the following code:
string password = "ninja";

if (password.Length < 8)
{
 WriteLine("Your password is too short. Use at least 8 characters.");
}
else
{
 WriteLine("Your password is strong.");
}

Chapter 03

[105]

4. Run the code and note the result, as shown in the following output:

 Your password is too short. Use at least 8 characters.

Why you should always use braces with if statements
As there is only a single statement inside each block, the preceding code could be written
without the curly braces, as shown in the following code:

if (password.Length < 8)
 WriteLine("Your password is too short. Use at least 8 characters.");
else
 WriteLine("Your password is strong.");

This style of if statement should be avoided because it can introduce serious bugs, for example,
the infamous #gotofail bug in Apple's iPhone iOS operating system.

For 18 months after Apple's iOS 6 was released, in September 2012, it had a bug in its Secure
Sockets Layer (SSL) encryption code, which meant that any user running Safari, the device's
web browser, who tried to connect to secure websites, such as their bank, was not properly
secure because an important check was being accidentally skipped.

Just because you can leave out the curly braces doesn't mean you should. Your code is not
"more efficient" without them; instead, it is less maintainable and potentially more dangerous.

Pattern matching with the if statement
A feature introduced with C# 7.0 and later is pattern matching. The if statement can use the is
keyword in combination with declaring a local variable to make your code safer:

1. Add statements so that if the value stored in the variable named o is an int, then the
value is assigned to the local variable named i, which can then be used inside the if
statement. This is safer than using the variable named o because we know for sure that
i is an int variable and not something else, as shown in the following code:

// add and remove the "" to change the behavior
object o = "3";
int j = 4;

if (o is int i)
{
 WriteLine($"{i} x {j} = {i * j}");
}
else
{
 WriteLine("o is not an int so it cannot multiply!");
}

Controlling Flow, Converting Types, and Handling Exceptions

[106]

2. Run the code and view the results, as shown in the following output:
o is not an int so it cannot multiply!

3. Delete the double-quote characters around the "3" value so that the value stored in the
variable named o is an int type instead of a string type.

4. Rerun the code to view the results, as shown in the following output:

3 x 4 = 12

Branching with the switch statement
The switch statement is different from the if statement because switch compares a single
expression against a list of multiple possible case statements. Every case statement is related to
the single expression. Every case section must end with:

• The break keyword (like case 1 in the following code)
• Or the goto case keywords (like case 2 in the following code)
• Or they should have no statements (like case 3 in the following code)
• Or the goto keyword that references a named label (like case 5 in the following code)
• Or the return keyword to leave the current function (not shown in the code)

Let's write some code to explore the switch statements:

1. Type statements for a switch statement. You should note that the penultimate
statement is a label that can be jumped to, and the first statement generates a random
number between 1 and 6 (the number 7 in the code is an exclusive upper bound). The
switch statement branches are based on the value of this random number, as shown in
the following code:

int number = (new Random()).Next(1, 7);
WriteLine($"My random number is {number}");

switch (number)
{
 case 1:
 WriteLine("One");
 break; // jumps to end of switch statement
 case 2:
 WriteLine("Two");
 goto case 1;
 case 3: // multiple case section
 case 4:
 WriteLine("Three or four");
 goto case 1;
 case 5:
 goto A_label;

Chapter 03

[107]

 default:
 WriteLine("Default");
 break;
} // end of switch statement

WriteLine("After end of switch");
A_label:
WriteLine($"After A_label");

2. Run the code multiple times to see what happens in various cases of random numbers,
as shown in the following example output:

// first random run
My random number is 4
Three or four
One
After end of switch
After A_label

// second random run
My random number is 2
Two
One
After end of switch
After A_label

// third random run
My random number is 6
Default
After end of switch
After A_label

// fourth random run
My random number is 1
One
After end of switch
After A_label

// fifth random run
My random number is 5
After A_label

Good Practice: You can use the goto keyword to jump to another case
or a label. The goto keyword is frowned upon by most programmers
but can be a good solution to code logic in some scenarios. However,
you should use it sparingly.

Controlling Flow, Converting Types, and Handling Exceptions

[108]

Pattern matching with the switch statement
Like the if statement, the switch statement supports pattern matching in C# 7.0 and later. The
case values no longer need to be literal values; they can be patterns.

Let's see an example of pattern matching with the switch statement using a folder path. If you
are using macOS, then swap the commented statement that sets the path variable and replace
my username with your user folder name:

1. Add statements to declare a string path to a file, open it as either a read-only or
writeable stream, and then show a message based on what type and capabilities the
stream has, as shown in the following code:

// string path = "/Users/markjprice/Code/Chapter03";
string path = @"C:\Code\Chapter03";

Write("Press R for read-only or W for writeable: ");
ConsoleKeyInfo key = ReadKey();
WriteLine();

Stream? s;

if (key.Key == ConsoleKey.R)
{
 s = File.Open(
 Path.Combine(path, "file.txt"),
 FileMode.OpenOrCreate,
 FileAccess.Read);
}
else
{
 s = File.Open(
 Path.Combine(path, "file.txt"),
 FileMode.OpenOrCreate,
 FileAccess.Write);
}

string message;

switch (s)
{
 case FileStream writeableFile when s.CanWrite:
 message = "The stream is a file that I can write to.";
 break;
 case FileStream readOnlyFile:
 message = "The stream is a read-only file.";
 break;

Chapter 03

[109]

 case MemoryStream ms:
 message = "The stream is a memory address.";
 break;
 default: // always evaluated last despite its current position
 message = "The stream is some other type.";
 break;
 case null:
 message = "The stream is null.";
 break;
}

WriteLine(message);

2. Run the code and note that the variable named s is declared as a Stream type so it
could be any subtype of stream, such as a memory stream or file stream. In this code,
the stream is created using the File.Open method, which returns a file stream and,
depending on your key press, it will be writeable or read-only, so the result will be a
message that describes the situation, as shown in the following output:

The stream is a file that I can write to.

In .NET, there are multiple subtypes of Stream, including FileStream and MemoryStream. In C#
7.0 and later, your code can more concisely branch, based on the subtype of stream, and declare
and assign a local variable to safely use it. You will learn more about the System.IO namespace
and the Stream type in Chapter 9, Working with Files, Streams, and Serialization.

Additionally, case statements can include a when keyword to perform more specific pattern
matching. In the first case statement in the preceding code, s will only be a match if the stream
is a FileStream and its CanWrite property is true.

Simplifying switch statements with switch
expressions
In C# 8.0 or later, you can simplify switch statements using switch expressions.

Most switch statements are very simple, yet they require a lot of typing. switch expressions
are designed to simplify the code you need to type while still expressing the same intent
in scenarios where all cases return a value to set a single variable. switch expressions use a
lambda, =>, to indicate a return value.

Let's implement the previous code that used a switch statement using a switch expression so
that you can compare the two styles:

1. Type statements to set the message based on what type and capabilities the stream has,
using a switch expression, as shown in the following code:

message = s switch
{

Controlling Flow, Converting Types, and Handling Exceptions

[110]

 FileStream writeableFile when s.CanWrite
 => "The stream is a file that I can write to.",
 FileStream readOnlyFile
 => "The stream is a read-only file.",
 MemoryStream ms
 => "The stream is a memory address.",
 null
 => "The stream is null.",
 _
 => "The stream is some other type."
};

WriteLine(message);

The main differences are the removal of the case and break keywords. The underscore
character _ is used to represent the default return value.

2. Run the code, and note the result is the same as before.

Understanding iteration statements
Iteration statements repeat a block of statements either while a condition is true or for each
item in a collection. The choice of which statement to use is based on a combination of ease of
understanding to solve the logic problem and personal preference.

Looping with the while statement
The while statement evaluates a Boolean expression and continues to loop while it is true. Let's
explore iteration statements:

1. Use your preferred coding tool to add a new Console Application to the Chapter03
workspace/solution named IterationStatements.

2. In Visual Studio Code, select IterationStatements as the active OmniSharp project.
3. In Program.cs, type statements to define a while statement that loops while an integer

variable has a value less than 10, as shown in the following code:
int x = 0;

while (x < 10)
{
 WriteLine(x);
 x++;
}

Chapter 03

[111]

4. Run the code and view the results, which should be the numbers 0 to 9, as shown in the
following output:

0
1
2
3
4
5
6
7
8
9

Looping with the do statement
The do statement is like while, except the Boolean expression is checked at the bottom of the
block instead of the top, which means that the block always executes at least once, as the
following shows:

1. Type statements to define a do loop, as shown in the following code:
string? password;

do
{
 Write("Enter your password: ");
 password = ReadLine();
}
while (password != "Pa$$w0rd");

WriteLine("Correct!");

2. Run the code, and note that you are prompted to enter your password repeatedly until
you enter it correctly, as shown in the following output:

Enter your password: password
Enter your password: 12345678
Enter your password: ninja
Enter your password: correct horse battery staple
Enter your password: Pa$$w0rd
Correct!

3. As an optional challenge, add statements so that the user can only make ten attempts
before an error message is displayed.

Controlling Flow, Converting Types, and Handling Exceptions

[112]

Looping with the for statement
The for statement is like while, except that it is more succinct. It combines:

• An initializer expression, which executes once at the start of the loop.
• A conditional expression, which executes on every iteration at the start of the loop to

check whether the looping should continue.
• An iterator expression, which executes on every loop at the bottom of the statement.

The for statement is commonly used with an integer counter. Let's explore some code:

1. Type a for statement to output the numbers 1 to 10, as shown in the following code:
for (int y = 1; y <= 10; y++)
{
 WriteLine(y);
}

2. Run the code to view the result, which should be the numbers 1 to 10.

Looping with the foreach statement
The foreach statement is a bit different from the previous three iteration statements.

It is used to perform a block of statements on each item in a sequence, for example, an array
or collection. Each item is usually read-only, and if the sequence structure is modified during
iteration, for example, by adding or removing an item, then an exception will be thrown.

Try the following example:

1. Type statements to create an array of string variables and then output the length of each
one, as shown in the following code:

string[] names = { "Adam", "Barry", "Charlie" };

foreach (string name in names)
{
 WriteLine($"{name} has {name.Length} characters.");
}

2. Run the code and view the results, as shown in the following output:

Adam has 4 characters.
Barry has 5 characters.
Charlie has 7 characters.

Chapter 03

[113]

Understanding how foreach works internally
A creator of any type that represents multiple items, like an array or collection, should make
sure that a programmer can use the foreach statement to enumerate through the type's items.

Technically, the foreach statement will work on any type that follows these rules:

1. The type must have a method named GetEnumerator that returns an object.
2. The returned object must have a property named Current and a method named

MoveNext.
3. The MoveNext method must change the value of Current and return true if there are

more items to enumerate through or return false if there are no more items.

There are interfaces named IEnumerable and IEnumerable<T> that formally define these rules,
but technically the compiler does not require the type to implement these interfaces.

The compiler turns the foreach statement in the preceding example into something like the
following pseudocode:

IEnumerator e = names.GetEnumerator();

while (e.MoveNext())
{
 string name = (string)e.Current; // Current is read-only!
 WriteLine($"{name} has {name.Length} characters.");
}

Due to the use of an iterator, the variable declared in a foreach statement cannot be used to
modify the value of the current item.

Casting and converting between types
You will often need to convert values of variables between different types. For example, data
input is often entered as text at the console, so it is initially stored in a variable of the string
type, but it then needs to be converted into a date/time, or number, or some other data type,
depending on how it should be stored and processed.

Sometimes you will need to convert between number types, like between an integer and a
floating point, before performing calculations.

Converting is also known as casting, and it has two varieties: implicit and explicit. Implicit
casting happens automatically, and it is safe, meaning that you will not lose any information.

Explicit casting must be performed manually because it may lose information, for example,
the precision of a number. By explicitly casting, you are telling the C# compiler that you
understand and accept the risk.

Controlling Flow, Converting Types, and Handling Exceptions

[114]

Casting numbers implicitly and explicitly
Implicitly casting an int variable into a double variable is safe because no information can be
lost as the following shows:

1. Use your preferred coding tool to add a new Console Application to the Chapter03
workspace/solution named CastingConverting.

2. In Visual Studio Code, select CastingConverting as the active OmniSharp project.
3. In Program.cs, type statements to declare and assign an int variable and a double

variable, and then implicitly cast the integer's value when assigning it to the double
variable, as shown in the following code:

int a = 10;
double b = a; // an int can be safely cast into a double
WriteLine(b);

4. Type statements to declare and assign a double variable and an int variable, and then
implicitly cast the double value when assigning it to the int variable, as shown in the
following code:

double c = 9.8;
int d = c; // compiler gives an error for this line
WriteLine(d);

5. Run the code and note the error message, as shown in the following output:

Error: (6,9): error CS0266: Cannot implicitly convert type 'double' to
'int'. An explicit conversion exists (are you missing a cast?)

This error message will also appear in the Visual Studio Error List or Visual Studio
Code PROBLEMS window.
You cannot implicitly cast a double variable into an int variable because it is potentially
unsafe and could lose data, like the value after the decimal point. You must explicitly
cast a double variable into an int variable using a pair of round brackets around
the type you want to cast the double type into. The pair of round brackets is the cast
operator. Even then, you must beware that the part after the decimal point will be
trimmed off without warning because you have chosen to perform an explicit cast and
therefore understand the consequences.

6. Modify the assignment statement for the d variable, as shown in the following code:
int d = (int)c;
WriteLine(d); // d is 9 losing the .8 part

7. Run the code to view the results, as shown in the following output:
10
9

Chapter 03

[115]

We must perform a similar operation when converting values between larger integers
and smaller integers. Again, beware that you might lose information because any value
too big will have its bits copied and then be interpreted in ways that you might not
expect!

8. Enter statements to declare and assign a long 64-bit variable to an int 32-bit variable,
both using a small value that will work and a too-large value that will not, as shown in
the following code:

long e = 10;
int f = (int)e;
WriteLine($"e is {e:N0} and f is {f:N0}");
e = long.MaxValue;
f = (int)e;
WriteLine($"e is {e:N0} and f is {f:N0}");

9. Run the code to view the results, as shown in the following output:
e is 10 and f is 10
e is 9,223,372,036,854,775,807 and f is -1

10. Modify the value of e to 5 billion, as shown in the following code:
e = 5_000_000_000;

11. Run the code to view the results, as shown in the following output:

e is 5,000,000,000 and f is 705,032,704

Converting with the System.Convert type
An alternative to using the cast operator is to use the System.Convert type. The System.Convert
type can convert to and from all the C# number types, as well as Booleans, strings, and date
and time values.

Let's write some code to see this in action:

1. At the top of Program.cs, statically import the System.Convert class, as shown in the
following code:

using static System.Convert;

2. At the bottom of Program.cs, type statements to declare and assign a value to a double
variable, convert it to an integer, and then write both values to the console, as shown in
the following code:

double g = 9.8;
int h = ToInt32(g); // a method of System.Convert
WriteLine($"g is {g} and h is {h}");

Controlling Flow, Converting Types, and Handling Exceptions

[116]

3. Run the code and view the result, as shown in the following output:

g is 9.8 and h is 10

One difference between casting and converting is that converting rounds the double value 9.8
up to 10 instead of trimming the part after the decimal point.

Rounding numbers
You have now seen that the cast operator trims the decimal part of a real number and that the
System.Convert methods round up or down. However, what is the rule for rounding?

Understanding the default rounding rules
In British primary schools for children aged 5 to 11, pupils are taught to round up if the decimal
part is .5 or higher and round down if the decimal part is less.

Let's explore if C# follows the same primary school rule:

1. Type statements to declare and assign an array of double values, convert each of them
to an integer, and then write the result to the console, as shown in the following code:

double[] doubles = new[]
 { 9.49, 9.5, 9.51, 10.49, 10.5, 10.51 };

foreach (double n in doubles)
{
 WriteLine($"ToInt32({n}) is {ToInt32(n)}");
}

2. Run the code and view the result, as shown in the following output:

ToInt32(9.49) is 9
ToInt32(9.5) is 10
ToInt32(9.51) is 10
ToInt32(10.49) is 10
ToInt32(10.5) is 10
ToInt32(10.51) is 11

We have shown that the rule for rounding in C# is subtly different from the primary school
rule:

• It always rounds down if the decimal part is less than the midpoint .5.
• It always rounds up if the decimal part is more than the midpoint .5.
• It will round up if the decimal part is the midpoint .5 and the non-decimal part is odd,

but it will round down if the non-decimal part is even.

Chapter 03

[117]

This rule is known as Banker's Rounding, and it is preferred because it reduces bias by
alternating when it rounds up or down. Sadly, other languages such as JavaScript use the
primary school rule.

Taking control of rounding rules
You can take control of the rounding rules by using the Round method of the Math class:

1. Type statements to round each of the double values using the "away from zero"
rounding rule, also known as rounding "up," and then write the result to the console, as
shown in the following code:

foreach (double n in doubles)
{
 WriteLine(format:
 "Math.Round({0}, 0, MidpointRounding.AwayFromZero) is {1}",
 arg0: n,
 arg1: Math.Round(value: n, digits: 0,
 mode: MidpointRounding.AwayFromZero));
}

2. Run the code and view the result, as shown in the following output:

Math.Round(9.49, 0, MidpointRounding.AwayFromZero) is 9
Math.Round(9.5, 0, MidpointRounding.AwayFromZero) is 10
Math.Round(9.51, 0, MidpointRounding.AwayFromZero) is 10
Math.Round(10.49, 0, MidpointRounding.AwayFromZero) is 10
Math.Round(10.5, 0, MidpointRounding.AwayFromZero) is 11
Math.Round(10.51, 0, MidpointRounding.AwayFromZero) is 11

Converting from any type to a string
The most common conversion is from any type into a string variable for outputting as human-
readable text, so all types have a method named ToString that they inherit from the System.
Object class.

The ToString method converts the current value of any variable into a textual representation.
Some types can't be sensibly represented as text, so they return their namespace and type name
instead.

Good Practice: For every programming language that you use, check
its rounding rules. They may not work the way you expect!

Controlling Flow, Converting Types, and Handling Exceptions

[118]

Let's convert some types into a string:

1. Type statements to declare some variables, convert them to their string representation,
and write them to the console, as shown in the following code:

int number = 12;
WriteLine(number.ToString());

bool boolean = true;
WriteLine(boolean.ToString());

DateTime now = DateTime.Now;
WriteLine(now.ToString());

object me = new();
WriteLine(me.ToString());

2. Run the code and view the result, as shown in the following output:

12
True
02/28/2021 17:33:54
System.Object

Converting from a binary object to a string
When you have a binary object like an image or video that you want to either store or transmit,
you sometimes do not want to send the raw bits because you do not know how those bits
could be misinterpreted, for example, by the network protocol transmitting them or another
operating system that is reading the store binary object.

The safest thing to do is to convert the binary object into a string of safe characters.
Programmers call this Base64 encoding.

The Convert type has a pair of methods, ToBase64String and FromBase64String, that perform
this conversion for you. Let's see them in action:

1. Type statements to create an array of bytes randomly populated with byte values, write
each byte nicely formatted to the console, and then write the same bytes converted to
Base64 to the console, as shown in the following code:

// allocate array of 128 bytes
byte[] binaryObject = new byte[128];

// populate array with random bytes
(new Random()).NextBytes(binaryObject);

WriteLine("Binary Object as bytes:");

for(int index = 0; index < binaryObject.Length; index++)

Chapter 03

[119]

{
 Write($"{binaryObject[index]:X} ");
}
WriteLine();

// convert to Base64 string and output as text
string encoded = ToBase64String(binaryObject);

WriteLine($"Binary Object as Base64: {encoded}");

By default, an int value would output assuming decimal notation, that is, base10. You
can use format codes such as :X to format the value using hexadecimal notation.

2. Run the code and view the result, as shown in the following output:

Binary Object as bytes:
B3 4D 55 DE 2D E BB CF BE 4D E6 53 C3 C2 9B 67 3 45 F9 E5 20 61 7E 4F 7A
81 EC 49 F0 49 1D 8E D4 F7 DB 54 AF A0 81 5 B8 BE CE F8 36 90 7A D4 36 42
4 75 81 1B AB 51 CE 5 63 AC 22 72 DE 74 2F 57 7F CB E7 47 B7 62 C3 F4 2D
61 93 85 18 EA 6 17 12 AE 44 A8 D B8 4C 89 85 A9 3C D5 E2 46 E0 59 C9 DF
10 AF ED EF 8AA1 B1 8D EE 4A BE 48 EC 79 A5 A 5F 2F 30 87 4A C7 7F 5D C1 D
26 EE
Binary Object as Base64: s01V3i0Ou8++TeZTw8KbZwNF +eUgYX5PeoHsSfBJHY7U99tU
r6CBBbi+zvg2kHrUNkIEdYEbq1HOBWOsInLedC9Xf8vnR7diw/QtYZOFGOoGFxKuRKgNuEyJha
k81eJG4FnJ3xCv7e+KobGN7kq+SO x5pQpfLzCHSsd/XcENJu4=

Parsing from strings to numbers or dates and times
The second most common conversion is from strings to numbers or date and time values.

The opposite of ToString is Parse. Only a few types have a Parse method, including all the
number types and DateTime.

Let's see Parse in action:

1. Type statements to parse an integer and a date and time value from strings and then
write the result to the console, as shown in the following code:

int age = int.Parse("27");
DateTime birthday = DateTime.Parse("4 July 1980");

WriteLine($"I was born {age} years ago.");
WriteLine($"My birthday is {birthday}.");
WriteLine($"My birthday is {birthday:D}.");

2. Run the code and view the result, as shown in the following output:
I was born 27 years ago.
My birthday is 04/07/1980 00:00:00.
My birthday is 04 July 1980.

Controlling Flow, Converting Types, and Handling Exceptions

[120]

By default, a date and time value outputs with the short date and time format. You can
use format codes such as D to output only the date part using the long date format.

Errors using Parse
One problem with the Parse method is that it gives errors if the string cannot be converted.

1. Type a statement to attempt to parse a string containing letters into an integer variable,
as shown in the following code:

int count = int.Parse("abc");

2. Run the code and view the result, as shown in the following output:

Unhandled Exception: System.FormatException: Input string was not in a
correct format.

As well as the preceding exception message, you will see a stack trace. I have not included
stack traces in this book because they take up too much space.

Avoiding exceptions using the TryParse method
To avoid errors, you can use the TryParse method instead. TryParse attempts to convert the
input string and returns true if it can convert it and false if it cannot.

The out keyword is required to allow the TryParse method to set the count variable when the
conversion works.

Let's see TryParse in action:

1. Replace the int count declaration with statements to use the TryParse method and ask
the user to input a count for a number of eggs, as shown in the following code:

Write("How many eggs are there? ");
string? input = ReadLine(); // or use "12" in notebook

if (int.TryParse(input, out int count))
{
 WriteLine($"There are {count} eggs.");
}
else
{
 WriteLine("I could not parse the input.");
}

Good Practice: Use the standard date and time format specifiers, as
shown at the following link: https://docs.microsoft.com/en-
us/dotnet/standard/base-types/standard-date-and-time-
format-strings#table-of-format-specifiers

https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings#table-of-format-specifiers
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings#table-of-format-specifiers
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings#table-of-format-specifiers

Chapter 03

[121]

2. Run the code, enter 12, and view the result, as shown in the following output:
How many eggs are there? 12
There are 12 eggs.

3. Run the code, enter twelve (or change the string value to "twelve" in a notebook), and
view the result, as shown in the following output:

How many eggs are there? twelve
I could not parse the input.

You can also use methods of the System.Convert type to convert string values into other types;
however, like the Parse method, it gives an error if it cannot convert.

Handling exceptions
You've seen several scenarios where errors have occurred when converting types. Some
languages return error codes when something goes wrong. .NET uses exceptions that are richer
and designed only for failure reporting compared to return values that have multiple uses.
When this happens, we say a runtime exception has been thrown.

When an exception is thrown, the thread is suspended and if the calling code has defined a
try-catch statement, then it is given a chance to handle the exception. If the current method
does not handle it, then its calling method is given a chance, and so on up the call stack.

As you have seen, the default behavior of a console application or a .NET Interactive notebook
is to output a message about the exception, including a stack trace, and then stop running the
code. The application is terminated. This is better than allowing the code to continue executing
in a potentially corrupt state. Your code should only catch and handle exceptions that it
understands and can properly fix.

Wrapping error-prone code in a try block
When you know that a statement can cause an error, you should wrap that statement in a try
block. For example, parsing from text to a number can cause an error. Any statements in the
catch block will be executed only if an exception is thrown by a statement in the try block.

Good Practice: Avoid writing code that will throw an exception whenever
possible, perhaps by performing if statement checks. Sometimes you can't,
and sometimes it is best to allow the exception to be caught by a higher-level
component that is calling your code. You will learn how to do this in Chapter 4,
Writing, Debugging, and Testing Functions.

Controlling Flow, Converting Types, and Handling Exceptions

[122]

We don't have to do anything inside the catch block. Let's see this in action:

1. Use your preferred coding tool to add a new Console Application to the Chapter03
workspace/solution named HandlingExceptions.

2. In Visual Studio Code, select HandlingExceptions as the active OmniSharp project.
3. Type statements to prompt the user to enter their age and then write their age to the

console, as shown in the following code:
WriteLine("Before parsing");
Write("What is your age? ");
string? input = ReadLine(); // or use "49" in a notebook

try
{
 int age = int.Parse(input);
 WriteLine($"You are {age} years old.");
}
catch
{
}
WriteLine("After parsing");

This code includes two messages to indicate before parsing and after parsing to make
clearer the flow through the code. These will be especially useful as the example code
grows more complex.

4. Run the code, enter 49, and view the result, as shown in the following output:
Before parsing
What is your age? 49
You are 49 years old.
After parsing

You will see the following compiler message: Warning CS8604 Possible
null reference argument for parameter 's' in 'int int.
Parse(string s)'. By default in new .NET 6 projects, Microsoft has enabled
nullable reference types so you will see many more compiler warnings like
this. In production code, you should add code to check for null and handle
that possibility appropriately. In this book, I will not include these null
checks because the code samples are not designed to be production quality
and null checks everywhere will clutter the code and use up valuable pages.
In this case, it is impossible for input to be null because the user must press
Enter for ReadLine to return and that will return an empty string. You will
see hundreds of more examples of potentially null variables throughout
the code samples in this book. Those warnings are safe to ignore for the
book code examples. You only need similar warnings when you write your
own production code. You will see more about null handling in Chapter 6,
Implementing Interfaces and Inheriting Classes.

Chapter 03

[123]

5. Run the code, enter Kermit, and view the result, as shown in the following output:

Before parsing
What is your age? Kermit
After parsing

When the code was executed, the error exception was caught and the default message and stack
trace were not output, and the console application continued running. This is better than the
default behavior, but it might be useful to see the type of error that occurred.

Catching all exceptions
To get information about any type of exception that might occur, you can declare a variable of
type System.Exception to the catch block:

1. Add an exception variable declaration to the catch block and use it to write information
about the exception to the console, as shown in the following code:

catch (Exception ex)
{
 WriteLine($"{ex.GetType()} says {ex.Message}");
}

2. Run the code, enter Kermit again, and view the result, as shown in the following output:

Before parsing
What is your age? Kermit
System.FormatException says Input string was not in a correct format.
After parsing

Catching specific exceptions
Now that we know which specific type of exception occurred, we can improve our code by
catching just that type of exception and customizing the message that we display to the user:

1. Leave the existing catch block, and above it, add a new catch block for the format
exception type, as shown in the following highlighted code:

catch (FormatException)
{
 WriteLine("The age you entered is not a valid number format.");

Good Practice: You should never use an empty catch statement like this
in production code because it "swallows" exceptions and hides potential
problems. You should at least log the exception if you cannot or do not want to
handle it properly, or rethrow it so that higher-level code can decide instead.
You will learn about logging in Chapter 4, Writing, Debugging, and Testing
Functions.

Controlling Flow, Converting Types, and Handling Exceptions

[124]

}
catch (Exception ex)
{
 WriteLine($"{ex.GetType()} says {ex.Message}");
}

2. Run the code, enter Kermit again, and view the result, as shown in the following output:
Before parsing
What is your age? Kermit
The age you entered is not a valid number format.
After parsing

The reason we want to leave the more general catch below is that there might be other
types of exceptions that can occur.

3. Run the code, enter 9876543210, and view the result, as shown in the following output:
Before parsing
What is your age? 9876543210
System.OverflowException says Value was either too large or too small for
an Int32.
After parsing

Let's add another catch block for this type of exception.

4. Leave the existing catch blocks, and add a new catch block for the overflow exception
type, as shown in the following highlighted code:

catch (OverflowException)
{
 WriteLine("Your age is a valid number format but it is either too big or
small.");
}
catch (FormatException)
{
 WriteLine("The age you entered is not a valid number format.");
}

5. Run the code, enter 9876543210, and view the result, as shown in the following output:

Before parsing
What is your age? 9876543210
Your age is a valid number format but it is either too big or small.
After parsing

The order in which you catch exceptions is important. The correct order is related to the
inheritance hierarchy of the exception types. You will learn about inheritance in Chapter 5,
Building Your Own Types with Object-Oriented Programming. However, don't worry too much
about this—the compiler will give you build errors if you get exceptions in the wrong order
anyway.

Chapter 03

[125]

Catching with filters
You can also add filters to a catch statement using the when keyword, as shown in the following
code:

Write("Enter an amount: ");
string? amount = ReadLine();
try
{
 decimal amountValue = decimal.Parse(amount);
}
catch (FormatException) when (amount.Contains("$"))
{
 WriteLine("Amounts cannot use the dollar sign!");
}
catch (FormatException)
{
 WriteLine("Amounts must only contain digits!");
}

Checking for overflow
Earlier, we saw that when casting between number types, it was possible to lose information,
for example, when casting from a long variable to an int variable. If the value stored in a type
is too big, it will overflow.

Throwing overflow exceptions with the checked
statement
The checked statement tells .NET to throw an exception when an overflow happens instead of
allowing it to happen silently, which is done by default for performance reasons.

We will set the initial value of an int variable to its maximum value minus one. Then, we will
increment it several times, outputting its value each time. Once it gets above its maximum
value, it overflows to its minimum value and continues incrementing from there. Let's see this
in action:

1. Use your preferred coding tool to add a new Console Application to the Chapter03
workspace/solution named CheckingForOverflow.

Good Practice: Avoid over-catching exceptions. They should often be allowed
to propagate up the call stack to be handled at a level where more information
is known about the circumstances that could change the logic of how they
should be handled. You will learn about this in Chapter 4, Writing, Debugging,
and Testing Functions.

Controlling Flow, Converting Types, and Handling Exceptions

[126]

2. In Visual Studio Code, select CheckingForOverflow as the active OmniSharp project.
3. In Program.cs, type statements to declare and assign an integer to one less than

its maximum possible value, and then increment it and write its value to the console
three times, as shown in the following code:

int x = int.MaxValue - 1;
WriteLine($"Initial value: {x}");
x++;
WriteLine($"After incrementing: {x}");
x++;
WriteLine($"After incrementing: {x}");
x++;
WriteLine($"After incrementing: {x}");

4. Run the code and view the result that shows the value overflowing silently and
wrapping around to large negative values, as shown in the following output:

Initial value: 2147483646
After incrementing: 2147483647
After incrementing: -2147483648
After incrementing: -2147483647

5. Now, let's get the compiler to warn us about the overflow by wrapping the statements
using a checked statement block, as shown highlighted in the following code:

checked
{
 int x = int.MaxValue - 1;
 WriteLine($"Initial value: {x}");
 x++;
 WriteLine($"After incrementing: {x}");
 x++;
 WriteLine($"After incrementing: {x}");
 x++;
 WriteLine($"After incrementing: {x}");
}

6. Run the code and view the result that shows the overflow being checked and
causing an exception to be thrown, as shown in the following output:

Initial value: 2147483646
After incrementing: 2147483647
Unhandled Exception: System.OverflowException: Arithmetic operation
resulted in an overflow.

Chapter 03

[127]

7. Just like any other exception, we should wrap these statements in a try statement block
and display a nicer error message for the user, as shown in the following code:

try
{
 // previous code goes here
}
catch (OverflowException)
{
 WriteLine("The code overflowed but I caught the exception.");
}

8. Run the code and view the result, as shown in the following output:

Initial value: 2147483646
After incrementing: 2147483647
The code overflowed but I caught the exception.

Disabling compiler overflow checks with the
unchecked statement
The previous section was about the default overflow behavior at runtime and how to use the
checked statement to change that behavior. This section is about compile time overflow behavior
and how to use the unchecked statement to change that behavior.

A related keyword is unchecked. This keyword switches off overflow checks performed by the
compiler within a block of code. Let's see how to do this:

1. Type the following statement at the end of the previous statements. The compiler will
not compile this statement because it knows it would overflow:

int y = int.MaxValue + 1;

2. Hover your mouse pointer over the error, and note a compile-time check is shown as an
error message, as shown in Figure 3.1:

Figure 3.1: A compile-time check in the PROBLEMS window

Controlling Flow, Converting Types, and Handling Exceptions

[128]

3. To disable compile-time checks, wrap the statement in an unchecked block, write the
value of y to the console, decrement it, and repeat, as shown in the following code:

unchecked
{
 int y = int.MaxValue + 1;
 WriteLine($"Initial value: {y}");
 y--;
 WriteLine($"After decrementing: {y}");
 y--;
 WriteLine($"After decrementing: {y}");
}

4. Run the code and view the results, as shown in the following output:

Initial value: -2147483648
After decrementing: 2147483647
After decrementing: 2147483646

Of course, it would be rare that you would want to explicitly switch off a check like this
because it allows an overflow to occur. But perhaps you can think of a scenario where you
might want that behavior.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore with deeper research into this chapter's topics.

Exercise 3.1 – Test your knowledge
Answer the following questions:

1. What happens when you divide an int variable by 0?
2. What happens when you divide a double variable by 0?
3. What happens when you overflow an int variable, that is, set it to a value

beyond its range?
4. What is the difference between x = y++; and x = ++y;?
5. What is the difference between break, continue, and return when used inside a

loop statement?
6. What are the three parts of a for statement and which of them are required?
7. What is the difference between the = and == operators?

Chapter 03

[129]

8. Does the following statement compile?
for (; true;) ;

9. What does the underscore _ represent in a switch expression?
10. What interface must an object implement to be enumerated over by using the foreach

statement?

Exercise 3.2 – Explore loops and overflow
What will happen if this code executes?

int max = 500;
for (byte i = 0; i < max; i++)
{
 WriteLine(i);
}

Create a console application in Chapter03 named Exercise02 and enter the preceding code. Run
the console application and view the output. What happens?

What code could you add (don't change any of the preceding code) to warn us about the
problem?

Exercise 3.3 – Practice loops and operators
FizzBuzz is a group word game for children to teach them about division. Players take turns to
count incrementally, replacing any number divisible by three with the word fizz, any number
divisible by five with the word buzz, and any number divisible by both with fizzbuzz.

Create a console application in Chapter03 named Exercise03 that outputs a simulated FizzBuzz
game counting up to 100. The output should look something like Figure 3.2:

Figure 3.2: A simulated FizzBuzz game output

Controlling Flow, Converting Types, and Handling Exceptions

[130]

Exercise 3.4 – Practice exception handling
Create a console application in Chapter03 named Exercise04 that asks the user for two
numbers in the range 0-255 and then divides the first number by the second:

Enter a number between 0 and 255: 100
Enter another number between 0 and 255: 8
100 divided by 8 is 12

Write exception handlers to catch any thrown errors, as shown in the following output:

Enter a number between 0 and 255: apples
Enter another number between 0 and 255: bananas
FormatException: Input string was not in a correct format.

Exercise 3.5 – Test your knowledge of operators
What are the values of x and y after the following statements execute?

1. Increment and addition operators:
x = 3;
y = 2 + ++x;

2. Binary shift operators:
x = 3 << 2;
y = 10 >> 1;

3. Bitwise operators:

x = 10 & 8;
y = 10 | 7;

Exercise 3.6 – Explore topics
Use the links on the following page to learn about the topics covered in this chapter in more
detail:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-3---
controlling-flow-and-converting-types

Summary
In this chapter, you experimented with some operators, learned how to branch and loop, how
to convert between types, and how to catch exceptions.

You are now ready to learn how to reuse blocks of code by defining functions, how to pass values
into them and get values back, and how to track down bugs in your code and squash them!

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-3---controlling-flow-and-converting-types
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-3---controlling-flow-and-converting-types

[131]

04
Writing, Debugging, and

Testing Functions
This chapter is about writing functions to reuse code, debugging logic errors during
development, logging exceptions during runtime, unit testing your code to remove bugs, and
ensuring stability and reliability.

This chapter covers the following topics:

• Writing functions
• Debugging during development
• Logging during runtime
• Unit testing
• Throwing and catching exceptions in functions

Writing functions
A fundamental principle of programming is Don't Repeat Yourself (DRY).

While programming, if you find yourself writing the same statements over and over again,
then turn those statements into a function. Functions are like tiny programs that complete one
small task. For example, you might write a function to calculate sales tax and then reuse that
function in many places in a financial application.

Like programs, functions usually have inputs and outputs. They are sometimes described as
black boxes, where you feed some raw materials in one end, and a manufactured item emerges
at the other. Once created, you don't need to think about how they work.

Writing, Debugging, and Testing Functions

[132]

Times table example
Let's say that you want to help your child learn their times tables, so you want to make it easy
to generate a times table for a number, such as the 12 times table:

1 x 12 = 12
2 x 12 = 24
...
12 x 12 = 144

You previously learned about the for statement earlier in this book, so you know that it can be
used to generate repeated lines of output when there is a regular pattern, such as the 12 times
table, as shown in the following code:

for (int row = 1; row <= 12; row++)
{
 Console.WriteLine($"{row} x 12 = {row * 12}");
}

However, instead of outputting the 12 times table, we want to make this more flexible, so it
could output the times table for any number. We can do this by creating a function.

Writing a times table function
Let's explore functions by creating one to output any times table for numbers 0 to 255
multiplied by 1 to 12:

1. Use your preferred coding tool to create a new console app, as defined in the following
list:

1. Project template: Console Application / console
2. Workspace/solution file and folder: Chapter04
3. Project file and folder: WritingFunctions

2. Statically import System.Console.
3. In Program.cs, write statements to define a function named TimesTable, as shown in the

following code:
static void TimesTable(byte number)
{
 WriteLine($"This is the {number} times table:");

 for (int row = 1; row <= 12; row++)
 {
 WriteLine($"{row} x {number} = {row * number}");
 }
 WriteLine();
}

Chapter 04

[133]

In the preceding code, note the following:
• TimesTable must have a byte value passed to it as a parameter named number.
• TimesTable is a static method because it will be called by the static method

Main.
• TimesTable does not return a value to the caller, so it is declared with the void

keyword before its name.
• TimesTable uses a for statement to output the times table for the number passed

to it.

4. After the statement that statically imports the Console class and before the TimesTable
function, call the function and pass in a byte value for the number parameter, for
example, 6, as shown highlighted in the following code:

using static System.Console;

TimesTable(6);

5. Run the code and then view the result, as shown in the following output:
This is the 6 times table:
1 x 6 = 6
2 x 6 = 12
3 x 6 = 18
4 x 6 = 24
5 x 6 = 30
6 x 6 = 36
7 x 6 = 42
8 x 6 = 48
9 x 6 = 54
10 x 6 = 60
11 x 6 = 66
12 x 6 = 72

6. Change the number passed into the TimesTable function to other byte values between 0
and 255 and confirm that the output times tables are correct.

7. Note that if you try to pass a non-byte number, for example, an int or double or string,
an error is returned, as shown in the following output:

Error: (1,12): error CS1503: Argument 1: cannot convert from 'int' to
'byte'

Good Practice: If a function has one or more parameters where just
passing the values may not provide enough meaning, then you can
optionally specify the name of the parameter as well as its value, as
shown in the following code: TimesTable(number: 6).

Writing, Debugging, and Testing Functions

[134]

Writing a function that returns a value
The previous function performed actions (looping and writing to the console), but it did not
return a value. Let's say that you need to calculate sales or value-added tax (VAT). In Europe,
VAT rates can range from 8% in Switzerland to 27% in Hungary. In the United States, state
sales taxes can range from 0% in Oregon to 8.25% in California.

Let's implement a function to calculate taxes in various regions around the world:

1. Add a function named CalculateTax, as shown in the following code:
static decimal CalculateTax(
 decimal amount, string twoLetterRegionCode)
{
 decimal rate = 0.0M;

 switch (twoLetterRegionCode)
 {
 case "CH": // Switzerland
 rate = 0.08M;
 break;
 case "DK": // Denmark
 case "NO": // Norway
 rate = 0.25M;
 break;
 case "GB": // United Kingdom
 case "FR": // France
 rate = 0.2M;
 break;
 case "HU": // Hungary
 rate = 0.27M;
 break;
 case "OR": // Oregon
 case "AK": // Alaska
 case "MT": // Montana
 rate = 0.0M;
 break;
 case "ND": // North Dakota
 case "WI": // Wisconsin
 case "ME": // Maine

Tax rates change all the time, and they vary based on many factors. You do not
need to contact me to tell me that the tax rate in Virginia is 6%. Thank you.

Chapter 04

[135]

 case "VA": // Virginia
 rate = 0.05M;
 break;
 case "CA": // California
 rate = 0.0825M;
 break;
 default: // most US states
 rate = 0.06M;
 break;
 }

 return amount * rate;
}

In the preceding code, note the following:
• CalculateTax has two inputs: a parameter named amount that will be the

amount of money spent, and a parameter named twoLetterRegionCode that
will be the region the amount is spent in.

• CalculateTax will perform a calculation using a switch statement and then
return the sales tax or VAT owed on the amount as a decimal value; so, before
the name of the function, we have declared the data type of the return value to
be decimal.

2. Comment out the TimesTable method call and call the CalculateTax method, passing
values for the amount such as 149 and a valid region code such as FR, as shown in the
following code:

// TimesTable(6);

decimal taxToPay = CalculateTax(amount: 149, twoLetterRegionCode: "FR");
WriteLine($"You must pay {taxToPay} in tax.");

3. Run the code and view the result, as shown in the following output:

You must pay 29.8 in tax.

Can you think of any problems with the CalculateTax function as written? What would happen
if the user enters a code such as fr or UK? How could you rewrite the function to improve it?
Would using a switch expression instead of a switch statement be clearer?

We could format the taxToPay output as currency by using {taxToPay:C}
but it will use your local culture to decide how to format the currency symbol
and decimals. For example, for me in the UK, I would see £29.80.

Writing, Debugging, and Testing Functions

[136]

Converting numbers from cardinal to ordinal
Numbers that are used to count are called cardinal numbers, for example, 1, 2, and 3, whereas
numbers used to order are ordinal numbers, for example, 1st, 2nd, and 3rd. Let's create a
function to convert cardinals to ordinals:

1. Write a function named CardinalToOrdinal that converts a cardinal int value into
an ordinal string value; for example, it converts 1 into 1st, 2 into 2nd, and so on, as
shown in the following code:

static string CardinalToOrdinal(int number)
{
 switch (number)
 {
 case 11: // special cases for 11th to 13th
 case 12:
 case 13:
 return $"{number}th";
 default:
 int lastDigit = number % 10;

 string suffix = lastDigit switch
 {
 1 => "st",
 2 => "nd",
 3 => "rd",
 _ => "th"
 };
 return $"{number}{suffix}";
 }
}

From the preceding code, note the following:
• CardinalToOrdinal has one input: a parameter of the int type named number,

and one output: a return value of the string type.
• A switch statement is used to handle the special cases of 11, 12, and 13.
• A switch expression then handles all other cases: if the last digit is 1, then use st

as the suffix; if the last digit is 2, then use nd as the suffix; if the last digit is 3,
then use rd as the suffix; and if the last digit is anything else, then use th as the
suffix.

2. Write a function named RunCardinalToOrdinal that uses a for statement to loop
from 1 to 40, calling the CardinalToOrdinal function for each number and writing
the returned string to the console, separated by a space character, as shown in the
following code:

Chapter 04

[137]

static void RunCardinalToOrdinal()
{
 for (int number = 1; number <= 40; number++)
 {
 Write($"{CardinalToOrdinal(number)} ");
 }
 WriteLine();
}

3. Comment out the CalculateTax statements, and call the RunCardinalToOrdinal method,
as shown in the following code:

// TimesTable(6);

// decimal taxToPay = CalculateTax(amount: 149, twoLetterRegionCode: "FR");
// WriteLine($"You must pay {taxToPay} in tax.");

RunCardinalToOrdinal();

4. Run the code and view the results, as shown in the following output:

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st
32nd 33rd 34th 35th 36th 37th 38th 39th 40th

Calculating factorials with recursion
The factorial of 5 is 120, because factorials are calculated by multiplying the starting number by
one less than itself, and then by one less again, and so on, until the number is reduced to 1. An
example can be seen here: 5 x 4 x 3 x 2 x 1 = 120.

Factorials are written like this: 5!, where the exclamation mark is read as bang, so 5! = 120,
that is, five bang equals one hundred and twenty. Bang is a good name for factorials because they
increase in size very rapidly, just like an explosion.

We will write a function named Factorial; this will calculate the factorial for an int passed to
it as a parameter. We will use a clever technique called recursion, which means a function that
calls itself within its implementation, either directly or indirectly:

1. Add a function named Factorial, and a function to call it, as shown in the following
code:

static int Factorial(int number)
{
 if (number < 1)
 {

Writing, Debugging, and Testing Functions

[138]

 return 0;
 }
 else if (number == 1)
 {
 return 1;
 }
 else
 {
 return number * Factorial(number - 1);
 }
}

As before, there are several noteworthy elements of the preceding code, including the
following:

• If the input parameter number is zero or negative, Factorial returns 0.
• If the input parameter number is 1, Factorial returns 1, and therefore stops

calling itself.
• If the input parameter number is larger than one, which it will be in all other

cases, Factorial multiplies the number by the result of calling itself and
passing one less than number. This makes the function recursive.

2. Add a function named RunFactorial that uses a for statement to output the factorials
of numbers from 1 to 14, calls the Factorial function inside its loop, and then outputs
the result, formatted using the code N0, which means number format uses thousand
separators with zero decimal places, as shown in the following code:

static void RunFactorial()
{
 for (int i = 1; i < 15; i++)
 {
 WriteLine($"{i}! = {Factorial(i):N0}");
 }
}

3. Comment out the RunCardinalToOrdinal method call and call the RunFactorial method.

More Information: Recursion is clever, but it can lead to problems,
such as a stack overflow due to too many function calls because
memory is used to store data on every function call, and it eventually
uses too much. Iteration is a more practical, if less succinct, solution in
languages such as C#. You can read more about this at the following
link: https://en.wikipedia.org/wiki/ Recursion_(computer_
science)#Recursion_versus_iteration.

https://en.wikipedia.org/wiki/ Recursion_(computer_science)#Recursion_versus_iteration
https://en.wikipedia.org/wiki/ Recursion_(computer_science)#Recursion_versus_iteration

Chapter 04

[139]

4. Run the code and view the results, as shown in the following output:

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5,040
8! = 40,320
9! = 362,880
10! = 3,628,800
11! = 39,916,800
12! = 479,001,600
13! = 1,932,053,504
14! = 1,278,945,280

It is not immediately obvious in the previous output, but factorials of 13 and higher overflow
the int type because they are so big. 12! is 479,001,600, which is about half a billion. The
maximum positive value that can be stored in an int variable is about two billion. 13! is
6,227,020,800, which is about six billion and when stored in a 32-bit integer it overflows silently
without showing any problems.

Do you remember what we can do to be notified of a numeric overflow?

What should you do to get notified when an overflow happens? Of course, we could solve the
problem for 13! and 14! by using a long (64-bit integer) instead of an int (32-bit integer), but we
will quickly hit the overflow limit again.

The point of this section is to understand that numbers can overflow and how to show that
rather than ignore it, not specifically how to calculate factorials higher than 12!.

1. Modify the Factorial function to check for overflows, as shown highlighted in the
following code:

checked // for overflow
{
 return number * Factorial(number - 1);
}

2. Modify the RunFactorial function to handle overflow exceptions when calling the
Factorial function, as shown highlighted in the following code:

try
{
 WriteLine($"{i}! = {Factorial(i):N0}");
}

Writing, Debugging, and Testing Functions

[140]

catch (System.OverflowException)
{
 WriteLine($"{i}! is too big for a 32-bit integer.");
}

3. Run the code and view the results, as shown in the following output:

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5,040
8! = 40,320
9! = 362,880
10! = 3,628,800
11! = 39,916,800
12! = 479,001,600
13! is too big for a 32-bit integer.
14! is too big for a 32-bit integer.

Documenting functions with XML comments
By default, when calling a function such as CardinalToOrdinal, code editors will show a tooltip
with basic information, as shown in Figure 4.1:

Figure 4.1: A tooltip showing the default simple method signature

Let's improve the tooltip by adding extra information:

1. If you are using Visual Studio Code with the C# extension, you should navigate to
View | Command Palette | Preferences: Open Settings (UI), and then search for
formatOnType and make sure that is enabled. C# XML documentation comments are a
built-in feature of Visual Studio 2022.

2. On the line above the CardinalToOrdinal function, type three forward slashes ///, and
note that they are expanded into an XML comment that recognizes that the function has
a single parameter named number.

Chapter 04

[141]

3. Enter suitable information for the XML documentation comment for a summary and to
describe the input parameter and the return value for the CardinalToOrdinal function,
as shown in the following code:

/// <summary>
/// Pass a 32-bit integer and it will be converted into its ordinal
equivalent.
/// </summary>
/// <param name="number">Number is a cardinal value e.g. 1, 2, 3, and so
on.</param>
/// <returns>Number as an ordinal value e.g. 1st, 2nd, 3rd, and so on.
</returns>

4. Now, when calling the function, you will see more details, as shown in Figure 4.2:

Figure 4.2: A tooltip showing the more detailed method signature

At the time of writing the sixth edition, C# XML documentation comments do not work in
.NET Interactive notebooks.

Using lambdas in function implementations
F# is Microsoft's strongly typed functional-first programming language that, like C#,
compiles to IL to be executed by .NET. Functional languages evolved from lambda calculus;
a computational system based only on functions. The code looks more like mathematical
functions than steps in a recipe.

Some of the important attributes of functional languages are defined in the following list:

• Modularity: The same benefit of defining functions in C# applies to functional
languages. Break up a large complex code base into smaller pieces.

• Immutability: Variables in the C# sense do not exist. Any data value inside a function
cannot change. Instead, a new data value can be created from an existing one. This
reduces bugs.

Good Practice: Add XML documentation comments to all your functions.

Writing, Debugging, and Testing Functions

[142]

• Maintainability: Code is cleaner and clearer (for mathematically inclined
programmers!).

Since C# 6, Microsoft has worked to add features to the language to support a more functional
approach. For example, adding tuples and pattern matching in C# 7, non-null reference types
in C# 8, and improving pattern matching and adding records, that is, immutable objects in C# 9.

In C# 6, Microsoft added support for expression-bodied function members. We will look at an
example of this now.

The Fibonacci sequence of numbers always starts with 0 and 1. Then the rest of the sequence
is generated using the rule of adding together the previous two numbers, as shown in the
following sequence of numbers:

0 1 1 2 3 5 8 13 21 34 55 ...

The next term in the sequence would be 34 + 55, which is 89.

We will use the Fibonacci sequence to illustrate the difference between an imperative and
declarative function implementation:

1. Add a function named FibImperative that will be written in an imperative style, as
shown in the following code:

static int FibImperative(int term)
{
 if (term == 1)
 {
 return 0;
 }
 else if (term == 2)
 {
 return 1;
 }
 else
 {
 return FibImperative(term - 1) + FibImperative(term - 2);
 }
}

2. Add a function named RunFibImperative that calls FibImperative inside a for
statement that loops from 1 to 30, as shown in the following code:

static void RunFibImperative()
{
 for (int i = 1; i <= 30; i++)
 {
 WriteLine("The {0} term of the Fibonacci sequence is {1:N0}.",
 arg0: CardinalToOrdinal(i),
 arg1: FibImperative(term: i));

Chapter 04

[143]

 }
}

3. Comment out the other method calls and call the RunFibImperative method.
4. Run the code and view the results, as shown in the following output:

The 1st term of the Fibonacci sequence is 0.
The 2nd term of the Fibonacci sequence is 1.
The 3rd term of the Fibonacci sequence is 1.
The 4th term of the Fibonacci sequence is 2.
The 5th term of the Fibonacci sequence is 3.
The 6th term of the Fibonacci sequence is 5.
The 7th term of the Fibonacci sequence is 8.
The 8th term of the Fibonacci sequence is 13.
The 9th term of the Fibonacci sequence is 21.
The 10th term of the Fibonacci sequence is 34.
The 11th term of the Fibonacci sequence is 55.
The 12th term of the Fibonacci sequence is 89.
The 13th term of the Fibonacci sequence is 144.
The 14th term of the Fibonacci sequence is 233.
The 15th term of the Fibonacci sequence is 377.
The 16th term of the Fibonacci sequence is 610.
The 17th term of the Fibonacci sequence is 987.
The 18th term of the Fibonacci sequence is 1,597.
The 19th term of the Fibonacci sequence is 2,584.
The 20th term of the Fibonacci sequence is 4,181.
The 21st term of the Fibonacci sequence is 6,765.
The 22nd term of the Fibonacci sequence is 10,946.
The 23rd term of the Fibonacci sequence is 17,711.
The 24th term of the Fibonacci sequence is 28,657.
The 25th term of the Fibonacci sequence is 46,368.
The 26th term of the Fibonacci sequence is 75,025.
The 27th term of the Fibonacci sequence is 121,393.
The 28th term of the Fibonacci sequence is 196,418.
The 29th term of the Fibonacci sequence is 317,811.
The 30th term of the Fibonacci sequence is 514,229.

5. Add a function named FibFunctional written in a declarative style, as shown in the
following code:

static int FibFunctional(int term) =>
 term switch
 {
 1 => 0,
 2 => 1,
 _ => FibFunctional(term - 1) + FibFunctional(term - 2)
 };

Writing, Debugging, and Testing Functions

[144]

6. Add a function to call it inside a for statement that loops from 1 to 30, as shown in the
following code:

static void RunFibFunctional()
{
 for (int i = 1; i <= 30; i++)
 {
 WriteLine("The {0} term of the Fibonacci sequence is {1:N0}.",
 arg0: CardinalToOrdinal(i),
 arg1: FibFunctional(term: i));
 }
}

7. Comment out the RunFibImperative method call, and call the RunFibFunctional method.
8. Run the code and view the results (which will be the same as before).

Debugging during development
In this section, you will learn how to debug problems at development time. You must use a
code editor that has debugging tools such as Visual Studio or Visual Studio Code. At the time
of writing, you cannot use .NET Interactive Notebooks to debug code, but this is expected to be
added in the future.

Creating code with a deliberate bug
Let's explore debugging by creating a console app with a deliberate bug that we will then use
the debugger tools in your code editor to track down and fix:

1. Use your preferred coding tool to add a new Console Application to the Chapter04
workspace/solution named Debugging.

2. In Visual Studio Code, select Debugging as the active OmniSharp project. When you see
the pop-up warning message saying that required assets are missing, click Yes to add
them.

3. In Visual Studio, set the startup project for the solution to the current selection.
4. In Program.cs, add a function with a deliberate bug, as shown in the following code:

static double Add(double a, double b)
{
 return a * b; // deliberate bug!
}

More Information: Some people find it tricky setting up the OmniSharp
debugger for Visual Studio Code. I have included instructions for the most
common issues, but if you still have trouble, try reading the information at the
following link: https://github.com/OmniSharp/omnisharp-vscode/blob/
master/debugger.md

https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md
https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md

Chapter 04

[145]

5. Below the Add function, write statements to declare and set some variables and then add
them together using the buggy function, as shown in the following code:

double a = 4.5;
double b = 2.5;
double answer = Add(a, b);
WriteLine($"{a} + {b} = {answer}");

WriteLine("Press ENTER to end the app.");
ReadLine(); // wait for user to press ENTER

6. Run the console application and view the result, as shown in the following partial
output:

4.5 + 2.5 = 11.25

But wait, there's a bug! 4.5 added to 2.5 should be 7, not 11.25!

We will use the debugging tools to hunt for and squash the bug.

Setting a breakpoint and start debugging
Breakpoints allow us to mark a line of code that we want to pause at to inspect the program
state and find bugs.

Using Visual Studio 2022
Let's set a breakpoint and then start debugging using Visual Studio 2022:

1. Click in the statement that declares the variable named a.
2. Navigate to Debug | Toggle Breakpoint or press F9. A red circle will then appear in

the margin bar on the left-hand side and the statement will be highlighted in red to
indicate that a breakpoint has been set, as shown in Figure 4.3:

Figure 4.3: Toggling breakpoints using Visual Studio 2022

Writing, Debugging, and Testing Functions

[146]

Breakpoints can be toggled off with the same action. You can also left-click in the
margin to toggle a breakpoint on and off, or right-click a breakpoint to see more
options, such as delete, disable, or edit conditions or actions for an existing breakpoint.

3. Navigate to Debug | Start Debugging or press F5. Visual Studio starts the console
application and then pauses when it hits the breakpoint. This is known as break mode.
Extra windows titled Locals (showing current values of local variables), Watch 1
(showing any watch expressions you have defined), Call Stack, Exception Settings,
and Immediate Window appear. The Debugging toolbar appears. The line that will be
executed next is highlighted in yellow, and a yellow arrow points at the line from the
margin bar, as shown in Figure 4.4:

Figure 4.4: Break mode in Visual Studio 2022

If you do not want to see how to use Visual Studio Code to start debugging then you can skip
the next section and continue to the section titled Navigating with the debugging toolbar.

Using Visual Studio Code
Let's set a breakpoint and then start debugging using Visual Studio Code:

1. Click in the statement that declares the variable named a.
2. Navigate to Run | Toggle Breakpoint or press F9. A red circle will appear in the

margin bar on the left-hand side to indicate that a breakpoint has been set, as shown in
Figure 4.5:

Chapter 04

[147]

Figure 4.5: Toggling breakpoints using Visual Studio Code

Breakpoints can be toggled off with the same action. You can also left-click in the
margin to toggle a breakpoint on and off, or right-click to see more options, such as
remove, edit, or disable an existing breakpoint; or adding a breakpoint, conditional
breakpoint, or logpoint when a breakpoint does not yet exist.

3. Navigate to View | Run, or in the left navigation bar you can click the Run and Debug
icon (the triangle "play" button and "bug"), as shown in Figure 4.5.

4. At the top of the DEBUG window, click on the dropdown to the right of the Start
Debugging button (green triangular "play" button), and select .NET Core Launch
(console) (Debugging), as shown in Figure 4.6:

Figure 4.6: Selecting the project to debug using Visual Studio Code

Logpoints, also known as tracepoints, indicate that you want to
record some information without having to actually stop executing
the code at that point.

Writing, Debugging, and Testing Functions

[148]

5. At the top of the DEBUG window, click the Start Debugging button (green triangular
"play" button), or navigate to Run | Start Debugging, or press F5. Visual Studio Code
starts the console application and then pauses when it hits the breakpoint. This is
known as break mode. The line that will be executed next is highlighted in yellow, and
a yellow block points at the line from the margin bar, as shown in Figure 4.7:

Figure 4.7: Break mode in Visual Studio Code

Navigating with the debugging toolbar
Visual Studio Code shows a floating toolbar with buttons to make it easy to access debugging
features. Visual Studio 2022 has one button in its Standard toolbar to start or continue
debugging and a separate Debugging toolbar for the rest of the tools.

Both are shown in Figure 4.8 and as described in the following list:

Good Practice: If you do not see a choice in the dropdown list for the
Debugging project, it is because that project does not have the assets
needed to debug. Those assets are stored in the .vscode folder. To
create the .vscode folder for a project, navigate to View | Command
Palette, select OmniSharp: Select Project, and then select the
Debugging project. After a few seconds, when prompted, Required
assets to build and debug are missing from 'Debugging'. Add
them?, click Yes to add the missing assets.

Chapter 04

[149]

Figure 4.8: Debugging toolbars in Visual Studio 2022 and Visual Studio Code

• Continue/F5: This button will continue running the program from the current position
until it ends or hits another breakpoint.

• Step Over/F10, Step Into/F11, and Step Out/Shift + F11 (blue arrows over dots):
These buttons step through the code statements in various ways, as you will see in a
moment.

• Restart/Ctrl or Cmd + Shift + F5 (circular arrow): This button will stop and then
immediately restart the program with the debugger attached again.

• Stop/Shift + F5 (red square): This button will stop the debugging session.

Debugging windows
While debugging, both Visual Studio Code and Visual Studio show extra windows that allow
you to monitor useful information, such as variables, while you step through your code.

The most useful windows are described in the following list:

• VARIABLES, including Locals, which shows the name, value, and type for any local
variables automatically. Keep an eye on this window while you step through your code.

• WATCH, or Watch 1, which shows the value of variables and expressions that you
manually enter.

• CALL STACK, which shows the stack of function calls.
• BREAKPOINTS, which shows all your breakpoints and allows finer control over them.

Writing, Debugging, and Testing Functions

[150]

When in break mode, there is also a useful window at the bottom of the edit area:

• DEBUG CONSOLE or Immediate Window enables live interaction with your code.
You can interrogate the program state, for example, by entering the name of a variable.
For example, you can ask a question such as, "What is 1+2?" by typing 1+2 and pressing
Enter, as shown in Figure 4.9:

Figure 4.9: Interrogating the program state

Stepping through code
Let's explore some ways to step through the code using either Visual Studio or Visual Studio
Code:

1. Navigate to Run/Debug | Step Into, or click on the Step Into button in the toolbar, or
press F11. The yellow highlight steps forward one line.

2. Navigate to Run/Debug | Step Over, or click on the Step Over button in the toolbar,
or press F10. The yellow highlight steps forward one line. At the moment, you can see
that there is no difference between using Step Into or Step Over.

3. You should now be on the line that calls the Add method, as shown in Figure 4.10:

Figure 4.10: Stepping into and over code

The difference between Step Into and Step Over can be seen when you are about to
execute a method call:

• If you click on Step Into, the debugger steps into the method so that you can
step through every line in that method.

• If you click on Step Over, the whole method is executed in one go; it does not
skip over the method without executing it.

Chapter 04

[151]

4. Click on Step Into to step inside the method.
5. Hover your mouse pointer over the a or b parameters in the code editing window and

note that a tooltip appears showing their current value.
6. Select the expression a * b, right-click the expression, and select Add to Watch or Add

Watch. The expression is added to the WATCH window, showing that this operator is
multiplying a by b to give the result 11.25.

7. In the WATCH or Watch 1 window, right-click the expression and choose Remove
Expression or Delete Watch.

8. Fix the bug by changing * to + in the Add function.
9. Stop debugging, recompile, and restart debugging by clicking the circular arrow

Restart button or pressing Ctrl or Cmd + Shift + F5.
10. Step over the function, take a minute to note how it now calculates correctly, and click

the Continue button or press F5.
11. With Visual Studio Code, note that when writing to the console during debugging,

the output appears in the DEBUG CONSOLE window instead of the TERMINAL
window, as shown in Figure 4.11:

Figure 4.11: Writing to the DEBUG CONSOLE during debugging

Customizing breakpoints
It is easy to make more complex breakpoints:

1. If you are still debugging, click the Stop button in the debugging toolbar, or navigate to
Run/Debug | Stop Debugging, or press Shift + F5.

2. Navigate to Run | Remove All Breakpoints or Debug | Delete All Breakpoints.
3. Click on the WriteLine statement that outputs the answer.
4. Set a breakpoint by pressing F9 or navigating to Run/Debug | Toggle Breakpoint.

Writing, Debugging, and Testing Functions

[152]

5. In Visual Studio Code, right-click the breakpoint and choose Edit Breakpoint..., and
then enter an expression, such as the answer variable must be greater than 9, and
note the expression must evaluate to true for the breakpoint to activate, as shown
in Figure 4.12:

Figure 4.12: Customizing a breakpoint with an expression using Visual Studio Code

6. In Visual Studio, right-click the breakpoint and choose Conditions..., and then enter an
expression, such as the answer variable must be greater than 9, and note the expression
must evaluate to true for the breakpoint to activate.

7. Start debugging and note the breakpoint is not hit.
8. Stop debugging.
9. Edit the breakpoint or its conditions and change its expression to less than 9.
10. Start debugging and note the breakpoint is hit.
11. Stop debugging.
12. Edit the breakpoint or its conditions, (in Visual Studio click Add condition) and select

Hit Count, then enter a number such as 3, meaning that you would have to hit the
breakpoint three times before it activates, as shown in Figure 4.13:

Figure 4.13: Customizing a breakpoint with an expression and hot count using Visual Studio 2022

Chapter 04

[153]

13. Hover your mouse over the breakpoint's red circle to see a summary, as shown in
Figure 4.14:

Figure 4.14: A summary of a customized breakpoint in Visual Studio Code

You have now fixed a bug using some debugging tools and seen some advanced possibilities
for setting breakpoints.

Logging during development and runtime
Once you believe that all the bugs have been removed from your code, you would then compile
a release version and deploy the application, so that people can use it. But no code is ever bug
free, and during runtime unexpected errors can occur.

End users are notoriously bad at remembering, admitting to, and then accurately describing
what they were doing when an error occurred, so you should not rely on them accurately
providing useful information to reproduce the problem to understand what caused the
problem and then fix it. Instead, you can instrument your code, which means logging events
of interest.

Understanding logging options
.NET includes some built-in ways to instrument your code by adding logging capabilities. We
will cover the basics in this book. But logging is an area where third parties have created a rich
ecosystem of powerful solutions that extend what Microsoft provides. I cannot make specific
recommendations because the best logging framework depends on your needs. But I include
some common ones in the following list:

• Apache log4net
• NLog
• Serilog

Good Practice: Add code throughout your application to log what is
happening, and especially when exceptions occur, so that you can review the
logs and use them to trace the issue and fix the problem. Although we will see
logging again in Chapter 10, Working with Data Using Entity Framework Core,
and in Chapter 15, Building Websites Using the Model-View-Controller Pattern,
logging is a huge topic, so we can only cover the basics in this book.

Writing, Debugging, and Testing Functions

[154]

Instrumenting with Debug and Trace
There are two types that can be used to add simple logging to your code: Debug and Trace.

Before we delve into them in more detail, let's look at a quick overview of each one:

• The Debug class is used to add logging that gets written only during development.
• The Trace class is used to add logging that gets written during both development and

runtime.

You have seen the use of the Console type and its WriteLine method write out to the console
window. There is also a pair of types named Debug and Trace that have more flexibility in
where they write out to.

The Debug and Trace classes write to any trace listener. A trace listener is a type that can be
configured to write output anywhere you like when the WriteLine method is called. There
are several trace listeners provided by .NET, including one that outputs to the console, and
you can even make your own by inheriting from the TraceListener type.

Writing to the default trace listener
One trace listener, the DefaultTraceListener class, is configured automatically and writes to
Visual Studio Code's DEBUG CONSOLE window or Visual Studio's Debug window. You can
configure other trace listeners using code.

Let's see trace listeners in action:

1. Use your preferred coding tool to add a new Console Application to the Chapter04
workspace/solution named Instrumenting.

2. In Visual Studio Code, select Instrumenting as the active OmniSharp project. When
you see the pop-up warning message saying that required assets are missing, click
Yes to add them.

3. In Program.cs, import the System.Diagnostics namespace.
4. Write a message from the Debug and Trace classes, as shown in the following code:

Debug.WriteLine("Debug says, I am watching!");
Trace.WriteLine("Trace says, I am watching!");

5. In Visual Studio, navigate to View | Output and make sure Show output from:
Debug is selected.

6. Start debugging the Instrumenting console application, and note that DEBUG
CONSOLE in Visual Studio Code or the Output window in Visual Studio 2022 shows
the two messages, mixed with other debugging information, such as loaded assembly
DLLs, as shown in Figures 4.15 and 4.16:

Chapter 04

[155]

Figure 4.15: Visual Studio Code DEBUG CONSOLE shows the two messages in blue

Figure 4.16: Visual Studio 2022 Output window shows Debug output including the two messages

Configuring trace listeners
Now, we will configure another trace listener that will write to a text file:

1. Before the Debug and Trace calls to WriteLine, add a statement to create a new text file
on the desktop and pass it into a new trace listener that knows how to write to a text file,
and enable automatic flushing for its buffer, as shown highlighted in the following code:

// write to a text file in the project folder
Trace.Listeners.Add(new TextWriterTraceListener(
 File.CreateText(Path.Combine(Environment.GetFolderPath(
 Environment.SpecialFolder.DesktopDirectory), "log.txt"))));

// text writer is buffered, so this option calls
// Flush() on all listeners after writing
Trace.AutoFlush = true;

Debug.WriteLine("Debug says, I am watching!");
Trace.WriteLine("Trace says, I am watching!");

Writing, Debugging, and Testing Functions

[156]

2. In Visual Studio Code, run the release configuration of the console app by entering the
following command in the TERMINAL window for the Instrumenting project and note
that nothing will appear to have happened:

dotnet run --configuration Release

3. In Visual Studio 2022, in the standard toolbar, select Release in the Solution
Configurations dropdown list, as shown in Figure 4.17:

Figure 4.17: Selecting the Release configuration in Visual Studio

4. In Visual Studio 2022, run the release configuration of the console app by navigating to
Debug | Start Without Debugging.

5. On your desktop, open the file named log.txt and note that it contains the message
Trace says, I am watching!.

6. In Visual Studio Code, run the debug configuration of the console app by entering the
following command in the TERMINAL window for the Instrumenting project:

dotnet run --configuration Debug

7. In Visual Studio, in the standard toolbar, select Debug in the Solution Configurations
dropdown list and then run the console app by navigating to Debug | Start
Debugging.

8. On your desktop, open the file named log.txt and note that it contains both the
message, Debug says, I am watching! and Trace says, I am watching!.

Good Practice: Any type that represents a file usually implements
a buffer to improve performance. Instead of writing immediately
to the file, data is written to an in-memory buffer and only once the
buffer is full will it be written in one chunk to the file. This behavior
can be confusing while debugging because we do not immediately
see the results! Enabling AutoFlush means it calls the Flush method
automatically after every write.

Good Practice: When running with the Debug configuration, both Debug and
Trace are active and will write to any trace listeners. When running with the
Release configuration, only Trace will write to any trace listeners. You can
therefore use Debug.WriteLine calls liberally throughout your code, knowing
they will be stripped out automatically when you build the release version of
your application and will therefore not affect performance.

Chapter 04

[157]

Switching trace levels
The Trace.WriteLine calls are left in your code even after release. So, it would be great to have
fine control over when they are output. This is something we can do with a trace switch.

The value of a trace switch can be set using a number or a word. For example, the number 3 can
be replaced with the word Info, as shown in the following table:

Number Word Description
0 Off This will output nothing.
1 Error This will output only errors.
2 Warning This will output errors and warnings.
3 Info This will output errors, warnings, and information.
4 Verbose This will output all levels.

Let's explore using trace switches. First, we will add some NuGet packages to our project to
enable loading configuration settings from a JSON appsettings file.

Adding packages to a project in Visual Studio Code
Visual Studio Code does not have a mechanism to add NuGet packages to a project, so we will
use the command-line tool:

1. Navigate to the TERMINAL window for the Instrumenting project.
2. Enter the following command:

dotnet add package Microsoft.Extensions.Configuration

3. Enter the following command:
dotnet add package Microsoft.Extensions.Configuration.Binder

4. Enter the following command:
dotnet add package Microsoft.Extensions.Configuration.Json

5. Enter the following command:

dotnet add package Microsoft.Extensions.Configuration.FileExtensions

dotnet add package adds a reference to a NuGet package to your project
file. It will be downloaded during the build process. dotnet add reference
adds a project-to-project reference to your project file. The referenced project
will be compiled if needed during the build process.

Writing, Debugging, and Testing Functions

[158]

Adding packages to a project in Visual Studio 2022
Visual Studio has a graphical user interface for adding packages.

1. In Solution Explorer, right-click the Instrumenting project and select Manage NuGet
Packages.

2. Select the Browse tab.
3. In the search box, enter Microsoft.Extensions.Configuration.
4. Select each of these NuGet packages and click the Install button, as shown in Figure 4.18:

1. Microsoft.Extensions.Configuration

2. Microsoft.Extensions.Configuration.Binder

3. Microsoft.Extensions.Configuration.Json

4. Microsoft.Extensions.Configuration.FileExtensions

Figure 4.18: Installing NuGet packages using Visual Studio 2022

Reviewing project packages
After adding the NuGet packages, we can see the references in the project file:

1. Open Instrumenting.csproj (double-click the Instrumenting project in Visual Studio's
Solution Explorer) and note the <ItemGroup> section with the added NuGet packages,
as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

Good Practice: There are also packages for loading configuration from XML
files, INI files, environment variables, and the command line. Use the most
appropriate technique for setting configuration in your projects.

Chapter 04

[159]

 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference
 Include="Microsoft.Extensions.Configuration"
 Version="6.0.0" />
 <PackageReference
 Include="Microsoft.Extensions.Configuration.Binder"
 Version="6.0.0" />
 <PackageReference
 Include="Microsoft.Extensions.Configuration.FileExtensions"
 Version="6.0.0" />
 <PackageReference
 Include="Microsoft.Extensions.Configuration.Json"
 Version="6.0.0" />
 </ItemGroup>

</Project>

2. Add a file named appsettings.json to the Instrumenting project folder.
3. Modify appsettings.json to define a setting named PacktSwitch with a Level value, as

shown in the following code:
{
 "PacktSwitch": {
 "Level": "Info"
 }
}

4. In Visual Studio 2022, in Solution Explorer, right-click appsettings.json, select
Properties, and then in the Properties window, change Copy to Output Directory to
Copy if newer. This is necessary because unlike Visual Studio Code, which runs the
console app in the project folder, Visual Studio runs the console app in Instrumenting\
bin\Debug\net6.0 or Instrumenting\bin\Release\net6.0.

5. At the top of Program.cs, import the Microsoft.Extensions.Configuration namespace.
6. Add some statements to the end of Program.cs to create a configuration builder that

looks in the current folder for a file named appsettings.json, build the configuration,
create a trace switch, set its level by binding to the configuration, and then output the
four trace switch levels, as shown in the following code:

ConfigurationBuilder builder = new();

builder.SetBasePath(Directory.GetCurrentDirectory())

Writing, Debugging, and Testing Functions

[160]

 .AddJsonFile("appsettings.json",
 optional: true, reloadOnChange: true);

IConfigurationRoot configuration = builder.Build();

TraceSwitch ts = new(
 displayName: "PacktSwitch",
 description: "This switch is set via a JSON config.");

configuration.GetSection("PacktSwitch").Bind(ts);

Trace.WriteLineIf(ts.TraceError, "Trace error");
Trace.WriteLineIf(ts.TraceWarning, "Trace warning");
Trace.WriteLineIf(ts.TraceInfo, "Trace information");
Trace.WriteLineIf(ts.TraceVerbose, "Trace verbose");

7. Set a breakpoint on the Bind statement.
8. Start debugging the Instrumenting console app.In the VARIABLES or Locals window,

expand the ts variable expression, and note that its Level is Off and its TraceError,
TraceWarning, and so on are all false, as shown in Figure 4.19:

Figure 4.19: Watching the trace switch variable properties in Visual Studio 2022

9. Step into the call to the Bind method by clicking the Step Into or Step Over buttons
or pressing F11 or F10, and note the ts variable watch expression updates to the Info
level.

Chapter 04

[161]

10. Step into or over the four calls to Trace.WriteLineIf and note that all levels up to Info
are written to the DEBUG CONSOLE or Output - Debug window, but not Verbose, as
shown in Figure 4.20:

Figure 4.20: Different trace levels shown in the DEBUG CONSOLE in Visual Studio Code

11. Stop debugging.
12. Modify appsettings.json to set a level of 2, which means warning, as shown in

the following JSON file:
{
 "PacktSwitch": {
 "Level": "2"
 }
}

13. Save the changes.
14. In Visual Studio Code, run the console application by entering the following command

in the TERMINAL window for the Instrumenting project:

dotnet run --configuration Release

15. In Visual Studio, in the standard toolbar, select Release in the Solution
Configurations dropdown list and then run the console app by navigating to Debug |
Start Without Debugging.

16. Open the file named log.txt and note that this time, only trace error and
warning levels are the output of the four potential trace levels, as shown in the
following text file:

Trace says, I am watching!
Trace error
Trace warning

If no argument is passed, the default trace switch level is Off (0), so none of the switch levels
are output.

Writing, Debugging, and Testing Functions

[162]

Unit testing
Fixing bugs in code is expensive. The earlier that a bug is discovered in the development
process, the less expensive it will be to fix.

Unit testing is a good way to find bugs early in the development process. Some developers
even follow the principle that programmers should create unit tests before they write code,
and this is called Test-Driven Development (TDD).

Microsoft has a proprietary unit testing framework known as MS Test. There is also a
framework named NUnit. However, we will use the free and open-source third-party
framework xUnit.net. xUnit was created by the same team that built NUnit but they fixed the
mistakes they felt they made previously. xUnit is more extensible and has better community
support.

Understanding types of testing
Unit testing is just one of many types of testing, as described in the following table:

Type of testing Description
Unit Tests the smallest unit of code, typically a method or function. Unit testing is

performed on a unit of code isolated from its dependencies by mocking them
if needed. Each unit should have multiple tests: some with typical inputs and
expected outputs, some with extreme input values to test boundaries, and some
with deliberately wrong inputs to test exception handling.

Integration Tests if the smaller units and larger components work together as a single piece of
software. Sometimes involves integrating with external components that you do
not have source code for.

System Tests the whole system environment in which your software will run.
Performance Tests the performance of your software; for example, your code must return a web

page full of data to a visitor in under 20 milliseconds.
Load Tests how many requests your software can handle simultaneously while

maintaining required performance, for example, 10,000 concurrent visitors to a
website.

User Acceptance Tests if users can happily complete their work using your software.

Creating a class library that needs testing
First, we will create a function that needs testing. We will create it in a class library project.
A class library is a package of code that can be distributed and referenced by other .NET
applications:

1. Use your preferred coding tool to add a new Class Library to the Chapter04
workspace/solution named CalculatorLib. The dotnet new template is named
classlib.

2. Rename the file named Class1.cs to Calculator.cs.

Chapter 04

[163]

3. Modify the file to define a Calculator class (with a deliberate bug!), as shown in
the following code:

namespace Packt
{
 public class Calculator
 {
 public double Add(double a, double b)
 {
 return a * b;
 }
 }
}

4. Compile your class library project:
1. In Visual Studio 2022, navigate to Build | Build CalculatorLib.
2. In Visual Studio Code, in TERMINAL, enter the command dotnet build.

5. Use your preferred coding tool to add a new xUnit Test Project [C#] to the
Chapter04 workspace/solution named CalculatorLibUnitTests. The dotnet new
template is named xunit.

6. If you are using Visual Studio, in Solution Explorer, select the
CalculatorLibUnitTests project, navigate to Project | Add Project Reference…, check
the box to select the CalculatorLib project, and then click OK.

7. If you are using Visual Studio Code, use the dotnet add reference command or
click on the file named CalculatorLibUnitTests.csproj, and modify the configuration
to add an item group with a project reference to the CalculatorLib project, as shown
highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>

 <IsPackable>false</IsPackable>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.10.0" />
 <PackageReference Include="xunit" Version="2.4.1" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.4.3">
 <IncludeAssets>runtime; build; native; contentfiles;
 analyzers; buildtransitive</IncludeAssets>
 <PrivateAssets>all</PrivateAssets>
 </PackageReference>
 <PackageReference Include="coverlet.collector" Version="3.0.2">

Writing, Debugging, and Testing Functions

[164]

 <IncludeAssets>runtime; build; native; contentfiles;
 analyzers; buildtransitive</IncludeAssets>
 <PrivateAssets>all</PrivateAssets>
 </PackageReference>
 </ItemGroup>

 <ItemGroup>
 <ProjectReference
 Include="..\CalculatorLib\CalculatorLib.csproj" />
 </ItemGroup>
</Project>

8. Build the CalculatorLibUnitTests project.

Writing unit tests
A well-written unit test will have three parts:

• Arrange: This part will declare and instantiate variables for input and output.
• Act: This part will execute the unit that you are testing. In our case, that means calling

the method that we want to test.
• Assert: This part will make one or more assertions about the output. An assertion is

a belief that, if not true, indicates a failed test. For example, when adding 2 and 2, we
would expect the result to be 4.

Now, we will write some unit tests for the Calculator class:

1. Rename the file UnitTest1.cs to CalculatorUnitTests.cs and then open it.
2. In Visual Studio Code, rename the class to CalculatorUnitTests. (Visual Studio

prompts you to rename the class when you rename the file.)
3. Import the Packt namespace.
4. Modify the CalculatorUnitTests class to have two test methods for adding 2

and 2, and adding 2 and 3, as shown in the following code:

using Packt;
using Xunit;

namespace CalculatorLibUnitTests
{
 public class CalculatorUnitTests
 {

Chapter 04

[165]

 [Fact]
 public void TestAdding2And2()
 {
 // arrange
 double a = 2;
 double b = 2;
 double expected = 4;
 Calculator calc = new();

 // act
 double actual = calc.Add(a, b);

 // assert
 Assert.Equal(expected, actual);
 }

 [Fact]
 public void TestAdding2And3()
 {
 // arrange
 double a = 2;
 double b = 3;
 double expected = 5;
 Calculator calc = new();

 // act
 double actual = calc.Add(a, b);

 // assert
 Assert.Equal(expected, actual);
 }
 }
}

Running unit tests using Visual Studio Code
Now we are ready to run the unit tests and see the results:

1. In the CalculatorLibUnitTest project's TERMINAL window, run the tests, as shown in
the following command:

dotnet test

Writing, Debugging, and Testing Functions

[166]

2. Note that the results indicate that two tests ran, one test passed, and one test failed, as
shown in Figure 4.21:

Figure 4.21: The unit test results in Visual Studio Code's TERMINAL

Running unit tests using Visual Studio
Now we are ready to run the unit tests and see the results:

1. Navigate to Test | Run All Tests.
2. In Test Explorer, note that the results indicate that two tests ran, one test passed, and

one test failed, as shown in Figure 4.22:

Figure 4.22: The unit test results in Visual Studio 2022's Test Explorer

Fix the bug
Now you can fix the bug:

1. Fix the bug in the Add method.
2. Run the unit tests again to see that the bug has now been fixed and both tests pass.

Chapter 04

[167]

Throwing and catching exceptions in functions
In Chapter 3, Controlling Flow, Converting Types, and Handling Exceptions, you were introduced
to exceptions and how to use a try-catch statement to handle them. But you should only catch
and handle an exception if you have enough information to mitigate the issue. If you do not,
then you should allow the exception to pass up through the call stack to a higher level.

Understanding usage errors and execution errors
Usage errors are when a programmer misuses a function, typically by passing invalid values
as parameters. They could be avoided by that programmer changing their code to pass valid
values. When some programmers first learn C# and .NET, they sometimes think exceptions can
always be avoided because they assume all errors are usage errors. Usage errors should all be
fixed before production runtime.

Execution errors are when something happens at runtime that cannot be fixed by writing
"better" code. Execution errors can be split into program errors and system errors. If you
attempt to access a network resource but the network is down, you need to be able to handle
that system error by logging an exception, and possibly backing off for a time and trying again.
But some system errors, such as running out of memory, simply cannot be handled. If you
attempt to open a file that does not exist, you might be able to catch that error and handle it
programmatically by creating a new file. Program errors can be programmatically fixed by
writing smart code. System errors often cannot be fixed programmatically.

Commonly thrown exceptions in functions
Very rarely should you define new types of exceptions to indicate usage errors. .NET already
defines many that you should use.

When defining your own functions with parameters, your code should check the parameter
values and throw exceptions if they have values that will prevent your function from properly
functioning.

For example, if a parameter should not be null, throw ArgumentNullException. For other
problems, throw ArgumentException, NotSupportedException, or InvalidOperationException.
For any exception, include a message that describes the problem for whoever will have to read
it (typically a developer audience for class libraries and functions, or end users if it is at the
highest level of a GUI app), as shown in the following code:

static void Withdraw(string accountName, decimal amount)
{
 if (accountName is null)
 {
 throw new ArgumentNullException(paramName: nameof(accountName));
 }

 if (amount < 0)

Writing, Debugging, and Testing Functions

[168]

 {
 throw new ArgumentException(
 message: $"{nameof(amount)} cannot be less than zero.");
 }

 // process parameters
}

You should never need to write a try-catch statement to catch these usage type errors. You
want the application to terminate. These exceptions should cause the programmer who is
calling the function to fix their code to prevent the problem. They should be fixed before
production deployment. That does not mean that your code does not need to throw usage error
type exceptions. You should—to force other programmers to call your functions correctly!

Understanding the call stack
The entry point for a .NET console application is the Main method of the Program class,
regardless of if you have explicitly defined this class and method or if it was created for you by
the top-level program feature.

The Main method will call other methods, that call other methods, and so on, and these methods
could be in the current project or in referenced projects and NuGet packages, as shown in
Figure 4.23:

Figure 4.23: A chain of method calls that create a call stack

Let's create a similar chain of methods to explore where we could catch and handle exceptions:

Good Practice: If a function cannot successfully perform its operation, you
should consider that a function failure and report it by throwing an exception.

Chapter 04

[169]

1. Use your preferred coding tool to add a new Class Library to the Chapter04
workspace/solution named CallStackExceptionHandlingLib.

2. Rename the Class1.cs file to Calculator.cs.
3. Open Calculator.cs and modify its contents, as shown in the following code:

using static System.Console;

namespace Packt;

public class Calculator
{
 public static void Gamma() // public so it can be called from outside
 {
 WriteLine("In Gamma");
 Delta();
 }

 private static void Delta() // private so it can only be called internally
 {
 WriteLine("In Delta");
 File.OpenText("bad file path");
 }
}

4. Use your preferred coding tool to add a new Console Application to the
Chapter04 workspace/solution named CallStackExceptionHandling.

5. In Visual Studio Code, select CallStackExceptionHandling as the active
OmniSharp project. When you see the pop-up warning message saying that required
assets are missing, click Yes to add them.

6. In the CallStackExceptionHandling project, add a reference to the
CallStackExceptionHandlingLib project.

7. In Program.cs, add statements to define two methods and chain calls to them,
and the methods in the class library, as shown in the following code:

using Packt;

using static System.Console;

WriteLine("In Main");
Alpha();

static void Alpha()
{
 WriteLine("In Alpha");
 Beta();
}

Writing, Debugging, and Testing Functions

[170]

static void Beta()
{
 WriteLine("In Beta");
 Calculator.Gamma();
}

8. Run the console app, and note the results, as shown in the following partial output:

In Main
In Alpha
In Beta
In Gamma
In Delta
Unhandled exception. System.IO.FileNotFoundException: Could not find file
'C:\Code\Chapter04\CallStackExceptionHandling\bin\Debug\net6.0\bad file
path'.
 at Microsoft.Win32.SafeHandles.SafeFileHandle.CreateFile(...
 at Microsoft.Win32.SafeHandles.SafeFileHandle.Open(...
 at System.IO.Strategies.OSFileStreamStrategy..ctor(...
 at System.IO.Strategies.FileStreamHelpers.ChooseStrategyCore(...
 at System.IO.Strategies.FileStreamHelpers.ChooseStrategy(...
 at System.IO.StreamReader.ValidateArgsAndOpenPath(...
 at System.IO.File.OpenText(String path) in ...
 at Packt.Calculator.Delta() in C:\Code\Chapter04\
CallStackExceptionHandlingLib\Calculator.cs:line 16
 at Packt.Calculator.Gamma() in C:\Code\Chapter04\
CallStackExceptionHandlingLib\Calculator.cs:line 10
 at <Program>$.<<Main>$>g__Beta|0_1() in C:\Code\Chapter04\
CallStackExceptionHandling\Program.cs:line 16
 at <Program>$.<<Main>$>g__Alpha|0_0() in C:\Code\Chapter04\
CallStackExceptionHandling\Program.cs:line 10
 at <Program>$.<Main>$(String[] args) in C:\Code\Chapter04\
CallStackExceptionHandling\Program.cs:line 5

Note the following:

• The call stack is upside-down. Starting from the bottom, you see:
• The first call is to the Main entry point function in the auto-generated Program

class. This is where arguments are passed in as a string array.
• The second call is to the Alpha function.
• The third call is to the Beta function.
• The fourth call is to the Gamma function.
• The fifth call is to the Delta function. This function attempts to open a file by

passing a bad file path. This causes an exception to be thrown. Any function
with a try-catch statement could catch this exception. If they do not, it is
automatically passed up the call stack until it reaches the top, where .NET
outputs the exception (and the details of this call stack).

Chapter 04

[171]

Where to catch exceptions
Programmers can decide if they want to catch an exception near the failure point, or centralized
higher up the call stack. This allows your code to be simplified and standardized. You might
know that calling an exception could throw one or more types of exception, but you do not
need to handle any of them at the current point in the call stack.

Rethrowing exceptions
Sometimes you want to catch an exception, log it, and then rethrow it. There are three ways to
rethrow an exception inside a catch block, as shown in the following list:

1. To throw the caught exception with its original call stack, call throw.
2. To throw the caught exception as if it was thrown at the current level in the call stack,

call throw with the caught exception, for example, throw ex. This is usually poor
practice because you have lost some potentially useful information for debugging.

3. To wrap the caught exception in another exception that can include more information
in a message that might help the caller understand the problem, throw a new exception
and pass the caught exception as the innerException parameter.

If an error could occur when we call the Gamma function then we could catch the exception and
then perform one of the three techniques of rethrowing an exception, as shown in the following
code:

try
{
 Gamma();
}
catch (IOException ex)
{
 LogException(ex);

 // throw the caught exception as if it happened here
 // this will lose the original call stack
 throw ex;

 // rethrow the caught exception and retain its original call stack
 throw;

 // throw a new exception with the caught exception nested within it
 throw new InvalidOperationException(
 message: "Calculation had invalid values. See inner exception for why.",
 innerException: ex);
}

Writing, Debugging, and Testing Functions

[172]

Let's see this in action with our call stack example:

1. In the CallStackExceptionHandling project, in Program.cs, in the Beta function, add a
try-catch statement around the call to the Gamma function, as shown highlighted in the
following code:

static void Beta()
{
 WriteLine("In Beta");

 try
 {
 Calculator.Gamma();
 }
 catch (Exception ex)
 {
 WriteLine($"Caught this: {ex.Message}");
 throw ex;
 }
}

2. Note the green squiggle under the ex to warn you that you will lose call stack
information.

3. Run the console app and note the output excludes some details of the call stack, as
shown in the following output:

Caught this: Could not find file 'C:\Code\Chapter04\
CallStackExceptionHandling\bin\Debug\net6.0\bad file path'.
Unhandled exception. System.IO.FileNotFoundException: Could not find file
'C:\Code\Chapter04\CallStackExceptionHandling\bin\Debug\net6.0\bad file
path'.
File name: 'C:\Code\Chapter04\CallStackExceptionHandling\bin\Debug\net6.0\
bad file path'
 at <Program>$.<<Main>$>g__Beta|0_1() in C:\Code\Chapter04\
CallStackExceptionHandling\Program.cs:line 25
 at <Program>$.<<Main>$>g__Alpha|0_0() in C:\Code\Chapter04\
CallStackExceptionHandling\Program.cs:line 11
 at <Program>$.<Main>$(String[] args) in C:\Code\Chapter04\
CallStackExceptionHandling\Program.cs:line 6

4. Delete the ex when rethrowing.
5. Run the console app and note the output includes all the details of the call stack.

Chapter 04

[173]

Implementing the tester-doer pattern
The tester-doer pattern can avoid some thrown exceptions (but not eliminate them completely).
This pattern uses pairs of functions: one to perform a test, the other to perform an action that
would fail if the test is not passed.

.NET implements this pattern itself. For example, before adding an item to a collection by
calling the Add method, you can test to see if it is read-only, which would cause Add to fail and
therefore throw an exception.

For example, before withdrawing money from a bank account, you might test that the account
is not overdrawn, as shown in the following code:

if (!bankAccount.IsOverdrawn())
{
 bankAccount.Withdraw(amount);
}

Problems with the tester-doer pattern
The tester-doer pattern can add performance overhead, so you can also implement the try
pattern, which in effect combines the test and do parts into a single function, as we saw with
TryParse.

Another problem with the tester-doer pattern occurs when you are using multiple threads.
In this scenario, one thread could call the test function and it returns okay. But then another
thread executes that changes the state. Then the original thread continues executing assuming
everything is fine, but it is not fine. This is called a race condition. We will see how we could
handle it in Chapter 12, Improving Performance and Scalability Using Multitasking.

If you implement your own try pattern function and it fails, remember to set the out parameter
to the default value of its type and then return false, as shown in the following code:

static bool TryParse(string? input, out Person value)
{
 if (someFailure)
 {
 value = default(Person);
 return false;
 }

 // successfully parsed the string into a Person
 value = new Person() { ... };
 return true;
}

Writing, Debugging, and Testing Functions

[174]

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore with deeper research into the topics covered in this chapter.

Exercise 4.1 – Test your knowledge
Answer the following questions. If you get stuck, try Googling the answers if necessary, while
remembering that if you get totally stuck, the answers are in the Appendix:

1. What does the C# keyword void mean?
2. What are some differences between imperative and functional programming styles?
3. In Visual Studio Code or Visual Studio, what is the difference between pressing

F5, Ctrl or Cmd + F5, Shift + F5, and Ctrl or Cmd + Shift + F5?
4. Where does the Trace.WriteLine method write its output to?
5. What are the five trace levels?
6. What is the difference between the Debug and Trace classes?
7. When writing a unit test, what are the three "A"s?
8. When writing a unit test using xUnit, what attribute must you decorate the test

methods with?
9. What dotnet command executes xUnit tests?
10. What statement should you use to rethrow a caught exception named ex without losing

the stack trace?

Exercise 4.2 – Practice writing functions with
debugging and unit testing
Prime factors are the combination of the smallest prime numbers that, when multiplied
together, will produce the original number. Consider the following example:

• Prime factors of 4 are: 2 x 2
• Prime factors of 7 are: 7
• Prime factors of 30 are: 5 x 3 x 2
• Prime factors of 40 are: 5 x 2 x 2 x 2
• Prime factors of 50 are: 5 x 5 x 2

Create a workspace/solution named PrimeFactors to contain three projects: a class library
with a method named PrimeFactors that, when passed an int variable as a parameter, returns
a string showing its prime factors; a unit tests project; and a console application to use it.

To keep it simple, you can assume that the largest number entered will be 1,000.

Chapter 04

[175]

Use the debugging tools and write unit tests to ensure that your function works correctly
with multiple inputs and returns the correct output.

Exercise 4.3 – Explore topics
Use the links on the following page to learn more detail about the topics covered in this
chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-4---
writing-debugging-and-testing-functions

Summary
In this chapter, you learned how to write reusable functions with input parameters and return
values, in both an imperative and functional style, and then how to use the Visual Studio and
Visual Studio Code debugging and diagnostic features to fix any bugs in them. Finally, you
learned how to throw and catch exceptions in functions and understand the call stack.

In the next chapter, you will learn how to build your own types using object-oriented
programming techniques.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-4---writing-debugging-and-testing-functions
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-4---writing-debugging-and-testing-functions

[177]

05
Building Your Own Types with
Object-Oriented Programming

This chapter is about making your own types using object-oriented programming (OOP).
You will learn about all the different categories of members that a type can have, including
fields to store data and methods to perform actions. You will use OOP concepts such as
aggregation and encapsulation. You will also learn about language features such as tuple
syntax support, out variables, inferred tuple names, and default literals.

This chapter will cover the following topics:

• Talking about OOP
• Building class libraries
• Storing data with fields
• Writing and calling methods
• Controlling access with properties and indexers
• Pattern matching with objects
• Working with records

Talking about OOP
An object in the real world is a thing, such as a car or a person, whereas an object in
programming often represents something in the real world, such as a product or bank account,
but this can also be something more abstract.

In C#, we use the class (mostly) or struct (sometimes) C# keywords to define a type of object.
You will learn about the difference between classes and structs in Chapter 6, Implementing
Interfaces and Inheriting Classes. You can think of a type as being a blueprint or template for an
object.

Building Your Own Types with Object-Oriented Programming

[178]

The concepts of OOP are briefly described here:

• Encapsulation is the combination of the data and actions that are related to an object.
For example, a BankAccount type might have data, such as Balance and AccountName,
as well as actions, such as Deposit and Withdraw. When encapsulating, you often want
to control what can access those actions and the data, for example, restricting how the
internal state of an object can be accessed or modified from the outside.

• Composition is about what an object is made of. For example, a Car is composed of
different parts, such as four Wheel objects, several Seat objects, and an Engine.

• Aggregation is about what can be combined with an object. For example, a Person is
not part of a Car object, but they could sit in the driver's Seat and then become the car's
Driver—two separate objects that are aggregated together to form a new component.

• Inheritance is about reusing code by having a subclass derive from a base or
superclass. All functionality in the base class is inherited by and becomes available in
the derived class. For example, the base or super Exception class has some members
that have the same implementation across all exceptions, and the sub or derived
SqlException class inherits those members and has extra members only relevant to
when a SQL database exception occurs, like a property for the database connection.

• Abstraction is about capturing the core idea of an object and ignoring the details or
specifics. C# has the abstract keyword that formalizes this concept. If a class is not
explicitly abstract, then it can be described as being concrete. Base or superclasses are
often abstract, for example, the superclass Stream is abstract, and its subclasses, like
FileStream and MemoryStream, are concrete. Only concrete classes can be used to create
objects; abstract classes can only be used as the base for other classes because they are
missing some implementation. Abstraction is a tricky balance. If you make a class more
abstract, more classes will be able to inherit from it, but at the same time, there will be
less functionality to share.

• Polymorphism is about allowing a derived class to override an inherited action to
provide custom behavior.

Building class libraries
Class library assemblies group types together into easily deployable units (DLL files). Apart
from when you learned about unit testing, you have only created console applications or .NET
Interactive notebooks to contain your code. To make the code that you write reusable across
multiple projects, you should put it in class library assemblies, just like Microsoft does.

Creating a class library
The first task is to create a reusable .NET class library:

1. Use your preferred coding tool to create a new class library, as defined in the following
list:

1. Project template: Class Library / classlib

Chapter 05

[179]

2. Workspace/solution file and folder: Chapter05
3. Project file and folder: PacktLibrary

2. Open the PacktLibrary.csproj file, and note that by default class libraries target .NET 6
and therefore can only work with other .NET 6-compatible assemblies, as shown in the
following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

</Project>

3. Modify the framework to target .NET Standard 2.0 and remove the entries that enable
nullable and implicit usings, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 </PropertyGroup>

</Project>

4. Save and close the file.
5. Delete the file named Class1.cs.
6. Compile the project so that other projects can reference it later:

1. In Visual Studio Code, enter the following command: dotnet build.
2. In Visual Studio, navigate to Build | Build PacktLibrary.

Defining a class in a namespace
The next task is to define a class that will represent a person:

1. Add a new class file named Person.cs.
2. Statically import System.Console.
3. Set the namespace to Packt.Shared.

Good Practice: To use the latest C# language and .NET platform features, put
types in a .NET 6 class library. To support legacy .NET platforms like .NET
Core, .NET Framework, and Xamarin, put types that you might reuse in a.NET
Standard 2.0 class library.

Building Your Own Types with Object-Oriented Programming

[180]

Your class file should now look like the following code:

using System;
using static System.Console;

namespace Packt.Shared
{
 public class Person
 {
 }
}

Note that the C# keyword public is applied before class. This keyword is an access modifier,
and it allows for any other code to access this class.

If you do not explicitly apply the public keyword, then it will only be accessible within the
assembly that defined it. This is because the implicit access modifier for a class is internal. We
need this class to be accessible outside the assembly, so we must make sure it is public.

Simplifying namespace declarations
To simplify your code if you are targeting .NET 6.0 and therefore using C# 10 or later, you
can end a namespace declaration with a semi-colon and remove the braces, as shown in the
following code:

using System;

namespace Packt.Shared; // the class in this file is in this namespace

public class Person
{
}

This is known as a file-scoped namespace declaration. You can only have one file-scoped
namespace per file. We will use this in a class library that targets .NET 6.0 later in this chapter.

Good Practice: We're doing this because it is important to put your classes in
a logically named namespace. A better namespace name would be domain-
specific, for example, System.Numerics for types related to advanced
numbers. In this case, the types we will create are Person, BankAccount, and
WondersOfTheWorld and they do not have a typical domain so we will use the
more generic Packt.Shared.

Chapter 05

[181]

Understanding members
This type does not yet have any members encapsulated within it. We will create some over the
following pages. Members can be fields, methods, or specialized versions of both. You'll find a
description of them here:

• Fields are used to store data. There are also three specialized categories of field, as
shown in the following bullets:

• Constant: The data never changes. The compiler literally copies the data into
any code that reads it.

• Read-only: The data cannot change after the class is instantiated, but the data
can be calculated or loaded from an external source at the time of instantiation.

• Event: The data references one or more methods that you want to execute
when something happens, such as clicking on a button or responding to a
request from some other code. Events will be covered in Chapter 6, Implementing
Interfaces and Inheriting Classes.

• Methods are used to execute statements. You saw some examples when you learned
about functions in Chapter 4, Writing, Debugging, and Testing Functions. There are also
four specialized categories of method:

• Constructor: The statements execute when you use the new keyword to allocate
memory to instantiate a class.

• Property: The statements execute when you get or set data. The data is
commonly stored in a field but could be stored externally or calculated at
runtime. Properties are the preferred way to encapsulate fields unless the
memory address of the field needs to be exposed.

• Indexer: The statements execute when you get or set data using "array" syntax
[].

• Operator: The statements execute when you use an operator like + and / on
operands of your type.

Instantiating a class
In this section, we will make an instance of the Person class.

Good Practice: Put each type that you create in its own file so that you can use
file-scoped namespace declarations.

Building Your Own Types with Object-Oriented Programming

[182]

Referencing an assembly
Before we can instantiate a class, we need to reference the assembly that contains it from
another project. We will use the class in a console app:

1. Use your preferred coding tool to add a new console app to the Chapter05 workspace/
solution named PeopleApp.

2. If you are using Visual Studio Code:
1. Select PeopleApp as the active OmniSharp project. When you see the pop-up

warning message saying that required assets are missing, click Yes to add them.
2. Edit PeopleApp.csproj to add a project reference to PacktLibrary, as shown

highlighted in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference Include="../PacktLibrary/PacktLibrary.csproj" />
 </ItemGroup>

</Project>

3. In a terminal, enter a command to compile the PeopleApp project and its
dependency PacktLibrary project, as shown in the following command:

dotnet build

3. If you are using Visual Studio:
1. Set the startup project for the solution to the current selection.
2. In Solution Explorer, select the PeopleApp project, navigate to Project | Add

Project Reference…, check the box to select the PacktLibrary project, and then
click OK.

3. Navigate to Build | Build PeopleApp.

Importing a namespace to use a type
Now, we are ready to write statements to work with the Person class:

1. In the PeopleApp project/folder, open Program.cs.

Chapter 05

[183]

2. At the top of the Program.cs file, delete the comment, and add statements to import the
namespace for our Person class and statically import the Console class, as shown in the
following code:

using Packt.Shared;
using static System.Console;

3. In Program.cs, add statements to:
• Create an instance of the Person type.
• Output the instance using a textual description of itself.

The new keyword allocates memory for the object and initializes any internal data. We
could use var in place of the Person class name, but then we would need to specify
Person after the new keyword, as shown in the following code:

// var bob = new Person(); // C# 1.0 or later
Person bob = new(); // C# 9.0 or later
WriteLine(bob.ToString());

You might be wondering, "Why does the bob variable have a method named ToString?
The Person class is empty!" Don't worry, we're about to find out!

4. Run the code and view the result, as shown in the following output:

Packt.Shared.Person

Understanding objects
Although our Person class did not explicitly choose to inherit from a type, all types ultimately
inherit directly or indirectly from a special type named System.Object.

The implementation of the ToString method in the System.Object type simply outputs the full
namespace and type name.

Back in the original Person class, we could have explicitly told the compiler that Person inherits
from the System.Object type, as shown in the following code:

public class Person : System.Object

When class B inherits from class A, we say that A is the base or superclass and B is the derived
or subclass. In this case, System.Object is the base or superclass and Person is the derived or
subclass.

You can also use the C# alias keyword object, as shown in the following code:

public class Person : object

Building Your Own Types with Object-Oriented Programming

[184]

Inheriting from System.Object
Let's make our class explicitly inherit from object and then review what members all objects
have:

1. Modify your Person class to explicitly inherit from object.
2. Click inside the object keyword and press F12, or right-click on the object keyword

and choose Go to Definition.

You will see the Microsoft-defined System.Object type and its members. This is something you
don't need to understand the details of yet, but notice that it has a method named ToString, as
shown in Figure 5.1:

Figure 5.1: System.Object class definition

Storing data within fields
In this section, we will be defining a selection of fields in the class to store information about a
person.

Defining fields
Let's say that we have decided that a person is composed of a name and a date of birth. We
will encapsulate these two values inside a person, and the values will be visible outside it.

Good Practice: Assume other programmers know that if inheritance is not
specified, the class will inherit from System.Object.

Chapter 05

[185]

Inside the Person class, write statements to declare two public fields for storing a person's name
and date of birth, as shown in the following code:

public class Person : object
{
 // fields
 public string Name;
 public DateTime DateOfBirth;
}

You can use any type for a field, including arrays and collections such as lists and dictionaries.
These would be used if you needed to store multiple values in one named field. In this
example, a person only has one name and one date of birth.

Understanding access modifiers
Part of encapsulation is choosing how visible the members are.

Note that, as we did with the class, we explicitly applied the public keyword to these fields. If
we hadn't, then they would be implicitly private to the class, which means they are accessible
only inside the class.

There are four access modifier keywords, and two combinations of access modifier keywords
that you can apply to a class member, like a field or method, as shown in the following table:

Access Modifier Description
private Member is accessible inside the type only. This is the default.
internal Member is accessible inside the type and any type in the same assembly.
protected Member is accessible inside the type and any type that inherits from the type.
public Member is accessible everywhere.
internal

protected

Member is accessible inside the type, any type in the same assembly, and any
type that inherits from the type. Equivalent to a fictional access modifier named
internal_or_protected.

private

protected

Member is accessible inside the type and any type that inherits from the type
and is in the same assembly. Equivalent to a fictional access modifier named
internal_and_protected. This combination is only available with C# 7.2 or
later.

Good Practice: Explicitly apply one of the access modifiers to all type
members, even if you want to use the implicit access modifier for members,
which is private. Additionally, fields should usually be private or
protected, and you should then create public properties to get or set the
field values. This is because it controls access. You will do this later in the
chapter.

Building Your Own Types with Object-Oriented Programming

[186]

Setting and outputting field values
Now we will use those fields in your code:

1. At the top of Program.cs, make sure the System namespace is imported. We need to do
this to use the DateTime type.

2. After instantiating bob, add statements to set his name and date of birth, and then
output those fields formatted nicely, as shown in the following code:

bob.Name = "Bob Smith";
bob.DateOfBirth = new DateTime(1965, 12, 22); // C# 1.0 or later

WriteLine(format: "{0} was born on {1:dddd, d MMMM yyyy}",
 arg0: bob.Name,
 arg1: bob.DateOfBirth);

We could have used string interpolation too, but for long strings it will wrap over
multiple lines, which can be harder to read in a printed book. In the code examples in
this book, remember that {0} is a placeholder for arg0, and so on.

3. Run the code and view the result, as shown in the following output:

Bob Smith was born on Wednesday, 22 December 1965

Your output may look different based on your locale, that is, language and culture.
The format code for arg1 is made of several parts. dddd means the name of the day of
the week. d means the number of the day of the month. MMMM means the name of the
month. Lowercase m is used for minutes in time values. yyyy means the full number of
the year. yy would mean the two-digit year.
You can also initialize fields using a shorthand object initializer syntax using curly
braces. Let's see how.

4. Add statements underneath the existing code to create another new person named
Alice. Note the different format code for the date of birth when writing her to the
console, as shown in the following code:

Person alice = new()
{
 Name = "Alice Jones",
 DateOfBirth = new(1998, 3, 7) // C# 9.0 or later
};

WriteLine(format: "{0} was born on {1:dd MMM yy}",
 arg0: alice.Name,
 arg1: alice.DateOfBirth);

5. Run the code and view the result, as shown in the following output:

Alice Jones was born on 07 Mar 98

Chapter 05

[187]

Storing a value using an enum type
Sometimes, a value needs to be one of a limited set of options. For example, there are seven
ancient wonders of the world, and a person may have one favorite. At other times, a value
needs to be a combination of a limited set of options. For example, a person may have a bucket
list of ancient world wonders they want to visit. We are able to store this data by defining an
enum type.

An enum type is a very efficient way of storing one or more choices because, internally, it uses
integer values in combination with a lookup table of string descriptions:

1. Add a new file to the PacktLibrary project named WondersOfTheAncientWorld.cs.
2. Modify the WondersOfTheAncientWorld.cs file, as shown in the following code:

namespace Packt.Shared
{
 public enum WondersOfTheAncientWorld
 {
 GreatPyramidOfGiza,
 HangingGardensOfBabylon,
 StatueOfZeusAtOlympia,
 TempleOfArtemisAtEphesus,
 MausoleumAtHalicarnassus,
 ColossusOfRhodes,
 LighthouseOfAlexandria
 }
}

3. In the Person class, add the following statement to your list of fields:
public WondersOfTheAncientWorld FavoriteAncientWonder;

4. In Program.cs, add the following statements:
bob.FavoriteAncientWonder = WondersOfTheAncientWorld.
StatueOfZeusAtOlympia;

WriteLine(
 format: "{0}'s favorite wonder is {1}. Its integer is {2}.",
 arg0: bob.Name,
 arg1: bob.FavoriteAncientWonder,
 arg2: (int)bob.FavoriteAncientWonder);

Good Practice: If you use are writing code in a .NET Interactive
notebook, then the code cell containing the enum must be above the
code cell defining the Person class.

Building Your Own Types with Object-Oriented Programming

[188]

5. Run the code and view the result, as shown in the following output:

Bob Smith's favorite wonder is StatueOfZeusAtOlympia. Its integer is 2.

The enum value is internally stored as an int for efficiency. The int values are automatically
assigned starting at 0, so the third world wonder in our enum has a value of 2. You can assign
int values that are not listed in the enum. They will output as the int value instead of a name
since a match will not be found.

Storing multiple values using an enum type
For the bucket list, we could create an array or collection of instances of the enum, and
collections will be explained later in this chapter, but there is a better way. We can combine
multiple choices into a single value using enum flags:

1. Modify the enum by decorating it with the [System.Flags] attribute, and explicitly set a
byte value for each wonder that represents different bit columns, as shown highlighted
in the following code:

namespace Packt.Shared
{
 [System.Flags]
 public enum WondersOfTheAncientWorld : byte
 {
 None = 0b_0000_0000, // i.e. 0
 GreatPyramidOfGiza = 0b_0000_0001, // i.e. 1
 HangingGardensOfBabylon = 0b_0000_0010, // i.e. 2
 StatueOfZeusAtOlympia = 0b_0000_0100, // i.e. 4
 TempleOfArtemisAtEphesus = 0b_0000_1000, // i.e. 8
 MausoleumAtHalicarnassus = 0b_0001_0000, // i.e. 16
 ColossusOfRhodes = 0b_0010_0000, // i.e. 32
 LighthouseOfAlexandria = 0b_0100_0000 // i.e. 64
 }
}

We are assigning explicit values for each choice that would not overlap when looking
at the bits stored in memory. We should also decorate the enum type with the System.
Flags attribute so that when the value is returned it can automatically match with
multiple values as a comma-separated string instead of returning an int value.
Normally, an enum type uses an int variable internally, but since we don't need values
that big, we can reduce memory requirements by 75%, that is, 1 byte per value instead
of 4 bytes, by telling it to use a byte variable.
If we want to indicate that our bucket list includes the Hanging Gardens of Babylon and
the Mausoleum at Halicarnassus ancient world wonders, then we would want the 16 and
2 bits set to 1. In other words, we would store the value 18:

Chapter 05

[189]

64 32 16 8 4 2 1
0 0 1 0 0 1 0

2. In the Person class, add the following statement to your list of fields, as shown in the
following code:

public WondersOfTheAncientWorld BucketList;

3. In Program.cs, add statements to set the bucket list using the | operator (bitwise logical
OR) to combine the enum values. We could also set the value using the number 18 cast
into the enum type, as shown in the comment, but we shouldn't because that would
make the code harder to understand, as shown in the following code:

bob.BucketList =
 WondersOfTheAncientWorld.HangingGardensOfBabylon
 | WondersOfTheAncientWorld.MausoleumAtHalicarnassus;

// bob.BucketList = (WondersOfTheAncientWorld)18;

WriteLine($"{bob.Name}'s bucket list is {bob.BucketList}");

4. Run the code and view the result, as shown in the following output:

Bob Smith's bucket list is HangingGardensOfBabylon,
MausoleumAtHalicarnassus

Storing multiple values using collections
Let's now add a field to store a person's children. This is an example of aggregation because
children are instances of a class that is related to the current person but are not part of the
person itself. We will use a generic List<T> collection type that can store an ordered collection
of any type. You will learn more about collections in Chapter 8, Working with Common .NET
Types. For now, just follow along:

1. In Person.cs, import the System.Collections.Generic namespace, as shown in the
following code:

using System.Collections.Generic; // List<T>

2. Declare a new field in the Person class, as shown in the following code:

public List<Person> Children = new List<Person>();

Good Practice: Use the enum values to store combinations of discrete options.
Derive an enum type from byte if there are up to eight options, from ushort
if there are up to 16 options, from uint if there are up to 32 options, and from
ulong if there are up to 64 options.

Building Your Own Types with Object-Oriented Programming

[190]

List<Person> is read aloud as "list of Person," for example, "the type of the property named
Children is a list of Person instances." We explicitly changed the class library to target .NET
Standard 2.0 (that uses the C# 7 compiler), so we cannot use target-typed new to initialize
the Children field. If we had left it targeting .NET 6.0, then we could use target-typed new, as
shown in the following code:

public List<Person> Children = new();

We must ensure the collection is initialized to a new instance of a list of Person before we can
add items to it, otherwise, the field will be null and it will throw runtime exceptions when we
try to use any of its members like Add.

Understanding generic collections
The angle brackets in the List<T> type is a feature of C# called generics that was introduced in
2005 with C# 2.0. It's a fancy term for making a collection strongly typed, that is, the compiler
knows specifically what type of object can be stored in the collection. Generics improve the
performance and correctness of your code.

Strongly typed has a different meaning to statically typed. The old System.Collection
types are statically typed to contain weakly typed System.Object items. The newer System.
Collection.Generic types are statically typed to contain strongly typed <T> instances.

Ironically, the term generics means we can use a more specific static type!

1. In Program.cs, add statements to add two children for Bob and then show how many
children he has and what their names are, as shown in the following code:

bob.Children.Add(new Person { Name = "Alfred" }); // C# 3.0 and later
bob.Children.Add(new() { Name = "Zoe" }); // C# 9.0 and later

WriteLine(
 $"{bob.Name} has {bob.Children.Count} children:");

for (int childIndex = 0; childIndex < bob.Children.Count; childIndex++)
{
 WriteLine($" {bob.Children[childIndex].Name}");
}

We could also use a foreach statement to enumerate over the collection. As an extra
challenge, change the for statement to output the same information using foreach.

2. Run the code and view the result, as shown in the following output:

Bob Smith has 2 children:
 Alfred
 Zoe

Chapter 05

[191]

Making a field static
The fields that we have created so far have all been instance members, meaning that a different
value of each field exists for each instance of the class that is created. The alice and bob
variables have different Name values.

Sometimes, you want to define a field that only has one value that is shared across all instances.

These are called static members because fields are not the only members that can be static. Let's
see what can be achieved using static fields:

1. In the PacktLibrary project, add a new class file named BankAccount.cs.
2. Modify the class to give it three fields, two instance fields and one static field, as shown

in the following code:
namespace Packt.Shared
{
 public class BankAccount
 {
 public string AccountName; // instance member
 public decimal Balance; // instance member
 public static decimal InterestRate; // shared member
 }
}

Each instance of BankAccount will have its own AccountName and Balance values, but all
instances will share a single InterestRate value.

3. In Program.cs, add statements to set the shared interest rate and then create two
instances of the BankAccount type, as shown in the following code:

BankAccount.InterestRate = 0.012M; // store a shared value

BankAccount jonesAccount = new(); // C# 9.0 and later
jonesAccount.AccountName = "Mrs. Jones";
jonesAccount.Balance = 2400;

WriteLine(format: "{0} earned {1:C} interest.",
 arg0: jonesAccount.AccountName,
 arg1: jonesAccount.Balance * BankAccount.InterestRate);

BankAccount gerrierAccount = new();
gerrierAccount.AccountName = "Ms. Gerrier";
gerrierAccount.Balance = 98;

WriteLine(format: "{0} earned {1:C} interest.",
 arg0: gerrierAccount.AccountName,
 arg1: gerrierAccount.Balance * BankAccount.InterestRate);

Building Your Own Types with Object-Oriented Programming

[192]

:C is a format code that tells .NET to use the currency format for the numbers. In
Chapter 8, Working with Common .NET Types, you will learn how to control the culture
that determines the currency symbol. For now, it will use the default for your operating
system installation. I live in London, UK, hence my output shows British Pounds (£).

4. Run the code and view the additional output:

Mrs. Jones earned £28.80 interest.
Ms. Gerrier earned £1.18 interest.

Making a field constant
If the value of a field will never ever change, you can use the const keyword and assign a literal
value at compile time:

1. In Person.cs, add the following code:
 // constants
public const string Species = "Homo Sapien";

2. To get the value of a constant field, you must write the name of the class, not the name
of an instance of the class. In Program.cs, add a statement to write Bob's name and
species to the console, as shown in the following code:

WriteLine($"{bob.Name} is a {Person.Species}");

3. Run the code and view the result, as shown in the following output:

Bob Smith is a Homo Sapien

Examples of const fields in Microsoft types include System.Int32.MaxValue and
System.Math.PI because neither value will ever change, as you can see in Figure 5.2:

Fields are not the only members that can be static. Constructors, methods,
properties, and other members can also be static.

Chapter 05

[193]

Figure 5.2: Examples of constants

Making a field read-only
Often a better choice for fields that should not change is to mark them as read-only:

1. In Person.cs, add a statement to declare an instance read-only field to store a person's
home planet, as shown in the following code:

// read-only fields
public readonly string HomePlanet = "Earth";

2. In Program.cs, add a statement to write Bob's name and home planet to the console, as
shown in the following code:

WriteLine($"{bob.Name} was born on {bob.HomePlanet}");

3. Run the code and view the result, as shown in the following output:

Bob Smith was born on Earth

Good Practice: Constants are not always the best choice for two important
reasons: the value must be known at compile time, and it must be expressible
as a literal string, Boolean, or number value. Every reference to the const
field is replaced with the literal value at compile time, which will, therefore,
not be reflected if the value changes in a future version and you do not
recompile any assemblies that reference it to get the new value.

Building Your Own Types with Object-Oriented Programming

[194]

You can also declare static readonly fields whose values will be shared across all instances of
the type.

Initializing fields with constructors
Fields often need to be initialized at runtime. You do this in a constructor that will be called
when you make an instance of the class using the new keyword. Constructors execute before
any fields are set by the code that is using the type.

1. In Person.cs, add statements after the existing read-only HomePlanet field to define a
second read-only field and then set the Name and Instantiated fields in a constructor, as
shown highlighted in the following code:

// read-only fields
public readonly string HomePlanet = "Earth";
public readonly DateTime Instantiated;

// constructors
public Person()
{
 // set default values for fields
 // including read-only fields
 Name = "Unknown";
 Instantiated = DateTime.Now;
}

2. In Program.cs, add statements to instantiate a new person and then output its initial
field values, as shown in the following code:

Person blankPerson = new();

WriteLine(format:
 "{0} of {1} was created at {2:hh:mm:ss} on a {2:dddd}.",
 arg0: blankPerson.Name,
 arg1: blankPerson.HomePlanet,
 arg2: blankPerson.Instantiated);

3. Run the code and view the result, as shown in the following output:

Unknown of Earth was created at 11:58:12 on a Sunday

Good Practice: Use read-only fields over constant fields for two important
reasons: the value can be calculated or loaded at runtime and can be
expressed using any executable statement. So, a read-only field can be set
using a constructor or a field assignment. Every reference to the field is a live
reference, so any future changes will be correctly reflected by the calling code.

Chapter 05

[195]

Defining multiple constructors
You can have multiple constructors in a type. This is especially useful to encourage developers
to set initial values for fields:

1. In Person.cs, add statements to define a second constructor that allows a developer
to set initial values for the person's name and home planet, as shown in the following
code:

public Person(string initialName, string homePlanet)
{
 Name = initialName;
 HomePlanet = homePlanet;
 Instantiated = DateTime.Now;
}

2. In Program.cs, add statements to create another person using the constructor with two
parameters, as shown in the following code:

Person gunny = new(initialName: "Gunny", homePlanet: "Mars");

WriteLine(format:
 "{0} of {1} was created at {2:hh:mm:ss} on a {2:dddd}.",
 arg0: gunny.Name,
 arg1: gunny.HomePlanet,
 arg2: gunny.Instantiated);

3. Run the code and view the result:

Gunny of Mars was created at 11:59:25 on a Sunday

Constructors are a special category of method. Let's look at methods in more detail.

Writing and calling methods
Methods are members of a type that execute a block of statements. They are functions that
belong to a type.

Returning values from methods
Methods can return a single value or return nothing:

• A method that performs some actions but does not return a value indicates this with the
void type before the name of the method.

• A method that performs some actions and returns a value indicates this with the type of
the return value before the name of the method.

Building Your Own Types with Object-Oriented Programming

[196]

For example, in the next task, you will create two methods:

• WriteToConsole: This will perform an action (writing some text to the console), but it
will return nothing from the method, indicated by the void keyword.

• GetOrigin: This will return a text value, indicated by the string keyword.

Let's write the code:

1. In Person.cs, add statements to define the two methods that I described earlier, as
shown in the following code:

// methods
public void WriteToConsole()
{
 WriteLine($"{Name} was born on a {DateOfBirth:dddd}.");
}

public string GetOrigin()
{
 return $"{Name} was born on {HomePlanet}.";
}

2. In Program.cs, add statements to call the two methods, as shown in the following code:
bob.WriteToConsole();
WriteLine(bob.GetOrigin());

3. Run the code and view the result, as shown in the following output:

Bob Smith was born on a Wednesday.
Bob Smith was born on Earth.

Combining multiple returned values using tuples
Each method can only return a single value that has a single type. That type could be a simple
type, such as string in the previous example, a complex type, such as Person, or a collection
type, such as List<Person>.

Imagine that we want to define a method named GetTheData that needs to return both a string
value and an int value. We could define a new class named TextAndNumber with a string field
and an int field, and return an instance of that complex type, as shown in the following code:

public class TextAndNumber
{
 public string Text;
 public int Number;
}

Chapter 05

[197]

public class LifeTheUniverseAndEverything
{
 public TextAndNumber GetTheData()
 {
 return new TextAndNumber
 {
 Text = "What's the meaning of life?",
 Number = 42
 };
 }
}

But defining a class just to combine two values together is unnecessary, because in modern
versions of C# we can use tuples. Tuples are an efficient way to combine two or more values
into a single unit. I pronounce them as tuh-ples but I have heard other developers pronounce
them as too-ples. To-may-toe, to-mah-toe, po-tay-toe, po-tah-toe, I guess.

Tuples have been a part of some languages such as F# since their first version, but .NET only
added support for them with .NET 4.0 in 2010 using the System.Tuple type.

Language support for tuples
It was only with C# 7.0 in 2017 that C# added language syntax support for tuples using the
parentheses characters () and at the same time, .NET added a new System.ValueTuple type that
is more efficient in some common scenarios than the old .NET 4.0 System.Tuple type. The C#
tuple syntax uses the more efficient one.

Let's explore tuples:

1. In Person.cs, add statements to define a method that returns a tuple that combines a
string and int, as shown in the following code:

public (string, int) GetFruit()
{
 return ("Apples", 5);
}

2. In Program.cs, add statements to call the GetFruit method and then output the tuple's
fields automatically named Item1 and Item2, as shown in the following code:

(string, int) fruit = bob.GetFruit();

WriteLine($"{fruit.Item1}, {fruit.Item2} there are.");

3. Run the code and view the result, as shown in the following output:

Apples, 5 there are.

Building Your Own Types with Object-Oriented Programming

[198]

Naming the fields of a tuple
To access the fields of a tuple, the default names are Item1, Item2, and so on.

You can explicitly specify the field names:

1. In Person.cs, add statements to define a method that returns a tuple with named fields,
as shown in the following code:

public (string Name, int Number) GetNamedFruit()
{
 return (Name: "Apples", Number: 5);
}

2. In Program.cs, add statements to call the method and output the tuple's named fields,
as shown in the following code:

var fruitNamed = bob.GetNamedFruit();

WriteLine($"There are {fruitNamed.Number} {fruitNamed.Name}.");

3. Run the code and view the result, as shown in the following output:

There are 5 Apples.

Inferring tuple names
If you are constructing a tuple from another object, you can use a feature introduced in C# 7.1
called tuple name inference.

In Program.cs, create two tuples, made of a string and int value each, as shown in the
following code:

var thing1 = ("Neville", 4);
WriteLine($"{thing1.Item1} has {thing1.Item2} children.");

var thing2 = (bob.Name, bob.Children.Count);
WriteLine($"{thing2.Name} has {thing2.Count} children.");

In C# 7.0, both things would use the Item1 and Item2 naming schemes. In C# 7.1 and later,
thing2 can infer the names Name and Count.

Deconstructing tuples
You can also deconstruct tuples into separate variables. The deconstructing declaration has
the same syntax as named field tuples, but without a named variable for the tuple, as shown
in the following code:

Chapter 05

[199]

// store return value in a tuple variable with two fields
(string TheName, int TheNumber) tupleWithNamedFields = bob.GetNamedFruit();
// tupleWithNamedFields.TheName
// tupleWithNamedFields.TheNumber

// deconstruct return value into two separate variables
(string name, int number) = GetNamedFruit();
// name
// number

This has the effect of splitting the tuple into its parts and assigning those parts to new variables.

1. In Program.cs, add statements to deconstruct the tuple returned from the GetFruit
method, as shown in the following code:

(string fruitName, int fruitNumber) = bob.GetFruit();

WriteLine($"Deconstructed: {fruitName}, {fruitNumber}");

2. Run the code and view the result, as shown in the following output:

Deconstructed: Apples, 5

Deconstructing types
Tuples are not the only type that can be deconstructed. Any type can have special methods
named Deconstruct that break down the object into parts. Let's implement some for the Person
class:

1. In Person.cs, add two Deconstruct methods with out parameters defined for the parts
we want to deconstruct into, as shown in the following code:

// deconstructors
public void Deconstruct(out string name, out DateTime dob)
{
 name = Name;
 dob = DateOfBirth;
}

public void Deconstruct(out string name,
 out DateTime dob, out WondersOfTheAncientWorld fav)
{
 name = Name;
 dob = DateOfBirth;
 fav = FavoriteAncientWonder;
}

Building Your Own Types with Object-Oriented Programming

[200]

2. In Program.cs, add statements to deconstruct bob, as shown in the following code:
// Deconstructing a Person

var (name1, dob1) = bob;
WriteLine($"Deconstructed: {name1}, {dob1}");

var (name2, dob2, fav2) = bob;
WriteLine($"Deconstructed: {name2}, {dob2}, {fav2}");

3. Run the code and view the result, as shown in the following output:

Deconstructed: Bob Smith, 22/12/1965 00:00:00
Deconstructed: Bob Smith, 22/12/1965 00:00:00, StatueOfZeusAtOlympia
B

Defining and passing parameters to methods
Methods can have parameters passed to them to change their behavior. Parameters are defined
a bit like variable declarations but inside the parentheses of the method, as you saw earlier in
this chapter with constructors. Let's see more examples:

1. In Person.cs, add statements to define two methods, the first without parameters and
the second with one parameter, as shown in the following code:

public string SayHello()
{
 return $"{Name} says 'Hello!'";
}

public string SayHelloTo(string name)
{
 return $"{Name} says 'Hello {name}!'";
}

2. In Program.cs, add statements to call the two methods and write the return value to the
console, as shown in the following code:

WriteLine(bob.SayHello());
WriteLine(bob.SayHelloTo("Emily"));

3. Run the code and view the result:

Bob Smith says 'Hello!'
Bob Smith says 'Hello Emily!'

When typing a statement that calls a method, IntelliSense shows a tooltip with the name and
type of any parameters, and the return type of the method, as shown in Figure 5.3:

Chapter 05

[201]

Figure 5.3: An IntelliSense tooltip for a method with no overloads

Overloading methods
Instead of having two different method names, we could give both methods the same name.
This is allowed because the methods each have a different signature.

A method signature is a list of parameter types that can be passed when calling the method.
Overloaded methods cannot differ only in the return type.

1. In Person.cs, change the name of the SayHelloTo method to SayHello.
2. In Program.cs, change the method call to use the SayHello method, and note that the

quick info for the method tells you that it has one additional overload, 1/2, as well as
2/2, as shown in Figure 5.4:

Figure 5.4: An IntelliSense tooltip for an overloaded method

Passing optional and named parameters
Another way to simplify methods is to make parameters optional. You make a parameter
optional by assigning a default value inside the method parameter list. Optional parameters
must always come last in the list of parameters.

Good Practice: Use overloaded methods to simplify your class by making it
appear to have fewer methods.

Building Your Own Types with Object-Oriented Programming

[202]

We will now create a method with three optional parameters:

1. In Person.cs, add statements to define the method, as shown in the following code:
public string OptionalParameters(
 string command = "Run!",
 double number = 0.0,
 bool active = true)
{
 return string.Format(
 format: "command is {0}, number is {1}, active is {2}",
 arg0: command,
 arg1: number,
 arg2: active);
}

2. In Program.cs, add a statement to call the method and write its return value to the
console, as shown in the following code:

WriteLine(bob.OptionalParameters());

3. Watch IntelliSense appear as you type the code. You will see a tooltip, showing the
three optional parameters with their default values, as shown in Figure 5.5:

Figure 5.5: IntelliSense showing optional parameters as you type code

4. Run the code and view the result, as shown in the following output:

command is Run!, number is 0, active is True

5. In Program.cs, add a statement to pass a string value for the command parameter and a
double value for the number parameter, as shown in the following code:

WriteLine(bob.OptionalParameters("Jump!", 98.5));

6. Run the code and see the result, as shown in the following output:

command is Jump!, number is 98.5, active is True

The default values for the command and number parameters have been replaced, but the default
for active is still true.

Chapter 05

[203]

Naming parameter values when calling methods
Optional parameters are often combined with naming parameters when you call the method,
because naming a parameter allows the values to be passed in a different order than how they
were declared.

1. In Program.cs, add a statement to pass a string value for the command parameter and a
double value for the number parameter but using named parameters, so that the order
they are passed through can be swapped around, as shown in the following code:

WriteLine(bob.OptionalParameters(
 number: 52.7, command: "Hide!"));

2. Run the code and view the result, as shown in the following output:

command is Hide!, number is 52.7, active is True

You can even use named parameters to skip over optional parameters.

3. In Program.cs, add a statement to pass a string value for the command parameter using
positional order, skip the number parameter, and use the named active parameter, as
shown in the following code:

WriteLine(bob.OptionalParameters("Poke!", active: false));

4. Run the code and view the result, as shown in the following output:

command is Poke!, number is 0, active is False

Controlling how parameters are passed
When a parameter is passed into a method, it can be passed in one of three ways:

• By value (this is the default): Think of these as being in-only.
• By reference as a ref parameter: Think of these as being in-and-out.
• As an out parameter: Think of these as being out-only.

Let's see some examples of passing parameters in and out:

1. In Person.cs, add statements to define a method with three parameters, one in
parameter, one ref parameter, and one out parameter, as shown in the following
method:

public void PassingParameters(int x, ref int y, out int z)
{
 // out parameters cannot have a default
 // AND must be initialized inside the method
 z = 99;

Building Your Own Types with Object-Oriented Programming

[204]

 // increment each parameter
 x++;
 y++;
 z++;
}

2. In Program.cs, add statements to declare some int variables and pass them into the
method, as shown in the following code:

int a = 10;
int b = 20;
int c = 30;

WriteLine($"Before: a = {a}, b = {b}, c = {c}");
bob.PassingParameters(a, ref b, out c);
WriteLine($"After: a = {a}, b = {b}, c = {c}");

3. Run the code and view the result, as shown in the following output:

Before: a = 10, b = 20, c = 30
After: a = 10, b = 21, c = 100

• When passing a variable as a parameter by default, its current value gets
passed, not the variable itself. Therefore, x has a copy of the value of the a
variable. The a variable retains its original value of 10.

• When passing a variable as a ref parameter, a reference to the variable gets
passed into the method. Therefore, y is a reference to b. The b variable gets
incremented when the y parameter gets incremented.

• When passing a variable as an out parameter, a reference to the variable gets
passed into the method. Therefore, z is a reference to c. The value of the c
variable gets replaced by whatever code executes inside the method. We could
simplify the code in the Main method by not assigning the value 30 to the c
variable since it will always be replaced anyway.

Simplified out parameters
In C# 7.0 and later, we can simplify code that uses the out variables.

In Program.cs, add statements to declare some more variables including an out parameter
named f declared inline, as shown in the following code:

int d = 10;
int e = 20;

WriteLine($"Before: d = {d}, e = {e}, f doesn't exist yet!");

Chapter 05

[205]

// simplified C# 7.0 or later syntax for the out parameter
bob.PassingParameters(d, ref e, out int f);
WriteLine($"After: d = {d}, e = {e}, f = {f}");

Understanding ref returns
In C# 7.0 or later, the ref keyword is not just for passing parameters into a method; it can
also be applied to the return value. This allows an external variable to reference an internal
variable and modify its value after the method call. This might be useful in advanced scenarios,
for example, passing around placeholders into big data structures, but it's beyond the scope of
this book.

Splitting classes using partial
When working on large projects with multiple team members, or when working with especially
large and complex class implementations, it is useful to be able to split the definition of a class
across multiple files. You do this using the partial keyword.

Imagine we want to add statements to the Person class that are automatically generated by a
tool like an object-relational mapper that reads schema information from a database. If the class
is defined as partial, then we can split the class into an autogenerated code file and a manually
edited code file.

Let's write some code that simulates this example:

1. In Person.cs, add the partial keyword, as shown highlighted in the following code:
namespace Packt.Shared
{
 public partial class Person
 {

2. In the PacktLibrary project/folder, add a new class file named PersonAutoGen.cs.
3. Add statements to the new file, as shown in the following code:

namespace Packt.Shared
{
 public partial class Person
 {
 }
}

The rest of the code we write for this chapter will be written in the PersonAutoGen.cs file.

Building Your Own Types with Object-Oriented Programming

[206]

Controlling access with properties and
indexers
Earlier, you created a method named GetOrigin that returned a string containing the name
and origin of the person. Languages such as Java do this a lot. C# has a better way: properties.

A property is simply a method (or a pair of methods) that acts and looks like a field when you
want to get or set a value, thereby simplifying the syntax.

Defining read-only properties
A readonly property only has a get implementation.

1. In PersonAutoGen.cs, in the Person class, add statements to define three properties:
1. The first property will perform the same role as the GetOrigin method using the

property syntax that works with all versions of C# (although, it uses the string
interpolation syntax from C# 6 and later).

2. The second property will return a greeting message using the lambda
expression body => syntax from C# 6 and later.

3. The third property will calculate the person's age.

Here's the code:

// a property defined using C# 1 - 5 syntax
public string Origin
{
 get
 {
 return $"{Name} was born on {HomePlanet}";
 }
}

// two properties defined using C# 6+ lambda expression body syntax
public string Greeting => $"{Name} says 'Hello!'";

public int Age => System.DateTime.Today.Year - DateOfBirth.Year;

Good Practice: This isn't the best way to calculate someone's age,
but we aren't learning how to calculate an age from a date of birth.
If you need to do that properly, read the discussion at the following
link: https://stackoverflow.com/questions/9/how-do-i-
calculate-someones-age-in-c

https://stackoverflow.com/questions/9/how-do-i-calculate-someones-age-in-c
https://stackoverflow.com/questions/9/how-do-i-calculate-someones-age-in-c

Chapter 05

[207]

2. In Program.cs, add the statements to get the properties, as shown in the following code:
Person sam = new()
{
 Name = "Sam",
 DateOfBirth = new(1972, 1, 27)
};

WriteLine(sam.Origin);
WriteLine(sam.Greeting);
WriteLine(sam.Age);

3. Run the code and view the result, as shown in the following output:

Sam was born on Earth
Sam says 'Hello!'
49

The output shows 49 because I ran the console application on August 15, 2021 when Sam was
49 years old.

Defining settable properties
To create a settable property, you must use the older syntax and provide a pair of methods—
not just a get part, but also a set part:

1. In PersonAutoGen.cs, add statements to define a string property that has both a get
and set method (also known as a getter and setter), as shown in the following code:

public string FavoriteIceCream { get; set; } // auto-syntax

Although you have not manually created a field to store the person's favorite ice cream,
it is there, automatically created by the compiler for you.
Sometimes, you need more control over what happens when a property is set. In this
scenario, you must use a more detailed syntax and manually create a private field to
store the value for the property.

2. In PersonAutoGen.cs, add statements to define a string field and string property that
has both a get and set, as shown in the following code:

private string favoritePrimaryColor;

public string FavoritePrimaryColor
{
 get
 {
 return favoritePrimaryColor;
 }

Building Your Own Types with Object-Oriented Programming

[208]

 set
 {
 switch (value.ToLower())
 {
 case "red":
 case "green":
 case "blue":
 favoritePrimaryColor = value;
 break;
 default:
 throw new System.ArgumentException(
 $"{value} is not a primary color. " +
 "Choose from: red, green, blue.");
 }
 }
}

3. In Program.cs, add statements to set Sam's favorite ice cream and color, and then write
them out, as shown in the following code:

sam.FavoriteIceCream = "Chocolate Fudge";

WriteLine($"Sam's favorite ice-cream flavor is {sam.FavoriteIceCream}.");

sam.FavoritePrimaryColor = "Red";

WriteLine($"Sam's favorite primary color is {sam.FavoritePrimaryColor}.");

4. Run the code and view the result, as shown in the following output:
Sam's favorite ice-cream flavor is Chocolate Fudge.
Sam's favorite primary color is Red.

If you try to set the color to any value other than red, green, or blue, then the code will
throw an exception. The calling code could then use a try statement to display the error
message.

Good Practice: Avoid adding too much code to your getters and
setters. This could indicate a problem with your design. Consider
adding private methods that you then call in setters and getters to
simplify your implementations.

Good Practice: Use properties instead of fields when you want to validate
what value can be stored when you want to data bind in XAML, which we will
cover in Chapter 19, Building Mobile and Desktop Apps Using .NET MAUI, and
when you want to read and write to a field without using a method pair like
GetAge and SetAge.

Chapter 05

[209]

Requiring properties to be set during instantiation
C# 10 introduces the required modifier. If you use it on a property, the compiler will ensure
that you set the property to a value when you instantiate it, as shown in the following code:

public class Book
{
 public required string Isbn { get; set; }
 public string Title { get; set; }
}

If you attempt to instantiate a Book without setting the Isbn property you will see a compiler
error, as shown in the following code:

Book novel = new();

Defining indexers
Indexers allow the calling code to use the array syntax to access a property. For example, the
string type defines an indexer so that the calling code can access individual characters in the
string.

We will define an indexer to simplify access to the children of a person:

1. In PersonAutoGen.cs, add statements to define an indexer to get and set a child using
the index of the child, as shown in the following code:

// indexers
public Person this[int index]
{
 get
 {
 return Children[index]; // pass on to the List<T> indexer
 }
 set
 {
 Children[index] = value;
 }
}

You can overload indexers so that different types can be used for their parameters. For
example, as well as passing an int value, you could also pass a string value.

The required keyword might not make it into the final release version of
.NET 6 so treat this section as theoretical.

Building Your Own Types with Object-Oriented Programming

[210]

2. In Program.cs, add statements to add two children to Sam, and then access the first and
second child using the longer Children field and the shorter indexer syntax, as shown
in the following code:

sam.Children.Add(new() { Name = "Charlie" });
sam.Children.Add(new() { Name = "Ella" });

WriteLine($"Sam's first child is {sam.Children[0].Name}");
WriteLine($"Sam's second child is {sam.Children[1].Name}");

WriteLine($"Sam's first child is {sam[0].Name}");
WriteLine($"Sam's second child is {sam[1].Name}");

3. Run the code and view the result, as shown in the following output:

Sam's first child is Charlie
Sam's second child is Ella
Sam's first child is Charlie
Sam's second child is Ella

Pattern matching with objects
In Chapter 3, Controlling Flow, Converting Types, and Handling Exceptions, you were introduced to
basic pattern matching. In this section, we will explore pattern matching in more detail.

Creating and referencing a .NET 6 class library
The enhanced pattern matching features are only available in modern .NET class libraries that
support C# 9 or later.

1. Use your preferred coding tool to add a new class library named PacktLibraryModern to
the workspace/solution named Chapter05.

2. In the PeopleApp project, add a reference to the PacktLibraryModern class library, as
shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference Include="../PacktLibrary/PacktLibrary.csproj" />

Chapter 05

[211]

 <ProjectReference
 Include="../PacktLibraryModern/PacktLibraryModern.csproj" />
 </ItemGroup>
</Project>

3. Build the PeopleApp project.

Defining flight passengers
In this example, we will define some classes that represent various types of passengers on a
flight and then we will use a switch expression with pattern matching to determine the cost of
their flight.

1. In the PacktLibraryModern project/folder, rename the file Class1.cs to FlightPatterns.
cs.

2. In FlightPatterns.cs, add statements to define three types of passengers with different
properties, as shown in the following code:

namespace Packt.Shared; // C# 10 file-scoped namespace

public class BusinessClassPassenger
{
 public override string ToString()
 {
 return $"Business Class";
 }
}

public class FirstClassPassenger
{
 public int AirMiles { get; set; }

 public override string ToString()
 {
 return $"First Class with {AirMiles:N0} air miles";
 }
}

public class CoachClassPassenger
{
 public double CarryOnKG { get; set; }

 public override string ToString()
 {
 return $"Coach Class with {CarryOnKG:N2} KG carry on";
 }
}

Building Your Own Types with Object-Oriented Programming

[212]

3. In Program.cs, add statements to define an object array containing five passengers of
various types and property values, and then enumerate them, outputting the cost of
their flight, as shown in the following code:

object[] passengers = {
 new FirstClassPassenger { AirMiles = 1_419 },
 new FirstClassPassenger { AirMiles = 16_562 },
 new BusinessClassPassenger(),
 new CoachClassPassenger { CarryOnKG = 25.7 },
 new CoachClassPassenger { CarryOnKG = 0 },
};

foreach (object passenger in passengers)
{
 decimal flightCost = passenger switch
 {
 FirstClassPassenger p when p.AirMiles > 35000 => 1500M,
 FirstClassPassenger p when p.AirMiles > 15000 => 1750M,
 FirstClassPassenger _ => 2000M,
 BusinessClassPassenger _ => 1000M,
 CoachClassPassenger p when p.CarryOnKG < 10.0 => 500M,
 CoachClassPassenger _ => 650M,
 _ => 800M
 };

 WriteLine($"Flight costs {flightCost:C} for {passenger}");
}

While reviewing the preceding code, note the following:

• To pattern match on the properties of an object, you must name a local variable
that can then be used in an expression like p.

• To pattern match on a type only, you can use _ to discard the local variable.
• The switch expression also uses _ to represent its default branch.

4. Run the code and view the result, as shown in the following output:

Flight costs £2,000.00 for First Class with 1,419 air miles
Flight costs £1,750.00 for First Class with 16,562 air miles
Flight costs £1,000.00 for Business Class
Flight costs £650.00 for Coach Class with 25.70 KG carry on
Flight costs £500.00 for Coach Class with 0.00 KG carry on

Enhancements to pattern matching in C# 9 or later
The previous examples worked with C# 8. Now we will look at some enhancements in C# 9
and later. First, you no longer need to use the underscore to discard when doing type matching:

Chapter 05

[213]

1. In Program.cs, comment out the C# 8 syntax and add C# 9 and later syntax to modify
the branches for first-class passengers to use a nested switch expression and the new
support for conditionals like >, as shown in the following code:

decimal flightCost = passenger switch
{
 /* C# 8 syntax
 FirstClassPassenger p when p.AirMiles > 35000 => 1500M,
 FirstClassPassenger p when p.AirMiles > 15000 => 1750M,
 FirstClassPassenger => 2000M, */

 // C# 9 or later syntax
 FirstClassPassenger p => p.AirMiles switch
 {
 > 35000 => 1500M,
 > 15000 => 1750M,
 _ => 2000M
 },

 BusinessClassPassenger => 1000M,
 CoachClassPassenger p when p.CarryOnKG < 10.0 => 500M,
 CoachClassPassenger => 650M,
 _ => 800M
};

2. Run the code to view the results, and note they are the same as before.

You could also use the relational pattern in combination with the property pattern to avoid the
nested switch expression, as shown in the following code:

FirstClassPassenger { AirMiles: > 35000 } => 1500,
FirstClassPassenger { AirMiles: > 15000 } => 1750M,
FirstClassPassenger => 2000M,

Working with records
Before we dive into the new records language feature of C# 9 and later, let us see some other
related new features.

Init-only properties
You have used object initialization syntax to instantiate objects and set initial properties
throughout this chapter. Those properties can also be changed after instantiation.

Sometimes you want to treat properties like readonly fields so they can be set during
instantiation but not after. The new init keyword enables this. It can be used in place of the
set keyword:

Building Your Own Types with Object-Oriented Programming

[214]

1. In the PacktLibraryModern project/folder, add a new file named Records.cs.
2. In Records.cs, define an immutable person class, as shown in the following code:

namespace Packt.Shared; // C# 10 file-scoped namespace

public class ImmutablePerson
{
 public string? FirstName { get; init; }
 public string? LastName { get; init; }
}

3. In Program.cs, add statements to instantiate a new immutable person and then
try to change one of its properties, as shown in the following code:

ImmutablePerson jeff = new()
{
 FirstName = "Jeff",
 LastName = "Winger"
};

jeff.FirstName = "Geoff";

4. Compile the console app and note the compile error, as shown in the following
output:

Program.cs(254,7): error CS8852: Init-only property or indexer
'ImmutablePerson.FirstName' can only be assigned in an object initializer,
or on 'this' or 'base' in an instance constructor or an 'init' accessor.
[/Users/markjprice/Code/Chapter05/PeopleApp/PeopleApp.csproj]

5. Comment out the attempt to set the FirstName property after instantiation.

Understanding records
Init-only properties provide some immutability to C#. You can take the concept further by
using records. These are defined by using the record keyword instead of the class keyword.
That can make the whole object immutable, and it acts like a value when compared. We will
discuss equality and comparisons of classes, records, and value types in more detail in Chapter
6, Implementing Interfaces and Inheriting Classes.

Records should not have any state (properties and fields) that changes after instantiation.
Instead, the idea is that you create new records from existing ones with any changed state. This
is called non-destructive mutation. To do this, C# 9 introduced the with keyword:

Chapter 05

[215]

1. In Records.cs, add a record named ImmutableVehicle, as shown in the following code:
public record ImmutableVehicle
{
 public int Wheels { get; init; }
 public string? Color { get; init; }
 public string? Brand { get; init; }
}

2. In Program.cs, add statements to create a car and then a mutated copy of it, as
shown in the following code:

ImmutableVehicle car = new()
{
 Brand = "Mazda MX-5 RF",
 Color = "Soul Red Crystal Metallic",
 Wheels = 4
};

ImmutableVehicle repaintedCar = car
 with { Color = "Polymetal Grey Metallic" };

WriteLine($"Original car color was {car.Color}.");
WriteLine($"New car color is {repaintedCar.Color}.");

3. Run the code to view the results, and note the change to the car color in the
mutated copy, as shown in the following output:

Original car color was Soul Red Crystal Metallic.
New car color is Polymetal Grey Metallic.

Positional data members in records
The syntax for defining a record can be greatly simplified using positional data members.

Simplifying data members in records
Instead of using object initialization syntax with curly braces, sometimes you might prefer to
provide a constructor with positional parameters as you saw earlier in this chapter. You can
also combine this with a deconstructor for splitting the object into individual parts, as shown in
the following code:

public record ImmutableAnimal
{
 public string Name { get; init; }
 public string Species { get; init; }

Building Your Own Types with Object-Oriented Programming

[216]

 public ImmutableAnimal(string name, string species)
 {
 Name = name;
 Species = species;
 }

 public void Deconstruct(out string name, out string species)
 {
 name = Name;
 species = Species;
 }
}

The properties, constructor, and deconstructor can be generated for you:

1. In Records.cs, add statements to define another record using simplified syntax known
as positional records, as shown in the following code:

// simpler way to define a record
// auto-generates the properties, constructor, and deconstructor
public record ImmutableAnimal(string Name, string Species);

2. In Program.cs, add statements to construct and deconstruct immutable animals,
as shown in the following code:

ImmutableAnimal oscar = new("Oscar", "Labrador");
var (who, what) = oscar; // calls Deconstruct method
WriteLine($"{who} is a {what}.");

3. Run the application and view the results, as shown in the following output:

Oscar is a Labrador.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore this chapter's topics with deeper research.

You will see records again when we look at C# 10 support for creating struct
records in Chapter 6, Implementing Interfaces and Inheriting Classes.

Chapter 05

[217]

Exercise 5.1 – Test your knowledge
Answer the following questions:

1. What are the six combinations of access modifier keywords and what do they do?
2. What is the difference between the static, const, and readonly keywords when

applied to a type member?
3. What does a constructor do?
4. Why should you apply the [Flags] attribute to an enum type when you want to

store combined values?
5. Why is the partial keyword useful?
6. What is a tuple?
7. What does the record keyword do?
8. What does overloading mean?
9. What is the difference between a field and a property?
10. How do you make a method parameter optional?

Exercise 5.2 – Explore topics
Use the links on the following page to learn more detail about the topics covered in this
chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-5---
building-your-own-types-with-object-oriented-programming

Summary
In this chapter, you learned about making your own types using OOP. You learned about
some of the different categories of members that a type can have, including fields to store
data and methods to perform actions, and you used OOP concepts, such as aggregation
and encapsulation. You saw examples of how to use modern C# features like relational and
property pattern matching enhancements, init-only properties, and records.

In the next chapter, you will take these concepts further by defining delegates and events,
implementing interfaces, and inheriting from existing classes.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-5---building-your-own-types-with-object-oriented-programming
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-5---building-your-own-types-with-object-oriented-programming

[219]

06
Implementing Interfaces and

Inheriting Classes
This chapter is about deriving new types from existing ones using object-oriented
programming (OOP). You will learn about defining operators and local functions for
performing simple actions and delegates and events for exchanging messages between types.
You will implement interfaces for common functionality. You will learn about generics and the
difference between reference and value types. You will create a derived class to inherit from a
base class to reuse functionality, override an inherited type member, and use polymorphism.
Finally, you will learn how to create extension methods and how to cast between classes in an
inheritance hierarchy.

This chapter covers the following topics:

• Setting up a class library and console application
• More about methods
• Raising and handling events
• Making types safely reusable with generics
• Implementing interfaces
• Managing memory with reference and value types
• Working with null values
• Inheriting from classes
• Casting within inheritance hierarchies
• Inheriting and extending .NET types
• Using an analyzer to write better code

Implementing Interfaces and Inheriting Classes

[220]

Setting up a class library and console
application
We will start by defining a workspace/solution with two projects like the one created in
Chapter 5, Building Your Own Types with Object-Oriented Programming. Even if you completed
all the exercises in that chapter, follow the instructions below because we will use C# 10
features in the class library, so it needs to target .NET 6.0 rather than .NET Standard 2.0:

1. Use your preferred coding tool to create a new workspace/solution named Chapter06.
2. Add a class library project, as defined in the following list:

1. Project template: Class Library / classlib
2. Workspace/solution file and folder: Chapter06
3. Project file and folder: PacktLibrary

3. Add a console app project, as defined in the following list:
1. Project template: Console Application / console
2. Workspace/solution file and folder: Chapter06
3. Project file and folder: PeopleApp

4. In the PacktLibrary project, rename the file named Class1.cs to Person.cs.
5. Modify the Person.cs file contents, as shown in the following code:

using static System.Console;

namespace Packt.Shared;

public class Person : object
{
 // fields
 public string? Name; // ? allows null
 public DateTime DateOfBirth;
 public List<Person> Children = new(); // C# 9 or later

 // methods
 public void WriteToConsole()
 {
 WriteLine($"{Name} was born on a {DateOfBirth:dddd}.");
 }
}

6. In the PeopleApp project, add a project reference to PacktLibrary, as shown highlighted
in the following markup:

Chapter 06

[221]

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference
 Include="..\PacktLibrary\PacktLibrary.csproj" />
 </ItemGroup>

</Project>

7. Build the PeopleApp project and note the output indicating that both projects have been
built successfully.

More about methods
We might want two instances of Person to be able to procreate. We can implement this by
writing methods. Instance methods are actions that an object does to itself; static methods are
actions the type does.

Which you choose depends on what makes the most sense for the action.

Implementing functionality using methods
Let's start by implementing some functionality by using both static and instance methods:

1. Add one instance method and one static method to the Person class that will allow two
Person objects to procreate, as shown in the following code:

// static method to "multiply"
public static Person Procreate(Person p1, Person p2)
{

Good Practice: Having both static and instance methods to perform similar
actions often makes sense. For example, string has both a Compare static
method and a CompareTo instance method. This puts the choice of how to use
the functionality in the hands of the programmers using your type, giving
them more flexibility.

Implementing Interfaces and Inheriting Classes

[222]

 Person baby = new()
 {
 Name = $"Baby of {p1.Name} and {p2.Name}"
 };

 p1.Children.Add(baby);
 p2.Children.Add(baby);

 return baby;
}

// instance method to "multiply"
public Person ProcreateWith(Person partner)
{
 return Procreate(this, partner);
}

Note the following:
• In the static method named Procreate, the Person objects to procreate are

passed as parameters named p1 and p2.
• A new Person class named baby is created with a name composed of a

combination of the two people who have procreated. This could be changed
later by setting the returned baby variable's Name property.

• The baby object is added to the Children collection of both parents and then
returned. Classes are reference types, meaning a reference to the baby object
stored in memory is added, not a clone of the baby object. You will learn the
difference between reference types and value types later in this chapter.

• In the instance method named ProcreateWith, the Person object to procreate
with is passed as a parameter named partner, and it, along with this, is passed
to the static Procreate method to reuse the method implementation. this is a
keyword that references the current instance of the class.

2. In the PeopleApp project, at the top of the Program.cs file, delete the comment and
import the namespace for our Person class and statically import the Console type, as
shown in the following code:

using Packt.Shared;
using static System.Console;

Good Practice: A method that creates a new object, or modifies an
existing object, should return a reference to that object so that the
caller can access the results.

Chapter 06

[223]

3. In Program.cs, create three people and have them procreate with each other, noting
that to add a double-quote character into a string, you must prefix it with a backslash
character like this, \", as shown in the following code:

Person harry = new() { Name = "Harry" };
Person mary = new() { Name = "Mary" };
Person jill = new() { Name = "Jill" };

// call instance method
Person baby1 = mary.ProcreateWith(harry);
baby1.Name = "Gary";

// call static method
Person baby2 = Person.Procreate(harry, jill);

WriteLine($"{harry.Name} has {harry.Children.Count} children.");
WriteLine($"{mary.Name} has {mary.Children.Count} children.");
WriteLine($"{jill.Name} has {jill.Children.Count} children.");
WriteLine(
 format: "{0}'s first child is named \"{1}\".",
 arg0: harry.Name,
 arg1: harry.Children[0].Name);

4. Run the code and view the result, as shown in the following output:

Harry has 2 children.
Mary has 1 children.
Jill has 1 children.
Harry's first child is named "Gary".

Implementing functionality using operators
The System.String class has a static method named Concat that concatenates two string
values and returns the result, as shown in the following code:

string s1 = "Hello ";
string s2 = "World!";
string s3 = string.Concat(s1, s2);
WriteLine(s3); // Hello World!

Calling a method like Concat works, but it might be more natural for a programmer to use the +
symbol operator to "add" two string values together, as shown in the following code:

string s3 = s1 + s2;

A well-known biblical phrase is Go forth and multiply, meaning to procreate. Let's write code so
that the * (multiply) symbol will allow two Person objects to procreate.

Implementing Interfaces and Inheriting Classes

[224]

We do this by defining a static operator for the * symbol. The syntax is rather like a method,
because in effect, an operator is a method, but uses a symbol instead of a method name, which
makes the syntax more concise.

1. In Person.cs, create a static operator for the * symbol, as shown in the following code:
// operator to "multiply"
public static Person operator *(Person p1, Person p2)
{
 return Person.Procreate(p1, p2);
}

2. In Program.cs, after calling the Procreate method and before the statements that write
to the console, use the * operator to make another baby, as shown highlighted in the
following code:

// call static method
Person baby2 = Person.Procreate(harry, jill);

// call an operator
Person baby3 = harry * mary;

3. Run the code and view the result, as shown in the following output:

Harry has 3 children.
Mary has 2 children.
Jill has 1 children.
Harry's first child is named "Gary".

Implementing functionality using local functions
A language feature introduced in C# 7.0 is the ability to define a local function.

Local functions are the method equivalent of local variables. In other words, they are methods
that are only accessible from within the containing method in which they have been defined. In
other languages, they are sometimes called nested or inner functions.

Good Practice: Unlike methods, operators do not appear in
IntelliSense lists for a type. For every operator that you define, make a
method as well, because it may not be obvious to a programmer that
the operator is available. The implementation of the operator can then
call the method, reusing the code you have written. A second reason
for providing a method is that operators are not supported by every
language compiler; for example, although arithmetic operators like
* are supported by Visual Basic and F#, there is no requirement that
other languages support all operators supported by C#.

Chapter 06

[225]

Local functions can be defined anywhere inside a method: the top, the bottom, or even
somewhere in the middle!

We will use a local function to implement a factorial calculation:

1. In Person.cs, add statements to define a Factorial function that uses a local function
inside itself to calculate the result, as shown in the following code:

// method with a local function
public static int Factorial(int number)
{
 if (number < 0)
 {
 throw new ArgumentException(
 $"{nameof(number)} cannot be less than zero.");
 }
 return localFactorial(number);

 int localFactorial(int localNumber) // local function
 {
 if (localNumber < 1) return 1;
 return localNumber * localFactorial(localNumber - 1);
 }
}

2. In Program.cs, add a statement to call the Factorial function and write the return value
to the console, as shown in the following code:

WriteLine($"5! is {Person.Factorial(5)}");

3. Run the code and view the result, as shown in the following output:

5! is 120

Raising and handling events
Methods are often described as actions that an object can perform, either on itself or on related objects.
For example, List<T> can add an item to itself or clear itself, and File can create or delete a file
in the filesystem.

Events are often described as actions that happen to an object. For example, in a user
interface, Button has a Click event, a click being something that happens to a button, and
FileSystemWatcher listens to the filesystem for change notifications and raises events like
Created and Deleted that are triggered when a directory or file changes.

Another way of thinking of events is that they provide a way of exchanging messages between
two objects.

Implementing Interfaces and Inheriting Classes

[226]

Events are built on delegates, so let's start by having a look at what delegates are and how they
work.

Calling methods using delegates
You have already seen the most common way to call or execute a method: use the . operator
to access the method using its name. For example, Console.WriteLine tells the Console type to
access its WriteLine method.

The other way to call or execute a method is to use a delegate. If you have used languages that
support function pointers, then think of a delegate as being a type-safe method pointer.

In other words, a delegate contains the memory address of a method that matches the same
signature as the delegate so that it can be called safely with the correct parameter types.

For example, imagine there is a method in the Person class that must have a string type passed
as its only parameter, and it returns an int type, as shown in the following code:

public int MethodIWantToCall(string input)
{
 return input.Length; // it doesn't matter what the method does
}

I can call this method on an instance of Person named p1 like this:

int answer = p1.MethodIWantToCall("Frog");

Alternatively, I can define a delegate with a matching signature to call the method indirectly.
Note that the names of the parameters do not have to match. Only the types of parameters and
return values must match, as shown in the following code:

delegate int DelegateWithMatchingSignature(string s);

Now, I can create an instance of the delegate, point it at the method, and finally, call the
delegate (which calls the method), as shown in the following code:

// create a delegate instance that points to the method
DelegateWithMatchingSignature d = new(p1.MethodIWantToCall);

// call the delegate, which calls the method
int answer2 = d("Frog");

You are probably thinking, "What's the point of that?" Well, it provides flexibility.

For example, we could use delegates to create a queue of methods that need to be called in
order. Queuing actions that need to be performed is common in services to provide improved
scalability.

Chapter 06

[227]

Another example is to allow multiple actions to perform in parallel. Delegates have built-
in support for asynchronous operations that run on a different thread, and that can provide
improved responsiveness. You will learn how to do this in Chapter 12, Improving Performance
and Scalability Using Multitasking.

The most important example is that delegates allow us to implement events for sending
messages between different objects that do not need to know about each other. Events are an
example of loose coupling between components because the components do not need to know
about each other, they just need to know the event signature.

Delegates and events are two of the most confusing features of C# and can take a few attempts
to understand, so don't worry if you feel lost!

Defining and handling delegates
Microsoft has two predefined delegates for use as events. Their signatures are simple, yet
flexible, as shown in the following code:

public delegate void EventHandler(
 object? sender, EventArgs e);

public delegate void EventHandler<TEventArgs>(
 object? sender, TEventArgs e);

Let's explore delegates and events:

1. Add statements to the Person class and note the following points, as shown in the
following code:

• It defines an EventHandler delegate field named Shout.
• It defines an int field to store AngerLevel.
• It defines a method named Poke.
• Each time a person is poked, their AngerLevel increments. Once their

AngerLevel reaches three, they raise the Shout event, but only if there is at least
one event delegate pointing at a method defined somewhere else in the code;
that is, it is not null:

// delegate field
public EventHandler? Shout;

Good Practice: When you want to define an event in your own types, you
should use one of these two predefined delegates.

Implementing Interfaces and Inheriting Classes

[228]

// data field
public int AngerLevel;

// method
public void Poke()
{
 AngerLevel++;

 if (AngerLevel >= 3)
 {
 // if something is listening...
 if (Shout != null)
 {
 // ...then call the delegate
 Shout(this, EventArgs.Empty);
 }
 }
}

Checking whether an object is not null before calling one of its methods is very
common. C# 6.0 and later allows null checks to be simplified inline using a ? symbol
before the . operator, as shown in the following code:

Shout?.Invoke(this, EventArgs.Empty);

2. At the bottom of Program.cs, add a method with a matching signature that gets a
reference to the Person object from the sender parameter and outputs some information
about them, as shown in the following code:

static void Harry_Shout(object? sender, EventArgs e)
{
 if (sender is null) return;
 Person p = (Person)sender;
 WriteLine($"{p.Name} is this angry: {p.AngerLevel}.");
}

Microsoft's convention for method names that handle events is ObjectName_EventName.
3. In Program.cs, add a statement to assign the method to the delegate field, as shown in

the following code:
harry.Shout = Harry_Shout;

4. Add statements to call the Poke method four times, after assigning the method to the
Shout event, as shown highlighted in the following code:

harry.Shout = Harry_Shout;
harry.Poke();
harry.Poke();
harry.Poke();
harry.Poke();

Chapter 06

[229]

5. Run the code and view the result, and note that Harry says nothing the first two times
he is poked, and only gets angry enough to shout once he's been poked at least three
times, as shown in the following output:

Harry is this angry: 3.
Harry is this angry: 4.

Defining and handling events
You've now seen how delegates implement the most important functionality of events: the
ability to define a signature for a method that can be implemented by a completely different
piece of code, and then call that method and any others that are hooked up to the delegate field.

But what about events? There is less to them than you might think.

When assigning a method to a delegate field, you should not use the simple assignment
operator as we did in the preceding example.

Delegates are multicast, meaning that you can assign multiple delegates to a single delegate
field. Instead of the = assignment, we could have used the += operator so we could add more
methods to the same delegate field. When the delegate is called, all the assigned methods are
called, although you have no control over the order in which they are called.

If the Shout delegate field was already referencing one or more methods, by assigning a
method, it would replace all the others. With delegates that are used for events, we usually
want to make sure that a programmer only ever uses either the += operator or the -= operator to
assign and remove methods:

1. To enforce this, in Person.cs, add the event keyword to the delegate field declaration,
as shown highlighted in the following code:

public event EventHandler? Shout;

2. Build the PeopleApp project and note the compiler error message, as shown in the
following output:

Program.cs(41,13): error CS0079: The event 'Person.Shout' can only appear
on the left hand side of += or -=

This is (almost) all that the event keyword does! If you will never have more than one
method assigned to a delegate field, then technically you do not need "events," but it is
still good practice to indicate your meaning and that you expect a delegate field to be
used as an event.

3. Modify the method assignment to use +=, as shown in the following code:
harry.Shout += Harry_Shout;

4. Run the code and note that it has the same behavior as before.

Implementing Interfaces and Inheriting Classes

[230]

Making types safely reusable with generics
In 2005, with C# 2.0 and .NET Framework 2.0, Microsoft introduced a feature named generics,
which enables your types to be more safely reusable and more efficient. It does this by allowing
a programmer to pass types as parameters, similar to how you can pass objects as parameters.

Working with non-generic types
First, let's look at an example of working with a non-generic type so that you can understand
the problem that generics are designed to solve, such as weakly typed parameters and values,
and performance problems caused by using System.Object.

System.Collections.Hashtable can be used to store multiple values each with a unique key
that can later be used to quickly look up its value. Both the key and value can be any object
because they are declared as System.Object. Although this provides flexibility when storing
value types like integers, it is slow, and bugs are easier to introduce because no type checks are
made when adding items.

Let's write some code:

1. In Program.cs, create an instance of the non-generic collection, System.Collections.
Hashtable, and then add four items to it, as shown in the following code:

// non-generic lookup collection
System.Collections.Hashtable lookupObject = new();

lookupObject.Add(key: 1, value: "Alpha");
lookupObject.Add(key: 2, value: "Beta");
lookupObject.Add(key: 3, value: "Gamma");
lookupObject.Add(key: harry, value: "Delta");

2. Add statements to define a key with the value of 2 and use it to look up its value in the
hash table, as shown in the following code:

int key = 2; // lookup the value that has 2 as its key
WriteLine(format: "Key {0} has value: {1}",
 arg0: key,
 arg1: lookupObject[key]);

3. Add statements to use the harry object to look up its value, as shown in the following
code:

// lookup the value that has harry as its key
WriteLine(format: "Key {0} has value: {1}",
 arg0: harry,
 arg1: lookupObject[harry]);

Chapter 06

[231]

4. Run the code and note that it works, as shown in the following output:

Key 2 has value: Beta
Key Packt.Shared.Person has value: Delta

Although the code works, there is potential for mistakes because literally any type can be used
for the key or value. If another developer used your lookup object and expected all the items
to be a certain type, they might cast them to that type and get exceptions because some values
might be a different type. A lookup object with lots of items would also give poor performance.

Working with generic types
System.Collections.Generic.Dictionary<TKey, TValue> can be used to store multiple values
each with a unique key that can later be used to quickly look up its value. Both the key and
value can be any object, but you must tell the compiler what the types of the key and value
will be when you first instantiate the collection. You do this by specifying types for the generic
parameters in angle brackets <>, TKey, and TValue.

This provides flexibility, it is faster, and bugs are easier to avoid because type checks are made
when adding items.

Let's write some code to solve the problem by using generics:

1. In Program.cs, create an instance of the generic lookup collection Dictionary<TKey,
TValue> and then add four items to it, as shown in the following code:

// generic lookup collection
Dictionary<int, string> lookupIntString = new();

lookupIntString.Add(key: 1, value: "Alpha");
lookupIntString.Add(key: 2, value: "Beta");
lookupIntString.Add(key: 3, value: "Gamma");
lookupIntString.Add(key: harry, value: "Delta");

2. Note the compile error when using harry as a key, as shown in the following output:
/Users/markjprice/Code/Chapter06/PeopleApp/Program.cs(98,32): error
CS1503: Argument 1: cannot convert from 'Packt.Shared.Person' to 'int' [/
Users/markjprice/Code/Chapter06/PeopleApp/PeopleApp.csproj]

Good Practice: Avoid types in the System.Collections namespace.

Good Practice: When a generic type has one definable type, it should be
named T, for example, List<T>, where T is the type stored in the list. When a
generic type has multiple definable types, they should use T as a name prefix
and have a sensible name, for example, Dictionary<TKey, TValue>.

Implementing Interfaces and Inheriting Classes

[232]

3. Replace harry with 4.
4. Add statements to set the key to 3 and use it to look up its value in the dictionary, as

shown in the following code:
key = 3;
WriteLine(format: "Key {0} has value: {1}",
 arg0: key,
 arg1: lookupIntString[key]);

5. Run the code and note that it works, as shown in the following output:

Key 3 has value: Gamma

Implementing interfaces
Interfaces are a way of connecting different types to make new things. Think of them like the
studs on top of LEGO™ bricks, which allow them to "stick" together, or electrical standards for
plugs and sockets.

If a type implements an interface, then it is making a promise to the rest of .NET that it
supports specific functionality. This is why they are sometimes described as being contracts.

Common interfaces
Here are some common interfaces that your types might need to implement:

Interface Method(s) Description
IComparable CompareTo(other) This defines a comparison method that a type

implements to order or sort its instances.
IComparer Compare(first,

second)
This defines a comparison method that a secondary
type implements to order or sort instances of a
primary type.

IDisposable Dispose() This defines a disposal method to release unmanaged
resources more efficiently than waiting for a finalizer
(see the Releasing unmanaged resources section later in
this chapter for more details.

IFormattable ToString(format,
culture)

This defines a culture-aware method to format the
value of an object into a string representation.

IFormatter Serialize(stream,
object)

Deserialize(stream)

This defines methods to convert an object to and
from a stream of bytes for storage or transfer.

IFormatProvider GetFormat(type) This defines a method to format inputs based on a
language and region.

Chapter 06

[233]

Comparing objects when sorting
One of the most common interfaces that you will want to implement is IComparable. It has one
method named CompareTo. It has two variations, one that works with a nullable object type
and one that works with a nullable generic type T, as shown in the following code:

namespace System
{
 public interface IComparable
 {
 int CompareTo(object? obj);
 }

 public interface IComparable<in T>
 {
 int CompareTo(T? other);
 }
}

For example, the string type implements IComparable by returning -1 if the string is less than
the string being compared to or 1 if it is greater. The int type implements IComparable by
returning -1 if the int is less than the int being compared to or 1 if it is greater.

If a type implements one of the IComparable interfaces, then arrays and collections can sort it.

Before we implement the IComparable interface and its CompareTo method for the Person class,
let's see what happens when we try to sort an array of Person instances:

1. In Program.cs, add statements that create an array of Person instances and write the
items to the console, and then attempt to sort the array and write the items to the
console again, as shown in the following code:

Person[] people =
{
 new() { Name = "Simon" },
 new() { Name = "Jenny" },
 new() { Name = "Adam" },
 new() { Name = "Richard" }
};

WriteLine("Initial list of people:");
foreach (Person p in people)
{
 WriteLine($" {p.Name}");
}

WriteLine("Use Person's IComparable implementation to sort:");
Array.Sort(people);

Implementing Interfaces and Inheriting Classes

[234]

foreach (Person p in people)
{
 WriteLine($" {p.Name}");
}

2. Run the code and an exception will be thrown. As the message explains, to fix the
problem, our type must implement IComparable, as shown in the following output:

Unhandled Exception: System.InvalidOperationException: Failed to compare
two elements in the array. ---> System.ArgumentException: At least one
object must implement IComparable.

3. In Person.cs, after inheriting from object, add a comma and enter
IComparable<Person>, as shown in the following code:

public class Person : object, IComparable<Person>

Your code editor will draw a red squiggle under the new code to warn you that you
have not yet implemented the method you have promised to. Your code editor can
write the skeleton implementation for you if you click on the light bulb and choose the
Implement interface option.

4. Scroll down to the bottom of the Person class to find the method that was written for
you and delete the statement that throws the NotImplementedException error, as shown
highlighted in the following code:

public int CompareTo(Person? other)
{
 throw new NotImplementedException();
}

5. Add a statement to call the CompareTo method of the Name field, which uses the string
type's implementation of CompareTo and return the result, as shown highlighted in the
following code:

public int CompareTo(Person? other)
{
 if (Name is null) return 0;
 return Name.CompareTo(other?.Name);
}

We have chosen to compare two Person instances by comparing their Name fields.
Person instances will, therefore, be sorted alphabetically by their name. For simplicity, I
have not added null checks throughout these examples.

6. Run the code and note that this time it works as it should, as shown in the following
output:

Initial list of people:
 Simon
 Jenny

Chapter 06

[235]

 Adam
 Richard
Use Person's IComparable implementation to sort:
 Adam
 Jenny
 Richard
 Simon

Comparing objects using a separate class
Sometimes, you won't have access to the source code for a type, and it might not implement the
IComparable interface. Luckily, there is another way to sort instances of a type. You can create a
separate type that implements a slightly different interface, named IComparer:

1. In the PacktLibrary project, add a new class file named PersonComparer.cs containing
a class that implements the IComparer interface that will compare two people, that is,
two Person instances. Implement it by comparing the length of their Name field, or if the
names are the same length, then by comparing the names alphabetically, as shown in
the following code:

namespace Packt.Shared;

public class PersonComparer : IComparer<Person>
{
 public int Compare(Person? x, Person? y)
 {
 if (x is null || y is null)
 {
 return 0;
 }
 // Compare the Name lengths...
 int result = x.Name.Length.CompareTo(y.Name.Length);

 // ...if they are equal...
 if (result == 0)
 {
 // ...then compare by the Names...
 return x.Name.CompareTo(y.Name);
 }

Good Practice: If anyone will want to sort an array or collection of instances of
your type, then implement the IComparable interface.

Implementing Interfaces and Inheriting Classes

[236]

 else // result will be -1 or 1
 {
 // ...otherwise compare by the lengths.
 return result;
 }
 }
}

2. In Program.cs, add statements to sort the array using this alternative implementation,
as shown in the following code:

WriteLine("Use PersonComparer's IComparer implementation to sort:");
Array.Sort(people, new PersonComparer());
foreach (Person p in people)
{
 WriteLine($" {p.Name}");
}

3. Run the code and view the result, as shown in the following output:

Use PersonComparer's IComparer implementation to sort:
 Adam
 Jenny
 Simon
 Richard

This time, when we sort the people array, we explicitly ask the sorting algorithm to use the
PersonComparer type instead, so that the people are sorted with the shortest names first, like
Adam, and the longest names last, like Richard; and when the lengths of two or more names
are equal, to sort them alphabetically, like Jenny and Simon.

Implicit and explicit interface implementations
Interfaces can be implemented implicitly and explicitly. Implicit implementations are simpler
and more common. Explicit implementations are only necessary if a type must have multiple
methods with the same name and signature.

For example, both IGamePlayer and IKeyHolder might have a method called Lose with the same
parameters because both a game and a key can be lost. In a type that must implement both
interfaces, only one implementation of Lose can be the implicit method. If both interfaces can
share the same implementation, that works, but if not then the other Lose method will have to
be implemented differently and called explicitly, as shown in the following code:

public interface IGamePlayer
{
 void Lose();
}

Chapter 06

[237]

public interface IKeyHolder
{
 void Lose();
}

public class Person : IGamePlayer, IKeyHolder
{
 public void Lose() // implicit implementation
 {
 // implement losing a key
 }

 void IGamePlayer.Lose() // explicit implementation
 {
 // implement losing a game
 }
}

// calling implicit and explicit implementations of Lose
Person p = new();
p.Lose(); // calls implicit implementation of losing a key

((IGamePlayer)p).Lose(); // calls explicit implementation of losing a game

IGamePlayer player = p as IGamePlayer;
player.Lose(); // calls explicit implementation of losing a game

Defining interfaces with default implementations
A language feature introduced in C# 8.0 is default implementations for an interface. Let's see it
in action:

1. In the PacktLibrary project, add a new file named IPlayable.cs.
2. Modify the statements to define a public IPlayable interface with two methods to Play

and Pause, as shown in the following code:
namespace Packt.Shared;

public interface IPlayable
{
 void Play();
 void Pause();
}

Implementing Interfaces and Inheriting Classes

[238]

3. In the PacktLibrary project, add a new class file named DvdPlayer.cs.
4. Modify the statements in the file to implement the IPlayable interface, as shown in the

following code:
using static System.Console;

namespace Packt.Shared;

public class DvdPlayer : IPlayable
{
 public void Pause()
 {
 WriteLine("DVD player is pausing.");
 }

 public void Play()
 {
 WriteLine("DVD player is playing.");
 }
}

This is useful, but what if we decide to add a third method named Stop? Before C# 8.0,
this would be impossible once at least one type implements the original interface. One
of the main points of an interface is that it is a fixed contract.
C# 8.0 allows an interface to add new members after release as long as they have a
default implementation. C# purists do not like the idea, but for practical reasons, such
as avoiding breaking changes or having to define a whole new interface, it is useful,
and other languages such as Java and Swift enable similar techniques.
Support for default interface implementations requires some fundamental changes to
the underlying platform, so they are only supported with C# if the target framework is
.NET 5.0 or later, .NET Core 3.0 or later, or .NET Standard 2.1. They are therefore not
supported by .NET Framework.

5. Modify the IPlayable interface to add a Stop method with a default implementation, as
shown highlighted in the following code:

using static System.Console;

namespace Packt.Shared;

public interface IPlayable
{
 void Play();
 void Pause();

 void Stop() // default interface implementation
 {

Chapter 06

[239]

 WriteLine("Default implementation of Stop.");
 }
}

6. Build the PeopleApp project and note that the projects compile successfully despite the
DvdPlayer class not implementing Stop. In the future, we could override the default
implementation of Stop by implementing it in the DvdPlayer class.

Managing memory with reference and value
types
I have mentioned reference types a couple of times. Let's look at them in more detail.

There are two categories of memory: stack memory and heap memory. With modern operating
systems, the stack and heap can be anywhere in physical or virtual memory.

Stack memory is faster to work with (because it is managed directly by the CPU and because
it uses a last-in, first-out mechanism, it is more likely to have the data in its L1 or L2 cache) but
limited in size, while heap memory is slower but much more plentiful.

For example, in a macOS terminal, I can enter the command ulimit -a to discover that the
stack size is limited to 8,192 KB and that other memory is "unlimited." This limited amount of
stack memory is why it is so easy to fill it up and get a "stack overflow."

Defining reference and value types
There are three C# keywords that you can use to define object types: class, record, and struct.
All can have the same members, such as fields and methods. One difference between them is
how memory is allocated.

When you define a type using record or class, you are defining a reference type. This means
that the memory for the object itself is allocated on the heap, and only the memory address of
the object (and a little overhead) is stored on the stack.

When you define a type using record struct or struct, you are defining a value type. This
means that the memory for the object itself is allocated on the stack.

If a struct uses field types that are not of the struct type, then those fields will be stored on
the heap, meaning the data for that object is stored in both the stack and the heap!

These are the most common struct types:

• Number System types: byte, sbyte, short, ushort, int, uint, long, ulong, float, double,
and decimal

• Other System types: char, DateTime, and bool
• System.Drawing types: Color, Point, and Rectangle

Implementing Interfaces and Inheriting Classes

[240]

Almost all the other types are class types, including string.

Apart from the difference in terms of where in memory the data for a type is stored, the other
major difference is that you cannot inherit from a struct.

How reference and value types are stored in
memory
Imagine that you have a console app that declares some variables, as shown in the following
code:

int number1 = 49;
long number2 = 12;
System.Drawing.Point location = new(x: 4, y: 5);
Person kevin = new() { Name = "Kevin",
 DateOfBirth = new(year: 1988, month: 9, day: 23) };
Person sally;

Let's review what memory is allocated on the stack and heap when these statements execute, as
shown in Figure 6.1 and as described in the following list:

• The number1 variable is a value type (also known as struct) so it is allocated on the
stack and it uses 4 bytes of memory since it is a 32-bit integer. Its value, 49, is stored
directly in the variable.

• The number2 variable is also a value type so it is also allocated on the stack, and it uses 8
bytes since it is a 64-bit integer.

• The location variable is also a value type so it is allocated on the stack and it uses 8
bytes since it is made up of two 32-bit integers, x and y.

• The kevin variable is a reference type (also known as class) so 8 bytes for a 64-bit
memory address (assuming a 64-bit operating system) is allocated on the stack and
enough bytes on the heap to store an instance of a Person.

• The sally variable is a reference type so 8 bytes for a 64-bit memory address is
allocated on the stack. It is currently null, meaning no memory has yet been allocated
for it on the heap.

Chapter 06

[241]

Figure 6.1: How value and reference types are allocated in the stack and heap

All the allocated memory for a reference type is stored on the heap. If a value type such as
DateTime is used for a field of a reference type like Person, then the DateTime value is stored on
the heap.

If a value type has a field that is a reference type, then that part of the value type is stored on
the heap. Point is a value type that consists of two fields, both of which are themselves value
types, so the entire object can be allocated on the stack. If the Point value type had a field that
was a reference type, like string, then the string bytes would be stored on the heap.

Equality of types
It is common to compare two variables using the == and != operators. The behavior of these
two operators is different for reference types and value types.

When you check the equality of two value type variables, .NET literally compares the values of
those two variables on the stack and returns true if they are equal, as shown in the following
code:

int a = 3;
int b = 3;
WriteLine($"a == b: {(a == b)}"); // true

Implementing Interfaces and Inheriting Classes

[242]

When you check the equality of two reference type variables, .NET compares the memory
addresses of those two variables and returns true if they are equal, as shown in the following
code:

Person a = new() { Name = "Kevin" };
Person b = new() { Name = "Kevin" };
WriteLine($"a == b: {(a == b)}"); // false

This is because they are not the same object. If both variables literally point to the same object
on the heap, then they would be equal, as shown in the following code:

Person a = new() { Name = "Kevin" };
Person b = a;
WriteLine($"a == b: {(a == b)}"); // true

The one exception to this behavior is the string type. It is a reference type, but the equality
operators have been overridden to make them behave as if they were value types, as shown in
the following code:

string a = "Kevin";
string b = "Kevin";
WriteLine($"a == b: {(a == b)}"); // true

You can do something similar with your classes to make the equality operators return true
even if they are not the same object (same memory address on the heap) but instead if their
fields have the same values, but that is beyond the scope of this book. Alternatively, use a
record class because one of their benefits is that they implement this behavior for you.

Defining struct types
Let's explore defining your own value types:

1. In the PacktLibrary project, add a file named DisplacementVector.cs.
2. Modify the file, as shown in the following code, and note the following:

• The type is declared using struct instead of class.
• It has two int fields, named X and Y.
• It has a constructor for setting initial values for X and Y.
• It has an operator for adding two instances together that returns a new instance

of the type with X added to X, and Y added to Y.

namespace Packt.Shared;

public struct DisplacementVector
{
 public int X;

Chapter 06

[243]

 public int Y;

 public DisplacementVector(int initialX, int initialY)
 {
 X = initialX;
 Y = initialY;
 }

 public static DisplacementVector operator +(
 DisplacementVector vector1,
 DisplacementVector vector2)
 {
 return new(
 vector1.X + vector2.X,
 vector1.Y + vector2.Y);
 }
}

3. In Program.cs, add statements to create two new instances of DisplacementVector, add
them together, and output the result, as shown in the following code:

DisplacementVector dv1 = new(3, 5);
DisplacementVector dv2 = new(-2, 7);
DisplacementVector dv3 = dv1 + dv2;

WriteLine($"({dv1.X}, {dv1.Y}) + ({dv2.X}, {dv2.Y}) = ({dv3.X},
{dv3.Y})");

4. Run the code and view the result, as shown in the following output:

(3, 5) + (-2, 7) = (1, 12)

Working with record struct types
C# 10 introduced the ability to use the record keyword with struct types as well as with class
types.

We could define the DisplacementVector type, as shown in the following code:

public record struct DisplacementVector(int X, int Y);

Good Practice: If the total bytes used by all the fields in your type is 16 bytes
or less, your type only uses value types for its fields, and you will never want
to derive from your type, then Microsoft recommends that you use struct. If
your type uses more than 16 bytes of stack memory, if it uses reference types
for its fields, or if you might want to inherit from it, then use class.

Implementing Interfaces and Inheriting Classes

[244]

With this change, Microsoft recommends explicitly specifying class if you want to define a
record class even though the class keyword is optional, as shown in the following code:

public record class ImmutableAnimal(string Name);

Releasing unmanaged resources
In the previous chapter, we saw that constructors can be used to initialize fields and that a type
may have multiple constructors. Imagine that a constructor allocates an unmanaged resource;
that is, anything that is not controlled by .NET, such as a file or mutex under the control of the
operating system. The unmanaged resource must be manually released because .NET cannot
do it for us using its automatic garbage collection feature.

Garbage collection is an advanced topic, so for this topic, I will show some code examples, but
you do not need to write the code yourself.

Each type can have a single finalizer that will be called by the .NET runtime when the
resources need to be released. A finalizer has the same name as a constructor; that is, the type
name, but it is prefixed with a tilde, ~.

Do not confuse a finalizer (also known as a destructor) with a Deconstruct method. A
destructor releases resources; that is, it destroys an object in memory. A Deconstruct method
returns an object split up into its constituent parts and uses the C# deconstruction syntax, for
example, when working with tuples:

public class Animal
{
 public Animal() // constructor
 {
 // allocate any unmanaged resources
 }

 ~Animal() // Finalizer aka destructor
 {
 // deallocate any unmanaged resources
 }
}

The preceding code example is the minimum you should do when working with unmanaged
resources. But the problem with only providing a finalizer is that the .NET garbage collector
requires two garbage collections to completely release the allocated resources for this type.

Though optional, it is recommended to also provide a method to allow a developer who uses
your type to explicitly release resources so that the garbage collector can release managed parts
of an unmanaged resource, such as a file, immediately and deterministically, and then release
the managed memory part of the object in a single garbage collection instead of two rounds of
garbage collection.

Chapter 06

[245]

There is a standard mechanism for doing this by implementing the IDisposable interface, as
shown in the following example:

public class Animal : IDisposable
{
 public Animal()
 {
 // allocate unmanaged resource
 }

 ~Animal() // Finalizer
 {
 Dispose(false);
 }

 bool disposed = false; // have resources been released?

 public void Dispose()
 {
 Dispose(true);

 // tell garbage collector it does not need to call the finalizer
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (disposed) return;

 // deallocate the *unmanaged* resource
 // ...

 if (disposing)
 {
 // deallocate any other *managed* resources
 // ...
 }
 disposed = true;
 }
}

There are two Dispose methods, one public and one protected:

• The public void Dispose method will be called by a developer using your type. When
called, both unmanaged and managed resources need to be deallocated.

Implementing Interfaces and Inheriting Classes

[246]

• The protected virtual void Dispose method with a bool parameter is used internally
to implement the deallocation of resources. It needs to check the disposing parameter
and disposed field because if the finalizer thread has already run and it called the
~Animal method, then only unmanaged resources need to be deallocated.

The call to GC.SuppressFinalize(this) is what notifies the garbage collector that it no longer
needs to run the finalizer, and removes the need for a second garbage collection.

Ensuring that Dispose is called
When someone uses a type that implements IDisposable, they can ensure that the public
Dispose method is called with the using statement, as shown in the following code:

using (Animal a = new())
{
 // code that uses the Animal instance
}

The compiler converts your code into something like the following, which guarantees that even
if an exception occurs, the Dispose method will still be called:

Animal a = new();
try
{
 // code that uses the Animal instance
}
finally
{
 if (a != null) a.Dispose();
}

You will see practical examples of releasing unmanaged resources with IDisposable, using
statements, and try...finally blocks in Chapter 9, Working with Files, Streams, and Serialization.

Working with null values
You have seen how to store primitive values like numbers in struct variables. But what if a
variable does not yet have a value? How can we indicate that? C# has the concept of a null
value, which can be used to indicate that a variable has not been set.

Making a value type nullable
By default, value types like int and DateTime must always have a value, hence their name.
Sometimes, for example, when reading values stored in a database that allows empty, missing, or
null values, it is convenient to allow a value type to be null. We call this a nullable value type.

Chapter 06

[247]

You can enable this by adding a question mark as a suffix to the type when declaring a variable.

Let's see an example:

1. Use your preferred coding tool to add a new Console Application to the Chapter06
workspace/solution named NullHandling. This section requires a full application with
a project file, so you will not be able to use a .NET Interactive notebook.

2. In Visual Studio Code, select NullHandling as the active OmniSharp project. In Visual
Studio, set NullHandling as the startup project.

3. In Program.cs, type statements to declare and assign values, including null, to int
variables, as shown in the following code:

int thisCannotBeNull = 4;
thisCannotBeNull = null; // compile error!

int? thisCouldBeNull = null;
WriteLine(thisCouldBeNull);
WriteLine(thisCouldBeNull.GetValueOrDefault());

thisCouldBeNull = 7;
WriteLine(thisCouldBeNull);
WriteLine(thisCouldBeNull.GetValueOrDefault());

4. Comment out the statement that gives a compile error.
5. Run the code and view the result, as shown in the following output:

0
7
7

The first line is blank because it is outputting the null value!

Understanding nullable reference types
The use of the null value is so common, in so many languages, that many experienced
programmers never question the need for its existence. But there are many scenarios where we
could write better, simpler code if a variable is not allowed to have a null value.

The most significant change to the language in C# 8 was the introduction of nullable and non-
nullable reference types. "But wait!", you are probably thinking, "Reference types are already
nullable!"

And you would be right, but in C# 8 and later, reference types can be configured to no longer
allow the null value by setting a file- or project-level option to enable this useful new feature.
Since this is a big change for C#, Microsoft decided to make the feature opt-in.

Implementing Interfaces and Inheriting Classes

[248]

It will take multiple years for this new C# language feature to make an impact since thousands
of existing library packages and apps will expect the old behavior. Even Microsoft did not have
time to fully implement this new feature in all the main .NET packages until .NET 6.

During the transition, you can choose between several approaches for your own projects:

• Default: No changes are needed. Non-nullable reference types are not supported.
• Opt-in project, opt-out files: Enable the feature at the project level and, for any files that

need to remain compatible with old behavior, opt out. This is the approach Microsoft is
using internally while it updates its own packages to use this new feature.

• Opt-in files: Only enable the feature for individual files.

Enabling nullable and non-nullable reference types
To enable the feature at the project level, add the following to your project file:

<PropertyGroup>
 ...
 <Nullable>enable</Nullable>
</PropertyGroup>

This is now done by default in project templates that target .NET 6.0.

To disable the feature at the file level, add the following to the top of a code file:

#nullable disable

To enable the feature at the file level, add the following to the top of a code file:

#nullable enable

Declaring non-nullable variables and parameters
If you enable nullable reference types and you want a reference type to be assigned the null
value, then you will have to use the same syntax as making a value type nullable, that is,
adding a ? symbol after the type declaration.

So, how do nullable reference types work? Let's look at an example. When storing information
about an address, you might want to force a value for the street, city, and region, but the
building can be left blank, that is, null:

Chapter 06

[249]

1. In NullHandling.csproj, in Program.cs, at the bottom of the file, add statements to
declare an Address class with four fields, as shown in the following code:

class Address
{
 public string? Building;
 public string Street;
 public string City;
 public string Region;
}

2. After a few seconds, note the warnings about non-nullable fields, like Street not being
initialized, as shown in Figure 6.2:

Figure 6.2: Warning messages about non-nullable fields in the PROBLEMS window

3. Assign the empty string value to each of the three fields that are non-nullable, as
shown in the following code:

public string Street = string.Empty;
public string City = string.Empty;
public string Region = string.Empty;

4. In Program.cs, at the top of the file, statically import Console and then add statements
to instantiate an Address and set its properties, as shown in the following code:

Address address = new();
address.Building = null;
address.Street = null;
address.City = "London";
address.Region = null;

Implementing Interfaces and Inheriting Classes

[250]

5. Note the warnings, as shown in Figure 6.3:

Figure 6.3: Warning message about assigning null to a non-nullable field

So, this is why the new language feature is named nullable reference types. Starting with C#
8.0, unadorned reference types can become non-nullable, and the same syntax is used to make a
reference type nullable as is used for value types.

Checking for null
Checking whether a nullable reference type or nullable value type variable currently contains
null is important because if you do not, a NullReferenceException can be thrown, which
results in an error. You should check for a null value before using a nullable variable, as shown
in the following code:

// check that the variable is not null before using it
if (thisCouldBeNull != null)
{
 // access a member of thisCouldBeNull
 int length = thisCouldBeNull.Length; // could throw exception
 ...
}

C# 7 introduced is combined with the ! (not) operator as an alternative to !=, as shown in the
following code:

if (!(thisCouldBeNull is null))
{

C# 9 introduced is not as an even clearer alternative, as shown in the following code:

if (thisCouldBeNull is not null)
{

If you are trying to use a member of a variable that might be null, use the null-conditional
operator ?., as shown in the following code:

Chapter 06

[251]

string authorName = null;

// the following throws a NullReferenceException
int x = authorName.Length;

// instead of throwing an exception, null is assigned to y
int? y = authorName?.Length;

Sometimes you want to either assign a variable to a result or use an alternative value, such as
3, if the variable is null. You do this using the null-coalescing operator, ??, as shown in the
following code:

// result will be 3 if authorName?.Length is null
int result = authorName?.Length ?? 3;
Console.WriteLine(result);

Checking for null in method parameters
When defining methods with parameters, it is good practice to check for null values.

In earlier versions of C#, you would have to write if statements to check for null parameter
values and then throw an ArgumentNullException for any parameter that is null, as shown in
the following code:

public void Hire(Person manager, Person employee)
{
 if (manager == null)
 {
 throw new ArgumentNullException(nameof(manager));
 }
 if (employee == null)
 {
 throw new ArgumentNullException(nameof(employee));
 }
 ...
}

C# 11 might introduce a new !! suffix that does this for you, as shown in the following code:

public void Hire(Person manager!!, Person employee!!)
{
 ...
}

Good Practice: Even if you enable nullable reference types, you
should still check non-nullable parameters for null and throw an
ArgumentNullException.

Implementing Interfaces and Inheriting Classes

[252]

The if statement and throwing of the exception are done for you.

Inheriting from classes
The Person type we created earlier derived (inherited) from object, the alias for System.Object.
Now, we will create a subclass that inherits from Person:

1. In the PacktLibrary project, add a new class file named Employee.cs.
2. Modify its contents to define a class named Employee that derives from Person, as

shown in the following code:
using System;

namespace Packt.Shared;

public class Employee : Person
{
}

3. In Program.cs, add statements to create an instance of the Employee class, as shown in
the following code:

Employee john = new()
{
 Name = "John Jones",
 DateOfBirth = new(year: 1990, month: 7, day: 28)
};
john.WriteToConsole();

4. Run the code and view the result, as shown in the following output:

John Jones was born on a Saturday.

Note that the Employee class has inherited all the members of Person.

Extending classes to add functionality
Now, we will add some employee-specific members to extend the class.

1. In Employee.cs, add statements to define two properties for an employee code and the
date they were hired, as shown in the following code:

public string? EmployeeCode { get; set; }
public DateTime HireDate { get; set; }

Chapter 06

[253]

2. In Program.cs, add statements to set John's employee code and hire date, as shown in
the following code:

john.EmployeeCode = "JJ001";
john.HireDate = new(year: 2014, month: 11, day: 23);
WriteLine($"{john.Name} was hired on {john.HireDate:dd/MM/yy}");

3. Run the code and view the result, as shown in the following output:

John Jones was hired on 23/11/14

Hiding members
So far, the WriteToConsole method is inherited from Person, and it only outputs the employee's
name and date of birth. We might want to change what this method does for an employee:

1. In Employee.cs, add statements to redefine the WriteToConsole method, as shown
highlighted in the following code:

using static System.Console;

namespace Packt.Shared;

public class Employee : Person
{
 public string? EmployeeCode { get; set; }
 public DateTime HireDate { get; set; }

 public void WriteToConsole()
 {
 WriteLine(format:
 "{0} was born on {1:dd/MM/yy} and hired on {2:dd/MM/yy}",
 arg0: Name,
 arg1: DateOfBirth,
 arg2: HireDate);
 }
}

2. Run the code and view the result, as shown in the following output:

John Jones was born on 28/07/90 and hired on 01/01/01
John Jones was hired on 23/11/14

Implementing Interfaces and Inheriting Classes

[254]

Your coding tool warns you that your method now hides the method from Person by drawing
a squiggle under the method name, the PROBLEMS/Error List window includes more details,
and the compiler will output the warning when you build and run the console application, as
shown in Figure 6.4:

Figure 6.4: Hidden method warning

As the warning describes, you can hide this message by applying the new keyword to the
method, to indicate that you are deliberately replacing the old method, as shown highlighted
in the following code:

public new void WriteToConsole()

Overriding members
Rather than hiding a method, it is usually better to override it. You can only override if the
base class chooses to allow overriding, by applying the virtual keyword to any methods that
should allow overriding.

Let's see an example:

1. In Program.cs, add a statement to write the value of the john variable to the console
using its string representation, as shown in the following code:

WriteLine(john.ToString());

2. Run the code and note that the ToString method is inherited from System.Object, so
the implementation returns the namespace and type name, as shown in the following
output:

Packt.Shared.Employee

3. In Person.cs, override this behavior by adding a ToString method to output the name
of the person as well as the type name, as shown in the following code:

// overridden methods
public override string ToString()
{

Chapter 06

[255]

 return $"{Name} is a {base.ToString()}";
}

The base keyword allows a subclass to access members of its superclass; that is, the
base class that it inherits or derives from.

4. Run the code and view the result. Now, when the ToString method is called, it outputs
the person's name, as well as returning the base class's implementation of ToString, as
shown in the following output:

 John Jones is a Packt.Shared.Employee

Inheriting from abstract classes
Earlier in this chapter, you learned about interfaces that can define a set of members that a type
must have to meet a basic level of functionality. These are very useful, but their main limitation
is that until C# 8 they could not provide any implementation of their own.

This is a particular problem if you still need to create class libraries that will work with .NET
Framework and other platforms that do not support .NET Standard 2.1.

In those earlier platforms, you could use abstract classes as a sort of halfway house between a
pure interface and a fully implemented class.

When a class is marked as abstract, this means that it cannot be instantiated because you
are indicating that the class is not complete. It needs more implementation before it can be
instantiated.

For example, the System.IO.Stream class is abstract because it implements common
functionality that all streams would need but is not complete, so you cannot instantiate it using
new Stream().

Let's compare the two types of interface and two types of class, as shown in the following code:

public interface INoImplementation // C# 1.0 and later
{
 void Alpha(); // must be implemented by derived type
}

public interface ISomeImplementation // C# 8.0 and later
{
 void Alpha(); // must be implemented by derived type

Good Practice: Many real-world APIs, for example, Microsoft's Entity
Framework Core, Castle's DynamicProxy, and Episerver's content models,
require the properties that you define in your classes to be marked as virtual
so that they can be overridden. Carefully decide which of your method and
property members should be marked as virtual.

Implementing Interfaces and Inheriting Classes

[256]

 void Beta()
 {
 // default implementation; can be overridden
 }
}

public abstract class PartiallyImplemented // C# 1.0 and later
{
 public abstract void Gamma(); // must be implemented by derived type

 public virtual void Delta() // can be overridden
 {
 // implementation
 }
}

public class FullyImplemented : PartiallyImplemented, ISomeImplementation
{
 public void Alpha()
 {
 // implementation
 }

 public override void Gamma()
 {
 // implementation
 }
}

// you can only instantiate the fully implemented class
FullyImplemented a = new();

// all the other types give compile errors
PartiallyImplemented b = new(); // compile error!
ISomeImplementation c = new(); // compile error!
INoImplementation d = new(); // compile error!

Preventing inheritance and overriding
You can prevent another developer from inheriting from your class by applying the sealed
keyword to its definition. No one can inherit from Scrooge McDuck, as shown in the following
code:

public sealed class ScroogeMcDuck
{
}

Chapter 06

[257]

An example of sealed in .NET is the string class. Microsoft has implemented some extreme
optimizations inside the string class that could be negatively affected by your inheritance, so
Microsoft prevents that.

You can prevent someone from further overriding a virtual method in your class by applying
the sealed keyword to the method. No one can change the way Lady Gaga sings, as shown in
the following code:

using static System.Console;

namespace Packt.Shared;

public class Singer
{
 // virtual allows this method to be overridden
 public virtual void Sing()
 {
 WriteLine("Singing...");
 }
}

public class LadyGaga : Singer
{
 // sealed prevents overriding the method in subclasses
 public sealed override void Sing()
 {
 WriteLine("Singing with style...");
 }
}

You can only seal an overridden method.

Understanding polymorphism
You have now seen two ways to change the behavior of an inherited method. We can hide it
using the new keyword (known as non-polymorphic inheritance), or we can override it (known
as polymorphic inheritance).

Both ways can access members of the base or superclass by using the base keyword, so what is
the difference?

It all depends on the type of variable holding a reference to the object. For example, a variable
of the Person type can hold a reference to a Person class, or any type that derives from Person.

Implementing Interfaces and Inheriting Classes

[258]

Let's see how this could affect your code:

1. In Employee.cs, add statements to override the ToString method so it writes the
employee's name and code to the console, as shown in the following code:

public override string ToString()
{
 return $"{Name}'s code is {EmployeeCode}";
}

2. In Program.cs, write statements to create a new employee named Alice, store it in a
variable of type Person, and call both variables' WriteToConsole and ToString methods,
as shown in the following code:

Employee aliceInEmployee = new()
 { Name = "Alice", EmployeeCode = "AA123" };

Person aliceInPerson = aliceInEmployee;
aliceInEmployee.WriteToConsole();
aliceInPerson.WriteToConsole();
WriteLine(aliceInEmployee.ToString());
WriteLine(aliceInPerson.ToString());

3. Run the code and view the result, as shown in the following output:

Alice was born on 01/01/01 and hired on 01/01/01
Alice was born on a Monday
Alice's code is AA123
Alice's code is AA123

When a method is hidden with new, the compiler is not smart enough to know that the object is
an Employee, so it calls the WriteToConsole method in Person.

When a method is overridden with virtual and override, the compiler is smart enough to
know that although the variable is declared as a Person class, the object itself is an Employee
class and, therefore, the Employee implementation of ToString is called.

The member modifiers and the effect they have are summarized in the following table:

Variable type Member modifier Method executed In class
Person WriteToConsole Person

Employee new WriteToConsole Employee
Person virtual ToString Employee
Employee override ToString Employee

In my opinion, polymorphism is academic to most programmers. If you get the concept, that's
cool; but, if not, I suggest that you don't worry about it. Some people like to make others feel
inferior by saying understanding polymorphism is important for all C# programmers to learn,
but IMHO it's not.

Chapter 06

[259]

You can have a successful career with C# and never need to be able to explain polymorphism,
just as a racing car driver doesn't need to be able to explain the engineering behind fuel
injection.

Casting within inheritance hierarchies
Casting between types is subtly different from converting between types. Casting is between
similar types, like between a 16-bit integer and a 32-bit integer, or between a superclass and one
of its subclasses. Converting is between dissimilar types, such as between text and a number.

Implicit casting
In the previous example, you saw how an instance of a derived type can be stored in a variable
of its base type (or its base's base type, and so on). When we do this, it is called implicit casting.

Explicit casting
Going the other way is an explicit cast, and you must use parentheses around the type you
want to cast into as a prefix to do it:

1. In Program.cs, add a statement to assign the aliceInPerson variable to a new Employee
variable, as shown in the following code:

Employee explicitAlice = aliceInPerson;

2. Your coding tool displays a red squiggle and a compile error, as shown in Figure 6.5:

Figure 6.5: A missing explicit cast compile error

3. Change the statement to prefix the assigned variable named with a cast to the Employee
type, as shown in the following code:

Employee explicitAlice = (Employee)aliceInPerson;

Good Practice: You should use virtual and override rather than new to
change the implementation of an inherited method whenever possible.

Implementing Interfaces and Inheriting Classes

[260]

Avoiding casting exceptions
The compiler is now happy; but, because aliceInPerson might be a different derived type, like
Student instead of Employee, we need to be careful. In a real application with more complex
code, the current value of this variable could have been set to a Student instance, and then this
statement would throw an InvalidCastException error.

We can handle this by writing a try statement, but there is a better way. We can check the type
of an object using the is keyword:

1. Wrap the explicit cast statement in an if statement, as shown highlighted in the
following code:

if (aliceInPerson is Employee)
{
 WriteLine($"{nameof(aliceInPerson)} IS an Employee");
 Employee explicitAlice = (Employee)aliceInPerson;
 // safely do something with explicitAlice
}

2. Run the code and view the result, as shown in the following output:

aliceInPerson IS an Employee

You can simplify the code further using a declaration pattern and this will avoid
needing to perform an explicit cast, as shown in the following code:

if (aliceInPerson is Employee explicitAlice)
{
 WriteLine($"{nameof(aliceInPerson)} IS an Employee");
 // safely do something with explicitAlice
}

Alternatively, you can use the as keyword to cast. Instead of throwing an exception, the
as keyword returns null if the type cannot be cast.

3. In Main, add the statements to cast Alice using the as keyword and then check whether
the return value is not null, as shown in the following code:

Employee? aliceAsEmployee = aliceInPerson as Employee; // could be null

if (aliceAsEmployee != null)
{
 WriteLine($"{nameof(aliceInPerson)} AS an Employee");
 // safely do something with aliceAsEmployee
}

Since accessing a member of a null variable will throw a NullReferenceException error,
you should always check for null before using the result.

Chapter 06

[261]

4. Run the code and view the result, as shown in the following output:

aliceInPerson AS an Employee

What if you want to execute a block of statements when Alice is not an employee?

In the past, you would have had to use the ! (not) operator, as shown in the following code:

if (!(aliceInPerson is Employee))

With C# 9 and later, you can use the not keyword, as shown in the following code:

if (aliceInPerson is not Employee)

Inheriting and extending .NET types
.NET has prebuilt class libraries containing hundreds of thousands of types. Rather than
creating your own completely new types, you can often get a head start by deriving from one
of Microsoft's types to inherit some or all of its behavior and then overriding or extending it.

Inheriting exceptions
As an example of inheritance, we will derive a new type of exception:

1. In the PacktLibrary project, add a new class file named PersonException.cs.
2. Modify the contents of the file to define a class named PersonException with three

constructors, as shown in the following code:
namespace Packt.Shared;

public class PersonException : Exception
{
 public PersonException() : base() { }

 public PersonException(string message) : base(message) { }

 public PersonException(string message, Exception innerException)
 : base(message, innerException) { }
}

Good Practice: Use the is and as keywords to avoid throwing exceptions
when casting between derived types. If you don't do this, you must write try-
catch statements for InvalidCastException.

Implementing Interfaces and Inheriting Classes

[262]

Unlike ordinary methods, constructors are not inherited, so we must explicitly declare
and explicitly call the base constructor implementations in System.Exception to make
them available to programmers who might want to use those constructors with our
custom exception.

3. In Person.cs, add statements to define a method that throws an exception if a date/
time parameter is earlier than a person's date of birth, as shown in the following code:

public void TimeTravel(DateTime when)
{
 if (when <= DateOfBirth)
 {
 throw new PersonException("If you travel back in time to a date
earlier than your own birth, then the universe will explode!");
 }
 else
 {
 WriteLine($"Welcome to {when:yyyy}!");
 }
}

4. In Program.cs, add statements to test what happens when employee John Jones tries to
time travel too far back, as shown in the following code:

try
{
 john.TimeTravel(when: new(1999, 12, 31));
 john.TimeTravel(when: new(1950, 12, 25));
}
catch (PersonException ex)
{
 WriteLine(ex.Message);
}

5. Run the code and view the result, as shown in the following output:

Welcome to 1999!
If you travel back in time to a date earlier than your own birth, then the
universe will explode!

Good Practice: When defining your own exceptions, give them the same three
constructors that explicitly call the built-in ones.

Chapter 06

[263]

Extending types when you can't inherit
Earlier, we saw how the sealed modifier can be used to prevent inheritance.

Microsoft has applied the sealed keyword to the System.String class so that no one can inherit
and potentially break the behavior of strings.

Can we still add new methods to strings? Yes, if we use a language feature named extension
methods, which was introduced with C# 3.0.

Using static methods to reuse functionality
Since the first version of C#, we've been able to create static methods to reuse functionality,
such as the ability to validate that a string contains an email address. The implementation will
use a regular expression that you will learn more about in Chapter 8, Working with Common .NET
Types.

Let's write some code:

1. In the PacktLibrary project, add a new class named StringExtensions, as shown in the
following code, and note the following:

• The class imports a namespace for handling regular expressions.
• The IsValidEmail method is static and it uses the Regex type to check for

matches against a simple email pattern that looks for valid characters before
and after the @ symbol.

using System.Text.RegularExpressions;

namespace Packt.Shared;

public class StringExtensions
{
 public static bool IsValidEmail(string input)
 {
 // use simple regular expression to check
 // that the input string is a valid email
 return Regex.IsMatch(input,
 @"[a-zA-Z0-9\.-_]+@[a-zA-Z0-9\.-_]+");
 }
}

2. In Program.cs, add statements to validate two examples of email addresses, as shown in
the following code:

string email1 = "pamela@test.com";
string email2 = "ian&test.com";

Implementing Interfaces and Inheriting Classes

[264]

WriteLine("{0} is a valid e-mail address: {1}",
 arg0: email1,
 arg1: StringExtensions.IsValidEmail(email1));

WriteLine("{0} is a valid e-mail address: {1}",
 arg0: email2,
 arg1: StringExtensions.IsValidEmail(email2));

3. Run the code and view the result, as shown in the following output:

pamela@test.com is a valid e-mail address: True
ian&test.com is a valid e-mail address: False

This works, but extension methods can reduce the amount of code we must type and simplify
the usage of this function.

Using extension methods to reuse functionality
It is easy to make static methods into extension methods:

1. In StringExtensions.cs, add the static modifier before the class, and add the this
modifier before the string type, as highlighted in the following code:

public static class StringExtensions
{
 public static bool IsValidEmail(this string input)
 {

These two changes tell the compiler that it should treat the method as one that extends
the string type.

2. In Program.cs, add statements to use the extension method for string values that need
to be checked for valid email addresses, as shown in the following code:

WriteLine("{0} is a valid e-mail address: {1}",
 arg0: email1,
 arg1: email1.IsValidEmail());

WriteLine("{0} is a valid e-mail address: {1}",
 arg0: email2,
 arg1: email2.IsValidEmail());

Note the subtle simplification in the syntax for calling the IsValidEmail method. The
older, longer syntax still works too.

3. The IsValidEmail extension method now appears to be a method just like all the actual
instance methods of the string type, such as IsNormalized and Insert, as shown in
Figure 6.6:

Chapter 06

[265]

Figure 6.6: Extension methods appear in IntelliSense alongside instance methods

4. Run the code and view the result, which will be the same as before.

Although extension methods might not seem to give a big benefit, in Chapter 11, Querying
and Manipulating Data Using LINQ, you will see some extremely powerful uses of extension
methods.

Using an analyzer to write better code
.NET analyzers find potential issues and suggest fixes for them. StyleCop is a commonly used
analyzer for helping you write better C# code.

Let's see it in action, advising how to improve the code in the project template for a console
app when targeting .NET 5.0 so that the console app already has a Program class with a Main
method:

1. Use your preferred code editor to add a console app project, as defined in the following
list:

1. Project template: Console Application / console -f net5.0
2. Workspace/solution file and folder: Chapter06
3. Project file and folder: CodeAnalyzing
4. Target framework: .NET 5.0 (Current)

2. In the CodeAnalyzing project, add a package reference for StyleCop.Analyzers.
3. Add a JSON file to your project named stylecop.json for controlling StyleCop settings.

Good Practice: Extension methods cannot replace or override existing instance
methods. You cannot, for example, redefine the Insert method. The extension
method will appear as an overload in IntelliSense, but an instance method
will be called in preference to an extension method with the same name and
signature.

Implementing Interfaces and Inheriting Classes

[266]

4. Modify its contents, as shown in the following markup:
{
 "$schema": "https://raw.githubusercontent.com/DotNetAnalyzers/
StyleCopAnalyzers/master/StyleCop.Analyzers/StyleCop.Analyzers/Settings/
stylecop.schema.json",
 "settings": {
 }
}

5. Edit the project file, change the target framework to net6.0, add entries to
configure the file named stylecop.json to not be included in published deployments,
and to enable it as an additional file for processing during development, as shown
highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <None Remove="stylecop.json" />
 </ItemGroup>

 <ItemGroup>
 <AdditionalFiles Include="stylecop.json" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="StyleCop.Analyzers" Version="1.2.0-*">
 <PrivateAssets>all</PrivateAssets>
 <IncludeAssets>runtime; build; native; contentfiles; analyzers</
IncludeAssets>
 </PackageReference>
 </ItemGroup>

</Project>

The $schema entry enables IntelliSense while editing the stylecop.
json file in your code editor.

Chapter 06

[267]

6. Build your project.
7. You will see warnings for everything it thinks is wrong, as shown in Figure 6.7:

Figure 6.7: StyleCop code analyzer warnings

8. For example, it wants using directives to be put within the namespace declaration, as
shown in the following output:

C:\Code\Chapter06\CodeAnalyzing\Program.cs(1,1): warning SA1200: Using
directive should appear within a namespace declaration [C:\Code\Chapter06\
CodeAnalyzing\CodeAnalyzing.csproj]

Suppressing warnings
To suppress a warning, you have several options, including adding code and setting
configuration.

To suppress using an attribute, as shown in the following code:

[assembly:SuppressMessage("StyleCop.CSharp.OrderingRules", "SA1200:UsingDirectiv
esMustBePlacedWithinNamespace", Justification = "Reviewed.")]

To suppress using a directive, as shown in the following code:

#pragma warning disable SA1200 // UsingDirectivesMustBePlacedWithinNamespace
using System;
#pragma warning restore SA1200 // UsingDirectivesMustBePlacedWithinNamespace

Implementing Interfaces and Inheriting Classes

[268]

Let's suppress the warning by modifying the stylecop.json file:

1. In stylecop.json, add a configuration option to set using statements to be allowable
outside a namespace, as shown highlighted in the following markup:

{
 "$schema": "https://raw.githubusercontent.com/DotNetAnalyzers/
StyleCopAnalyzers/master/StyleCop.Analyzers/StyleCop.Analyzers/Settings/
stylecop.schema.json",
 "settings": {
 "orderingRules": {
 "usingDirectivesPlacement": "outsideNamespace"
 }
 }
}

2. Build the project and note that warning SA1200 has disappeared.
3. In stylecop.json, set the using directives placement to preserve, which allows

using statements both inside and outside a namespace, as shown in the following
markup:

"orderingRules": {
 "usingDirectivesPlacement": "preserve"
}

Fixing the code
Now, let's fix all the other warnings:

1. In CodeAnalyzing.csproj, add an element to automatically generate an XML file for
documentation, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 <GenerateDocumentationFile>true</GenerateDocumentationFile>
 </PropertyGroup>

2. In stylecop.json, add a configuration option to provide values for
documentation for the company name and copyright text, as shown highlighted in the
following markup:

{
 "$schema": "https://raw.githubusercontent.com/DotNetAnalyzers/
StyleCopAnalyzers/master/StyleCop.Analyzers/StyleCop.Analyzers/Settings/
stylecop.schema.json",
 "settings": {

Chapter 06

[269]

 "orderingRules": {
 "usingDirectivesPlacement": "preserve"
 },
 "documentationRules": {
 "companyName": "Packt",
 "copyrightText": "Copyright (c) Packt. All rights reserved."
 }
 }
}

3. In Program.cs, add comments for a file header with company and copyright
text, move the using System; declaration inside the namespace, and set explicit access
modifiers and XML comments for the class and method, as shown in the following
code:

// <copyright file="Program.cs" company="Packt">
// Copyright (c) Packt. All rights reserved.
// </copyright>

namespace CodeAnalyzing
{
 using System;

 /// <summary>
 /// The main class for this console app.
 /// </summary>
 public class Program
 {
 /// <summary>
 /// The main entry point for this console app.
 /// </summary>
 /// <param name="args">A string array of arguments passed to the
console app.</param>
 public static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

4. Build the project.
5. Expand the bin/Debug/net6.0 folder and note the autogenerated file named

CodeAnalyzing.xml, as shown in the following markup:

<?xml version="1.0"?>
<doc>
 <assembly>

Implementing Interfaces and Inheriting Classes

[270]

 <name>CodeAnalyzing</name>
 </assembly>
 <members>
 <member name="T:CodeAnalyzing.Program">
 <summary>
 The main class for this console app.
 </summary>
 </member>
 <member name="M:CodeAnalyzing.Program.Main(System.String[])">
 <summary>
 The main entry point for this console app.
 </summary>
 <param name="args">A string array of arguments passed to the
console app.</param>
 </member>
 </members>
</doc>

Understanding common StyleCop recommendations
Inside a code file, you should order the contents, as shown in the following list:

1. External alias directives
2. Using directives
3. Namespaces
4. Delegates
5. Enums
6. Interfaces
7. Structs
8. Classes

Within a class, record, struct, or interface, you should order the contents, as shown in the
following list:

1. Fields
2. Constructors
3. Destructors (finalizers)
4. Delegates
5. Events
6. Enums
7. Interfaces
8. Properties
9. Indexers
10. Methods

Chapter 06

[271]

11. Structs
12. Nested classes and records

Practicing and exploring
Test your knowledge and understanding by answering some questions. Get some hands-on
practice and explore this chapter's topics with more in-depth research.

Exercise 6.1 – Test your knowledge
Answer the following questions:

1. What is a delegate?
2. What is an event?
3. How are a base class and a derived class related, and how can the derived class access

the base class?
4. What is the difference between is and as operators?
5. Which keyword is used to prevent a class from being derived from or a method from

being further overridden?
6. Which keyword is used to prevent a class from being instantiated with the new

keyword?
7. Which keyword is used to allow a member to be overridden?
8. What's the difference between a destructor and a deconstruct method?
9. What are the signatures of the constructors that all exceptions should have?
10. What is an extension method, and how do you define one?

Exercise 6.2 – Practice creating an inheritance
hierarchy
Explore inheritance hierarchies by following these steps:

1. Add a new console application named Exercise02 to your Chapter06 solution/
workspace.

2. Create a class named Shape with properties named Height, Width, and Area.

Good Practice: You can learn about all the StyleCop rules at the following
link: https://github.com/DotNetAnalyzers/StyleCopAnalyzers/blob/
master/DOCUMENTATION.md.

https://github.com/DotNetAnalyzers/StyleCopAnalyzers/blob/master/DOCUMENTATION.md
https://github.com/DotNetAnalyzers/StyleCopAnalyzers/blob/master/DOCUMENTATION.md

Implementing Interfaces and Inheriting Classes

[272]

3. Add three classes that derive from it—Rectangle, Square, and Circle—with any
additional members you feel are appropriate and that override and implement the Area
property correctly.

4. In Main, add statements to create one instance of each shape, as shown in the following
code:

Rectangle r = new(height: 3, width: 4.5);
WriteLine($"Rectangle H: {r.Height}, W: {r.Width}, Area: {r.Area}");

Square s = new(5);
WriteLine($"Square H: {s.Height}, W: {s.Width}, Area: {s.Area}");

Circle c = new(radius: 2.5);
WriteLine($"Circle H: {c.Height}, W: {c.Width}, Area: {c.Area}");

5. Run the console application and ensure that the result looks like the following output:

Rectangle H: 3, W: 4.5, Area: 13.5
Square H: 5, W: 5, Area: 25
Circle H: 5, W: 5, Area: 19.6349540849362

Exercise 6.3 – Explore topics
Use the links on the following page to learn more about the topics covered in this chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-6---
implementing-interfaces-and-inheriting-classes

Summary
In this chapter, you learned about local functions and operators, delegates and events,
implementing interfaces, generics, and deriving types using inheritance and OOP. You
also learned about base and derived classes, and how to override a type member, use
polymorphism, and cast between types.

In the next chapter, you will learn how .NET is packaged and deployed, and, in subsequent
chapters, the types that it provides you with to implement common functionality such as file
handling, database access, encryption, and multitasking.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-6---implementing-interfaces-and-inheriting-classes
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-6---implementing-interfaces-and-inheriting-classes

[273]

07
Packaging and Distributing

.NET Types
This chapter is about how C# keywords are related to .NET types, and about the relationship
between namespaces and assemblies. You'll also become familiar with how to package
and publish your .NET apps and libraries for cross-platform use, how to use legacy .NET
Framework libraries in .NET libraries, and the possibility of porting legacy .NET Framework
code bases to modern .NET.

This chapter covers the following topics:

• The road to .NET 6
• Understanding .NET components
• Publishing your applications for deployment
• Decompiling .NET assemblies
• Packaging your libraries for NuGet distribution
• Porting from .NET Framework to modern .NET
• Working with preview features

The road to .NET 6
This part of the book is about the functionality in the Base Class Library (BCL) APIs provided
by .NET and how to reuse functionality across all the different .NET platforms using .NET
Standard.

First, we will review the route to this point and why it is important to understand the past.

Packaging and Distributing .NET Types

[274]

.NET Core 2.0 and later's support for a minimum of .NET Standard 2.0 is important because it
provides many of the APIs that were missing from the first version of .NET Core. The 15 years'
worth of libraries and applications that .NET Framework developers had available to them
that are relevant for modern development have now been migrated to .NET and can run cross-
platform on macOS and Linux variants, as well as on Windows.

.NET Standard 2.1 added about 3,000 new APIs. Some of those APIs need runtime changes
that would break backward compatibility, so .NET Framework 4.8 only implements .NET
Standard 2.0. .NET Core 3.0, Xamarin, Mono, and Unity implement .NET Standard 2.1.

.NET 6 removes the need for .NET Standard if all your projects can use .NET 6. Since you
might still need to create class libraries for legacy .NET Framework projects or legacy Xamarin
mobile apps, there is still a need to create .NET Standard 2.0 and 2.1 class libraries. In March
2021, I surveyed professional developers, and half still needed to create .NET Standard 2.0
compliant class libraries.

Now that .NET 6 has been released with preview support for mobile and desktop apps built
using .NET MAUI, the need for .NET Standard has been further reduced.

To summarize the progress that .NET has made over the past five years, I have compared the
major .NET Core and modern .NET versions with the equivalent .NET Framework versions
in the following list:

• .NET Core 1.x: much smaller API compared to .NET Framework 4.6.1, which was the
current version in March 2016.

• .NET Core 2.x: reached API parity with .NET Framework 4.7.1 for modern APIs
because they both implement .NET Standard 2.0.

• .NET Core 3.x: larger API compared to .NET Framework for modern APIs because.
NET Framework 4.8 does not implement .NET Standard 2.1.

• .NET 5: even larger API compared to .NET Framework 4.8 for modern APIs, with
much-improved performance.

• .NET 6: final unification with the support for mobile apps in .NET MAUI, expected by
May 2022.

.NET Core 1.0

.NET Core 1.0 was released in June 2016 and focused on implementing an API suitable for
building modern cross-platform apps, including web and cloud applications and services for
Linux using ASP.NET Core.

.NET Core 1.1

.NET Core 1.1 was released in November 2016 and focused on fixing bugs, increasing the
number of Linux distributions supported, supporting .NET Standard 1.6, and improving
performance, especially with ASP.NET Core for web apps and services.

Chapter 07

[275]

.NET Core 2.0

.NET Core 2.0 was released in August 2017 and focused on implementing .NET Standard 2.0,
the ability to reference .NET Framework libraries, and more performance improvements.

The third edition of this book was published in November 2017, so it covered up to .NET Core
2.0 and .NET Core for Universal Windows Platform (UWP) apps.

.NET Core 2.1

.NET Core 2.1 was released in May 2018 and focused on an extendable tooling system,
adding new types like Span<T>, new APIs for cryptography and compression, a Windows
Compatibility Pack with an additional 20,000 APIs to help port old Windows applications,
Entity Framework Core value conversions, LINQ GroupBy conversions, data seeding,
query types, and even more performance improvements, including the topics listed in the
following table:

Feature Chapter Topic
Spans 8 Working with spans, indexes, and ranges
Brotli compression 9 Compressing with the Brotli algorithm
Cryptography 20 What's new in cryptography?
EF Core Lazy loading 10 Enabling lazy loading
EF Core Data seeding 10 Understanding data seeding

.NET Core 2.2

.NET Core 2.2 was released in December 2018 and focused on diagnostic improvements for the
runtime, optional tiered compilation, and adding new features to ASP.NET Core and Entity
Framework Core like spatial data support using types from the NetTopologySuite (NTS)
library, query tags, and collections of owned entities.

.NET Core 3.0

.NET Core 3.0 was released in September 2019 and focused on adding support for building
Windows desktop applications using Windows Forms (2001), Windows Presentation
Foundation (WPF; 2006), and Entity Framework 6.3, side-by-side and app-local deployments,
a fast JSON reader, serial port access and other pinout access for Internet of Things (IoT)
solutions, and tiered compilation by default, including the topics listed in the following table:

Feature Chapter Topic
Embedding .NET in-app 7 Publishing your applications for deployment
Index and Range 8 Working with spans, indexes, and ranges
System.Text.Json 9 High-performance JSON processing
Async streams 12 Working with async streams

Packaging and Distributing .NET Types

[276]

The fourth edition of this book was published in October 2019, so it covered some of the new
APIs added in later versions up to .NET Core 3.0.

.NET Core 3.1

.NET Core 3.1 was released in December 2019 and focused on bug fixes and refinements so that
it could be a Long Term Support (LTS) release, not losing support until December 2022.

.NET 5.0

.NET 5.0 was released in November 2020 and focused on unifying the various .NET platforms
except mobile, refining the platform, and improving performance, including the topics listed in
the following table:

Feature Chapter Topic
Half type 8 Working with numbers
Regular expression performance
improvements

8 Regular expression performance
improvements

System.Text.Json improvements 9 High-performance JSON processing
EF Core generated SQL 10 Getting the generated SQL
EF Core Filtered Include 10 Filtering included entities
EF Core Scaffold-DbContext now
singularizes using Humanizer

10 Scaffolding models using an existing database

.NET 6.0

.NET 6.0 was released in November 2021 and focused on unifying with the mobile platform,
adding more features to EF Core for data management, and improving performance, including
the topics listed in the following table:

Feature Chapter Topic
Check .NET SDK status 7 Checking your .NET SDKs for updates
Support for Apple Silicon 7 Creating a console application to publish
Link trim mode as default 7 Reducing the size of apps using app trimming
DateOnly and TimeOnly 8 Specifying date and time values
EnsureCapacity for List<T> 8 Improving performance by ensuring the capacity of a

collection
EF Core configure conventions 10 Configuring preconvention models
New LINQ methods 11 Building LINQ expressions with the Enumerable class

Chapter 07

[277]

Improving performance from .NET Core 2.0 to .NET 5
Microsoft has made significant improvements to performance in the past few years. You can
read a detailed blog post at the following link: https://devblogs.microsoft.com/dotnet/
performance-improvements-in-net-5/.

Checking your .NET SDKs for updates
With .NET 6, Microsoft added a command to check the versions of .NET SDKs and runtimes
that you have installed and warn you if any need updating. For example, you enter the
following command:

dotnet sdk check

You will then see results, including the status of available updates, as shown in the following
partial output:

.NET SDKs:
Version Status

3.1.412 Up to date.
5.0.202 Patch 5.0.206 is available.
...

Understanding .NET components
.NET is made up of several pieces, which are shown in the following list:

• Language compilers: These turn your source code written with languages such as C#,
F#, and Visual Basic into intermediate language (IL) code stored in assemblies. With
C# 6.0 and later, Microsoft switched to an open-source rewritten compiler known as
Roslyn that is also used by Visual Basic.

• Common Language Runtime (CoreCLR): This runtime loads assemblies, compiles
the IL code stored in them into native code instructions for your computer's CPU, and
executes the code within an environment that manages resources such as threads and
memory.

• Base Class Libraries (BCL or CoreFX): These are prebuilt assemblies of types packaged
and distributed using NuGet for performing common tasks when building applications.
You can use them to quickly build anything you want, rather like combining LEGO™
pieces. .NET Core 2.0 implemented .NET Standard 2.0, which is a superset of all
previous versions of .NET Standard, and lifted .NET Core up to parity with .NET
Framework and Xamarin. .NET Core 3.0 implemented .NET Standard 2.1, which added
new capabilities and enables performance improvements beyond those available in
.NET Framework. .NET 6 implements a unified BCL across all types of apps, including
mobile.

https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/

Packaging and Distributing .NET Types

[278]

Understanding assemblies, NuGet packages, and
namespaces
An assembly is where a type is stored in the filesystem. Assemblies are a mechanism for
deploying code. For example, the System.Data.dll assembly contains types for managing
data. To use types in other assemblies, they must be referenced. Assemblies can be static (pre-
created) or dynamic (generated at runtime). Dynamic assemblies are an advanced feature that
we will not cover in this book. Assemblies can be compiled into a single file as a DLL (class
library) or an EXE (console app).

Assemblies are distributed as NuGet packages, which are files downloadable from public
online feeds and can contain multiple assemblies and other resources. You will also hear
about project SDKs, workloads, and platforms, which are combinations of NuGet packages.

Microsoft's NuGet feed is found here: https://www.nuget.org/.

What is a namespace?
A namespace is the address of a type. Namespaces are a mechanism to uniquely identify a type
by requiring a full address rather than just a short name. In the real world, Bob of 34 Sycamore
Street is different from Bob of 12 Willow Drive.

In .NET, the IActionFilter interface of the System.Web.Mvc namespace is different from the
IActionFilter interface of the System.Web.Http.Filters namespace.

Understanding dependent assemblies
If an assembly is compiled as a class library and provides types for other assemblies to use,
then it has the file extension .dll (dynamic link library), and it cannot be executed standalone.

Likewise, if an assembly is compiled as an application, then it has the file extension .exe
(executable) and can be executed standalone. Before .NET Core 3.0, console apps were
compiled to .dll files and had to be executed by the dotnet run command or a host executable.

Any assembly can reference one or more class library assemblies as dependencies, but you
cannot have circular references. So, assembly B cannot reference assembly A if assembly A
already references assembly B. The compiler will warn you if you attempt to add a dependency
reference that would cause a circular reference. Circular references are often a warning sign
of poor code design. If you are sure that you need a circular reference, then use an interface
to solve it.

Understanding the Microsoft .NET project SDKs
By default, console applications have a dependency reference on the Microsoft .NET project
SDK. This platform contains thousands of types in NuGet packages that almost all applications
would need, such as the System.Int32 and System.String types.

https://www.nuget.org/

Chapter 07

[279]

When using .NET, you reference the dependency assemblies, NuGet packages, and platforms
that your application needs in a project file.

Let's explore the relationship between assemblies and namespaces:

1. Use your preferred code editor to create a new solution/workspace named Chapter07.
2. Add a console app project, as defined in the following list:

1. Project template: Console Application / console
2. Workspace/solution file and folder: Chapter07
3. Project file and folder: AssembliesAndNamespaces

3. Open AssembliesAndNamespaces.csproj and note that it is a typical project file for a
.NET 6 application, as shown in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

</Project>

Understanding namespaces and types in
assemblies
Many common .NET types are in the System.Runtime.dll assembly. There is not always a
one-to-one mapping between assemblies and namespaces. A single assembly can contain many
namespaces and a namespace can be defined in many assemblies. You can see the relationship
between some assemblies and the namespaces that they supply types for, as shown in the
following table:

Assembly Example namespaces Example types
System.Runtime.dll System, System.Collections,

System.Collections.Generic
Int32, String,
IEnumerable<T>

System.Console.dll System Console
System.Threading.dll System.Threading Interlocked, Monitor,

Mutex
System.Xml.XDocument.dll System.Xml.Linq XDocument, XElement, XNode

Packaging and Distributing .NET Types

[280]

Understanding NuGet packages
.NET is split into a set of packages, distributed using a Microsoft-supported package
management technology named NuGet. Each of these packages represents a single assembly
of the same name. For example, the System.Collections package contains the System.
Collections.dll assembly.

The following are the benefits of packages:

• Packages can be easily distributed on public feeds.
• Packages can be reused.
• Packages can ship on their own schedule.
• Packages can be tested independently of other packages.
• Packages can support different OSes and CPUs by including multiple versions of the

same assembly built for different OSes and CPUs.
• Packages can have dependencies specific to only one library.
• Apps are smaller because unreferenced packages aren't part of the distribution. The

following table lists some of the more important packages and their important types:

Package Important types
System.Runtime Object, String, Int32, Array
System.Collections List<T>, Dictionary<TKey, TValue>
System.Net.Http HttpClient, HttpResponseMessage
System.IO.FileSystem File, Directory
System.Reflection Assembly, TypeInfo, MethodInfo

Understanding frameworks
There is a two-way relationship between frameworks and packages. Packages define the APIs,
while frameworks group packages. A framework without any packages would not define any
APIs.

.NET packages each support a set of frameworks. For example, the System.IO.FileSystem
package version 4.3.0 supports the following frameworks:

• .NET Standard, version 1.3 or later.
• .NET Framework, version 4.6 or later.
• Six Mono and Xamarin platforms (for example, Xamarin.iOS 1.0).

More Information: You can read the details at the following link: https://
www.nuget.org/packages/System.IO.FileSystem/.

https://www.nuget.org/packages/System.IO.FileSystem/
https://www.nuget.org/packages/System.IO.FileSystem/

Chapter 07

[281]

Importing a namespace to use a type
Let's explore how namespaces are related to assemblies and types:

1. In the AssembliesAndNamespaces project, in Program.cs, enter the following code:
XDocument doc = new();

2. Build the project and note the compiler error message, as shown in the following
output:

The type or namespace name 'XDocument' could not be found (are you missing
a using directive or an assembly reference?)

The XDocument type is not recognized because we have not told the compiler what the
namespace of the type is. Although this project already has a reference to the assembly
that contains the type, we also need to either prefix the type name with its namespace
or import the namespace.

3. Click inside the XDocument class name. Your code editor displays a light bulb, showing
that it recognizes the type and can automatically fix the problem for you.

4. Click the light bulb, and select using System.Xml.Linq; from the menu.

This will import the namespace by adding a using statement to the top of the file. Once a
namespace is imported at the top of a code file, then all the types within the namespace are
available for use in that code file by just typing their name without the type name needing to be
fully qualified by prefixing it with its namespace.

Sometimes I like to add a comment with a type name after importing a namespace to remind
me why I need to import that namespace, as shown in the following code:

using System.Xml.Linq; // XDocument

Relating C# keywords to .NET types
One of the common questions I get from new C# programmers is, "What is the difference
between string with a lowercase s and String with an uppercase S?"

The short answer is easy: none. The long answer is that all C# type keywords like string or int
are aliases for a .NET type in a class library assembly.

When you use the string keyword, the compiler recognizes it as a System.String type. When
you use the int type, the compiler recognizes it as a System.Int32 type.

Let's see this in action with some code:

1. In Program.cs, declare two variables to hold string values, one using lowercase string
and one using uppercase String, as shown in the following code:

string s1 = "Hello";
String s2 = "World";

Packaging and Distributing .NET Types

[282]

WriteLine($"{s1} {s2}");

2. Run the code, and note that at the moment, they both work equally well, and literally
mean the same thing.

3. In AssembliesAndNamespaces.csproj, add entries to prevent the System namespace from
being globally imported, as shown in the following markup:

<ItemGroup>
 <Using Remove="System" />
</ItemGroup>

4. In Program.cs note the compiler error message, as shown in the following output:
The type or namespace name 'String' could not be found (are you missing a
using directive or an assembly reference?)

5. At the top of Program.cs, import the System namespace with a using statement that will
fix the error, as shown in the following code:

using System; // String

Mapping C# aliases to .NET types
The following table shows the 18 C# type keywords along with their actual .NET types:

Keyword .NET type Keyword .NET type
string System.String char System.Char
sbyte System.SByte byte System.Byte
short System.Int16 ushort System.UInt16
int System.Int32 uint System.UInt32
long System.Int64 ulong System.UInt64
nint System.IntPtr nuint System.UIntPtr
float System.Single double System.Double
decimal System.Decimal bool System.Boolean
object System.Object dynamic System.Dynamic.DynamicObject

Other .NET programming language compilers can do the same thing. For example, the Visual
Basic .NET language has a type named Integer that is its alias for System.Int32.

Good Practice: When you have a choice, use the C# keyword instead of the
actual type because the keywords do not need the namespace imported.

Chapter 07

[283]

Understanding native-sized integers
C# 9 introduced nint and nuint keyword alias for native-sized integers, meaning that the
storage size for the integer value is platform specific. They store a 32-bit integer in a 32-bit
process and sizeof() returns 4 bytes; they store a 64-bit integer in a 64-bit process and sizeof()
returns 8 bytes. The aliases represent pointers to the integer value in memory, which is why
their .NET names are IntPtr and UIntPtr. The actual storage type will be either System.Int32
or System.Int64 depending on the process.

In a 64-bit process, the following code:

WriteLine($"int.MaxValue = {int.MaxValue:N0}");
WriteLine($"nint.MaxValue = {nint.MaxValue:N0}");

produces this output:

int.MaxValue = 2,147,483,647
nint.MaxValue = 9,223,372,036,854,775,807

Revealing the location of a type
Code editors provide built-in documentation for .NET types. Let's explore:

1. Right-click inside XDocument and choose Go to Definition.
2. Navigate to the top of the code file and note the assembly filename is System.Xml.

XDocument.dll, but the class is in the System.Xml.Linq namespace, as shown in Figure 7.1:

Figure 7.1: Assembly and namespace that contains the XDocument type

3. Close the XDocument [from metadata] tab.
4. Right-click inside string or String and choose Go to Definition.
5. Navigate to the top of the code file and note the assembly filename is System.Runtime.

dll but the class is in the System namespace.

Actually, your code editor is technically lying to you. If you remember when we wrote code in
Chapter 2, Speaking C#, when we revealed the extent of the C# vocabulary, we discovered that
the System.Runtime.dll assembly contains zero types.

Packaging and Distributing .NET Types

[284]

What it does contain are type-forwarders. These are special types that appear to exist in an
assembly but actually are implemented elsewhere. In this case, they are implemented deep
inside the .NET runtime using highly optimized code.

Sharing code with legacy platforms using .NET
Standard
Before .NET Standard, there were Portable Class Libraries (PCLs). With PCLs, you could
create a library of code and explicitly specify which platforms you want the library to support,
such as Xamarin, Silverlight, and Windows 8. Your library could then use the intersection of
APIs that are supported by the specified platforms.

Microsoft realized that this is unsustainable, so they created .NET Standard—a single API that
all future .NET platforms would support. There are older versions of .NET Standard, but .NET
Standard 2.0 was an attempt to unify all important recent .NET platforms. .NET Standard 2.1
was released in late 2019 but only .NET Core 3.0 and that year's version of Xamarin support
its new features. For the rest of this book, I will use the term .NET Standard to mean .NET
Standard 2.0.

.NET Standard is similar to HTML5 in that they are both standards that a platform should
support. Just as Google's Chrome browser and Microsoft's Edge browser implement the
HTML5 standard, .NET Core, .NET Framework, and Xamarin all implement .NET Standard. If
you want to create a library of types that will work across variants of legacy .NET, you can do
so most easily with .NET Standard.

Your choice of which .NET Standard version to target comes down to a balance between
maximizing platform support and available functionality. A lower version supports more
platforms but has a smaller set of APIs. A higher version supports fewer platforms but has a
larger set of APIs. Generally, you should choose the lowest version that supports all the APIs
that you need.

Understanding defaults for class libraries with
different SDKs
When using the dotnet SDK tool to create a class library it might be useful to know which
target framework will be used by default, as shown in the following table:

Good Practice: Since many of the API additions in .NET Standard 2.1 required
runtime changes, and .NET Framework is Microsoft's legacy platform that
needs to remain as unchanging as possible, .NET Framework 4.8 remained on
.NET Standard 2.0 rather than implementing .NET Standard 2.1. If you need to
support .NET Framework customers, then you should create class libraries on
.NET Standard 2.0 even though it is not the latest and does not support all the
recent language and BCL new features.

Chapter 07

[285]

SDK Default target framework for new class libraries
.NET Core 3.1 netstandard2.0
.NET 5 net5.0
.NET 6 net6.0

Of course, just because a class library targets a specific version of .NET by default does not
mean you cannot change it after creating a class library project using the default template.

You can manually set the target framework to a value that supports the projects that need to
reference that library, as shown in the following table:

Class library target
framework

Can be used by projects that target

netstandard2.0 .NET Framework 4.6.1 or later, .NET Core 2.0 or later, .NET 5.0 or later, Mono
5.4 or later, Xamarin.Android 8.0 or later, Xamarin.iOS 10.14 or later

netstandard2.1 .NET Core 3.0 or later, .NET 5.0 or later, Mono 6.4 or later, Xamarin.Android
10.0 or later, Xamarin.iOS 12.16 or later

net5.0 .NET 5.0 or later
net6.0 .NET 6.0 or later

Creating a .NET Standard 2.0 class library
We will create a class library using .NET Standard 2.0 so that it can be used across all important
.NET legacy platforms and cross-platform on Windows, macOS, and Linux operating systems,
while also having access to a wide set of .NET APIs:

1. Use your preferred code editor to add a new class library named SharedLibrary to the
Chapter07 solution/workspace.

2. If you use Visual Studio 2022, when prompted for the Target Framework, select .NET
Standard 2.0, and then set the startup project for the solution to the current selection.

3. If you use Visual Studio Code, include a switch to target .NET Standard 2.0, as shown
in the following command:

dotnet new classlib -f netstandard2.0

4. If you use Visual Studio Code, select SharedLibrary as the active OmniSharp project.

Good Practice: Always check the target framework of a class library and
then manually change it to something more appropriate if necessary. Make a
conscious decision about what it should be rather than accept the default.

Packaging and Distributing .NET Types

[286]

An alternative to manually creating two class libraries is to create one that supports multi-
targeting. If you would like me to add a section about multi-targeting to the next edition, please
let me know. You can read about multi-targeting here: https://docs.microsoft.com/en-us/
dotnet/standard/library-guidance/cross-platform-targeting#multi-targeting.

Controlling the .NET SDK
By default, executing dotnet commands uses the most recent installed .NET SDK. There may be
times when you want to control which SDK is used.

For example, one reader of the fourth edition wanted their experience to match the book steps
that use the .NET Core 3.1 SDK. But they had installed the .NET 5.0 SDK as well and that was
being used by default. As described in the previous section, the behavior when creating new
class libraries changed to target .NET 5.0 instead of .NET Standard 2.0, and that confused the
reader.

You can control the .NET SDK used by default by using a global.json file. The dotnet
command searches the current folder and ancestor folders for a global.json file.

1. Create a subdirectory/folder in the Chapter07 folder named ControlSDK.
2. On Windows, start Command Prompt or Windows Terminal. On macOS, start

Terminal. If you are using Visual Studio Code, then you can use the integrated
terminal.

3. In the ControlSDK folder, at the command prompt or terminal, enter a command to
create a global.json file that forces the use of the latest .NET Core 3.1 SDK, as shown in
the following command:

dotnet new globaljson --sdk-version 3.1.412

4. Open the global.json file and review its contents, as shown in the following markup:
{
 "sdk": {
 "version": "3.1.412"
 }
}

Good Practice: If you need to create types that use new features in .NET 6.0,
as well as types that only use .NET Standard 2.0 features, then you can create
two separate class libraries: one targeting .NET Standard 2.0 and one targeting
.NET 6.0. You will see this in action in Chapter 10, Working with Data Using
Entity Framework Core.

You can discover the version numbers of the latest .NET SDKs in
the table at the following link: https://dotnet.microsoft.com/
download/visual-studio-sdks

https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/cross-platform-targeting#multi-targeting
https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/cross-platform-targeting#multi-targeting
https://dotnet.microsoft.com/download/visual-studio-sdks
https://dotnet.microsoft.com/download/visual-studio-sdks

Chapter 07

[287]

5. In the ControlSDK folder, at the command prompt or terminal, enter a command to
create a class library project, as shown in the following command:

dotnet new classlib

6. If you do not have the .NET Core 3.1 SDK installed then you will see an error, as shown
in the following output:

Could not execute because the application was not found or a compatible
.NET SDK is not installed.

7. If you do have the .NET Core 3.1 SDK installed, then a class library project will be
created that targets .NET Standard 2.0 by default.

You do not need to complete the above steps, but if you want to try and do not already have
.NET Core 3.1 SDK installed then you can install it from the following link:

https://dotnet.microsoft.com/download/dotnet/3.1

Publishing your code for deployment
If you write a novel and you want other people to read it, you must publish it.

Most developers write code for other developers to use in their own code, or for users to run
as an app. To do so, you must publish your code as packaged class libraries or executable
applications.

There are three ways to publish and deploy a .NET application. They are:

1. Framework-dependent deployment (FDD).
2. Framework-dependent executables (FDEs).
3. Self-contained.

If you choose to deploy your application and its package dependencies, but not .NET itself,
then you rely on .NET already being on the target computer. This works well for web
applications deployed to a server because .NET and lots of other web applications are likely
already on the server.

Framework-dependent deployment (FDD) means you deploy a DLL that must be executed by
the dotnet command-line tool. Framework-dependent executables (FDE) means you deploy
an EXE that can be run directly from the command line. Both require .NET to be already
installed on the system.

Sometimes, you want to be able to give someone a USB stick containing your application and
know that it can execute on their computer. You want to perform a self-contained deployment.
While the size of the deployment files will be larger, you'll know that it will work.

https://dotnet.microsoft.com/download/dotnet/3.1

Packaging and Distributing .NET Types

[288]

Creating a console application to publish
Let's explore how to publish a console application:

1. Use your preferred code editor to add a new console app named DotNetEverywhere to
the Chapter07 solution/workspace.

2. In Visual Studio Code, select DotNetEverywhere as the active OmniSharp project. When
you see the pop-up warning message saying that required assets are missing, click Yes
to add them.

3. In Program.cs, delete the comment and statically import the Console class.
4. In Program.cs, add a statement to output a message saying the console app can run

everywhere and some information about the operating system, as shown in the
following code:

WriteLine("I can run everywhere!");

WriteLine($"OS Version is {Environment.OSVersion}.");

if (OperatingSystem.IsMacOS())
{
 WriteLine("I am macOS.");
}
else if (OperatingSystem.IsWindowsVersionAtLeast(major: 10))
{
 WriteLine("I am Windows 10 or 11.");
}
else
{
 WriteLine("I am some other mysterious OS.");
}

WriteLine("Press ENTER to stop me.");
ReadLine();

5. Open DotNetEverywhere.csproj and add the runtime identifiers to target three
operating systems inside the <PropertyGroup> element, as shown highlighted in the
following markup:

Chapter 07

[289]

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <RuntimeIdentifiers>
 win10-x64;osx-x64;osx.11.0-arm64;linux-x64;linux-arm64
 </RuntimeIdentifiers>
 </PropertyGroup>

</Project>

• The win10-x64 RID value means Windows 10 or Windows Server 2016 64-bit.
You could also use the win10-arm64 RID value to deploy to a Microsoft Surface
Pro X.

• The osx-x64 RID value means macOS Sierra 10.12 or later. You can also specify
version-specific RID values like osx.10.15-x64 (Catalina), osx.11.0-x64 (Big
Sur on Intel), or osx.11.0-arm64 (Big Sur on Apple Silicon).

• The linux-x64 RID value means most desktop distributions of Linux like
Ubuntu, CentOS, Debian, or Fedora. Use linux-arm for Raspbian or Raspberry
Pi OS 32-bit. Use linux-arm64 for a Raspberry Pi running Ubuntu 64-bit.

Understanding dotnet commands
When you install the .NET SDK, it includes a command-line interface (CLI) named dotnet.

Creating new projects
The .NET CLI has commands that work on the current folder to create a new project using
templates:

1. On Windows, start Command Prompt or Windows Terminal. On macOS, start
Terminal. If you are using Visual Studio Code, then you can use the integrated
terminal.

Packaging and Distributing .NET Types

[290]

2. Enter the dotnet new --list or dotnet new -l command to list your currently installed
templates, as shown in Figure 7.2:

Figure 7.2: A list of installed dotnet new project templates

Getting information about .NET and its environment
It is useful to see what .NET SDKs and runtimes are currently installed, alongside information
about the operating system, as shown in the following command:

dotnet --info

Most dotnet command-line switches have a long and a short version. For
example, --list or -l. The short ones are quicker to type but more likely to
be misinterpreted by you or other humans. Sometimes more typing is clearer.

Chapter 07

[291]

Note the results, as shown in the following partial output:

.NET SDK (reflecting any global.json):
 Version: 6.0.100
 Commit: 22d70b47bc

Runtime Environment:
 OS Name: Windows
 OS Version: 10.0.19043
 OS Platform: Windows
 RID: win10-x64
 Base Path: C:\Program Files\dotnet\sdk\6.0.100\

Host (useful for support):
 Version: 6.0.0
 Commit: 91ba01788d

.NET SDKs installed:
 3.1.412 [C:\Program Files\dotnet\sdk]
 5.0.400 [C:\Program Files\dotnet\sdk]
 6.0.100 [C:\Program Files\dotnet\sdk]

.NET runtimes installed:
 Microsoft.AspNetCore.All 2.1.29 [...\dotnet\shared\Microsoft.AspNetCore.All]
...

Managing projects
The .NET CLI has the following commands that work on the project in the current folder, to
manage the project:

• dotnet restore: This downloads dependencies for the project.
• dotnet build: This builds, aka compiles, the project.
• dotnet test: This builds and then runs unit tests for the project.
• dotnet run: This builds and then runs the project.
• dotnet pack: This creates a NuGet package for the project.
• dotnet publish: This builds and then publishes the project, either with dependencies or

as a self-contained application.
• dotnet add: This adds a reference to a package or class library to the project.
• dotnet remove: This removes a reference to a package or class library from the project.
• dotnet list: This lists the package or class library references for the project.

Packaging and Distributing .NET Types

[292]

Publishing a self-contained app
Now that you have seen some example dotnet tool commands, we can publish our cross-
platform console app:

1. At the command line, make sure that you are in the DotNetEverywhere folder.
2. Enter a command to build and publish the release version of the console application for

Windows 10, as shown in the following command:
dotnet publish -c Release -r win10-x64

3. Note the build engine restores any needed packages, compiles the project source code
into an assembly DLL, and creates a publish folder, as shown in the following output:

Microsoft (R) Build Engine version 17.0.0+073022eb4 for .NET
Copyright (C) Microsoft Corporation. All rights reserved.

 Determining projects to restore...
 Restored C:\Code\Chapter07\DotNetEverywhere\DotNetEverywhere.csproj (in
46.89 sec).
 DotNetEverywhere -> C:\Code\Chapter07\DotNetEverywhere\bin\Release\
net6.0\win10-x64\DotNetEverywhere.dll
 DotNetEverywhere -> C:\Code\Chapter07\DotNetEverywhere\bin\Release\
net6.0\win10-x64\publish\

4. Enter the commands to build and publish the release versions for macOS and Linux
variants, as shown in the following commands:

dotnet publish -c Release -r osx-x64
dotnet publish -c Release -r osx.11.0-arm64
dotnet publish -c Release -r linux-x64
dotnet publish -c Release -r linux-arm64

5. Open a macOS Finder window or Windows File Explorer, navigate to
DotNetEverywhere\bin\Release\net6.0, and note the output folders for the various
operating systems.

6. In the win10-x64 folder, select the publish folder, note all the supporting assemblies
like Microsoft.CSharp.dll.

7. Select the DotNetEverywhere executable file, and note it is 161 KB, as shown in Figure 7.3:

Good Practice: You could automate these commands by using a
scripting language like PowerShell and execute it on any operating
system using the cross-platform PowerShell Core. Just create a file
with the extension .ps1 with the five commands on it. Then execute
the file. Learn more about PowerShell at the following link: https://
github.com/markjprice/cs10dotnet6/tree/main/docs/
powershell

https://github.com/markjprice/cs10dotnet6/tree/main/docs/powershell
https://github.com/markjprice/cs10dotnet6/tree/main/docs/powershell
https://github.com/markjprice/cs10dotnet6/tree/main/docs/powershell

Chapter 07

[293]

Figure 7.3: The DotNetEverywhere executable file for Windows 10 64-bit

8. If you are on Windows, then double-click to execute the program and note the result, as
shown in the following output:

I can run everywhere!
OS Version is Microsoft Windows NT 10.0.19042.0.
I am Windows 10.
Press ENTER to stop me.

9. Note that the total size of the publish folder and all its files is 64.8 MB.
10. In the osx.11.0-arm64 folder, select the publish folder, note all the supporting

assemblies, and then select the DotNetEverywhere executable file, and note the
executable is 126 KB, and the publish folder is 71.8 MB.

If you copy any of those publish folders to the appropriate operating system, the console
application will run; this is because it is a self-contained deployable .NET application. For
example, on macOS with Intel, as shown in the following output:

I can run everywhere!
OS Version is Unix 11.2.3
I am macOS.
Press ENTER to stop me.

This example used a console app, but you could just as easily create an ASP.NET Core website
or web service, or a Windows Forms or WPF app. Of course, you can only deploy Windows
desktop apps to Windows computers, not Linux or macOS.

Publishing a single-file app
To publish as a "single" file, you can specify flags when publishing. With .NET 5, single-file
apps were primarily focused on Linux because there are limitations in both Windows and
macOS that mean true single-file publishing is not technically possible. With .NET 6, you can
now create proper single-file apps on Windows.

Packaging and Distributing .NET Types

[294]

If you can assume that .NET 6 is already installed on the computer on which you want to run
your app, then you can use the extra flags when you publish your app for release to say that it
does not need to be self-contained and that you want to publish it as a single file (if possible), as
shown in the following command (that must be entered on a single line):

dotnet publish -r win10-x64 -c Release --self-contained=false
/p:PublishSingleFile=true

This will generate two files: DotNetEverywhere.exe and DotNetEverywhere.pdb. The .exe is the
executable. The .pdb file is a program debug database file that stores debugging information.

If you prefer the .pdb file to be embedded in the .exe file, then add a <DebugType> element to
the <PropertyGroup> element in your .csproj file and set it to embedded, as shown highlighted
in the following markup:

<PropertyGroup>

 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <RuntimeIdentifiers>
 win10-x64;osx-x64;osx.11.0-arm64;linux-x64;linux-arm64
 </RuntimeIdentifiers>
 <DebugType>embedded</DebugType>

</PropertyGroup>

If you cannot assume that .NET 6 is already installed on a computer, then although Linux also
only generates the two files, expect the following additional files for Windows: coreclr.dll,
clrjit.dll, clrcompression.dll, and mscordaccore.dll.

Let's see an example for Windows:

1. At the command line, enter the command to build the release version of the console
application for Windows 10, as shown in the following command:

dotnet publish -c Release -r win10-x64 /p:PublishSingleFile=true

2. Navigate to the DotNetEverywhere\bin\Release\net6.0\win10-x64\publish folder,
select the DotNetEverywhere executable file, and note the executable is now 58.3 MB,
and there is also a .pdb file that is 10 KB. The sizes on your system will vary.

There is no .exe file extension for published applications on macOS, so if you
use osx-x64 in the command above, the filename will not have an extension.

Chapter 07

[295]

Reducing the size of apps using app trimming
One of the problems with deploying a .NET app as a self-contained app is that the .NET
libraries take up a lot of space. One of the biggest needs for reduced size is Blazor WebAssembly
components because all the .NET libraries need to be downloaded to the browser.

Luckily, you can reduce this size by not packaging unused assemblies with your deployments.
Introduced with .NET Core 3.0, the app trimming system can identify the assemblies needed by
your code and remove those that are not needed.

With .NET 5, the trimming went further by removing individual types, and even members
like methods from within an assembly if they are not used. For example, with a Hello World
console app, the System.Console.dll assembly is trimmed from 61.5 KB to 31.5 KB. For .NET 5,
this is an experimental feature so it is disabled by default.

With .NET 6, Microsoft added annotations to their libraries to indicate how they can be safely
trimmed so the trimming of types and members was made the default. This is known as link
trim mode.

The catch is how well the trimming identifies unused assemblies, types, and members. If your
code is dynamic, perhaps using reflection, then it might not work correctly, so Microsoft also
allows manual control.

Enabling assembly-level trimming
There are two ways to enable assembly-level trimming.

The first way is to add an element in the project file, as shown in the following markup:

<PublishTrimmed>true</PublishTrimmed>

The second way is to add a flag when publishing, as shown highlighted in the following
command:

dotnet publish ... -p:PublishTrimmed=True

Enabling type-level and member-level trimming
There are two ways to enable type-level and member-level trimming.

The first way is to add two elements in the project file, as shown in the following markup:

<PublishTrimmed>true</PublishTrimmed>
<TrimMode>Link</TrimMode>

The second way is to add two flags when publishing, as shown highlighted in the following
command:

dotnet publish ... -p:PublishTrimmed=True -p:TrimMode=Link

Packaging and Distributing .NET Types

[296]

For .NET 6, link trim mode is the default, so you only need to specify the switch if you want to
set an alternative trim mode like copyused, which means assembly-level trimming.

Decompiling .NET assemblies
One of the best ways to learn how to code for .NET is to see how professionals do it.

Decompiling using the ILSpy extension for Visual
Studio 2022
For learning purposes, you can decompile any .NET assembly with a tool like ILSpy.

1. In Visual Studio 2022 for Windows, navigate to Extensions | Manage Extensions.
2. In the search box, enter ilspy.
3. For the ILSpy extension, click Download.
4. Click Close.
5. Close Visual Studio to allow the extension to install.
6. Restart Visual Studio and reopen the Chapter07 solution.
7. In Solution Explorer, right-click the DotNetEverywhere project and select Open

output in ILSpy.
8. Navigate to File | Open….
9. Navigate to the following folder:

Code/Chapter07/DotNetEverywhere/bin/Release/net6.0/linux-x64

10. Select the System.IO.FileSystem.dll assembly and click Open.
11. In the Assemblies tree, expand the System.IO.FileSystem assembly, expand the

System.IO namespace, select the Directory class, and wait for it to decompile.
12. In the Directory class, click the [+] to expand the GetParent method, as shown in

Figure 7.4:

Good Practice: You could decompile someone else's assemblies for non-
learning purposes like copying their code for use in your own production
library or application, but remember that you are viewing their intellectual
property, so please respect that.

Chapter 07

[297]

Figure 7.4: Decompiled GetParent method of Directory class on Windows

13. Note the good practice of checking the path parameter and throwing an
ArgumentNullException if it is null or an ArgumentException if it is zero length.

14. Close ILSpy.

Decompiling using the ILSpy extension for Visual
Studio Code
A similar capability is available cross-platform as an extension for Visual Studio Code.

1. If you have not already installed the ILSpy .NET Decompiler extension for Visual
Studio Code, then search for it and install it now.

2. On macOS or Linux the extension has a dependency on Mono so you will also need
to install Mono from the following link: https://www.mono-project.com/download/
stable/.

3. In Visual Studio Code, navigate to View | Command Palette….
4. Type ilspy and then select ILSpy: Decompile IL Assembly (pick file).
5. Navigate to the following folder:

Code/Chapter07/DotNetEverywhere/bin/Release/net6.0/linux-x64

https://www.mono-project.com/download/stable/
https://www.mono-project.com/download/stable/

Packaging and Distributing .NET Types

[298]

6. Select the System.IO.FileSystem.dll assembly and click Select assembly. Nothing will
appear to happen, but you can confirm that ILSpy is working by viewing the Output
window, selecting ilspy-vscode in the dropdown list, and seeing the processing, as
shown in Figure 7.5:

Figure 7.5: ILSpy extension output when selecting an assembly to decompile

7. In EXPLORER, expand ILSPY DECOMPILED MEMBERS, select the assembly, close
the Output window, and note the two edit windows that open showing assembly
attributes using C# code and external DLL and assembly references using IL code, as
shown in Figure 7.6:

Figure 7.6: Expanding ILSPY DECOMPILED MEMBERS

8. In the IL code on the right side, note the reference to the System.Runtime assembly,
including the version number, as shown in the following code:

Chapter 07

[299]

.module extern libSystem.Native

.assembly extern System.Runtime
{
 .publickeytoken = (
 b0 3f 5f 7f 11 d5 0a 3a
)
 .ver 6:0:0:0
}

.module extern libSystem.Native means this assembly makes function calls to Linux
system APIs as you would expect from code that interacts with the filesystem. If we
had decompiled the Windows equivalent of this assembly, it would use .module extern
kernel32.dll instead, which is a Win32 API.

9. In EXPLORER, in ILSPY DECOMPILED MEMBERS, expand the assembly, expand
the System.IO namespace, select Directory, and note the two edit windows that open
showing the decompiled Directory class using C# code on the left and IL code on the
right, as shown in Figure 7.7:

Figure 7.7: The decompiled Directory class in C# and IL code

10. Compare the C# source code for the GetParent method, shown in the following code:
public static DirectoryInfo? GetParent(string path)
{
 if (path == null)
 {
 throw new ArgumentNullException("path");
 }
 if (path.Length == 0)
 {
 throw new ArgumentException(SR.Argument_PathEmpty, "path");
 }
 string fullPath = Path.GetFullPath(path);

Packaging and Distributing .NET Types

[300]

 string directoryName = Path.GetDirectoryName(fullPath);
 if (directoryName == null)
 {
 return null;
 }
 return new DirectoryInfo(directoryName);
}

11. With the equivalent IL source code of the GetParent method, as shown in the following
code:

.method /* 06000067 */ public hidebysig static
 class System.IO.DirectoryInfo GetParent (
 string path
) cil managed
{
 .param [0]
 .custom instance void System.Runtime.CompilerServices
 .NullableAttribute::.ctor(uint8) = (
 01 00 02 00 00
)
 // Method begins at RVA 0x62d4
 // Code size 64 (0x40)
 .maxstack 2
 .locals /* 1100000E */ (
 [0] string,
 [1] string
)

 IL_0000: ldarg.0
 IL_0001: brtrue.s IL_000e

 IL_0003: ldstr "path" /* 700005CB */
 IL_0008: newobj instance void [System.Runtime]
 System.ArgumentNullException::.ctor(string) /* 0A000035 */
 IL_000d: throw

 IL_000e: ldarg.0
 IL_000f: callvirt instance int32 [System.Runtime]
 System.String::get_Length() /* 0A000022 */
 IL_0014: brtrue.s IL_0026
 IL_0016: call string System.SR::get_Argument_PathEmpty() /* 0600004C */
 IL_001b: ldstr "path" /* 700005CB */
 IL_0020: newobj instance void [System.Runtime]
 System.ArgumentException::.ctor(string, string) /* 0A000036 */
 IL_0025: throw IL_0026: ldarg.0

Chapter 07

[301]

 IL_0027: call string [System.Runtime.Extensions]
 System.IO.Path::GetFullPath(string) /* 0A000037 */
 IL_002c: stloc.0 IL_002d: ldloc.0
 IL_002e: call string [System.Runtime.Extensions]
 System.IO.Path::GetDirectoryName(string) /* 0A000038 */
 IL_0033: stloc.1
 IL_0034: ldloc.1
 IL_0035: brtrue.s IL_0039 IL_0037: ldnull
 IL_0038: ret IL_0039: ldloc.1
 IL_003a: newobj instance void
 System.IO.DirectoryInfo::.ctor(string) /* 06000097 */
 IL_003f: ret
} // end of method Directory::GetParent

12. Close the edit windows without saving changes.
13. In EXPLORER, in ILSPY DECOMPILED MEMBERS, right-click the assembly and

choose Unload Assembly.

No, you cannot technically prevent decompilation
I sometimes get asked if there is a way to protect compiled code to prevent decompilation. The
quick answer is no, and if you think about it, you'll see why this has to be the case. You can
make it harder using obfuscation tools like Dotfuscator, but ultimately you cannot completely
prevent it.

All compiled applications contain instructions to the platform, operating system, and hardware
on which it runs. Those instructions have to be functionally the same as the original source
code but are just harder for a human to read. Those instructions must be readable to execute
your code; they therefore must be readable to be decompiled. If you protect your code from
decompilation using some custom technique, then you would also prevent your code from
running!

Virtual machines simulate hardware and so can capture all interaction between your running
application and the software and hardware that it thinks it is running on.

Good Practice: The IL code edit windows are not especially useful
unless you get very advanced with C# and .NET development when
knowing how the C# compiler translates your source code into IL
code can be important. The much more useful edit windows contain
the equivalent C# source code written by Microsoft experts. You can
learn a lot of good practices from seeing how professionals implement
types. For example, the GetParent method shows how to check
arguments for null and other argument exceptions.

Packaging and Distributing .NET Types

[302]

If you could protect your code, then you would also prevent attaching to it with a debugger
and stepping through it. If the compiled application has a pdb file, then you can attach a
debugger and step through the statements line-by-line. Even without the pdb file, you can still
attach a debugger and get some idea of how the code works.

This is true for all programming languages. Not just .NET languages like C#, Visual Basic,
and F#, but also C, C++, Delphi, assembly language: all can be attached to for debugging or to
be disassembled or decompiled. Some tools used by professionals are shown in the following
table:

Type Product Description
Virtual Machine VMware Professionals like malware analysts always run software inside a VM.
Debugger SoftICE Runs underneath the operating system usually in a VM.
Debugger WinDbg Useful for understanding Windows internals because it knows more

about Windows data structures than other debuggers.
Disassembler IDA Pro Used by professional malware analysts.
Decompiler HexRays Decompiles C apps. Plugin for IDA Pro.
Decompiler DeDe Decompiles Delphi apps.
Decompiler dotPeek .NET decompiler from JetBrains.

Packaging your libraries for NuGet
distribution
Before we learn how to create and package our own libraries, we will review how a project can
use an existing package.

Referencing a NuGet package
Let's say that you want to add a package created by a third-party developer, for example,
Newtonsoft.Json, a popular package for working with the JavaScript Object Notation (JSON)
serialization format:

1. In the AssembliesAndNamespaces project, add a reference to the Newtonsoft.Json
NuGet package, either using the GUI for Visual Studio 2022 or the dotnet add package
command for Visual Studio Code.

2. Open the AssembliesAndNamespaces.csproj file and note that a package reference has
been added, as shown in the following markup:

Good Practice: Debugging, disassembling, and decompiling someone
else's software is likely against its license agreement and illegal in many
jurisdictions. Instead of trying to protect your intellectual property with a
technical solution, the law is sometimes your only recourse.

Chapter 07

[303]

<ItemGroup>
 <PackageReference Include="newtonsoft.json" Version="13.0.1" />
</ItemGroup>

If you have a more recent version of the newtonsoft.json package, then it has been updated
since this chapter was written.

Fixing dependencies
To consistently restore packages and write reliable code, it's important that you fix
dependencies. Fixing dependencies means you are using the same family of packages released
for a specific version of .NET, for example, SQLite for .NET 6.0, as shown highlighted in the
following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="6.0.0" />
 </ItemGroup>

</Project>

To fix dependencies, every package should have a single version with no additional qualifiers.
Additional qualifiers include betas (beta1), release candidates (rc4), and wildcards (*).

Wildcards allow future versions to be automatically referenced and used because they always
represent the most recent release. But wildcards are therefore dangerous because they could
result in the use of future incompatible packages that break your code.

This can be worth the risk while writing a book where new preview versions are released every
month and you do not want to keep updating the package references, as I did during 2021, and
as shown in the following markup:

<PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="6.0.0-preview.*" />

If you use the dotnet add package command, or Visual Studio's Manage NuGet Packages,
then it will by default use the latest specific version of a package. But if you copy and paste
configuration from a blog article or manually add a reference yourself, you might include
wildcard qualifiers.

Packaging and Distributing .NET Types

[304]

The following dependencies are examples of NuGet package references that are not fixed and
therefore should be avoided unless you know the implications:

<PackageReference Include="System.Net.Http" Version="4.1.0-*" />
<PackageReference Include="Newtonsoft.Json" Version="12.0.3-beta1" />

Packaging a library for NuGet
Now, let's package the SharedLibrary project that you created earlier:

1. In the SharedLibrary project, rename the Class1.cs file to StringExtensions.cs.
2. Modify its contents to provide some useful extension methods for validating various

text values using regular expressions, as shown in the following code:
using System.Text.RegularExpressions;

namespace Packt.Shared
{
 public static class StringExtensions
 {
 public static bool IsValidXmlTag(this string input)
 {
 return Regex.IsMatch(input,
 @"^<([a-z]+)([^<]+)*(?:>(.*)<\/\1>|\s+\/>)$");
 }

 public static bool IsValidPassword(this string input)
 {
 // minimum of eight valid characters
 return Regex.IsMatch(input, "^[a-zA-Z0-9_-]{8,}$");
 }

 public static bool IsValidHex(this string input)
 {
 // three or six valid hex number characters
 return Regex.IsMatch(input,
 "^#?([a-fA-F0-9]{3}|[a-fA-F0-9]{6})$");
 }
 }
}

Good Practice: Microsoft guarantees that if you fixed your dependencies to
what ships with a specific version of .NET, for example, 6.0.0, those packages
will all work together. Almost always fix your dependencies.

Chapter 07

[305]

You will learn how to write regular expressions in Chapter 8, Working with Common
.NET Types.

3. In SharedLibrary.csproj, modify its contents, as shown highlighted in the following
markup, and note the following:

• PackageId must be globally unique, so you must use a different value if you
want to publish this NuGet package to the https://www.nuget.org/ public feed
for others to reference and download.

• PackageLicenseExpression must be a value from the following link: https://
spdx.org/licenses/ or you could specify a custom license.

• All the other elements are self-explanatory:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>

 <GeneratePackageOnBuild>true</GeneratePackageOnBuild>
 <PackageId>Packt.CSdotnet.SharedLibrary</PackageId>
 <PackageVersion>6.0.0.0</PackageVersion>
 <Title>C# 10 and .NET 6 Shared Library</Title>
 <Authors>Mark J Price</Authors>
 <PackageLicenseExpression>
 MS-PL
 </PackageLicenseExpression>
 <PackageProjectUrl>
 https://github.com/markjprice/cs10dotnet6
 </PackageProjectUrl>
 <PackageIcon>packt-csdotnet-sharedlibrary.png</PackageIcon>
 <PackageRequireLicenseAcceptance>true</
PackageRequireLicenseAcceptance>
 <PackageReleaseNotes>
 Example shared library packaged for NuGet.
 </PackageReleaseNotes>
 <Description>
 Three extension methods to validate a string value.
 </Description>
 <Copyright>
 Copyright © 2016-2021 Packt Publishing Limited
 </Copyright>
 <PackageTags>string extensions packt csharp dotnet</PackageTags>

 </PropertyGroup>

 <ItemGroup>
 <None Include="packt-csdotnet-sharedlibrary.png">

https://www.nuget.org/
https://spdx.org/licenses/
https://spdx.org/licenses/

Packaging and Distributing .NET Types

[306]

 <Pack>True</Pack>
 <PackagePath></PackagePath>
 </None>
 </ItemGroup>

</Project>

4. Download the icon file and save it in the SharedLibrary folder from the following
link: https://github.com/markjprice/cs10dotnet6/blob/main/vs4win/Chapter07/
SharedLibrary/packt-csdotnet-sharedlibrary.png.

5. Build the release assembly:
1. In Visual Studio, select Release in the toolbar, and then navigate to Build |

Build SharedLibrary.
2. In Visual Studio Code, in Terminal, enter dotnet build -c Release

6. If we had not set <GeneratePackageOnBuild> to true in the project file, then we would
have to create a NuGet package manually using the following additional steps:

1. In Visual Studio, navigate to Build | Pack SharedLibrary.
2. In Visual Studio Code, in Terminal, enter dotnet pack -c Release.

Publishing a package to a public NuGet feed
If you want everyone to be able to download and use your NuGet package, then you must
upload it to a public NuGet feed like Microsoft's:

1. Start your favorite browser and navigate to the following link: https://www.nuget.org/
packages/manage/upload.

2. You will need to sign in with a Microsoft account at https://www.nuget.org/ if you
want to upload a NuGet package for other developers to reference as a dependency
package.

3. Click on Browse... and select the .nupkg file that was created by generating the NuGet
package. The folder path should be Code\Chapter07\SharedLibrary\bin\Release and
the file is named Packt.CSdotnet.SharedLibrary.6.0.0.nupkg.

4. Verify that the information you entered in the SharedLibrary.csproj file has been
correctly filled in, and then click Submit.

5. Wait a few seconds, and you will see a success message showing that your package has
been uploaded, as shown in Figure 7.8:

Good Practice: Configuration property values that are
true or false values cannot have any whitespace so the
<PackageRequireLicenseAcceptance> entry cannot have a
carriage return and indentation as shown in the preceding markup.

https://github.com/markjprice/cs10dotnet6/blob/main/vs4win/Chapter07/SharedLibrary/packt-csdotnet-sharedlibrary.png
https://github.com/markjprice/cs10dotnet6/blob/main/vs4win/Chapter07/SharedLibrary/packt-csdotnet-sharedlibrary.png
https://www.nuget.org/packages/manage/upload
https://www.nuget.org/packages/manage/upload
https://www.nuget.org/

Chapter 07

[307]

Figure 7.8: A NuGet package upload message

Publishing a package to a private NuGet feed
Organizations can host their own private NuGet feeds. This can be a handy way for many
developer teams to share work. You can read more at the following link:

https://docs.microsoft.com/en-us/nuget/hosting-packages/overview

Exploring NuGet packages with a tool
A handy tool named NuGet Package Explorer for opening and reviewing more details about a
NuGet package was created by Uno Platform. As well as being a website, it can be installed as a
cross-platform app. Let's see what it can do:

1. Start your favorite browser and navigate to the following link: https://nuget.info.
2. In the search box, enter Packt.CSdotnet.SharedLibrary.
3. Select the package v6.0.0 published by Mark J Price and then click the Open button.
4. In the Contents section, expand the lib folder and the netstandard2.0 folder.

Good Practice: If you get an error, then review the project file for mistakes,
or read more information about the PackageReference format at https://
docs.microsoft.com/en-us/nuget/reference/msbuild-targets.

https://docs.microsoft.com/en-us/nuget/hosting-packages/overview
https://nuget.info
https://docs.microsoft.com/en-us/nuget/reference/msbuild-targets
https://docs.microsoft.com/en-us/nuget/reference/msbuild-targets

Packaging and Distributing .NET Types

[308]

5. Select SharedLibrary.dll, and note the details, as shown in Figure 7.9:

Figure 7.9: Exploring my package using NuGet Package Explorer from Uno Platform

6. If you want to use this tool locally in the future, click the install button in your browser.
7. Close your browser.

Testing your class library package
You will now test your uploaded package by referencing it in the AssembliesAndNamespaces
project:

1. In the AssembliesAndNamespaces project, add a reference to your (or my) package, as
shown highlighted in the following markup:

<ItemGroup>
 <PackageReference Include="newtonsoft.json" Version="13.0.1" />
 <PackageReference Include="packt.csdotnet.sharedlibrary"
 Version="6.0.0" />
</ItemGroup>

2. Build the console app.
3. In Program.cs, import the Packt.Shared namespace.

Not all browsers support installing web apps like this. I recommend Chrome
for testing and development.

Chapter 07

[309]

4. In Program.cs, prompt the user to enter some string values, and then validate them
using the extension methods in the package, as shown in the following code:

Write("Enter a color value in hex: ");
string? hex = ReadLine(); // or "00ffc8"
WriteLine("Is {0} a valid color value? {1}",
 arg0: hex, arg1: hex.IsValidHex());

Write("Enter a XML element: ");
string? xmlTag = ReadLine(); // or "<h1 class=\"<\" />"
WriteLine("Is {0} a valid XML element? {1}",
 arg0: xmlTag, arg1: xmlTag.IsValidXmlTag());

Write("Enter a password: ");
string? password = ReadLine(); // or "secretsauce"
WriteLine("Is {0} a valid password? {1}",
 arg0: password, arg1: password.IsValidPassword());

5. Run the code, enter some values as prompted, and view the results, as shown in
the following output:

Enter a color value in hex: 00ffc8
Is 00ffc8 a valid color value? True
Enter an XML element: <h1 class="<" />
Is <h1 class="<" /> a valid XML element? False
Enter a password: secretsauce
Is secretsauce a valid password? True

Porting from .NET Framework to modern .NET
If you are an existing .NET Framework developer, then you may have existing applications that
you think you should port to modern .NET. But you should carefully consider if porting is the
right choice for your code, because sometimes, the best choice is not to port.

For example, you might have a complex website project that runs on .NET Framework 4.8 but
is only visited by a small number of users. If it works and handles the visitor traffic on minimal
hardware, then potentially spending months porting it to .NET 6 could be a waste of time. But
if the website currently requires many expensive Windows servers, then the cost of porting
could eventually pay off if you can migrate to fewer, less costly Linux servers.

Could you port?
Modern .NET has great support for the following types of applications on Windows, macOS,
and Linux so they are good candidates for porting:

• ASP.NET Core MVC websites.
• ASP.NET Core Web API web services (REST/HTTP).

Packaging and Distributing .NET Types

[310]

• ASP.NET Core SignalR services.
• Console application command-line interfaces.

Modern .NET has decent support for the following types of applications on Windows, so they
are potential candidates for porting:

• Windows Forms applications.
• Windows Presentation Foundation (WPF) applications.

Modern .NET has good support for the following types of applications on cross-platform
desktop and mobile devices:

• Xamarin apps for mobile iOS and Android.
• .NET MAUI for desktop Windows and macOS, or mobile iOS and Android.

Modern .NET does not support the following types of legacy Microsoft projects:

• ASP.NET Web Forms websites. These might be best reimplemented using ASP.NET
Core Razor Pages or Blazor.

• Windows Communication Foundation (WCF) services (but there is an open-source
project named CoreWCF that you might be able to use depending on requirements).
WCF services might be better reimplemented using ASP.NET Core gRPC services.

• Silverlight applications. These might be best reimplemented using .NET MAUI.

Silverlight and ASP.NET Web Forms applications will never be able to be ported to modern
.NET, but existing Windows Forms and WPF applications could be ported to .NET on
Windows in order to benefit from the new APIs and faster performance.

Legacy ASP.NET MVC web applications and ASP.NET Web API web services currently on
.NET Framework could be ported to modern .NET and then be hosted on Windows, Linux,
or macOS.

Should you port?
Even if you could port, should you? What benefits do you gain? Some common benefits include
the following:

• Deployment to Linux, Docker, or Kubernetes for websites and web services: These
OSes are lightweight and cost-effective as website and web service platforms, especially
when compared to the more costly Windows Server.

• Removal of dependency on IIS and System.Web.dll: Even if you continue to deploy
to Windows Server, ASP.NET Core can be hosted on lightweight, higher-performance
Kestrel (or other) web servers.

• Command-line tools: Tools that developers and administrators use to automate their
tasks are often built as console applications. The ability to run a single tool cross-
platform is very useful.

Chapter 07

[311]

Differences between .NET Framework and modern
.NET
There are three key differences, as shown in the following table:

Modern .NET .NET Framework
Distributed as NuGet packages, so each
application can be deployed with its own app-
local copy of the version of .NET that it needs.

Distributed as a system-wide, shared set of
assemblies (literally, in the Global Assembly
Cache (GAC)).

Split into small, layered components, so a
minimal deployment can be performed.

Single, monolithic deployment.

Removes older technologies, such as ASP.NET
Web Forms, and non-cross-platform features,
such as AppDomains, .NET Remoting, and binary
serialization.

As well as some similar technologies to those in
modern .NET like ASP.NET Core MVC, it also
retains some older technologies, such as ASP.NET
Web Forms.

Understanding the .NET Portability Analyzer
Microsoft has a useful tool that you can run against your existing applications to generate a
report for porting. You can watch a demonstration of the tool at the following link: https://
channel9.msdn.com/Blogs/Seth-Juarez/A-Brief-Look-at-the-NET-Portability-Analyzer.

Understanding the .NET Upgrade Assistant
Microsoft's latest tool for upgrading legacy projects to modern .NET is the .NET Upgrade
Assistant.

For my day job, I work for a company named Optimizely. We have an enterprise-scale Digital
Experience Platform (DXP) based on .NET Framework comprising a Content Management
System (CMS) and for building digital commerce websites. Microsoft needed a challenging
migration project to design and test the .NET Upgrade Assistant with, so we worked with them
to build a great tool.

Currently, it supports the following .NET Framework project types and more will be added
later:

• ASP.NET MVC
• Windows Forms
• WPF
• Console Application
• Class Library

It is installed as a global dotnet tool, as shown in the following command:

dotnet tool install -g upgrade-assistant

https://channel9.msdn.com/Blogs/Seth-Juarez/A-Brief-Look-at-the-NET-Portability-Analyzer
https://channel9.msdn.com/Blogs/Seth-Juarez/A-Brief-Look-at-the-NET-Portability-Analyzer

Packaging and Distributing .NET Types

[312]

You can read more about this tool and how to use it at the following link:

https://docs.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-overview

Using non-.NET Standard libraries
Most existing NuGet packages can be used with modern .NET, even if they are not compiled
for .NET Standard or a modern version like .NET 6. If you find a package that does not
officially support .NET Standard, as shown on its nuget.org web page, you do not have to give
up. You should try it and see if it works.

For example, there is a package of custom collections for handling matrices created by Dialect
Software LLC, documented at the following link:

https://www.nuget.org/packages/DialectSoftware.Collections.Matrix/

This package was last updated in 2013, which was long before .NET Core or .NET 6 existed, so
this package was built for .NET Framework. As long as an assembly package like this only uses
APIs available in .NET Standard, it can be used in a modern .NET project.

Let's try using it and see if it works:

1. In the AssembliesAndNamespaces project, add a package reference for Dialect Software's
package, as shown in the following markup:

<PackageReference
 Include="dialectsoftware.collections.matrix"
 Version="1.0.0" />

2. Build the AssembliesAndNamespaces project to restore packages.
3. In Program.cs, add statements to import the DialectSoftware.Collections and

DialectSoftware.Collections.Generics namespaces.
4. Add statements to create instances of Axis and Matrix<T>, populate them with

values, and output them, as shown in the following code:
Axis x = new("x", 0, 10, 1);
Axis y = new("y", 0, 4, 1);

Matrix<long> matrix = new(new[] { x, y });

for (int i = 0; i < matrix.Axes[0].Points.Length; i++)
{
 matrix.Axes[0].Points[i].Label = "x" + i.ToString();
}

for (int i = 0; i < matrix.Axes[1].Points.Length; i++)
{

https://docs.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-overview
nuget.org
https://www.nuget.org/packages/DialectSoftware.Collections.Matrix/

Chapter 07

[313]

 matrix.Axes[1].Points[i].Label = "y" + i.ToString();
}

foreach (long[] c in matrix)
{
 matrix[c] = c[0] + c[1];
}

foreach (long[] c in matrix)
{
 WriteLine("{0},{1} ({2},{3}) = {4}",
 matrix.Axes[0].Points[c[0]].Label,
 matrix.Axes[1].Points[c[1]].Label,
 c[0], c[1], matrix[c]);
}

5. Run the code, noting the warning message and the results, as shown in the
following output:

warning NU1701: Package 'DialectSoftware.Collections.Matrix
1.0.0' was restored using '.NETFramework,Version=v4.6.1,
.NETFramework,Version=v4.6.2, .NETFramework,Version=v4.7,
.NETFramework,Version=v4.7.1, .NETFramework,Version=v4.7.2,
.NETFramework,Version=v4.8' instead of the project target framework
'net6.0'. This package may not be fully compatible with your project.
x0,y0 (0,0) = 0
x0,y1 (0,1) = 1
x0,y2 (0,2) = 2
x0,y3 (0,3) = 3
...

Even though this package was created before .NET 6 existed, and the compiler and runtime
have no way of knowing if it will work and therefore show warnings, because it happens to
only call .NET Standard-compatible APIs, it works.

Working with preview features
It is a challenge for Microsoft to deliver some new features that have cross-cutting effects across
many parts of .NET like the runtime, language compilers, and API libraries. It is the classic
chicken and egg problem. What do you do first?

From a practical perspective, it means that although Microsoft might have completed the
majority of the work needed for a feature, the whole thing might not be ready until very late in
their now annual cycle of .NET releases, too late for proper testing in "the wild."

Packaging and Distributing .NET Types

[314]

So, from .NET 6 onward, Microsoft will include preview features in general availability (GA)
releases. Developers can opt into these preview features and provide Microsoft with feedback.
In a later GA release, they can be enabled for everyone.

Requiring preview features
The [RequiresPreviewFeatures] attribute is used to indicate assemblies, types, or members that
use and therefore require warnings about preview features. A code analyzer then scans for this
assembly and generates warnings if needed. If your code does not use any preview features,
you will not see any warnings. If you use any preview features, then your code should warn
consumers of your code that you use preview features.

Enabling preview features
Let's look at an example of a preview feature available in .NET 6, the ability to define an
interface with a static abstract method:

1. Use your preferred code editor to add a new console app named UsingPreviewFeatures
to the Chapter07 solution/workspace.

2. In Visual Studio Code, select UsingPreviewFeatures as the active OmniSharp project.
When you see the pop-up warning message saying that required assets are missing,
click Yes to add them.

3. In the project file, add an element to enable preview features and an element to
enable preview language features, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <EnablePreviewFeatures>true</EnablePreviewFeatures>
 <LangVersion>preview</LangVersion>
 </PropertyGroup>

</Project>

4. In Program.cs, delete the comment and statically import the Console class.

Good Practice: Preview features are not supported in production code.
Preview features are likely to have breaking changes before the final release.
Enable preview features at your own risk.

Chapter 07

[315]

5. Add statements to define an interface with a static abstract method, a class that
implements it, and then call the method in the top-level program, as shown in the
following code:

using static System.Console;

Doer.DoSomething();

public interface IWithStaticAbstract
{
 static abstract void DoSomething();
}

public class Doer : IWithStaticAbstract
{
 public static void DoSomething()
 {
 WriteLine("I am an implementation of a static abstract method.");
 }
}

6. Run the console app and note that it outputs correctly.

Generic mathematics
Why has Microsoft added the ability to define static abstract methods? What are they useful
for?

For a long time, developers have asked Microsoft for the ability to use operators like * on
generic types. This would enable a developer to define mathematical methods to perform
operations like adding, averaging, and so on to any generic type rather than having to create
dozens of overloaded methods for all the numeric types they want to support. Support for
static abstract methods in interfaces is a foundational feature that would enable generic
mathematics.

If you are interested, you can read more about this at the following link:

https://devblogs.microsoft.com/dotnet/preview-features-in-net-6-generic-math/

Practicing and exploring
Test your knowledge and understanding by answering some questions, getting some hands-on
practice, and exploring with deeper research into topics of this chapter.

https://devblogs.microsoft.com/dotnet/preview-features-in-net-6-generic-math/

Packaging and Distributing .NET Types

[316]

Exercise 7.1 – Test your knowledge
Answer the following questions:

1. What is the difference between a namespace and an assembly?
2. How do you reference another project in a .csproj file?
3. What is the benefit of a tool like ILSpy?
4. Which .NET type does the C# float alias represent?
5. When porting an application from .NET Framework to .NET 6, what tool should you run

before porting, and what tool could you run to perform much of the porting work?
6. What is the difference between framework-dependent and self-contained deployments

of .NET applications?
7. What is a RID?
8. What is the difference between the dotnet pack and dotnet publish commands?
9. What types of applications written for the .NET Framework can be ported to modern

.NET?
10. Can you use packages written for .NET Framework with modern .NET?

Exercise 7.2 – Explore topics
Use the links on the following page to learn more detail about the topics covered in this chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-7---
understanding-and-packaging-net-types

Exercise 7.3 – Explore PowerShell
PowerShell is Microsoft's scripting language for automating tasks on every operating system.
Microsoft recommends Visual Studio Code with the PowerShell extension for writing
PowerShell scripts.

Since PowerShell is its own extensive language there is not space in this book to cover it.
Instead, I have created some supplementary pages on the books GitHub repository to introduce
you to some key concepts and show some examples:

https://github.com/markjprice/cs10dotnet6/tree/main/docs/powershell

Summary
In this chapter, we reviewed the journey to .NET 6, we explored the relationship between
assemblies and namespaces, we saw options for publishing an app for distribution to multiple
operating systems, packaged and distributed a class library, and we discussed options for
porting existing .NET Framework code bases.

In the next chapter, you will learn about some common Base Class Library types that are
included with modern .NET.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-7---understanding-and-packaging-net-types
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-7---understanding-and-packaging-net-types
https://github.com/markjprice/cs10dotnet6/tree/main/docs/powershell

[317]

08
Working with Common

.NET Types
This chapter is about some common types that are included with .NET. These include types for
manipulating numbers, text, collections, network access, reflection, and attributes; improving
working with spans, indexes, and ranges; manipulating images; and internationalization.

This chapter covers the following topics:

• Working with numbers
• Working with text
• Working with dates and times
• Pattern matching with regular expressions
• Storing multiple objects in collections
• Working with spans, indexes, and ranges
• Working with network resources
• Working with reflection and attributes
• Working with images
• Internationalizing your code

Working with Common .NET Types

[318]

Working with numbers
One of the most common types of data is numbers. The most common types in .NET for
working with numbers are shown in the following table:

Namespace Example type(s) Description
System SByte, Int16, Int32, Int64 Integers; that is, zero and positive and

negative whole numbers
System Byte, UInt16, UInt32, UInt64 Cardinals; that is, zero and positive

whole numbers
System Half, Single, Double Reals; that is, floating-point numbers
System Decimal Accurate reals; that is, for use in

science, engineering, or financial
scenarios

System.Numerics BigInteger, Complex, Quaternion Arbitrarily large integers, complex
numbers, and quaternion numbers

.NET has had the 32-bit float and 64-bit double types since .NET Framework 1.0. The IEEE
754 specification also defines a 16-bit floating point standard. Machine learning and other
algorithms would benefit from this smaller, lower-precision number type so Microsoft
introduced the System.Half type with .NET 5 and later.

Currently, the C# language does not define a half alias so you must use the .NET type System.
Half. This might change in the future.

Working with big integers
The largest whole number that can be stored in .NET types that have a C# alias is about
eighteen and a half quintillion, stored in an unsigned long integer. But what if you need to store
numbers larger than that?

Let's explore numerics:

1. Use your preferred code editor to create a new solution/workspace named Chapter08.
2. Add a console app project, as defined in the following list:

1. Project template: Console Application / console
2. Workspace/solution file and folder: Chapter08
3. Project file and folder: WorkingWithNumbers

3. In Program.cs, delete the existing statements and add a statement to import System.
Numerics, as shown in the following code:

using System.Numerics;

4. Add statements to output the maximum value of the ulong type, and a number with 30
digits using BigInteger, as shown in the following code:

Chapter 08

[319]

WriteLine("Working with large integers:");
WriteLine("-----------------------------------");

ulong big = ulong.MaxValue;
WriteLine($"{big,40:N0}");

BigInteger bigger =
 BigInteger.Parse("123456789012345678901234567890");

WriteLine($"{bigger,40:N0}");

The 40 in the format code means right-align 40 characters, so both numbers are lined up
to the right-hand edge. The N0 means use thousand separators and zero decimal places.

5. Run the code and view the result, as shown in the following output:

Working with large integers:
--
 18,446,744,073,709,551,615
 123,456,789,012,345,678,901,234,567,890

Working with complex numbers
A complex number can be expressed as a + bi, where a and b are real numbers, and i is an
imaginary unit, where i2 = −1. If the real part a is zero, it is a pure imaginary number. If the
imaginary part b is zero, it is a real number.

Complex numbers have practical applications in many STEM (science, technology,
engineering, and mathematics) fields of study. Additionally, they are added by separately
adding the real and imaginary parts of the summands; consider this:

(a + bi) + (c + di) = (a + c) + (b + d)i

Let's explore complex numbers:

1. In Program.cs, add statements to add two complex numbers, as shown in the following
code:

WriteLine("Working with complex numbers:");
Complex c1 = new(real: 4, imaginary: 2);
Complex c2 = new(real: 3, imaginary: 7);
Complex c3 = c1 + c2;

// output using default ToString implementation
WriteLine($"{c1} added to {c2} is {c3}");

// output using custom format

Working with Common .NET Types

[320]

WriteLine("{0} + {1}i added to {2} + {3}i is {4} + {5}i",
 c1.Real, c1.Imaginary,
 c2.Real, c2.Imaginary,
 c3.Real, c3.Imaginary);

2. Run the code and view the result, as shown in the following output:

Working with complex numbers:
(4, 2) added to (3, 7) is (7, 9)
4 + 2i added to 3 + 7i is 7 + 9i

Understanding quaternions
Quaternions are a number system that extends complex numbers. They form a four-
dimensional associative normed division algebra over the real numbers, and therefore also a
domain.

Huh? Yes, I know. I don't understand that either. Don't worry; we're not going to write any
code using them! Suffice to say, they are good at describing spatial rotations, so video game
engines use them, as do many computer simulations and flight control systems.

Working with text
One of the other most common types of data for variables is text. The most common types in
.NET for working with text are shown in the following table:

Namespace Type Description
System Char Storage for a single text character
System String Storage for multiple text characters
System.Text StringBuilder Efficiently manipulates strings
System.Text.RegularExpressions Regex Efficiently pattern-matches strings

Getting the length of a string
Let's explore some common tasks when working with text; for example, sometimes you need to
find out the length of a piece of text stored in a string variable:

1. Use your preferred code editor to add a new console app named WorkingWithText to
the Chapter08 solution/workspace:

1. In Visual Studio, set the startup project for the solution to the current selection.
2. In Visual Studio Code, select WorkingWithText as the active OmniSharp project.

Chapter 08

[321]

2. In the WorkingWithText project, in Program.cs, add statements to define a variable to
store the name of the city London, and then write its name and length to the console, as
shown in the following code:

string city = "London";
WriteLine($"{city} is {city.Length} characters long.");

3. Run the code and view the result, as shown in the following output:

London is 6 characters long.

Getting the characters of a string
The string class uses an array of char internally to store the text. It also has an indexer, which
means that we can use the array syntax to read its characters. Array indexes start at zero, so the
third character will be at index 2.

Let's see this in action:

1. Add a statement to write the characters at the first and third positions in the string
variable, as shown in the following code:

WriteLine($"First char is {city[0]} and third is {city[2]}.");

2. Run the code and view the result, as shown in the following output:

First char is L and third is n.

Splitting a string
Sometimes, you need to split some text wherever there is a character, such as a comma:

1. Add statements to define a single string variable containing comma-separated city
names, then use the Split method and specify that you want to treat commas as the
separator, and then enumerate the returned array of string values, as shown in the
following code:

string cities = "Paris,Tehran,Chennai,Sydney,New York,Medellín";

string[] citiesArray = cities.Split(',');

WriteLine($"There are {citiesArray.Length} items in the array.");
foreach (string item in citiesArray)
{
 WriteLine(item);
}

Working with Common .NET Types

[322]

2. Run the code and view the result, as shown in the following output:

There are 6 items in the array.
Paris
Tehran
Chennai
Sydney
New York
Medellín

Later in this chapter, you will learn how to handle more complex scenarios.

Getting part of a string
Sometimes, you need to get part of some text. The IndexOf method has nine overloads that
return the index position of a specified char or string within a string. The Substring method
has two overloads, as shown in the following list:

• Substring(startIndex, length): returns a substring starting at startIndex and
containing the next length characters.

• Substring(startIndex): returns a substring starting at startIndex and containing all
characters up to the end of the string.

Let's explore a simple example:

1. Add statements to store a person's full name in a string variable with a space character
between the first and last name, find the position of the space, and then extract the first
name and last name as two parts so that they can be recombined in a different order, as
shown in the following code:

string fullName = "Alan Jones";
int indexOfTheSpace = fullName.IndexOf(' ');

string firstName = fullName.Substring(
 startIndex: 0, length: indexOfTheSpace);

string lastName = fullName.Substring(
 startIndex: indexOfTheSpace + 1);

WriteLine($"Original: {fullName}");
WriteLine($"Swapped: {lastName}, {firstName}");

2. Run the code and view the result, as shown in the following output:

Original: Alan Jones
Swapped: Jones, Alan

If the format of the initial full name was different, for example, "LastName, FirstName", then
the code would need to be different. As an optional exercise, try writing some statements that
would change the input "Jones, Alan" into "Alan Jones".

Chapter 08

[323]

Checking a string for content
Sometimes, you need to check whether a piece of text starts or ends with some characters or
contains some characters. You can achieve this with methods named StartsWith, EndsWith,
and Contains:

1. Add statements to store a string value and then check if it starts with or contains a
couple of different string values, as shown in the following code:

string company = "Microsoft";
bool startsWithM = company.StartsWith("M");
bool containsN = company.Contains("N");
WriteLine($"Text: {company}");
WriteLine($"Starts with M: {startsWithM}, contains an N: {containsN}");

2. Run the code and view the result, as shown in the following output:

Text: Microsoft
Starts with M: True, contains an N: False

Joining, formatting, and other string members
There are many other string members, as shown in the following table:

Member Description
Trim, TrimStart,
TrimEnd

These methods trim whitespace characters such as space, tab, and carriage
return from the beginning and/or end.

ToUpper, ToLower These convert all the characters into uppercase or lowercase.
Insert, Remove These methods insert or remove some text.
Replace This replaces some text with other text.
string.Empty This can be used instead of allocating memory each time you use a literal

string value using an empty pair of double quotes ("").
string.Concat This concatenates two string variables. The + operator does the

equivalent when used between string operands.
string.Join This concatenates one or more string variables with a character in

between each one.
string.IsNullOrEmpty This checks whether a string variable is null or empty.
string.
IsNullOrWhitespace

This checks whether a string variable is null or whitespace; that is,
a mix of any number of horizontal and vertical spacing characters, for
example, tab, space, carriage return, line feed, and so on.

string.Format An alternative method to string interpolation for outputting formatted
string values, which uses positioned instead of named parameters.

Some of the preceding methods are static methods. This means that the method can only be
called from the type, not from a variable instance. In the preceding table, I indicated the static
methods by prefixing them with string., as in string.Format.

Working with Common .NET Types

[324]

Let's explore some of these methods:

1. Add statements to take an array of string values and combine them back together into a
single string variable with separators using the Join method, as shown in the following
code:

string recombined = string.Join(" => ", citiesArray);
WriteLine(recombined);

2. Run the code and view the result, as shown in the following output:
Paris => Tehran => Chennai => Sydney => New York => Medellín

3. Add statements to use positioned parameters and interpolated string formatting syntax
to output the same three variables twice, as shown in the following code:

string fruit = "Apples";
decimal price = 0.39M;
DateTime when = DateTime.Today;

WriteLine($"Interpolated: {fruit} cost {price:C} on {when:dddd}.");

WriteLine(string.Format("string.Format: {0} cost {1:C} on {2:dddd}.",
 arg0: fruit, arg1: price, arg2: when));

4. Run the code and view the result, as shown in the following output:

Interpolated: Apples cost £0.39 on Thursday.
string.Format: Apples cost £0.39 on Thursday.

Note that we could have simplified the second statement because WriteLine supports the same
format codes as string.Format, as shown in the following code:

WriteLine("WriteLine: {0} cost {1:C} on {2:dddd}.",
 arg0: fruit, arg1: price, arg2: when);

Building strings efficiently
You can concatenate two strings to make a new string using the String.Concat method or
simply by using the + operator. But both of these choices are bad practice because .NET must
create a completely new string in memory.

This might not be noticeable if you are only adding two string values, but if you concatenate
inside a loop with many iterations, it can have a significant negative impact on performance
and memory use. In Chapter 12, Improving Performance and Scalability Using Multitasking, you
will learn how to concatenate string variables efficiently using the StringBuilder type.

Chapter 08

[325]

Working with dates and times
After numbers and text, the next most popular types of data to work with are dates and times.
The two main types are as follows:

• DateTime: represents a combined date and time value for a fixed point in time.
• TimeSpan: represents a duration of time.

These two types are often used together. For example, if you subtract one DateTime value
from another, the result is a TimeSpan. If you add a TimeSpan to a DateTime then the result is a
DateTime value.

Specifying date and time values
A common way to create a date and time value is to specify individual values for the date and
time components like day and hour, as described in the following table:

Date/time parameter Value range
year 1 to 9999
month 1 to 12
day 1 to the number of days in

that month
hour 0 to 23
minute 0 to 59
second 0 to 59

An alternative is to provide the value as a string to be parsed, but this can be misinterpreted
depending on the default culture of the thread. For example, in the UK, dates are specified as
day/month/year, compared to the US, where dates are specified as month/day/year.

Let's see what you might want to do with dates and times:

1. Use your preferred code editor to add a new console app named WorkingWithTime to
the Chapter08 solution/workspace.

2. In Visual Studio Code, select WorkingWithTime as the active OmniSharp project.
3. In Program.cs, delete the existing statements and then add statements to initialize some

special date/time values, as shown in the following code:
WriteLine("Earliest date/time value is: {0}",
 arg0: DateTime.MinValue);

WriteLine("UNIX epoch date/time value is: {0}",
 arg0: DateTime.UnixEpoch);

WriteLine("Date/time value Now is: {0}",

Working with Common .NET Types

[326]

 arg0: DateTime.Now);

WriteLine("Date/time value Today is: {0}",
 arg0: DateTime.Today);

4. Run the code and note the results, as shown in the following output:
Earliest date/time value is: 01/01/0001 00:00:00
UNIX epoch date/time value is: 01/01/1970 00:00:00
Date/time value Now is: 23/04/2021 14:14:54
Date/time value Today is: 23/04/2021 00:00:00

5. Add statements to define Christmas Day in 2021 (if this is in the past then use a future
year) and display it in various ways, as shown in the following code:

DateTime christmas = new(year: 2021, month: 12, day: 25);

WriteLine("Christmas: {0}",
 arg0: christmas); // default format

WriteLine("Christmas: {0:dddd, dd MMMM yyyy}",
 arg0: christmas); // custom format

WriteLine("Christmas is in month {0} of the year.",
 arg0: christmas.Month);

WriteLine("Christmas is day {0} of the year.",
 arg0: christmas.DayOfYear);

WriteLine("Christmas {0} is on a {1}.",
 arg0: christmas.Year,
 arg1: christmas.DayOfWeek);

6. Run the code and note the results, as shown in the following output:
Christmas: 25/12/2021 00:00:00
Christmas: Saturday, 25 December 2021
Christmas is in month 12 of the year.
Christmas is day 359 of the year.
Christmas 2021 is on a Saturday.

7. Add statements to perform addition and subtraction with Christmas, as shown in the
following code:

DateTime beforeXmas = christmas.Subtract(TimeSpan.FromDays(12));
DateTime afterXmas = christmas.AddDays(12);

WriteLine("12 days before Christmas is: {0}",

Chapter 08

[327]

 arg0: beforeXmas);

WriteLine("12 days after Christmas is: {0}",
 arg0: afterXmas);

TimeSpan untilChristmas = christmas - DateTime.Now;

WriteLine("There are {0} days and {1} hours until Christmas.",
 arg0: untilChristmas.Days,
 arg1: untilChristmas.Hours);

WriteLine("There are {0:N0} hours until Christmas.",
 arg0: untilChristmas.TotalHours);

8. Run the code and note the results, as shown in the following output:
12 days before Christmas is: 13/12/2021 00:00:00
12 days after Christmas is: 06/01/2022 00:00:00
There are 245 days and 9 hours until Christmas.
There are 5,890 hours until Christmas.

9. Add statements to define the time on Christmas Day that your children might wake up
to open presents, and display it in various ways, as shown in the following code:

DateTime kidsWakeUp = new(
 year: 2021, month: 12, day: 25,
 hour: 6, minute: 30, second: 0);

WriteLine("Kids wake up on Christmas: {0}",
 arg0: kidsWakeUp);

WriteLine("The kids woke me up at {0}",
 arg0: kidsWakeUp.ToShortTimeString());

10. Run the code and note the results, as shown in the following output:

Kids wake up on Christmas: 25/12/2021 06:30:00
The kids woke me up at 06:30

Globalization with dates and times
The current culture controls how dates and times are parsed:

1. At the top of Program.cs, import the System.Globalization namespace.

Working with Common .NET Types

[328]

2. Add statements to show the current culture that is used to display date and time values,
and then parse United States Independence Day and display it in various ways, as
shown in the following code:

WriteLine("Current culture is: {0}",
 arg0: CultureInfo.CurrentCulture.Name);

string textDate = "4 July 2021";
DateTime independenceDay = DateTime.Parse(textDate);

WriteLine("Text: {0}, DateTime: {1:d MMMM}",
 arg0: textDate,
 arg1: independenceDay);

textDate = "7/4/2021";
independenceDay = DateTime.Parse(textDate);

WriteLine("Text: {0}, DateTime: {1:d MMMM}",
 arg0: textDate,
 arg1: independenceDay);

independenceDay = DateTime.Parse(textDate,
 provider: CultureInfo.GetCultureInfo("en-US"));

WriteLine("Text: {0}, DateTime: {1:d MMMM}",
 arg0: textDate,
 arg1: independenceDay);

3. Run the code and note the results, as shown in the following output:
Current culture is: en-GB
Text: 4 July 2021, DateTime: 4 July
Text: 7/4/2021, DateTime: 7 April
Text: 7/4/2021, DateTime: 4 July

On my computer, the current culture is British English. If a date is given as 4 July
2021, then it is correctly parsed regardless of whether the current culture is British or
American. But if the date is given as 7/4/2021, then it is wrongly parsed as 7 April. You
can override the current culture by specifying the correct culture as a provider when
parsing, as shown in the third example above.

4. Add statements to loop from the year 2020 to 2025, displaying if the year is a leap
year and how many days there are in February, and then show if Christmas and
Independence Day are during daylight saving time, as shown in the following code:

for (int year = 2020; year < 2026; year++)
{
 Write($"{year} is a leap year: {DateTime.IsLeapYear(year)}. ");
 WriteLine("There are {0} days in February {1}.",
 arg0: DateTime.DaysInMonth(year: year, month: 2), arg1: year);

Chapter 08

[329]

}

WriteLine("Is Christmas daylight saving time? {0}",
 arg0: christmas.IsDaylightSavingTime());

WriteLine("Is July 4th daylight saving time? {0}",
 arg0: independenceDay.IsDaylightSavingTime());

5. Run the code and note the results, as shown in the following output:

2020 is a leap year: True. There are 29 days in February 2020.
2021 is a leap year: False. There are 28 days in February 2021.
2022 is a leap year: False. There are 28 days in February 2022.
2023 is a leap year: False. There are 28 days in February 2023.
2024 is a leap year: True. There are 29 days in February 2024.
2025 is a leap year: False. There are 28 days in February 2025.
Is Christmas daylight saving time? False
Is July 4th daylight saving time? True

Working with only a date or a time
.NET 6 introduces some new types for working with only a date value or only a time value
named DateOnly and TimeOnly. These are better than using a DateTime value with a zero time to
store a date-only value because it is type-safe and avoids misuse. DateOnly also maps better to
database column types, for example, a date column in SQL Server. TimeOnly is good for setting
alarms and scheduling regular meetings or events, and it maps to a time column in SQL Server.

Let's use them to plan a party for the Queen of England:

1. Add statements to define the Queen's birthday, and a time for her party to start, and
then combine the two values to make a calendar entry so we don't miss her party, as
shown in the following code:

DateOnly queensBirthday = new(year: 2022, month: 4, day: 21);
WriteLine($"The Queen's next birthday is on {queensBirthday}.");

TimeOnly partyStarts = new(hour: 20, minute: 30);
WriteLine($"The Queen's party starts at {partyStarts}.");

DateTime calendarEntry = queensBirthday.ToDateTime(partyStarts);
WriteLine($"Add to your calendar: {calendarEntry}.");

2. Run the code and note the results, as shown in the following output:

The Queen's next birthday is on 21/04/2022.
The Queen's party starts at 20:30.
Add to your calendar: 21/04/2022 20:30:00.

Working with Common .NET Types

[330]

Pattern matching with regular expressions
Regular expressions are useful for validating input from the user. They are very powerful
and can get very complicated. Almost all programming languages have support for regular
expressions and use a common set of special characters to define them.

Let's try out some example regular expressions:

1. Use your preferred code editor to add a new console app named
WorkingWithRegularExpressions to the Chapter08 solution/workspace.

2. In Visual Studio Code, select WorkingWithRegularExpressions as the active OmniSharp
project.

3. In Program.cs, import the following namespace:
using System.Text.RegularExpressions;

Checking for digits entered as text
We will start by implementing the common example of validating number input:

1. Add statements to prompt the user to enter their age and then check that it is valid
using a regular expression that looks for a digit character, as shown in the following
code:

Write("Enter your age: ");
string? input = ReadLine();

Regex ageChecker = new(@"\d");

if (ageChecker.IsMatch(input))
{
 WriteLine("Thank you!");
}
else
{
 WriteLine($"This is not a valid age: {input}");
}

Note the following about the code:

• The @ character switches off the ability to use escape characters in the string.
Escape characters are prefixed with a backslash. For example, \t means a tab
and \n means a new line. When writing regular expressions, we need to disable
this feature. To paraphrase the television show The West Wing, "Let backslash
be backslash."

Chapter 08

[331]

• Once escape characters are disabled with @, then they can be interpreted by a
regular expression. For example, \d means digit. You will learn more regular
expressions that are prefixed with a backslash later in this topic.

2. Run the code, enter a whole number such as 34 for the age, and view the result, as
shown in the following output:

Enter your age: 34
Thank you!

3. Run the code again, enter carrots, and view the result, as shown in the following
output:

Enter your age: carrots
This is not a valid age: carrots

4. Run the code again, enter bob30smith, and view the result, as shown in the following
output:

Enter your age: bob30smith
Thank you!

The regular expression we used is \d, which means one digit. However, it does not
specify what can be entered before and after that one digit. This regular expression
could be described in English as "Enter any characters you want as long as you enter at
least one digit character."
In regular expressions, you indicate the start of some input with the caret ^ symbol and
the end of some input with the dollar $ symbol. Let's use these symbols to indicate that
we expect nothing else between the start and end of the input except for a digit.

5. Change the regular expression to ^\d$, as shown highlighted in the following code:
Regex ageChecker = new(@"^\d$");

6. Run the code again and note that it rejects any input except a single digit. We want to
allow one or more digits. To do this, we add a + after the \d expression to modify the
meaning to one or more.

7. Change the regular expression, as shown highlighted in the following code:
Regex ageChecker = new(@"^\d+$");

8. Run the code again and note the regular expression only allows zero or positive whole
numbers of any length.

Regular expression performance improvements
The .NET types for working with regular expressions are used throughout the .NET platform
and many of the apps built with it. As such, they have a significant impact on performance, but
until now, they have not received much optimization attention from Microsoft.

Working with Common .NET Types

[332]

With .NET 5 and later, the System.Text.RegularExpressions namespace has rewritten
internals to squeeze out maximum performance. Common regular expression benchmarks
using methods like IsMatch are now five times faster. And the best thing is, you do not have to
change your code to get the benefits!

Understanding the syntax of a regular expression
Here are some common regular expression symbols that you can use in regular expressions:

Symbol Meaning Symbol Meaning
^ Start of input $ End of input
\d A single digit \D A single NON-digit
\s Whitespace \S NON-whitespace
\w Word characters \W NON-word characters
[A-Za-z0-9] Range(s) of characters \^ ^ (caret) character
[aeiou] Set of characters [^aeiou] NOT in a set of characters
. Any single character \. . (dot) character

In addition, here are some regular expression quantifiers that affect the previous symbols in a
regular expression:

Symbol Meaning Symbol Meaning
+ One or more ? One or none
{3} Exactly three {3,5} Three to five
{3,} At least three {,3} Up to three

Examples of regular expressions
Here are some examples of regular expressions with a description of their meaning:

Expression Meaning
\d A single digit somewhere in the input
a The character a somewhere in the input
Bob The word Bob somewhere in the input
^Bob The word Bob at the start of the input
Bob$ The word Bob at the end of the input
^\d{2}$ Exactly two digits
^[0-9]{2}$ Exactly two digits
^[A-Z]{4,}$ At least four uppercase English letters in the ASCII character set only
^[A-Za-z]{4,}$ At least four upper or lowercase English letters in the ASCII character set only
^[A-Z]{2}\d{3}$ Two uppercase English letters in the ASCII character set and three digits only

Chapter 08

[333]

^[A-Za-z\
u00c0-\u017e]+$

At least one uppercase or lowercase English letter in the ASCII character set or
European letters in the Unicode character set, as shown in the following list:

ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝ

Þßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿıŒœŠšŸ Žž
^d.g$ The letter d, then any character, and then the letter g, so it would match both dig

and dog or any single character between the d and g
^d\.g$ The letter d, then a dot (.), and then the letter g, so it would match d.g only

Splitting a complex comma-separated string
Earlier in this chapter, you learned how to split a simple comma-separated string variable. But
what about the following example of film titles?

"Monsters, Inc.","I, Tonya","Lock, Stock and Two Smoking Barrels"

The string value uses double quotes around each film title. We can use these to identify
whether we need to split on a comma (or not). The Split method is not powerful enough, so
we can use a regular expression instead.

To include double quotes inside a string value, we prefix them with a backslash:

1. Add statements to store a complex comma-separated string variable, and then split it
in a dumb way using the Split method, as shown in the following code:

string films = "\"Monsters, Inc.\",\"I, Tonya\",\"Lock, Stock and Two
Smoking Barrels\"";

WriteLine($"Films to split: {films}");

string[] filmsDumb = films.Split(',');

WriteLine("Splitting with string.Split method:");

Good Practice: Use regular expressions to validate input from the user. The
same regular expressions can be reused in other languages such as JavaScript
and Python.

Good Practice: You can read a fuller explanation in the Stack Overflow article
that inspired this task at the following link: https://stackoverflow.com/
questions/18144431/regex-to-split-a-csv

https://stackoverflow.com/questions/18144431/regex-to-split-a-csv
https://stackoverflow.com/questions/18144431/regex-to-split-a-csv

Working with Common .NET Types

[334]

foreach (string film in filmsDumb)
{
 WriteLine(film);
}

2. Add statements to define a regular expression to split and write the film titles in a smart
way, as shown in the following code:

WriteLine();

Regex csv = new(
 "(?:^|,)(?=[^\"]|(\")?)\"?((?(1)[^\"]*|[^,\"]*))\"?(?=,|$)");

MatchCollection filmsSmart = csv.Matches(films);

WriteLine("Splitting with regular expression:");
foreach (Match film in filmsSmart)
{
 WriteLine(film.Groups[2].Value);
}

3. Run the code and view the result, as shown in the following output:

Splitting with string.Split method:
"Monsters
 Inc."
"I
 Tonya"
"Lock
 Stock and Two Smoking Barrels"

Splitting with regular expression:
Monsters, Inc.
I, Tonya
Lock, Stock and Two Smoking Barrels

Storing multiple objects in collections
Another of the most common types of data is collections. If you need to store multiple values in
a variable, then you can use a collection.

A collection is a data structure in memory that can manage multiple items in different ways,
although all collections have some shared functionality.

Chapter 08

[335]

The most common types in .NET for working with collections are shown in the following table:

Namespace Example type(s) Description
System
.Collections

IEnumerable,
IEnumerable<T>

Interfaces and base classes used by collections.

System
.Collections
.Generic

List<T>,
Dictionary<T>,
Queue<T>,
Stack<T>

Introduced in C# 2.0 with .NET Framework 2.0.
These collections allow you to specify the type you
want to store using a generic type parameter (which
is safer, faster, and more efficient).

System
.Collections
.Concurrent

BlockingCollection,
ConcurrentDictionary,
ConcurrentQueue

These collections are safe to use in multithreaded
scenarios.

System
.Collections
.Immutable

ImmutableArray,
ImmutableDictionary,
ImmutableList,
ImmutableQueue

Designed for scenarios where the contents of the
original collection will never change, although they
can create modified collections as a new instance.

Common features of all collections
All collections implement the ICollection interface; this means that they must have a Count
property to tell you how many objects are in them, as shown in the following code:

namespace System.Collections
{
 public interface ICollection : IEnumerable
 {
 int Count { get; }
 bool IsSynchronized { get; }
 object SyncRoot { get; }
 void CopyTo(Array array, int index);
 }
}

For example, if we had a collection named passengers, we could do this:

int howMany = passengers.Count;

All collections implement the IEnumerable interface, which means that they can be iterated
using the foreach statement. They must have a GetEnumerator method that returns an object
that implements IEnumerator; this means that the returned object must have MoveNext and
Reset methods for navigating through the collection and a Current property containing the
current item in the collection, as shown in the following code:

namespace System.Collections
{
 public interface IEnumerable
 {

Working with Common .NET Types

[336]

 IEnumerator GetEnumerator();
 }
}

namespace System.Collections
{
 public interface IEnumerator
 {
 object Current { get; }
 bool MoveNext();
 void Reset();
 }
}

For example, to perform an action on each object in the passengers collection, we could write
the following code:

foreach (Passenger p in passengers)
{
 // perform an action on each passenger
}

As well as object-based collection interfaces, there are also generic interfaces and classes,
where the generic type defines the type stored in the collection, as shown in the following code:

namespace System.Collections.Generic
{
 public interface ICollection<T> : IEnumerable<T>, IEnumerable
 {
 int Count { get; }
 bool IsReadOnly { get; }
 void Add(T item);
 void Clear();
 bool Contains(T item);
 void CopyTo(T[] array, int index);
 bool Remove(T item);
 }
}

Improving performance by ensuring the capacity of
a collection
Since .NET 1.1, types like StringBuilder have had a method named EnsureCapacity that
can presize its internal storage array to the expected final size of the string. This improves
performance because it does not have to repeatedly increment the size of the array as more
characters are appended.

Chapter 08

[337]

Since .NET Core 2.1, types like Dictionary<T> and HashSet<T> have also had EnsureCapacity.

In .NET 6 and later, collections like List<T>, Queue<T>, and Stack<T> now have an
EnsureCapacity method too, as shown in the following code:

List<string> names = new();
names.EnsureCapacity(10_000);
// load ten thousand names into the list

Understanding collection choices
There are several different choices of collection that you can use for different purposes: lists,
dictionaries, stacks, queues, sets, and many other more specialized collections.

Lists
Lists, that is, a type that implements IList<T>, are ordered collections, as shown in the
following code:

namespace System.Collections.Generic
{
 [DefaultMember("Item")] // aka this indexer
 public interface IList<T> : ICollection<T>, IEnumerable<T>, IEnumerable
 {
 T this[int index] { get; set; }
 int IndexOf(T item);
 void Insert(int index, T item);
 void RemoveAt(int index);
 }
}

IList<T> derives from ICollection<T> so it has a Count property, and an Add method to put
an item at the end of the collection, as well as an Insert method to put an item in the list at a
specified position, and RemoveAt to remove an item at a specified position.

Lists are a good choice when you want to manually control the order of items in a collection.
Each item in a list has a unique index (or position) that is automatically assigned. Items can be
any type defined by T and items can be duplicated. Indexes are int types and start from 0, so
the first item in a list is at index 0, as shown in the following table:

Index Item
0 London
1 Paris
2 London
3 Sydney

Working with Common .NET Types

[338]

If a new item (for example, Santiago) is inserted between London and Sydney, then the index
of Sydney is automatically incremented. Therefore, you must be aware that an item's index can
change after inserting or removing items, as shown in the following table:

Index Item
0 London
1 Paris
2 London
3 Santiago
4 Sydney

Dictionaries
Dictionaries are a good choice when each value (or object) has a unique sub value (or a made-
up value) that can be used as a key to quickly find a value in the collection later. The key
must be unique. For example, if you are storing a list of people, you could choose to use a
government-issued identity number as the key.

Think of the key as being like an index entry in a real-world dictionary. It allows you to quickly
find the definition of a word because the words (for example, keys) are kept sorted, and if
we know we're looking for the definition of manatee, we would jump to the middle of the
dictionary to start looking, because the letter M is in the middle of the alphabet.

Dictionaries in programming are similarly smart when looking something up. They must
implement the interface IDictionary<TKey, TValue>, as shown in the following code:

namespace System.Collections.Generic
{
 [DefaultMember("Item")] // aka this indexer
 public interface IDictionary<TKey, TValue>
 : ICollection<KeyValuePair<TKey, TValue>>,
 IEnumerable<KeyValuePair<TKey, TValue>>, IEnumerable
 {
 TValue this[TKey key] { get; set; }
 ICollection<TKey> Keys { get; }
 ICollection<TValue> Values { get; }
 void Add(TKey key, TValue value);
 bool ContainsKey(TKey key);
 bool Remove(TKey key);
 bool TryGetValue(TKey key, [MaybeNullWhen(false)] out TValue value);
 }
}

Items in a dictionary are instances of the struct, aka the value type KeyValuePair<TKey,
TValue>, where TKey is the type of the key and TValue is the type of the value, as shown in the
following code:

Chapter 08

[339]

namespace System.Collections.Generic
{
 public readonly struct KeyValuePair<TKey, TValue>
 {
 public KeyValuePair(TKey key, TValue value);
 public TKey Key { get; }
 public TValue Value { get; }
 [EditorBrowsable(EditorBrowsableState.Never)]
 public void Deconstruct(out TKey key, out TValue value);
 public override string ToString();
 }
}

An example Dictionary<string, Person> uses a string as the key and a Person instance
as the value. Dictionary<string, string> uses string values for both, as shown in the
following table:

Key Value
BSA Bob Smith
MW Max Williams
BSB Bob Smith
AM Amir Mohammed

Stacks
Stacks are a good choice when you want to implement last-in, first-out (LIFO) behavior. With
a stack, you can only directly access or remove the one item at the top of the stack, although
you can enumerate to read through the whole stack of items. You cannot, for example, directly
access the second item in a stack.

For example, word processors use a stack to remember the sequence of actions you have
recently performed, and then when you press Ctrl + Z, it will undo the last action in the stack,
and then the next-to-last action, and so on.

Queues
Queues are a good choice when you want to implement the first-in, first-out (FIFO) behavior.
With a queue, you can only directly access or remove the one item at the front of the queue,
although you can enumerate to read through the whole queue of items. You cannot, for
example, directly access the second item in a queue.

For example, background processes use a queue to process work items in the order that they
arrive, just like people standing in line at the post office.

.NET 6 introduces the PriorityQueue, where each item in the queue has a priority value
assigned as well as their position in the queue.

Working with Common .NET Types

[340]

Sets
Sets are a good choice when you want to perform set operations between two collections. For
example, you may have two collections of city names, and you want to know which names
appear in both sets (known as the intersect between the sets). Items in a set must be unique.

Collection methods summary
Each collection has a different set of methods for adding and removing items, as shown in the
following table:

Collection Add methods Remove methods Description
List Add, Insert Remove, RemoveAt Lists are ordered so items have an integer

index position. Add will add a new item at the
end of the list. Insert will add a new item at
the index position specified.

Dictionary Add Remove Dictionaries are not ordered so items do
not have integer index positions. You can
check if a key has been used by calling the
ContainsKey method.

Stack Push Pop Stacks always add a new item at the top
of the stack using the Push method. The
first item is at the bottom. Items are always
removed from the top of the stack using the
Pop method. Call the Peek method to see this
value without removing it.

Queue Enqueue Dequeue Queues always add a new item at the end of
the queue using the Enqueue method. The
first item is at the front of the queue. Items are
always removed from the front of the queue
using the Dequeue method. Call the Peek
method to see this value without removing it.

Working with lists
Let's explore lists:

1. Use your preferred code editor to add a new console app named
WorkingWithCollections to the Chapter08 solution/workspace.

2. In Visual Studio Code, select WorkingWithCollections as the active OmniSharp project.
3. In Program.cs, delete the existing statements and then define a function to output a

collection of string values with a title, as shown in the following code:
static void Output(string title, IEnumerable<string> collection)
{
 WriteLine(title);
 foreach (string item in collection)

Chapter 08

[341]

 {
 WriteLine($" {item}");
 }
}

4. Define a static method named WorkingWithLists to illustrate some of the common ways
of defining and working with lists, as shown in the following code:

static void WorkingWithLists()
{
 // Simple syntax for creating a list and adding three items
 List<string> cities = new();
 cities.Add("London");
 cities.Add("Paris");
 cities.Add("Milan");

 /* Alternative syntax that is converted by the compiler into
 the three Add method calls above
 List<string> cities = new()
 { "London", "Paris", "Milan" };
 */

 /* Alternative syntax that passes an
 array of string values to AddRange method
 List<string> cities = new();
 cities.AddRange(new[] { "London", "Paris", "Milan" });
 */

 Output("Initial list", cities);

 WriteLine($"The first city is {cities[0]}.");
 WriteLine($"The last city is {cities[cities.Count - 1]}.");

 cities.Insert(0, "Sydney");

 Output("After inserting Sydney at index 0", cities);

 cities.RemoveAt(1);
 cities.Remove("Milan");

 Output("After removing two cities", cities);
}

Working with Common .NET Types

[342]

5. At the top of Program.cs, after the namespace imports, call the WorkingWithLists
method, as shown in the following code:

WorkingWithLists();

6. Run the code and view the result, as shown in the following output:

Initial list
 London
 Paris
 Milan
The first city is London.
The last city is Milan.
After inserting Sydney at index 0
 Sydney
 London
 Paris
 Milan
After removing two cities
 Sydney
 Paris

Working with dictionaries
Let's explore dictionaries:

1. In Program.cs, define a static method named WorkingWithDictionaries to illustrate
some of the common ways of working with dictionaries, for example, looking up word
definitions, as shown in the following code:

static void WorkingWithDictionaries()
{
 Dictionary<string, string> keywords = new();

 // add using named parameters
 keywords.Add(key: "int", value: "32-bit integer data type");

 // add using positional parameters
 keywords.Add("long", "64-bit integer data type");
 keywords.Add("float", "Single precision floating point number");

 /* Alternative syntax; compiler converts this to calls to Add method
 Dictionary<string, string> keywords = new()
 {
 { "int", "32-bit integer data type" },
 { "long", "64-bit integer data type" },

Chapter 08

[343]

 { "float", "Single precision floating point number" },
 }; */

 /* Alternative syntax; compiler converts this to calls to Add method
 Dictionary<string, string> keywords = new()
 {
 ["int"] = "32-bit integer data type",
 ["long"] = "64-bit integer data type",
 ["float"] = "Single precision floating point number", // last comma is
optional
 }; */

 Output("Dictionary keys:", keywords.Keys);
 Output("Dictionary values:", keywords.Values);

 WriteLine("Keywords and their definitions");
 foreach (KeyValuePair<string, string> item in keywords)
 {
 WriteLine($" {item.Key}: {item.Value}");
 }

 // lookup a value using a key
 string key = "long";
 WriteLine($"The definition of {key} is {keywords[key]}");
}

2. At the top of Program.cs, comment out the previous method call and then call the
WorkingWithDictionaries method, as shown in the following code:

// WorkingWithLists();
WorkingWithDictionaries();

3. Run the code and view the result, as shown in the following output:

Dictionary keys:
 int
 long
 float
Dictionary values:
 32-bit integer data type
 64-bit integer data type
 Single precision floating point number
Keywords and their definitions
 int: 32-bit integer data type
 long: 64-bit integer data type
 float: Single precision floating point number
The definition of long is 64-bit integer data type

Working with Common .NET Types

[344]

Working with queues
Let's explore queues:

1. In Program.cs, define a static method named WorkingWithQueues to illustrate some of
the common ways of working with queues, for example, handling customers in a queue
for coffee, as shown in the following code:

static void WorkingWithQueues()
{
 Queue<string> coffee = new();

 coffee.Enqueue("Damir"); // front of queue
 coffee.Enqueue("Andrea");
 coffee.Enqueue("Ronald");
 coffee.Enqueue("Amin");
 coffee.Enqueue("Irina"); // back of queue

 Output("Initial queue from front to back", coffee);

 // server handles next person in queue
 string served = coffee.Dequeue();
 WriteLine($"Served: {served}.");

 // server handles next person in queue
 served = coffee.Dequeue();
 WriteLine($"Served: {served}.");

 Output("Current queue from front to back", coffee);

 WriteLine($"{coffee.Peek()} is next in line.");

 Output("Current queue from front to back", coffee);
}

2. At the top of Program.cs, comment out the previous method calls and call the
WorkingWithQueues method.

3. Run the code and view the result, as shown in the following output:
Initial queue from front to back
 Damir
 Andrea
 Ronald
 Amin
 Irina
Served: Damir.
Served: Andrea.

Chapter 08

[345]

Current queue from front to back
 Ronald
 Amin
 Irina
Ronald is next in line.
Current queue from front to back
 Ronald
 Amin
 Irina

4. Define a static method named OutputPQ, as shown in the following code:
static void OutputPQ<TElement, TPriority>(string title,
 IEnumerable<(TElement Element, TPriority Priority)> collection)
{
 WriteLine(title);
 foreach ((TElement, TPriority) item in collection)
 {
 WriteLine($" {item.Item1}: {item.Item2}");
 }
}

Note that the OutputPQ method is generic. You can specify the two types used in the
tuples that are passed in as collection.

5. Define a static method named WorkingWithPriorityQueues, as shown in the following
code:

static void WorkingWithPriorityQueues()
{
 PriorityQueue<string, int> vaccine = new();

 // add some people
 // 1 = high priority people in their 70s or poor health
 // 2 = medium priority e.g. middle aged
 // 3 = low priority e.g. teens and twenties
 vaccine.Enqueue("Pamela", 1); // my mum (70s)
 vaccine.Enqueue("Rebecca", 3); // my niece (teens)
 vaccine.Enqueue("Juliet", 2); // my sister (40s)
 vaccine.Enqueue("Ian", 1); // my dad (70s)

 OutputPQ("Current queue for vaccination:", vaccine.UnorderedItems);

 WriteLine($"{vaccine.Dequeue()} has been vaccinated.");
 WriteLine($"{vaccine.Dequeue()} has been vaccinated.");

 OutputPQ("Current queue for vaccination:", vaccine.UnorderedItems);

Working with Common .NET Types

[346]

 WriteLine($"{vaccine.Dequeue()} has been vaccinated.");

 vaccine.Enqueue("Mark", 2); // me (40s)
 WriteLine($"{vaccine.Peek()} will be next to be vaccinated.");

 OutputPQ("Current queue for vaccination:", vaccine.UnorderedItems);
}

6. At the top of Program.cs, comment out the previous method calls and call the
WorkingWithPriorityQueues method.

7. Run the code and view the result, as shown in the following output:

Current queue for vaccination:
 Pamela: 1
 Rebecca: 3
 Juliet: 2
 Ian: 1
Pamela has been vaccinated.
Ian has been vaccinated.
Current queue for vaccination:
 Juliet: 2
 Rebecca: 3
Juliet has been vaccinated.
Mark will be next to be vaccinated.
Current queue for vaccination:
 Mark: 2
 Rebecca: 3

Sorting collections
A List<T> class can be sorted by manually calling its Sort method (but remember that the
indexes of each item will change). Manually sorting a list of string values or other built-in
types will work without extra effort on your part, but if you create a collection of your own
type, then that type must implement an interface named IComparable. You learned how to do
this in Chapter 6, Implementing Interfaces and Inheriting Classes.

A Stack<T> or Queue<T> collection cannot be sorted because you wouldn't usually want that
functionality; for example, you would probably never sort a queue of guests checking into a
hotel. But sometimes, you might want to sort a dictionary or a set.

Sometimes it would be useful to have an automatically sorted collection, that is, one that
maintains the items in a sorted order as you add and remove them.

There are multiple auto-sorting collections to choose from. The differences between these
sorted collections are often subtle but can have an impact on the memory requirements and
performance of your application, so it is worth putting effort into picking the most appropriate
option for your requirements.

Chapter 08

[347]

Some common auto-sorting collections are shown in the following table:

Collection Description
SortedDictionary<TKey, TValue> This represents a collection of key/value pairs that are

sorted by key.
SortedList<TKey, TValue> This represents a collection of key/value pairs that are

sorted by key.
SortedSet<T> This represents a collection of unique objects that are

maintained in a sorted order.

More specialized collections
There are a few other collections for special situations.

Working with a compact array of bit values
The System.Collections.BitArray collection manages a compact array of bit values, which are
represented as Booleans, where true indicates that the bit is on (value is 1) and false indicates
the bit is off (value is 0).

Working with efficient lists
The System.Collections.Generics.LinkedList<T> collection represents a doubly linked list
where every item has a reference to its previous and next items. They provide better performance
compared to List<T> for scenarios where you will frequently insert and remove items from the
middle of the list. In a LinkedList<T> the items do not have to be rearranged in memory.

Using immutable collections
Sometimes you need to make a collection immutable, meaning that its members cannot change;
that is, you cannot add or remove them.

If you import the System.Collections.Immutable namespace, then any collection that
implements IEnumerable<T> is given six extension methods to convert it into an immutable list,
dictionary, hash set, and so on.

Let's see a simple example:

1. In the WorkingWithCollections project, in Program.cs, import the System.Collections.
Immutable namespace.

2. In the WorkingWithLists method, add statements to the end of the method to convert
the cities list into an immutable list and then add a new city to it, as shown in the
following code:

ImmutableList<string> immutableCities = cities.ToImmutableList();
ImmutableList<string> newList = immutableCities.Add("Rio");

Working with Common .NET Types

[348]

Output("Immutable list of cities:", immutableCities);
Output("New list of cities:", newList);

3. At the top of Program.cs, comment the previous method calls and uncomment the call
to the WorkingWithLists method.

4. Run the code, view the result, and note that the immutable list of cities does not get
modified when you call the Add method on it; instead, it returns a new list with the
newly added city, as shown in the following output:

Immutable list of cities:
 Sydney
 Paris
New list of cities:
 Sydney
 Paris
 Rio

Good practice with collections
Let's say you need to create a method to process a collection. For maximum flexibility, you
could declare the input parameter to be IEnumerable<T> and make the method generic, as
shown in the following code:

void ProcessCollection<T>(IEnumerable<T> collection)
{
 // process the items in the collection,
 // perhaps using a foreach statement
}

I could pass an array, a list, a queue, a stack, or anything else that implements IEnumerable<T>
into this method and it will process the items. However, the flexibility to pass any collection to
this method comes at a performance cost.

One of the performance problems with IEnumerable<T> is also one of its benefits: deferred
execution, also known as lazy loading. Types that implement this interface do not have to
implement deferred execution, but many do.

Good Practice: To improve performance, many applications store a shared
copy of commonly accessed objects in a central cache. To safely allow multiple
threads to work with those objects knowing they won't change, you should
make them immutable or use a concurrent collection type that you can read
about at the following link: https://docs.microsoft.com/en-us/dotnet/
api/system.collections.concurrent

https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent

Chapter 08

[349]

But the worst performance problem with IEnumerable<T> is that the iteration has to allocate an
object on the heap. To avoid this memory allocation, you should define your method using a
concrete type, as shown highlighted in the following code:

void ProcessCollection<T>(List<T> collection)
{
 // process the items in the collection,
 // perhaps using a foreach statement
}

This will use the List<T>.Enumerator GetEnumerator() method that returns a struct instead
of the IEnumerator<T> GetEnumerator() method that returns a reference type. Your code will
be two to three times faster and require less memory. As with all recommendations related to
performance, you should confirm the benefit by running performance tests on your actual code
in a product environment. You will learn how to do this in Chapter 12, Improving Performance
and Scalability Using Multitasking.

Working with spans, indexes, and ranges
One of Microsoft's goals with .NET Core 2.1 was to improve performance and resource usage.
A key .NET feature that enables this is the Span<T> type.

Using memory efficiently using spans
When manipulating arrays, you will often create new copies of subsets of existing ones so that
you can process just the subset. This is not efficient because duplicate objects must be created
in memory.

If you need to work with a subset of an array, use a span because it is like a window into the
original array. This is more efficient in terms of memory usage and improves performance.
Spans only work with arrays, not collections, because the memory must be contiguous.

Before we look at spans in more detail, we need to understand some related objects: indexes
and ranges.

Identifying positions with the Index type
C# 8.0 introduced two features for identifying an item's index within an array and a range of
items using two indexes.

You learned in the previous topic that objects in a list can be accessed by passing an integer into
their indexer, as shown in the following code:

int index = 3;
Person p = people[index]; // fourth person in array
char letter = name[index]; // fourth letter in name

Working with Common .NET Types

[350]

The Index value type is a more formal way of identifying a position, and supports counting
from the end, as shown in the following code:

// two ways to define the same index, 3 in from the start
Index i1 = new(value: 3); // counts from the start
Index i2 = 3; // using implicit int conversion operator

// two ways to define the same index, 5 in from the end
Index i3 = new(value: 5, fromEnd: true);
Index i4 = ^5; // using the caret operator

Identifying ranges with the Range type
The Range value type uses Index values to indicate the start and end of its range, using its
constructor, C# syntax, or its static methods, as shown in the following code:

Range r1 = new(start: new Index(3), end: new Index(7));
Range r2 = new(start: 3, end: 7); // using implicit int conversion
Range r3 = 3..7; // using C# 8.0 or later syntax
Range r4 = Range.StartAt(3); // from index 3 to last index
Range r5 = 3..; // from index 3 to last index
Range r6 = Range.EndAt(3); // from index 0 to index 3
Range r7 = ..3; // from index 0 to index 3

Extension methods have been added to string values (that internally use an array of char), int
arrays, and spans to make ranges easier to work with. These extension methods accept a range
as a parameter and return a Span<T>. This makes them very memory efficient.

Using indexes, ranges, and spans
Let's explore using indexes and ranges to return spans:

1. Use your preferred code editor to add a new console app named WorkingWithRanges to
the Chapter08 solution/workspace.

2. In Visual Studio Code, select WorkingWithRanges as the active OmniSharp project.
3. In Program.cs, type statements to compare using the string type's Substring method

using ranges to extract parts of someone's name, as shown in the following code:
string name = "Samantha Jones";

// Using Substring

int lengthOfFirst = name.IndexOf(' ');
int lengthOfLast = name.Length - lengthOfFirst - 1;

string firstName = name.Substring(
 startIndex: 0,
 length: lengthOfFirst);

Chapter 08

[351]

string lastName = name.Substring(
 startIndex: name.Length - lengthOfLast,
 length: lengthOfLast);

WriteLine($"First name: {firstName}, Last name: {lastName}");

// Using spans

ReadOnlySpan<char> nameAsSpan = name.AsSpan();
ReadOnlySpan<char> firstNameSpan = nameAsSpan[0..lengthOfFirst];
ReadOnlySpan<char> lastNameSpan = nameAsSpan[^lengthOfLast..^0];

WriteLine("First name: {0}, Last name: {1}",
 arg0: firstNameSpan.ToString(),
 arg1: lastNameSpan.ToString());

4. Run the code and view the result, as shown in the following output:

First name: Samantha, Last name: Jones
First name: Samantha, Last name: Jones

Working with network resources
Sometimes you will need to work with network resources. The most common types in .NET for
working with network resources are shown in the following table:

Namespace Example type(s) Description
System.Net Dns, Uri, Cookie,

WebClient,
IPAddress

These are for working with DNS servers, URIs,
IP addresses, and so on.

System.Net FtpStatusCode,
FtpWebRequest,
FtpWebResponse

These are for working with FTP servers.

System.Net HttpStatusCode,
HttpWebRequest,
HttpWebResponse

These are for working with HTTP servers; that
is, websites and services. Types from System.
Net.Http are easier to use.

System.Net.Http HttpClient,
HttpMethod,
HttpRequestMessage,
HttpResponseMessage

These are for working with HTTP servers; that
is, websites and services. You will learn how to
use these in Chapter 16, Building and Consuming
Web Services.

System.Net.Mail Attachment,
MailAddress,
MailMessage,
SmtpClient

These are for working with SMTP servers; that
is, sending email messages.

System.Net
.NetworkInformation

IPStatus,
NetworkChange,
Ping, TcpStatistics

These are for working with low-level network
protocols.

Working with Common .NET Types

[352]

Working with URIs, DNS, and IP addresses
Let's explore some common types for working with network resources:

1. Use your preferred code editor to add a new console app named
WorkingWithNetworkResources to the Chapter08 solution/workspace.

2. In Visual Studio Code, select WorkingWithNetworkResources as the active OmniSharp
project.

3. At the top of Program.cs, import the namespace for working with the network, as
shown in the following code:

using System.Net; // IPHostEntry, Dns, IPAddress

4. Type statements to prompt the user to enter a website address, and then use the Uri
type to break it down into its parts, including the scheme (HTTP, FTP, and so on), port
number, and host, as shown in the following code:

Write("Enter a valid web address: ");
string? url = ReadLine();

if (string.IsNullOrWhiteSpace(url))
{
 url = "https://stackoverflow.com/search?q=securestring";
}

Uri uri = new(url);

WriteLine($"URL: {url}");
WriteLine($"Scheme: {uri.Scheme}");
WriteLine($"Port: {uri.Port}");
WriteLine($"Host: {uri.Host}");
WriteLine($"Path: {uri.AbsolutePath}");
WriteLine($"Query: {uri.Query}");

For convenience, the code also allows the user to press ENTER to use an example URL.

5. Run the code, enter a valid website address or press ENTER, and view the result, as
shown in the following output:

Enter a valid web address:
URL: https://stackoverflow.com/search?q=securestring
Scheme: https
Port: 443
Host: stackoverflow.com
Path: /search
Query: ?q=securestring

Chapter 08

[353]

6. Add statements to get the IP address for the entered website, as shown in the following
code:

IPHostEntry entry = Dns.GetHostEntry(uri.Host);
WriteLine($"{entry.HostName} has the following IP addresses:");
foreach (IPAddress address in entry.AddressList)
{
 WriteLine($" {address} ({address.AddressFamily})");
}

7. Run the code, enter a valid website address or press ENTER, and view the result, as
shown in the following output:

stackoverflow.com has the following IP addresses:
 151.101.193.69 (InterNetwork)
 151.101.129.69 (InterNetwork)
 151.101.1.69 (InterNetwork)
 151.101.65.69 (InterNetwork)

Pinging a server
Now you will add code to ping a web server to check its health:

1. Import the namespace to get more information about networks, as shown in the
following code:

using System.Net.NetworkInformation; // Ping, PingReply, IPStatus

2. Add statements to ping the entered website, as shown in the following code:
try
{
 Ping ping = new();
 WriteLine("Pinging server. Please wait...");
 PingReply reply = ping.Send(uri.Host);

 WriteLine($"{uri.Host} was pinged and replied: {reply.Status}.");
 if (reply.Status == IPStatus.Success)
 {
 WriteLine("Reply from {0} took {1:N0}ms",
 arg0: reply.Address,
 arg1: reply.RoundtripTime);
 }
}
catch (Exception ex)
{
 WriteLine($"{ex.GetType().ToString()} says {ex.Message}");
}

Working with Common .NET Types

[354]

3. Run the code, press ENTER, and view the result, as shown in the following output on
macOS:

Pinging server. Please wait...
stackoverflow.com was pinged and replied: Success.
Reply from 151.101.193.69 took 18ms took 136ms

4. Run the code again but this time enter http://google.com, as shown in the following
output:

Enter a valid web address: http://google.com
URL: http://google.com
Scheme: http
Port: 80
Host: google.com
Path: /
Query:
google.com has the following IP addresses:
 2a00:1450:4009:807::200e (InterNetworkV6)
 216.58.204.238 (InterNetwork)
Pinging server. Please wait...
google.com was pinged and replied: Success.
Reply from 2a00:1450:4009:807::200e took 24ms

Working with reflection and attributes
Reflection is a programming feature that allows code to understand and manipulate itself. An
assembly is made up of up to four parts:

• Assembly metadata and manifest: Name, assembly, and file version, referenced
assemblies, and so on.

• Type metadata: Information about the types, their members, and so on.
• IL code: Implementation of methods, properties, constructors, and so on.
• Embedded resources (optional): Images, strings, JavaScript, and so on.

The metadata comprises items of information about your code. The metadata is generated
automatically from your code (for example, information about the types and members) or
applied to your code using attributes.

Attributes can be applied at multiple levels: to assemblies, to types, and to their members, as
shown in the following code:

// an assembly-level attribute
[assembly: AssemblyTitle("Working with Reflection")]

// a type-level attribute

http://google.com

Chapter 08

[355]

[Serializable]
public class Person
{
 // a member-level attribute
 [Obsolete("Deprecated: use Run instead.")]
 public void Walk()
 {
...

Attribute-based programming is used a lot in app models like ASP.NET Core to enable features
like routing, security, and caching.

Versioning of assemblies
Version numbers in .NET are a combination of three numbers, with two optional additions. If
you follow the rules of semantic versioning, the three numbers denote the following:

• Major: Breaking changes.
• Minor: Non-breaking changes, including new features, and often bug fixes.
• Patch: Non-breaking bug fixes.

Optionally, a version can include these:

• Prerelease: Unsupported preview releases.
• Build number: Nightly builds.

Reading assembly metadata
Let's explore working with attributes:

1. Use your preferred code editor to add a new console app named
WorkingWithReflection to the Chapter08 solution/workspace.

Good Practice: When updating a NuGet package that you already use in
a project, to be safe you should specify an optional flag to make sure that
you only upgrade to the highest minor to avoid breaking changes, or to the
highest patch if you are extra cautious and only want to receive bug fixes,
as shown in the following commands: Update-Package Newtonsoft.
Json -ToHighestMinor or Update-Package Newtonsoft.Json
-ToHighestPatch.

Good Practice: Follow the rules of semantic versioning, as described at the
following link: http://semver.org

http://semver.org

Working with Common .NET Types

[356]

2. In Visual Studio Code, select WorkingWithReflection as the active OmniSharp project.
3. At the top of Program.cs, import the namespace for reflection, as shown in the

following code:
using System.Reflection; // Assembly

4. Add statements to get the console app's assembly, output its name and location, and get
all assembly-level attributes and output their types, as shown in the following code:

WriteLine("Assembly metadata:");
Assembly? assembly = Assembly.GetEntryAssembly();
if (assembly is null)
{
 WriteLine("Failed to get entry assembly.");
 return;
}

WriteLine($" Full name: {assembly.FullName}");
WriteLine($" Location: {assembly.Location}");

IEnumerable<Attribute> attributes = assembly.GetCustomAttributes();

WriteLine($" Assembly-level attributes:");
foreach (Attribute a in attributes)
{
 WriteLine($" {a.GetType()}");
}

5. Run the code and view the result, as shown in the following output:
Assembly metadata:
 Full name: WorkingWithReflection, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null
 Location: /Users/markjprice/Code/Chapter08/WorkingWithReflection/bin/
Debug/net6.0/WorkingWithReflection.dll
 Assembly-level attributes:
 System.Runtime.CompilerServices.CompilationRelaxationsAttribute
 System.Runtime.CompilerServices.RuntimeCompatibilityAttribute
 System.Diagnostics.DebuggableAttribute
 System.Runtime.Versioning.TargetFrameworkAttribute
 System.Reflection.AssemblyCompanyAttribute
 System.Reflection.AssemblyConfigurationAttribute
 System.Reflection.AssemblyFileVersionAttribute
 System.Reflection.AssemblyInformationalVersionAttribute
 System.Reflection.AssemblyProductAttribute
 System.Reflection.AssemblyTitleAttribute

Chapter 08

[357]

Note that because the full name of an assembly must uniquely identify the assembly, it
is a combination of the following:

• Name, for example, WorkingWithReflection
• Version, for example, 1.0.0.0
• Culture, for example, neutral
• Public key token, although this can be null

Now that we know some of the attributes decorating the assembly, we can ask for them
specifically.

6. Add statements to get the AssemblyInformationalVersionAttribute and
AssemblyCompanyAttribute classes and then output their values, as shown in the
following code:

AssemblyInformationalVersionAttribute? version = assembly
 .GetCustomAttribute<AssemblyInformationalVersionAttribute>();

WriteLine($" Version: {version?.InformationalVersion}");

AssemblyCompanyAttribute? company = assembly
 .GetCustomAttribute<AssemblyCompanyAttribute>();

WriteLine($" Company: {company?.Company}");

7. Run the code and view the result, as shown in the following output:
 Version: 1.0.0
 Company: WorkingWithReflection

Hmmm, unless you set the version, it defaults to 1.0.0, and unless you set the company,
it defaults to the name of the assembly. Let's explicitly set this information. The legacy
.NET Framework way to set these values was to add attributes in the C# source code
file, as shown in the following code:

[assembly: AssemblyCompany("Packt Publishing")]
[assembly: AssemblyInformationalVersion("1.3.0")]

The Roslyn compiler used by .NET sets these attributes automatically, so we can't use
the old way. Instead, they must be set in the project file.

8. Edit the WorkingWithReflection.csproj project file to add elements for version and
company, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>

Working with Common .NET Types

[358]

 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <Version>6.3.12</Version>
 <Company>Packt Publishing</Company>
 </PropertyGroup>

</Project>

9. Run the code and view the result, as shown in the following output:

 Version: 6.3.12
 Company: Packt Publishing

Creating custom attributes
You can define your own attributes by inheriting from the Attribute class:

1. Add a class file to your project named CoderAttribute.cs.
2. Define an attribute class that can decorate either classes or methods with two properties

to store the name of a coder and the date they last modified some code, as shown in the
following code:

namespace Packt.Shared;

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method,
 AllowMultiple = true)]
public class CoderAttribute : Attribute
{
 public string Coder { get; set; }
 public DateTime LastModified { get; set; }

 public CoderAttribute(string coder, string lastModified)
 {
 Coder = coder;
 LastModified = DateTime.Parse(lastModified);
 }
}

3. In Program.cs, import some namespaces, as shown in the following code:
using System.Runtime.CompilerServices; // CompilerGeneratedAttribute
using Packt.Shared; // CoderAttribute

4. At the bottom of Program.cs, add a class with a method, and decorate the method with
the Coder attribute with data about two coders, as shown in the following code:

Chapter 08

[359]

class Animal
{
 [Coder("Mark Price", "22 August 2021")]
 [Coder("Johnni Rasmussen", "13 September 2021")]
 public void Speak()
 {
 WriteLine("Woof...");
 }
}

5. In Program.cs, above the Animal class, add code to get the types, enumerate
their members, read any Coder attributes on those members, and output the
information, as shown in the following code:

WriteLine();
WriteLine($"* Types:");
Type[] types = assembly.GetTypes();

foreach (Type type in types)
{
 WriteLine();
 WriteLine($"Type: {type.FullName}");
 MemberInfo[] members = type.GetMembers();

 foreach (MemberInfo member in members)
 {
 WriteLine("{0}: {1} ({2})",
 arg0: member.MemberType,
 arg1: member.Name,
 arg2: member.DeclaringType?.Name);

 IOrderedEnumerable<CoderAttribute> coders =
 member.GetCustomAttributes<CoderAttribute>()
 .OrderByDescending(c => c.LastModified);

 foreach (CoderAttribute coder in coders)
 {
 WriteLine("-> Modified by {0} on {1}",
 coder.Coder, coder.LastModified.ToShortDateString());
 }
 }
}

6. Run the code and view the result, as shown in the following partial output:

* Types:
...

Working with Common .NET Types

[360]

Type: Animal
Method: Speak (Animal)
-> Modified by Johnni Rasmussen on 13/09/2021
-> Modified by Mark Price on 22/08/2021
Method: GetType (Object)
Method: ToString (Object)
Method: Equals (Object)
Method: GetHashCode (Object)
Constructor: .ctor (Program)
...
Type: <Program>$+<>c
Method: GetType (Object)
Method: ToString (Object)
Method: Equals (Object)
Method: GetHashCode (Object)
Constructor: .ctor (<>c)
Field: <>9 (<>c)
Field: <>9__0_0 (<>c)

What is the <Program>$+<>c type?

It is a compiler-generated display class. <> indicates compiler-generated and c indicates a
display class. They are undocumented implementation details of the compiler and could
change at any time. You can ignore them, so as an optional challenge, add statements to
your console application to filter compiler-generated types by skipping types decorated with
CompilerGeneratedAttribute.

Doing more with reflection
This is just a taster of what can be achieved with reflection. We only used reflection to read
metadata from our code. Reflection can also do the following:

• Dynamically load assemblies that are not currently referenced: https://docs.
microsoft.com/en-us/dotnet/standard/assembly/unloadability

• Dynamically execute code: https://docs.microsoft.com/en-us/dotnet/api/system.
reflection.methodbase.invoke

• Dynamically generate new code and assemblies: https://docs.microsoft.com/en-us/
dotnet/api/system.reflection.emit.assemblybuilder

Working with images
ImageSharp is a third-party cross-platform 2D graphics library. When .NET Core 1.0 was in
development, there was negative feedback from the community about the missing System.
Drawing namespace for working with 2D images.

https://docs.microsoft.com/en-us/dotnet/standard/assembly/unloadability
https://docs.microsoft.com/en-us/dotnet/standard/assembly/unloadability
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.invoke
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.invoke
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.assemblybuilder
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.assemblybuilder

Chapter 08

[361]

The ImageSharp project was started to fill that gap for modern .NET applications.

In their official documentation for System.Drawing, Microsoft says, "The System.Drawing
namespace is not recommended for new development due to not being supported within a
Windows or ASP.NET service, and it is not cross-platform. ImageSharp and SkiaSharp are
recommended as alternatives."

Let us see what can be achieved with ImageSharp:

1. Use your preferred code editor to add a new console app named WorkingWithImages to
the Chapter08 solution/workspace.

2. In Visual Studio Code, select WorkingWithImages as the active OmniSharp project.
3. Create an images folder and download the nine images from the following link:

https://github.com/markjprice/cs10dotnet6/tree/master/Assets/Categories

4. Add a package reference for SixLabors.ImageSharp, as shown in the following
markup:

<ItemGroup>
 <PackageReference Include="SixLabors.ImageSharp" Version="1.0.3" />
</ItemGroup>

5. Build the WorkingWithImages project.
6. At the top of Program.cs, import some namespaces for working with images, as

shown in the following code:
using SixLabors.ImageSharp;
using SixLabors.ImageSharp.Processing;

7. In Program.cs, enter statements to convert all the files in the images folder into
grayscale thumbnails at one-tenth size, as shown in the following code:

string imagesFolder = Path.Combine(
 Environment.CurrentDirectory, "images");

IEnumerable<string> images =
 Directory.EnumerateFiles(imagesFolder);

foreach (string imagePath in images)
{
 string thumbnailPath = Path.Combine(
 Environment.CurrentDirectory, "images",
 Path.GetFileNameWithoutExtension(imagePath)
 + "-thumbnail" + Path.GetExtension(imagePath));

 using (Image image = Image.Load(imagePath))
 {

https://github.com/markjprice/cs10dotnet6/tree/master/Assets/Categories

Working with Common .NET Types

[362]

 image.Mutate(x => x.Resize(image.Width / 10, image.Height / 10));
 image.Mutate(x => x.Grayscale());
 image.Save(thumbnailPath);
 }
}
WriteLine("Image processing complete. View the images folder.");

8. Run the code.
9. In the filesystem, open the images folder and note the much-smaller-in-bytes grayscale

thumbnails, as shown in Figure 8.1:

Figure 8.1: Images after processing

ImageSharp also has NuGet packages for programmatically drawing images and working with
images on the web, as shown in the following list:

• SixLabors.ImageSharp.Drawing

• SixLabors.ImageSharp.Web

Internationalizing your code
Internationalization is the process of enabling your code to run correctly all over the world. It
has two parts: globalization and localization.

Globalization is about writing your code to accommodate multiple languages and region
combinations. The combination of a language and a region is known as a culture. It is important
for your code to know both the language and region because, for example, the date and currency
formats are different in Quebec and Paris, despite them both using the French language.

There are International Organization for Standardization (ISO) codes for all culture
combinations. For example, in the code da-DK, da indicates the Danish language and DK
indicates the Denmark region, and in the code fr-CA, fr indicates the French language and CA
indicates the Canada region.

Chapter 08

[363]

ISO is not an acronym. ISO is a reference to the Greek word isos (which means equal).

Localization is about customizing the user interface to support a language, for example,
changing the label of a button to be Close (en) or Fermer (fr). Since localization is more about
the language, it doesn't always need to know about the region, although ironically enough,
standardization (en-US) and standardisation (en-GB) suggest otherwise.

Detecting and changing the current culture
Internationalization is a huge topic on which several thousand-page books have been written.
In this section, you will get a brief introduction to the basics using the CultureInfo type in the
System.Globalization namespace.

Let's write some code:

1. Use your preferred code editor to add a new console app named Internationalization
to the Chapter08 solution/workspace.

2. In Visual Studio Code, select Internationalization as the active OmniSharp project.
3. At the top of Program.cs, import the namespace for using globalization types, as

shown in the following code:
using System.Globalization; // CultureInfo

4. Add statements to get the current globalization and localization cultures and
output some information about them, and then prompt the user to enter a new culture
code and show how that affects the formatting of common values such as dates and
currency, as shown in the following code:

CultureInfo globalization = CultureInfo.CurrentCulture;
CultureInfo localization = CultureInfo.CurrentUICulture;

WriteLine("The current globalization culture is {0}: {1}",
 globalization.Name, globalization.DisplayName);

WriteLine("The current localization culture is {0}: {1}",
 localization.Name, localization.DisplayName);

WriteLine();

WriteLine("en-US: English (United States)");
WriteLine("da-DK: Danish (Denmark)");
WriteLine("fr-CA: French (Canada)");

Write("Enter an ISO culture code: ");
string? newCulture = ReadLine();

if (!string.IsNullOrEmpty(newCulture))

Working with Common .NET Types

[364]

{
 CultureInfo ci = new(newCulture);

 // change the current cultures
 CultureInfo.CurrentCulture = ci;
 CultureInfo.CurrentUICulture = ci;
}
WriteLine();

Write("Enter your name: ");
string? name = ReadLine();

Write("Enter your date of birth: ");
string? dob = ReadLine();

Write("Enter your salary: ");
string? salary = ReadLine();

DateTime date = DateTime.Parse(dob);
int minutes = (int)DateTime.Today.Subtract(date).TotalMinutes;
decimal earns = decimal.Parse(salary);

WriteLine(
 "{0} was born on a {1:dddd}, is {2:N0} minutes old, and earns {3:C}",
 name, date, minutes, earns);

When you run an application, it automatically sets its thread to use the culture of the
operating system. I am running my code in London, UK, so the thread is set to English
(United Kingdom).
The code prompts the user to enter an alternative ISO code. This allows your
applications to replace the default culture at runtime.
The application then uses standard format codes to output the day of the week using
format code dddd; the number of minutes with thousand separators using format code
N0; and the salary with the currency symbol. These adapt automatically, based on the
thread's culture.

5. Run the code and enter en-GB for the ISO code and then enter some sample data
including a date in a format valid for British English, as shown in the following output:

Enter an ISO culture code: en-GB
Enter your name: Alice
Enter your date of birth: 30/3/1967
Enter your salary: 23500
Alice was born on a Thursday, is 25,469,280 minutes old, and earns
£23,500.00

Chapter 08

[365]

6. Rerun the code and try a different culture, such as Danish in Denmark, as shown in the
following output:

Enter an ISO culture code: da-DK
Enter your name: Mikkel
Enter your date of birth: 12/3/1980
Enter your salary: 340000
Mikkel was born on a onsdag, is 18.656.640 minutes old, and earns
340.000,00 kr.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore with deeper research into the topics in this chapter.

Exercise 8.1 – Test your knowledge
Use the web to answer the following questions:

1. What is the maximum number of characters that can be stored in a string variable?
2. When and why should you use a SecureString type?
3. When is it appropriate to use a StringBuilder class?
4. When should you use a LinkedList<T> class?
5. When should you use a SortedDictionary<T> class rather than a SortedList<T> class?

If you enter en-US instead of en-GB, then you must enter the date
using month/day/year.

In this example, only the date and salary are globalized into Danish.
The rest of the text is hardcoded as English. This book does not
currently include how to translate text from one language to another.
If you would like me to include that in the next edition, please let me
know.

Good Practice: Consider whether your application needs to be
internationalized and plan for that before you start coding! Write down all the
pieces of text in the user interface that will need to be localized. Think about
all the data that will need to be globalized (date formats, number formats, and
sorting text behavior).

Working with Common .NET Types

[366]

6. What is the ISO culture code for Welsh?
7. What is the difference between localization, globalization, and

internationalization?
8. In a regular expression, what does $ mean?
9. In a regular expression, how can you represent digits?
10. Why should you not use the official standard for email addresses to create a regular

expression to validate a user's email address?

Exercise 8.2 – Practice regular expressions
In the Chapter08 solution/workspace, create a console application named Exercise02 that
prompts the user to enter a regular expression and then prompts the user to enter some input
and compare the two for a match until the user presses Esc, as shown in the following output:

The default regular expression checks for at least one digit.
Enter a regular expression (or press ENTER to use the default): ^[a-z]+$
Enter some input: apples
apples matches ^[a-z]+$? True
Press ESC to end or any key to try again.
Enter a regular expression (or press ENTER to use the default): ^[a-z]+$
Enter some input: abc123xyz
abc123xyz matches ^[a-z]+$? False
Press ESC to end or any key to try again.

Exercise 8.3 – Practice writing extension methods
In the Chapter08 solution/workspace, create a class library named Exercise03 that defines
extension methods that extend number types such as BigInteger and int with a method
named ToWords that returns a string describing the number; for example, 18,000,000 would
be eighteen million, and 18,456,002,032,011,000,007 would be eighteen quintillion, four
hundred and fifty-six quadrillion, two trillion, thirty-two billion, eleven million, and seven.

You can read more about names for large numbers at the following link: https://
en.wikipedia.org/wiki/Names_of_large_numbers

Exercise 8.4 – Explore topics
Use the links on the following page to learn more detail about the topics covered in this
chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-8---
working-with-common-net-types

https://en.wikipedia.org/wiki/Names_of_large_numbers
https://en.wikipedia.org/wiki/Names_of_large_numbers
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-8---working-with-common-net-types
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-8---working-with-common-net-types

Chapter 08

[367]

Summary
In this chapter, you explored some choices for types to store and manipulate numbers, dates
and times, and text including regular expressions, and which collections to use for storing
multiple items; worked with indexes, ranges, and spans; used some network resources;
reflected on code and attributes; manipulated images using a Microsoft-recommended third-
party library; and learned how to internationalize your code.

In the next chapter, we will manage files and streams, encode and decode text, and perform
serialization.

[369]

09
Working with Files,

Streams, and Serialization
This chapter is about reading and writing to files and streams, text encoding, and serialization.

We will cover the following topics:

• Managing the filesystem
• Reading and writing with streams
• Encoding and decoding text
• Serializing object graphs
• Controlling JSON processing

Managing the filesystem
Your applications will often need to perform input and output operations with files and
directories in different environments. The System and System.IO namespaces contain classes
for this purpose.

Handling cross-platform environments and
filesystems
Let's explore how to handle cross-platform environments like the differences between
Windows and Linux or macOS. Paths are different for Windows, macOS, and Linux, so we will
start by exploring how .NET handles this:

1. Use your preferred code editor to create a new solution/workspace named Chapter09.

Working with Files, Streams, and Serialization

[370]

2. Add a console app project, as defined in the following list:
1. Project template: Console Application/console
2. Workspace/solution file and folder: Chapter09
3. Project file and folder: WorkingWithFileSystems

3. In Program.cs, add statements to statically import the System.Console, System.
IO.Directory, System.Environment, and System.IO.Path types, as shown in the
following code:

using static System.Console;
using static System.IO.Directory;
using static System.IO.Path;
using static System.Environment;

4. In Program.cs, create a static OutputFileSystemInfo method, and write statements in it
to do the following:

• Output the path and directory separation characters.
• Output the path of the current directory.
• Output some special paths for system files, temporary files, and documents.

static void OutputFileSystemInfo()
{
 WriteLine("{0,-33} {1}", arg0: "Path.PathSeparator",
 arg1: PathSeparator);
 WriteLine("{0,-33} {1}", arg0: "Path.DirectorySeparatorChar",
 arg1: DirectorySeparatorChar);
 WriteLine("{0,-33} {1}", arg0: "Directory.GetCurrentDirectory()",
 arg1: GetCurrentDirectory());
 WriteLine("{0,-33} {1}", arg0: "Environment.CurrentDirectory",
 arg1: CurrentDirectory);
 WriteLine("{0,-33} {1}", arg0: "Environment.SystemDirectory",
 arg1: SystemDirectory);
 WriteLine("{0,-33} {1}", arg0: "Path.GetTempPath()",
 arg1: GetTempPath());

 WriteLine("GetFolderPath(SpecialFolder");
 WriteLine("{0,-33} {1}", arg0: " .System)",
 arg1: GetFolderPath(SpecialFolder.System));
 WriteLine("{0,-33} {1}", arg0: " .ApplicationData)",
 arg1: GetFolderPath(SpecialFolder.ApplicationData));
 WriteLine("{0,-33} {1}", arg0: " .MyDocuments)",
 arg1: GetFolderPath(SpecialFolder.MyDocuments));
 WriteLine("{0,-33} {1}", arg0: " .Personal)",
 arg1: GetFolderPath(SpecialFolder.Personal));
}

Chapter 09

[371]

5. In Program.cs, above the function, call the OutputFileSystemInfo method, as shown in
the following code:

OutputFileSystemInfo();

6. Run the code and view the result, as shown in Figure 9.1:

Figure 9.1: Running your application to show filesystem information on Windows

Managing drives
To manage drives, use the DriveInfo type, which has a static method that returns information
about all the drives connected to your computer. Each drive has a drive type.

Let's explore drives:

1. Create a WorkWithDrives method, and write statements to get all the drives and output
their name, type, size, available free space, and format, but only if the drive is ready, as
shown in the following code:

static void WorkWithDrives()
{

The Environment type has many other useful members that we
did not use in this code, including the GetEnvironmentVariables
method and the OSVersion and ProcessorCount properties.

When running the console app using dotnet run with Visual Studio Code,
the CurrentDirectory will be the project folder, not a folder inside bin.

Good Practice: Windows uses a backslash \ for the directory separator
character. macOS and Linux use a forward slash / for the directory separator
character. Do not assume what character is used in your code when combining
paths.

Working with Files, Streams, and Serialization

[372]

 WriteLine("{0,-30} | {1,-10} | {2,-7} | {3,18} | {4,18}",
 "NAME", "TYPE", "FORMAT", "SIZE (BYTES)", "FREE SPACE");

 foreach (DriveInfo drive in DriveInfo.GetDrives())
 {
 if (drive.IsReady)
 {
 WriteLine(
 "{0,-30} | {1,-10} | {2,-7} | {3,18:N0} | {4,18:N0}",
 drive.Name, drive.DriveType, drive.DriveFormat,
 drive.TotalSize, drive.AvailableFreeSpace);
 }
 else
 {
 WriteLine("{0,-30} | {1,-10}", drive.Name, drive.DriveType);
 }
 }
}

2. In Program.cs, comment out the previous method call and add a call to WorkWithDrives,
as shown highlighted in the following code:

// OutputFileSystemInfo();
WorkWithDrives();

3. Run the code and view the result, as shown in Figure 9.2:

Figure 9.2: Showing drive information on Windows

Managing directories
To manage directories, use the Directory, Path, and Environment static classes. These types
include many members for working with the filesystem.

Good Practice: Check that a drive is ready before reading properties
such as TotalSize or you will see an exception thrown with
removable drives.

Chapter 09

[373]

When constructing custom paths, you must be careful to write your code so that it makes no
assumptions about the platform, for example, what to use for the directory separator character:

1. Create a WorkWithDirectories method, and write statements to do the following:
• Define a custom path under the user's home directory by creating an array of

strings for the directory names, and then properly combining them with the
Path type's Combine method.

• Check for the existence of the custom directory path using the Exists method of
the Directory class.

• Create and then delete the directory, including files and subdirectories within it,
using the CreateDirectory and Delete methods of the Directory class:

static void WorkWithDirectories()
{
 // define a directory path for a new folder
 // starting in the user's folder
 string newFolder = Combine(
 GetFolderPath(SpecialFolder.Personal),
 "Code", "Chapter09", "NewFolder");

 WriteLine($"Working with: {newFolder}");

 // check if it exists
 WriteLine($"Does it exist? {Exists(newFolder)}");

 // create directory
 WriteLine("Creating it...");
 CreateDirectory(newFolder);
 WriteLine($"Does it exist? {Exists(newFolder)}");
 Write("Confirm the directory exists, and then press ENTER: ");
 ReadLine();

 // delete directory
 WriteLine("Deleting it...");
 Delete(newFolder, recursive: true);
 WriteLine($"Does it exist? {Exists(newFolder)}");
}

2. In Program.cs, comment out the previous method call, and add a call to
WorkWithDirectories.

3. Run the code and view the result, and use your favorite file management tool to
confirm that the directory has been created before pressing Enter to delete it, as shown
in the following output:

Working with: /Users/markjprice/Code/Chapter09/NewFolder Does it exist?
False

Working with Files, Streams, and Serialization

[374]

Creating it...
Does it exist? True
Confirm the directory exists, and then press ENTER:
Deleting it...
Does it exist? False

Managing files
When working with files, you could statically import the file type, just as we did for the
directory type, but, for the next example, we will not, because it has some of the same methods
as the directory type and they would conflict. The file type has a short enough name not to
matter in this case. The steps are as follows:

1. Create a WorkWithFiles method, and write statements to do the following:
1. Check for the existence of a file.
2. Create a text file.
3. Write a line of text to the file.
4. Close the file to release system resources and file locks (this would normally be

done inside a try-finally statement block to ensure that the file is closed even
if an exception occurs when writing to it).

5. Copy the file to a backup.
6. Delete the original file.
7. Read the backup file's contents and then close it:

static void WorkWithFiles()
{
 // define a directory path to output files
 // starting in the user's folder
 string dir = Combine(
 GetFolderPath(SpecialFolder.Personal),
 "Code", "Chapter09", "OutputFiles");

 CreateDirectory(dir);

 // define file paths
 string textFile = Combine(dir, "Dummy.txt");
 string backupFile = Combine(dir, "Dummy.bak");
 WriteLine($"Working with: {textFile}");

 // check if a file exists
 WriteLine($"Does it exist? {File.Exists(textFile)}");

 // create a new text file and write a line to it
 StreamWriter textWriter = File.CreateText(textFile);

Chapter 09

[375]

 textWriter.WriteLine("Hello, C#!");
 textWriter.Close(); // close file and release resources
 WriteLine($"Does it exist? {File.Exists(textFile)}");

 // copy the file, and overwrite if it already exists
 File.Copy(sourceFileName: textFile,
 destFileName: backupFile, overwrite: true);
 WriteLine(
 $"Does {backupFile} exist? {File.Exists(backupFile)}");
 Write("Confirm the files exist, and then press ENTER: ");
 ReadLine();

 // delete file
 File.Delete(textFile);
 WriteLine($"Does it exist? {File.Exists(textFile)}");

 // read from the text file backup
 WriteLine($"Reading contents of {backupFile}:");
 StreamReader textReader = File.OpenText(backupFile);
 WriteLine(textReader.ReadToEnd());
 textReader.Close();
}

2. In Program.cs, comment out the previous method call, and add a call to WorkWithFiles.
3. Run the code and view the result, as shown in the following output:

Working with: /Users/markjprice/Code/Chapter09/OutputFiles/Dummy.txt
Does it exist? False
Does it exist? True
Does /Users/markjprice/Code/Chapter09/OutputFiles/Dummy.bak exist? True
Confirm the files exist, and then press ENTER:
Does it exist? False
Reading contents of /Users/markjprice/Code/Chapter09/OutputFiles/Dummy.
bak:
Hello, C#!

Managing paths
Sometimes, you need to work with parts of a path; for example, you might want to extract just
the folder name, the filename, or the extension. Sometimes, you need to generate temporary
folders and filenames. You can do this with static methods of the Path class:

1. Add the following statements to the end of the WorkWithFiles method:
// Managing paths
WriteLine($"Folder Name: {GetDirectoryName(textFile)}");
WriteLine($"File Name: {GetFileName(textFile)}");

Working with Files, Streams, and Serialization

[376]

WriteLine("File Name without Extension: {0}",
 GetFileNameWithoutExtension(textFile));
WriteLine($"File Extension: {GetExtension(textFile)}");
WriteLine($"Random File Name: {GetRandomFileName()}");
WriteLine($"Temporary File Name: {GetTempFileName()}");

2. Run the code and view the result, as shown in the following output:

Folder Name: /Users/markjprice/Code/Chapter09/OutputFiles
File Name: Dummy.txt
File Name without Extension: Dummy
File Extension: .txt
Random File Name: u45w1zki.co3
Temporary File Name:
/var/folders/tz/xx0y_wld5sx0nv0fjtq4tnpc0000gn/T/tmpyqrepP.tmp

GetTempFileName creates a zero-byte file and returns its name, ready for you to use.
GetRandomFileName just returns a filename; it doesn't create the file.

Getting file information
To get more information about a file or directory, for example, its size or when it was last
accessed, you can create an instance of the FileInfo or DirectoryInfo class.

FileInfo and DirectoryInfo both inherit from FileSystemInfo, so they both have members
such as LastAccessTime and Delete, as well as extra members specific to themselves, as shown
in the following table:

Class Members
FileSystemInfo Fields: FullPath, OriginalPath

Properties: Attributes, CreationTime, CreationTimeUtc, Exists,
Extension, FullName, LastAccessTime, LastAccessTimeUtc, LastWriteTime,
LastWriteTimeUtc, Name

Methods: Delete, GetObjectData, Refresh
DirectoryInfo Properties: Parent, Root

Methods: Create, CreateSubdirectory, EnumerateDirectories,
EnumerateFiles, EnumerateFileSystemInfos, GetAccessControl,
GetDirectories, GetFiles, GetFileSystemInfos, MoveTo,
SetAccessControl

FileInfo Properties: Directory, DirectoryName, IsReadOnly, Length

Methods: AppendText, CopyTo, Create, CreateText, Decrypt, Encrypt,
GetAccessControl, MoveTo, Open, OpenRead, OpenText, OpenWrite, Replace,
SetAccessControl

Chapter 09

[377]

Let's write some code that uses a FileInfo instance for efficiently performing multiple actions
on a file:

1. Add statements to the end of the WorkWithFiles method to create an instance of
FileInfo for the backup file and write information about it to the console, as shown in
the following code:

FileInfo info = new(backupFile);
WriteLine($"{backupFile}:");
WriteLine($"Contains {info.Length} bytes");
WriteLine($"Last accessed {info.LastAccessTime}");
WriteLine($"Has readonly set to {info.IsReadOnly}");

2. Run the code and view the result, as shown in the following output:

/Users/markjprice/Code/Chapter09/OutputFiles/Dummy.bak:
Contains 11 bytes
Last accessed 26/10/2021 09:08:26
Has readonly set to False

The number of bytes might be different on your operating system because operating systems
can use different line endings.

Controlling how you work with files
When working with files, you often need to control how they are opened. The File.Open
method has overloads to specify additional options using enum values.

The enum types are as follows:

• FileMode: This controls what you want to do with the file, like CreateNew, OpenOrCreate,
or Truncate.

• FileAccess: This controls what level of access you need, like ReadWrite.
• FileShare: This controls locks on the file to allow other processes the specified level of

access, like Read.

You might want to open a file and read from it, and allow other processes to read it too, as
shown in the following code:

FileStream file = File.Open(pathToFile,
 FileMode.Open, FileAccess.Read, FileShare.Read);

There is also an enum for attributes of a file as follows:

• FileAttributes: This is to check a FileSystemInfo-derived types' Attributes property
for values like Archive and Encrypted.

Working with Files, Streams, and Serialization

[378]

You could check a file or directory's attributes, as shown in the following code:

FileInfo info = new(backupFile);
WriteLine("Is the backup file compressed? {0}",
 info.Attributes.HasFlag(FileAttributes.Compressed));

Reading and writing with streams
A stream is a sequence of bytes that can be read from and written to. Although files can be
processed rather like arrays, with random access provided by knowing the position of a byte
within the file, it can be useful to process files as a stream in which the bytes can be accessed in
sequential order.

Streams can also be used to process terminal input and output and networking resources such
as sockets and ports that do not provide random access and cannot seek (that is, move) to a
position. You can write code to process some arbitrary bytes without knowing or caring where
it comes from. Your code simply reads or writes to a stream, and another piece of code handles
where the bytes are actually stored.

Understanding abstract and concrete streams
There is an abstract class named Stream that represents any type of stream. Remember that an
abstract class cannot be instantiated using new; they can only be inherited.

There are many concrete classes that inherit from this base class, including FileStream,
MemoryStream, BufferedStream, GZipStream, and SslStream, so they all work the same way. All
streams implement IDisposable, so they have a Dispose method to release unmanaged resources.

Some of the common members of the Stream class are described in the following table:

Member Description
CanRead, CanWrite These properties determine if you can read from and write to the stream.
Length, Position These properties determine the total number of bytes and the current

position within the stream. These properties may throw an exception for
some types of streams.

Dispose This method closes the stream and releases its resources.
Flush If the stream has a buffer, then this method writes the bytes in the buffer to

the stream and the buffer is cleared.
CanSeek This property determines if the Seek method can be used.
Seek This method moves the current position to the one specified in its parameter.
Read, ReadAsync These methods read a specified number of bytes from the stream into a byte

array and advance the position.
ReadByte This method reads the next byte from the stream and advances the position.
Write, WriteAsync These methods write the contents of a byte array into the stream.
WriteByte This method writes a byte to the stream.

Chapter 09

[379]

Understanding storage streams
Some storage streams that represent a location where the bytes will be stored are described in
the following table:

Namespace Class Description
System.IO FileStream Bytes stored in the filesystem.
System.IO MemoryStream Bytes stored in memory in the current process.
System.Net.Sockets NetworkStream Bytes stored at a network location.

FileStream has been re-written in .NET 6 to have much higher performance and reliability on
Windows.

Understanding function streams
Some function streams that cannot exist on their own, but can only be "plugged onto" other
streams to add functionality, are described in the following table:

Namespace Class Description
System.Security.Cryptography CryptoStream This encrypts and decrypts the

stream.
System.IO.Compression GZipStream, DeflateStream These compress and

decompress the stream.
System.Net.Security AuthenticatedStream This sends credentials across

the stream.

Understanding stream helpers
Although there will be occasions where you need to work with streams at a low level, most
often, you can plug helper classes into the chain to make things easier. All the helper types
for streams implement IDisposable, so they have a Dispose method to release unmanaged
resources.

Some helper classes to handle common scenarios are described in the following table:

Namespace Class Description
System.IO StreamReader This reads from the underlying stream as plain text.
System.IO StreamWriter This writes to the underlying stream as plain text.
System.IO BinaryReader This reads from streams as .NET types. For example, the

ReadDecimal method reads the next 16 bytes from the
underlying stream as a decimal value and the ReadInt32
method reads the next 4 bytes as an int value.

System.IO BinaryWriter This writes to streams as .NET types. For example, the
Write method with a decimal parameter writes 16 bytes to
the underlying stream and the Write method with an int
parameter writes 4 bytes.

Working with Files, Streams, and Serialization

[380]

System.Xml XmlReader This reads from the underlying stream using XML format.
System.Xml XmlWriter This writes to the underlying stream using XML format.

Writing to text streams
Let's type some code to write text to a stream:

1. Use your preferred code editor to add a new console app named WorkingWithStreams to
the Chapter09 solution/workspace:

1. In Visual Studio, set the startup project for the solution to the current selection.
2. In Visual Studio Code, select WorkingWithStreams as the active OmniSharp

project.

2. In the WorkingWithStreams project, in Program.cs, import the System.Xml namespace
and statically import the System.Console, System.Environment, and System.IO.Path
types.

3. At the bottom of Program.cs, define a static class named Viper with a static array of
string values named Callsigns, as shown in the following code:

static class Viper
{
 // define an array of Viper pilot call signs
 public static string[] Callsigns = new[]
 {
 "Husker", "Starbuck", "Apollo", "Boomer",
 "Bulldog", "Athena", "Helo", "Racetrack"
 };
}

4. Above the Viper class, define a WorkWithText method that enumerates the Viper call
signs, writing each one on its own line in a single text file, as shown in the following
code:

static void WorkWithText()
{
 // define a file to write to
 string textFile = Combine(CurrentDirectory, "streams.txt");

 // create a text file and return a helper writer
 StreamWriter text = File.CreateText(textFile);

 // enumerate the strings, writing each one
 // to the stream on a separate line
 foreach (string item in Viper.Callsigns)
 {
 text.WriteLine(item);

Chapter 09

[381]

 }
 text.Close(); // release resources

 // output the contents of the file
 WriteLine("{0} contains {1:N0} bytes.",
 arg0: textFile,
 arg1: new FileInfo(textFile).Length);

 WriteLine(File.ReadAllText(textFile));
}

5. Below the namespace imports, call the WorkWithText method.
6. Run the code and view the result, as shown in the following output:

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.txt contains
60 bytes.
Husker
Starbuck
Apollo
Boomer
Bulldog
Athena
Helo
Racetrack

7. Open the file that was created and check that it contains the list of call signs.

Writing to XML streams
There are two ways to write an XML element, as follows:

• WriteStartElement and WriteEndElement: Use this pair when an element might have
child elements.

• WriteElementString: Use this when an element does not have children.

Now, let's try storing the Viper pilot call signs array of string values in an XML file:

1. Create a WorkWithXml method that enumerates the call signs, writing each one as an
element in a single XML file, as shown in the following code:

static void WorkWithXml()
{
 // define a file to write to
 string xmlFile = Combine(CurrentDirectory, "streams.xml");

 // create a file stream
 FileStream xmlFileStream = File.Create(xmlFile);

Working with Files, Streams, and Serialization

[382]

 // wrap the file stream in an XML writer helper
 // and automatically indent nested elements
 XmlWriter xml = XmlWriter.Create(xmlFileStream,
 new XmlWriterSettings { Indent = true });

 // write the XML declaration
 xml.WriteStartDocument();

 // write a root element
 xml.WriteStartElement("callsigns");

 // enumerate the strings writing each one to the stream
 foreach (string item in Viper.Callsigns)
 {
 xml.WriteElementString("callsign", item);
 }

 // write the close root element
 xml.WriteEndElement();

 // close helper and stream
 xml.Close();
 xmlFileStream.Close();

 // output all the contents of the file
 WriteLine("{0} contains {1:N0} bytes.",
 arg0: xmlFile,
 arg1: new FileInfo(xmlFile).Length);

 WriteLine(File.ReadAllText(xmlFile));
}

2. In Program.cs, comment out the previous method call, and add a call to the WorkWithXml
method.

3. Run the code and view the result, as shown in the following output:

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.xml contains
310 bytes.
<?xml version="1.0" encoding="utf-8"?>
<callsigns>
 <callsign>Husker</callsign>
 <callsign>Starbuck</callsign>
 <callsign>Apollo</callsign>
 <callsign>Boomer</callsign>
 <callsign>Bulldog</callsign>

Chapter 09

[383]

 <callsign>Athena</callsign>
 <callsign>Helo</callsign>
 <callsign>Racetrack</callsign>
</callsigns>

Disposing of file resources
When you open a file to read or write to it, you are using resources outside of .NET. These are
called unmanaged resources and must be disposed of when you are done working with them.
To deterministically control when they are disposed of, we can call the Dispose method inside
of a finally block.

Let's improve our previous code that works with XML to properly dispose of its unmanaged
resources:

1. Modify the WorkWithXml method, as shown highlighted in the following code:
static void WorkWithXml()
{
 FileStream? xmlFileStream = null;
 XmlWriter? xml = null;

 try
 {
 // define a file to write to
 string xmlFile = Combine(CurrentDirectory, "streams.xml");

 // create a file stream
 xmlFileStream = File.Create(xmlFile);

 // wrap the file stream in an XML writer helper
 // and automatically indent nested elements
 xml = XmlWriter.Create(xmlFileStream,
 new XmlWriterSettings { Indent = true });

 // write the XML declaration
 xml.WriteStartDocument();

 // write a root element
 xml.WriteStartElement("callsigns");

 // enumerate the strings writing each one to the stream
 foreach (string item in Viper.Callsigns)
 {
 xml.WriteElementString("callsign", item);
 }

Working with Files, Streams, and Serialization

[384]

 // write the close root element
 xml.WriteEndElement();

 // close helper and stream
 xml.Close();
 xmlFileStream.Close();

 // output all the contents of the file
 WriteLine($"{0} contains {1:N0} bytes.",
 arg0: xmlFile,
 arg1: new FileInfo(xmlFile).Length);

 WriteLine(File.ReadAllText(xmlFile));
 }
 catch (Exception ex)
 {
 // if the path doesn't exist the exception will be caught
 WriteLine($"{ex.GetType()} says {ex.Message}");
 }
 finally
 {
 if (xml != null)
 {
 xml.Dispose();
 WriteLine("The XML writer's unmanaged resources have been
disposed.");
 if (xmlFileStream != null)
 {
 xmlFileStream.Dispose();
 WriteLine("The file stream's unmanaged resources have been
disposed.");
 }
 }
 }
}

You could also go back and modify the other methods you previously created but I will
leave that as an optional exercise for you.

2. Run the code and view the result, as shown in the following output:

The XML writer's unmanaged resources have been disposed.
The file stream's unmanaged resources have been disposed.

Chapter 09

[385]

Simplifying disposal by using the using statement
You can simplify the code that needs to check for a null object and then call its Dispose method
by using the using statement. Generally, I would recommend using using rather than manually
calling Dispose unless you need a greater level of control.

Confusingly, there are two uses for the using keyword: importing a namespace and generating
a finally statement that calls Dispose on an object that implements IDisposable.

The compiler changes a using statement block into a try-finally statement without a catch
statement. You can use nested try statements; so, if you do want to catch any exceptions, you
can, as shown in the following code example:

using (FileStream file2 = File.OpenWrite(
 Path.Combine(path, "file2.txt")))
{
 using (StreamWriter writer2 = new StreamWriter(file2))
 {
 try
 {
 writer2.WriteLine("Welcome, .NET!");
 }
 catch(Exception ex)
 {
 WriteLine($"{ex.GetType()} says {ex.Message}");
 }
 } // automatically calls Dispose if the object is not null
} // automatically calls Dispose if the object is not null

You can even simplify the code further by not explicitly specifying the braces and indentation
for the using statements, as shown in the following code:

using FileStream file2 = File.OpenWrite(
 Path.Combine(path, "file2.txt"));

using StreamWriter writer2 = new(file2);

try
{
 writer2.WriteLine("Welcome, .NET!");
}

Good Practice: Before calling the Dispose method, check that the object is not
null.

Working with Files, Streams, and Serialization

[386]

catch(Exception ex)
{
 WriteLine($"{ex.GetType()} says {ex.Message}");
}

Compressing streams
XML is relatively verbose, so it takes up more space in bytes than plain text. Let's see how we
can squeeze the XML using a common compression algorithm known as GZIP:

1. At the top of Program.cs, import the namespace for working with compression, as
shown in the following code:

using System.IO.Compression; // BrotliStream, GZipStream, CompressionMode

2. Add a WorkWithCompression method, which uses instances of GZipStream to create a
compressed file containing the same XML elements as before and then decompresses it
while reading it and outputting to the console, as shown in the following code:

static void WorkWithCompression()
{
 string fileExt = "gzip";

 // compress the XML output
 string filePath = Combine(
 CurrentDirectory, $"streams.{fileExt}");

 FileStream file = File.Create(filePath);

 Stream compressor = new GZipStream(file, CompressionMode.Compress);

 using (compressor)
 {
 using (XmlWriter xml = XmlWriter.Create(compressor))
 {
 xml.WriteStartDocument();
 xml.WriteStartElement("callsigns");

 foreach (string item in Viper.Callsigns)
 {
 xml.WriteElementString("callsign", item);
 }

 // the normal call to WriteEndElement is not necessary

Chapter 09

[387]

 // because when the XmlWriter disposes, it will
 // automatically end any elements of any depth
 }
 } // also closes the underlying stream

 // output all the contents of the compressed file
 WriteLine("{0} contains {1:N0} bytes.",
 filePath, new FileInfo(filePath).Length);

 WriteLine($"The compressed contents:");
 WriteLine(File.ReadAllText(filePath));

 // read a compressed file
 WriteLine("Reading the compressed XML file:");
 file = File.Open(filePath, FileMode.Open);

 Stream decompressor = new GZipStream(file,
 CompressionMode.Decompress);

 using (decompressor)
 {
 using (XmlReader reader = XmlReader.Create(decompressor))
 {
 while (reader.Read()) // read the next XML node
 {
 // check if we are on an element node named callsign
 if ((reader.NodeType == XmlNodeType.Element)
 && (reader.Name == "callsign"))
 {
 reader.Read(); // move to the text inside element
 WriteLine($"{reader.Value}"); // read its value
 }
 }
 }
 }
}

3. In Program.cs, leave the call to WorkWithXml, and add a call to WorkWithCompression, as
shown highlighted in the following code:

// WorkWithText();
WorkWithXml();
WorkWithCompression();

Working with Files, Streams, and Serialization

[388]

4. Run the code and compare the sizes of the XML file and the compressed XML file. It is
less than half the size of the same XML without compression, as shown in the following
edited output:

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.xml contains
310 bytes.
/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.gzip contains
150 bytes.

Compressing with the Brotli algorithm
In .NET Core 2.1, Microsoft introduced an implementation of the Brotli compression algorithm.
In performance, Brotli is like the algorithm used in DEFLATE and GZIP, but the output is about
20% denser. The steps are as follows:

1. Modify the WorkWithCompression method to have an optional parameter to indicate
if Brotli should be used and to use Brotli by default, as shown highlighted in the
following code:

static void WorkWithCompression(bool useBrotli = true)
{
 string fileExt = useBrotli ? "brotli" : "gzip";

 // compress the XML output
 string filePath = Combine(
 CurrentDirectory, $"streams.{fileExt}");

 FileStream file = File.Create(filePath);

 Stream compressor;

 if (useBrotli)
 {
 compressor = new BrotliStream(file, CompressionMode.Compress);
 }
 else
 {
 compressor = new GZipStream(file, CompressionMode.Compress);
 }

 using (compressor)
 {
 using (XmlWriter xml = XmlWriter.Create(compressor))
 {
 xml.WriteStartDocument();
 xml.WriteStartElement("callsigns");
 foreach (string item in Viper.Callsigns)

Chapter 09

[389]

 {
 xml.WriteElementString("callsign", item);
 }
 }
 } // also closes the underlying stream

 // output all the contents of the compressed file
 WriteLine("{0} contains {1:N0} bytes.",
 filePath, new FileInfo(filePath).Length);

 WriteLine($"The compressed contents:");
 WriteLine(File.ReadAllText(filePath));

 // read a compressed file
 WriteLine("Reading the compressed XML file:");
 file = File.Open(filePath, FileMode.Open);

 Stream decompressor;
 if (useBrotli)
 {
 decompressor = new BrotliStream(
 file, CompressionMode.Decompress);
 }
 else
 {
 decompressor = new GZipStream(
 file, CompressionMode.Decompress);
 }

 using (decompressor)
 {
 using (XmlReader reader = XmlReader.Create(decompressor))
 {
 while (reader.Read())
 {
 // check if we are on an element node named callsign
 if ((reader.NodeType == XmlNodeType.Element)
 && (reader.Name == "callsign"))
 {
 reader.Read(); // move to the text inside element
 WriteLine($"{reader.Value}"); // read its value
 }
 }
 }
 }
}

Working with Files, Streams, and Serialization

[390]

2. Near the top of Program.cs, call WorkWithCompression twice, once with the default using
Brotli and once with GZIP, as shown in the following code:

WorkWithCompression();
WorkWithCompression(useBrotli: false);

3. Run the code and compare the sizes of the two compressed XML files. Brotli is more
than 21% denser, as shown in the following edited output:

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.brotli
contains 118 bytes.
/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.gzip contains
150 bytes.

Encoding and decoding text
Text characters can be represented in different ways. For example, the alphabet can be encoded
using Morse code into a series of dots and dashes for transmission over a telegraph line.

In a similar way, text inside a computer is stored as bits (ones and zeros) representing a code
point within a code space. Most code points represent a single character, but they can also have
other meanings like formatting.

For example, ASCII has a code space with 128 code points. .NET uses a standard called
Unicode to encode text internally. Unicode has more than one million code points.

Sometimes, you will need to move text outside .NET for use by systems that do not use
Unicode or use a variation of Unicode, so it is important to learn how to convert between
encodings.

The following table lists some alternative text encodings commonly used by computers:

Encoding Description
ASCII This encodes a limited range of characters using the lower seven bits of a byte.
UTF-8 This represents each Unicode code point as a sequence of one to four bytes.
UTF-7 This is designed to be more efficient over 7-bit channels than UTF-8 but it has

security and robustness issues, so UTF-8 is recommended over UTF-7.
UTF-16 This represents each Unicode code point as a sequence of one or two 16-bit

integers.
UTF-32 This represents each Unicode code point as a 32-bit integer and is therefore

a fixed-length encoding unlike the other Unicode encodings, which are all
variable-length encodings.

ANSI/ISO encodings This provides support for a variety of code pages that are used to support a
specific language or group of languages.

Chapter 09

[391]

Encoding strings as byte arrays
Let's explore text encodings:

1. Use your preferred code editor to add a new console app named WorkingWithEncodings
to the Chapter09 solution/workspace.

2. In Visual Studio Code, select WorkingWithEncodings as the active OmniSharp project.
3. In Program.cs, import the System.Text namespace and statically import the Console

class.
4. Add statements to encode a string using an encoding chosen by the user, loop

through each byte, and then decode it back into a string and output it, as shown in the
following code:

WriteLine("Encodings");
WriteLine("[1] ASCII");
WriteLine("[2] UTF-7");
WriteLine("[3] UTF-8");
WriteLine("[4] UTF-16 (Unicode)");
WriteLine("[5] UTF-32");
WriteLine("[any other key] Default");

// choose an encoding
Write("Press a number to choose an encoding: ");
ConsoleKey number = ReadKey(intercept: false).Key;
WriteLine();
WriteLine();

Encoding encoder = number switch
{
 ConsoleKey.D1 => Encoding.ASCII,
 ConsoleKey.D2 => Encoding.UTF7,
 ConsoleKey.D3 => Encoding.UTF8,
 ConsoleKey.D4 => Encoding.Unicode,
 ConsoleKey.D5 => Encoding.UTF32,
 _ => Encoding.Default
};

// define a string to encode
string message = "Café cost: £4.39";

Good Practice: In most cases today, UTF-8 is a good default, which is why it is
literally the default encoding, that is, Encoding.Default.

Working with Files, Streams, and Serialization

[392]

// encode the string into a byte array
byte[] encoded = encoder.GetBytes(message);

// check how many bytes the encoding needed
WriteLine("{0} uses {1:N0} bytes.",
 encoder.GetType().Name, encoded.Length);
WriteLine();

// enumerate each byte
WriteLine($"BYTE HEX CHAR");
foreach (byte b in encoded)
{
 WriteLine($"{b,4} {b.ToString("X"),4} {(char)b,5}");
}

// decode the byte array back into a string and display it
string decoded = encoder.GetString(encoded);
WriteLine(decoded);

5. Run the code and note the warning to avoid using Encoding.UTF7 because it is insecure.
Of course, if you need to generate text using that encoding for compatibility with
another system, it needs to remain an option in .NET.

6. Press 1 to choose ASCII and note that when outputting the bytes, the pound sign (£)
and accented e (é) cannot be represented in ASCII, so it uses a question mark instead.

BYTE HEX CHAR
 67 43 C
 97 61 a
 102 66 f
 63 3F ?
 32 20
 111 6F o
 115 73 s
 116 74 t
 58 3A :
 32 20
 63 3F ?
 52 34 4
 46 2E .
 51 33 3
 57 39 9
Caf? cost: ?4.39

Chapter 09

[393]

7. Rerun the code and press 3 to choose UTF-8 and note that UTF-8 requires two extra
bytes for the two characters that need 2 bytes each (18 bytes instead of 16 bytes total)
but it can encode and decode the é and £ characters.

UTF8EncodingSealed uses 18 bytes.

BYTE HEX CHAR
 67 43 C
 97 61 a
 102 66 f
 195 C3 Ã
 169 A9 ©
 32 20
 111 6F o
 115 73 s
 116 74 t
 58 3A :
 32 20
 194 C2 Â
 163 A3 £
 52 34 4
 46 2E .
 51 33 3
 57 39 9
Café cost: £4.39

8. Rerun the code and press 4 to choose Unicode (UTF-16) and note that UTF-16 requires
two bytes for every character, so 32 bytes in total, and it can encode and decode the
é and £ characters. This encoding is used internally by .NET to store char and string
values.

Encoding and decoding text in files
When using stream helper classes, such as StreamReader and StreamWriter, you can specify the
encoding you want to use. As you write to the helper, the text will automatically be encoded,
and as you read from the helper, the bytes will be automatically decoded.

To specify an encoding, pass the encoding as a second parameter to the helper type's
constructor, as shown in the following code:

StreamReader reader = new(stream, Encoding.UTF8);
StreamWriter writer = new(stream, Encoding.UTF8);

Good Practice: Often, you won't have the choice of which encoding to use,
because you will be generating a file for use by another system. However,
if you do, pick one that uses the least number of bytes, but can store every
character you need.

Working with Files, Streams, and Serialization

[394]

Serializing object graphs
Serialization is the process of converting a live object into a sequence of bytes using a specified
format. Deserialization is the reverse process. You would do this to save the current state of
a live object so that you can recreate it in the future. For example, saving the current state of a
game so that you can continue at the same place tomorrow. Serialized objects are usually stored
in a file or database.

There are dozens of formats you can specify, but the two most common ones are eXtensible
Markup Language (XML) and JavaScript Object Notation (JSON).

.NET has multiple classes that will serialize to and from XML and JSON. We will start by
looking at XmlSerializer and JsonSerializer.

Serializing as XML
Let's start by looking at XML, probably the world's most used serialization format (for now). To
show a typical example, we will define a custom class to store information about a person and
then create an object graph using a list of Person instances with nesting:

1. Use your preferred code editor to add a new console app named
WorkingWithSerialization to the Chapter09 solution/workspace.

2. In Visual Studio Code, select WorkingWithSerialization as the active OmniSharp
project.

3. Add a class named Person with a Salary property that is protected, meaning it is
only accessible to itself and derived classes. To populate the salary, the class has a
constructor with a single parameter to set the initial salary, as shown in the following
code:

namespace Packt.Shared;

public class Person
{
 public Person(decimal initialSalary)
 {
 Salary = initialSalary;
 }

Good Practice: JSON is more compact and is best for web and mobile
applications. XML is more verbose but is better supported in more legacy
systems. Use JSON to minimize the size of serialized object graphs. JSON is
also a good choice when sending object graphs to web applications and mobile
applications because JSON is the native serialization format for JavaScript and
mobile apps often make calls over limited bandwidth, so the number of bytes
is important.

Chapter 09

[395]

 public string? FirstName { get; set; }
 public string? LastName { get; set; }
 public DateTime DateOfBirth { get; set; }
 public HashSet<Person>? Children { get; set; }
 protected decimal Salary { get; set; }
}

4. In Program.cs, import namespaces for working with XML serialization and statically
import the Console, Environment, and Path classes, as shown in the following code:

using System.Xml.Serialization; // XmlSerializer
using Packt.Shared; // Person

using static System.Console;
using static System.Environment;
using static System.IO.Path;

5. Add statements to create an object graph of Person instances, as shown in the following
code:

// create an object graph
List<Person> people = new()
{
 new(30000M)
 {
 FirstName = "Alice",
 LastName = "Smith",
 DateOfBirth = new(1974, 3, 14)
 },
 new(40000M)
 {
 FirstName = "Bob",
 LastName = "Jones",
 DateOfBirth = new(1969, 11, 23)
 },
 new(20000M)
 {
 FirstName = "Charlie",
 LastName = "Cox",
 DateOfBirth = new(1984, 5, 4),
 Children = new()
 {
 new(0M)
 {
 FirstName = "Sally",
 LastName = "Cox",

Working with Files, Streams, and Serialization

[396]

 DateOfBirth = new(2000, 7, 12)
 }
 }
 }
};

// create object that will format a List of Persons as XML
XmlSerializer xs = new(people.GetType());

// create a file to write to
string path = Combine(CurrentDirectory, "people.xml");

using (FileStream stream = File.Create(path))
{
 // serialize the object graph to the stream
 xs.Serialize(stream, people);
}

WriteLine("Written {0:N0} bytes of XML to {1}",
 arg0: new FileInfo(path).Length,
 arg1: path);
WriteLine();

// Display the serialized object graph
WriteLine(File.ReadAllText(path));

6. Run the code, view the result, and note that an exception is thrown, as shown in the
following output:

Unhandled Exception: System.InvalidOperationException: Packt.Shared.Person
cannot be serialized because it does not have a parameterless constructor.

7. In Person, add a statement to define a parameterless constructor, as shown in the
following code:

public Person() { }

The constructor does not need to do anything, but it must exist so that the
XmlSerializer can call it to instantiate new Person instances during the deserialization
process.

8. Rerun the code and view the result, and note that the object graph is serialized as XML
elements like <FirstName>Bob</FirstName> and that the Salary property is not included
because it is not a public property, as shown in the following output:

Written 752 bytes of XML to
/Users/markjprice/Code/Chapter09/WorkingWithSerialization/people.xml
<?xml version="1.0"?>

Chapter 09

[397]

<ArrayOfPerson xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Person>
 <FirstName>Alice</FirstName>
 <LastName>Smith</LastName>
 <DateOfBirth>1974-03-14T00:00:00</DateOfBirth>
 </Person>
 <Person>
 <FirstName>Bob</FirstName>
 <LastName>Jones</LastName>
 <DateOfBirth>1969-11-23T00:00:00</DateOfBirth>
 </Person>
 <Person>
 <FirstName>Charlie</FirstName>
 <LastName>Cox</LastName>
 <DateOfBirth>1984-05-04T00:00:00</DateOfBirth>
 <Children>
 <Person>
 <FirstName>Sally</FirstName>
 <LastName>Cox</LastName>
 <DateOfBirth>2000-07-12T00:00:00</DateOfBirth>
 </Person>
 </Children>
 </Person>
</ArrayOfPerson>

Generating compact XML
We could make the XML more compact using attributes instead of elements for some fields:

1. In Person, import the System.Xml.Serialization namespace so that you can decorate
some properties with the [XmlAttribute] attribute.

2. Decorate the first name, last name, and date of birth properties with the [XmlAttribute]
attribute, and set a short name for each property, as shown highlighted in the following
code:

[XmlAttribute("fname")]
public string FirstName { get; set; }

[XmlAttribute("lname")]
public string LastName { get; set; }

[XmlAttribute("dob")]
public DateTime DateOfBirth { get; set; }

Working with Files, Streams, and Serialization

[398]

3. Run the code and note that the size of the file has been reduced from 752 to 462 bytes, a
space-saving of more than a third, by outputting property values as XML attributes, as
shown in the following output:

Written 462 bytes of XML to /Users/markjprice/Code/Chapter09/
WorkingWithSerialization/people.xml
<?xml version="1.0"?>
<ArrayOfPerson xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Person fname="Alice" lname="Smith" dob="1974-03-14T00:00:00" />
 <Person fname="Bob" lname="Jones" dob="1969-11-23T00:00:00" />
 <Person fname="Charlie" lname="Cox" dob="1984-05-04T00:00:00">
 <Children>
 <Person fname="Sally" lname="Cox" dob="2000-07-12T00:00:00" />
 </Children>
 </Person>
</ArrayOfPerson>

Deserializing XML files
Now let's try deserializing the XML file back into live objects in memory:

1. Add statements to open the XML file and then deserialize it, as shown in the following
code:

using (FileStream xmlLoad = File.Open(path, FileMode.Open))
{
 // deserialize and cast the object graph into a List of Person
 List<Person>? loadedPeople =
 xs.Deserialize(xmlLoad) as List<Person>;

 if (loadedPeople is not null)
 {
 foreach (Person p in loadedPeople)
 {
 WriteLine("{0} has {1} children.",
 p.LastName, p.Children?.Count ?? 0);
 }
 }
}

2. Run the code and note that the people are loaded successfully from the XML file and
then enumerated, as shown in the following output:

Smith has 0 children.
Jones has 0 children.
Cox has 1 children.

Chapter 09

[399]

There are many other attributes that can be used to control the XML generated.

If you don't use any annotations, XmlSerializer performs a case-insensitive match using the
property name when deserializing.

Serializing with JSON
One of the most popular .NET libraries for working with the JSON serialization format is
Newtonsoft.Json, known as Json.NET. It is mature and powerful. Let's see it in action:

1. In the WorkingWithSerialization project, add a package reference for the latest version
of Newtonsoft.Json, as shown in the following markup:

<ItemGroup>
 <PackageReference Include="Newtonsoft.Json"
 Version="13.0.1" />
</ItemGroup>

2. Build the WorkingWithSerialization project to restore packages.
3. In Program.cs, add statements to create a text file and then serialize the people into the

file as JSON, as shown in the following code:
// create a file to write to
string jsonPath = Combine(CurrentDirectory, "people.json");

using (StreamWriter jsonStream = File.CreateText(jsonPath))
{
 // create an object that will format as JSON
 Newtonsoft.Json.JsonSerializer jss = new();

 // serialize the object graph into a string
 jss.Serialize(jsonStream, people);
}
WriteLine();
WriteLine("Written {0:N0} bytes of JSON to: {1}",
 arg0: new FileInfo(jsonPath).Length,
 arg1: jsonPath);

// Display the serialized object graph
WriteLine(File.ReadAllText(jsonPath));

Good Practice: When using XmlSerializer, remember that only the public
fields and properties are included, and the type must have a parameterless
constructor. You can customize the output with attributes.

Working with Files, Streams, and Serialization

[400]

4. Run the code and note that JSON requires less than half the number of bytes compared
to XML with elements. It's even smaller than the XML file, which uses attributes, as
shown in the following output:

Written 366 bytes of JSON to: /Users/markjprice/Code/Chapter09/
WorkingWithSerialization/people.json [{"FirstName":"Alice","LastName":"Smi
th","DateOfBirth":"1974-03-
14T00:00:00","Children":null},{"FirstName":"Bob","LastName":"Jones","Date
OfBirth":"1969-11-23T00:00:00","Children":null},{"FirstName":"Charlie","L
astName":"Cox","DateOfBirth":"1984-05-04T00:00:00","Children":[{"FirstNam
e":"Sally","LastName":"Cox","DateOfBirth":"2000-07-12T00:00:00","Children
":null}]}]

High-performance JSON processing
.NET Core 3.0 introduced a new namespace for working with JSON, System.Text.Json, which
is optimized for performance by leveraging APIs like Span<T>.

Also, older libraries like Json.NET are implemented by reading UTF-16. It would be more
performant to read and write JSON documents using UTF-8 because most network protocols,
including HTTP, use UTF-8 and you can avoid transcoding UTF-8 to and from Json.NET's
Unicode string values.

With the new API, Microsoft achieved between 1.3x and 5x improvement, depending on the
scenario.

The original author of Json.NET, James Newton-King, joined Microsoft and has been working
with them to develop their new JSON types. As he says in a comment discussing the new JSON
APIs, "Json.NET isn't going away," as shown in Figure 9.3:

Figure 9.3: A comment by the original author of Json.NET

Let's see how to use the new JSON APIs to deserialize a JSON file:

1. In the WorkingWithSerialization project, in Program.cs, import the new JSON class for
performing serialization using an alias to avoid conflicting names with the Json.NET
one we used before, as shown in the following code:

using NewJson = System.Text.Json.JsonSerializer;

Chapter 09

[401]

2. Add statements to open the JSON file, deserialize it, and output the names and counts
of the children of the people, as shown in the following code:

using (FileStream jsonLoad = File.Open(jsonPath, FileMode.Open))
{
 // deserialize object graph into a List of Person
 List<Person>? loadedPeople =
 await NewJson.DeserializeAsync(utf8Json: jsonLoad,
 returnType: typeof(List<Person>)) as List<Person>;

 if (loadedPeople is not null)
 {
 foreach (Person p in loadedPeople)
 {
 WriteLine("{0} has {1} children.",
 p.LastName, p.Children?.Count ?? 0);
 }
 }
}

3. Run the code and view the result, as shown in the following output:

Smith has 0 children.
Jones has 0 children.
Cox has 1 children.

Controlling JSON processing
There are many options for taking control of how JSON is processed, as shown in the following
list:

• Including and excluding fields.
• Setting a casing policy.
• Selecting a case-sensitivity policy.
• Choosing between compact and prettified whitespace.

Let's see some in action:

1. Use your preferred code editor to add a new console app named WorkingWithJson to
the Chapter09 solution/workspace.

Good Practice: Choose Json.NET for developer productivity and a large
feature set or System.Text.Json for performance.

Working with Files, Streams, and Serialization

[402]

2. In Visual Studio Code, select WorkingWithJson as the active OmniSharp project.
3. In the WorkingWithJson project, in Program.cs, delete the existing code, import the

two main namespaces for working with JSON, and then statically import the System.
Console, System.Environment, and System.IO.Path types, as shown in the following
code:

using System.Text.Json; // JsonSerializer
using System.Text.Json.Serialization; // [JsonInclude]

using static System.Console;
using static System.Environment;
using static System.IO.Path;

4. At the bottom of Program.cs, define a class named Book, as shown in the following code:
public class Book
{
 // constructor to set non-nullable property
 public Book(string title)
 {
 Title = title;
 }

 // properties

 public string Title { get; set; }
 public string? Author { get; set; }

 // fields

 [JsonInclude] // include this field
 public DateOnly PublishDate;

 [JsonInclude] // include this field
 public DateTimeOffset Created;

 public ushort Pages;
}

5. Above the Book class, add statements to create an instance of the Book class and serialize
it to JSON, as shown in the following code:

Book csharp10 = new(title:
 "C# 10 and .NET 6 - Modern Cross-platform Development")
{
 Author = "Mark J Price",
 PublishDate = new(year: 2021, month: 11, day: 9),
 Pages = 823,

Chapter 09

[403]

 Created = DateTimeOffset.UtcNow,
};

JsonSerializerOptions options = new()
{
 IncludeFields = true, // includes all fields
 PropertyNameCaseInsensitive = true,
 WriteIndented = true,
 PropertyNamingPolicy = JsonNamingPolicy.CamelCase,
};

string filePath = Combine(CurrentDirectory, "book.json");

using (Stream fileStream = File.Create(filePath))
{
 JsonSerializer.Serialize<Book>(
 utf8Json: fileStream, value: csharp10, options);
}

WriteLine("Written {0:N0} bytes of JSON to {1}",
 arg0: new FileInfo(filePath).Length,
 arg1: filePath);

WriteLine();

// Display the serialized object graph
WriteLine(File.ReadAllText(filePath));

6. Run the code and view the result, as shown in the following output:
Written 315 bytes of JSON to C:\Code\Chapter09\WorkingWithJson\bin\Debug\
net6.0\book.json

{
 "title": "C# 10 and .NET 6 - Modern Cross-platform Development",
 "author": "Mark J Price",
 "publishDate": {
 "year": 2021,
 "month": 11,
 "day": 9,
 "dayOfWeek": 2,
 "dayOfYear": 313,
 "dayNumber": 738102
 },
 "created": "2021-08-20T08:07:02.3191648+00:00",
 "pages": 823
}

Working with Files, Streams, and Serialization

[404]

Note the following:
• The JSON file is 315 bytes.
• The member names use camelCasing, for example, publishDate. This is best for

subsequent processing in a browser with JavaScript.
• All fields are included due to the options set, including pages.
• JSON is prettified for easier human legibility.
• DateTimeOffset values are stored as a single standard string format.
• DateOnly values are stored as an object with sub-properties for date parts like

year and month.

7. In Program.cs, when setting the JsonSerializerOptions, comment out the setting of
casing policy, write indented, and include fields.

8. Run the code and view the result, as shown in the following output:

Written 230 bytes of JSON to C:\Code\Chapter09\WorkingWithJson\bin\Debug\
net6.0\book.json

{"Title":"C# 10 and .NET 6 - Modern Cross-platform
Development","Author":"Mark J Price","PublishDate":{"Year":2021,"Month
":11,"Day":9,"DayOfWeek":2,"DayOfYear":313,"DayNumber":738102},"Creat
ed":"2021-08-20T08:12:31.6852484+00:00"}

Note the following:
• The JSON file is 230 bytes, a more than 25% reduction.
• The member names use normal casing, for example, PublishDate.
• The Pages field is missing. The other fields are included due to the

[JsonInclude] attribute on PublishDate and Created field.
• JSON is compact with minimal whitespace to save bandwidth for transmission

or storage.

New JSON extension methods for working with
HTTP responses
In .NET 5, Microsoft added refinements to the types in the System.Text.Json namespace like
extension methods for HttpResponse, which you will see in Chapter 16, Building and Consuming
Web Services.

Migrating from Newtonsoft to new JSON
If you have existing code that uses the Newtonsoft Json.NET library and you want to migrate
to the new System.Text.Json namespace, then Microsoft has specific documentation for that,
which you will find at the following link:

Chapter 09

[405]

https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-text-json-
migrate-from-newtonsoft-how-to

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore this chapter's topics with more in-depth research.

Exercise 9.1 – Test your knowledge
Answer the following questions:

1. What is the difference between using the File class and the FileInfo class?
2. What is the difference between the ReadByte method and the Read method of a stream?
3. When would you use the StringReader, TextReader, and StreamReader classes?
4. What does the DeflateStream type do?
5. How many bytes per character does UTF-8 encoding use?
6. What is an object graph?
7. What is the best serialization format to choose for minimizing space requirements?
8. What is the best serialization format to choose for cross-platform compatibility?
9. Why is it bad to use a string value like "\Code\Chapter01" to represent a path, and

what should you do instead?
10. Where can you find information about NuGet packages and their dependencies?

Exercise 9.2 – Practice serializing as XML
In the Chapter09 solution/workspace, create a console application named Exercise02 that
creates a list of shapes, uses serialization to save it to the filesystem using XML, and then
deserializes it back:

// create a list of Shapes to serialize
List<Shape> listOfShapes = new()
{
 new Circle { Colour = "Red", Radius = 2.5 },
 new Rectangle { Colour = "Blue", Height = 20.0, Width = 10.0 },
 new Circle { Colour = "Green", Radius = 8.0 },
 new Circle { Colour = "Purple", Radius = 12.3 },
 new Rectangle { Colour = "Blue", Height = 45.0, Width = 18.0 }
};

https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-text-json-migrate-from-newtonsoft-how-to
https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-text-json-migrate-from-newtonsoft-how-to

Working with Files, Streams, and Serialization

[406]

Shapes should have a read-only property named Area so that when you deserialize, you can
output a list of shapes, including their areas, as shown here:

List<Shape> loadedShapesXml =
 serializerXml.Deserialize(fileXml) as List<Shape>;

foreach (Shape item in loadedShapesXml)
{
 WriteLine("{0} is {1} and has an area of {2:N2}",
 item.GetType().Name, item.Colour, item.Area);
}

This is what your output should look like when you run your console application:

Loading shapes from XML:
Circle is Red and has an area of 19.63
Rectangle is Blue and has an area of 200.00
Circle is Green and has an area of 201.06
Circle is Purple and has an area of 475.29
Rectangle is Blue and has an area of 810.00

Exercise 9.3 – Explore topics
Use the links on the following page to learn more detail about the topics covered in this
chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-9---
working-with-files-streams-and-serialization

Summary
In this chapter, you learned how to read from and write to text files and XML files, how to
compress and decompress files, how to encode and decode text, and how to serialize an object
into JSON and XML (and deserialize it back again).

In the next chapter, you will learn how to work with databases using Entity Framework Core.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-9---working-with-files-streams-and-serialization
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-9---working-with-files-streams-and-serialization

[407]

10
Working with Data Using

Entity Framework Core
This chapter is about reading and writing to data stores, such as Microsoft SQL Server, SQLite,
and Azure Cosmos DB, by using the object-to-data store mapping technology named Entity
Framework Core (EF Core).

This chapter will cover the following topics:

• Understanding modern databases
• Setting up EF Core
• Defining EF Core models
• Querying EF Core models
• Loading patterns with EF Core
• Manipulating data with EF Core
• Working with transactions
• Code First EF Core models

Understanding modern databases
Two of the most common places to store data are in a Relational Database Management
System (RDBMS) such as Microsoft SQL Server, PostgreSQL, MySQL, and SQLite, or in
a NoSQL database such as Microsoft Azure Cosmos DB, Redis, MongoDB, and Apache
Cassandra.

Working with Data Using Entity Framework Core

[408]

Understanding legacy Entity Framework
Entity Framework (EF) was first released as part of .NET Framework 3.5 with Service Pack 1
back in late 2008. Since then, Entity Framework has evolved, as Microsoft has observed how
programmers use an object-relational mapping (ORM) tool in the real world.

ORMs use a mapping definition to associate columns in tables to properties in classes. Then,
a programmer can interact with objects of different types in a way that they are familiar with,
instead of having to deal with knowing how to store the values in a relational table or another
structure provided by a NoSQL data store.

The version of EF included with .NET Framework is Entity Framework 6 (EF6). It is mature,
stable, and supports an EDMX (XML file) way of defining the model as well as complex
inheritance models, and a few other advanced features.

EF 6.3 and later have been extracted from .NET Framework as a separate package so it can be
supported on .NET Core 3.0 and later. This enables existing projects like web applications and
services to be ported and run cross-platform. However, EF6 should be considered a legacy
technology because it has some limitations when running cross-platform and no new features
will be added to it.

Using the legacy Entity Framework 6.3 or later
To use the legacy Entity Framework in a .NET Core 3.0 or later project, you must add a
package reference to it in your project file, as shown in the following markup:

<PackageReference Include="EntityFramework" Version="6.4.4" />

Understanding Entity Framework Core
The truly cross-platform version, EF Core, is different from the legacy Entity Framework.
Although EF Core has a similar name, you should be aware of how it varies from EF6. The
latest EF Core is version 6.0 to match .NET 6.0.

Good Practice: Only use legacy EF6 if you have to, for example, when
migrating a WPF app that uses it. This book is about modern cross-platform
development so, in the rest of this chapter, I will only cover the modern Entity
Framework Core. You will not need to reference the legacy EF6 package as
shown above in the projects for this chapter.

Chapter 10

[409]

EF Core 5 and later only support .NET 5 and later. EF Core 3.0 and later only run on platforms
that support .NET Standard 2.1, meaning .NET Core 3.0 and later. It does not support .NET
Standard 2.0 platforms like .NET Framework 4.8.

As well as traditional RDBMSs, EF Core supports modern cloud-based, nonrelational, schema-
less data stores, such as Microsoft Azure Cosmos DB and MongoDB, sometimes with third-
party providers.

EF Core has so many improvements that this chapter cannot cover them all. I will focus on the
fundamentals that all .NET developers should know and some of the cooler new features.

There are two approaches to working with EF Core:

1. Database First: A database already exists, so you build a model that matches its
structure and features.

2. Code First: No database exists, so you build a model and then use EF Core to create a
database that matches its structure and features.

We will start by using EF Core with an existing database.

Creating a console app for working with EF Core
First, we will create a console app project for this chapter:

1. Use your preferred code editor to create a new solution/workspace named Chapter10.
2. Add a console app project, as defined in the following list:

1. Project template: Console Application / console
2. Workspace/solution file and folder: Chapter10
3. Project file and folder: WorkingWithEFCore

Using a sample relational database
To learn how to manage an RDBMS using .NET, it would be useful to have a sample one so that
you can practice on one that has a medium complexity and a decent amount of sample records.
Microsoft offers several sample databases, most of which are too complex for our needs, so
instead, we will use a database that was first created in the early 1990s known as Northwind.

Working with Data Using Entity Framework Core

[410]

Let's take a minute to look at a diagram of the Northwind database. You can use the following
diagram to refer to as we write code and queries throughout this book:

Figure 10.1: The Northwind database tables and relationships

You will write code to work with the Categories and Products tables later in this chapter and
other tables in later chapters. But before we do, note that:

• Each category has a unique identifier, name, description, and picture.
• Each product has a unique identifier, name, unit price, units in stock, and other fields.
• Each product is associated with a category by storing the category's unique identifier.
• The relationship between Categories and Products is one-to-many, meaning each

category can have zero or more products.

Using Microsoft SQL Server for Windows
Microsoft offers various editions of its popular and capable SQL Server product for Windows,
Linux, and Docker containers. We will use a free version that can run standalone, known as
SQL Server Developer Edition. You can also use the Express edition or the free SQL Server
LocalDB edition that can be installed with Visual Studio for Windows.

Chapter 10

[411]

Downloading and installing SQL Server
You can download SQL Server editions from the following link:

https://www.microsoft.com/en-us/sql-server/sql-server-downloads

1. Download the Developer edition.
2. Run the installer.
3. Select the Custom installation type.
4. Select a folder for the installation files and then click Install.
5. Wait for the 1.5 GB of installer files to download.
6. In SQL Server Installation Center, click Installation, and then click New SQL Server

stand-alone installation or add features to an existing installation.
7. Select Developer as the free edition and then click Next.
8. Accept the license terms and then click Next.
9. Review the install rules, fix any issues, and then click Next.
10. In Feature Selection, select Database Engine Services, and then click Next.
11. In Instance Configuration, select Default instance, and then click Next. If you already

have a default instance configured, then you could create a named instance, perhaps
called cs10dotnet6.

12. In Server Configuration, note the SQL Server Database Engine is configured to start
automatically. Set the SQL Server Browser to start automatically, and then click Next.

13. In Database Engine Configuration, on the Server Configuration tab, set
Authentication Mode to Mixed, set the sa account password to a strong password,
click Add Current User, and then click Next.

14. In Ready to Install, review the actions that will be taken, and then click Install.
15. In Complete, note the successful actions taken, and then click Close.
16. In SQL Server Installation Center, in Installation, click Install SQL Server

Management Tools.
17. In the browser window, click to download the latest version of SSMS.
18. Run the installer and click Install.
19. When the installer has finished, click Restart if needed or Close.

If you do not have a Windows computer or you want to use a cross-platform
database system, then you can skip ahead to the topic Using SQLite.

https://www.microsoft.com/en-us/sql-server/sql-server-downloads

Working with Data Using Entity Framework Core

[412]

Creating the Northwind sample database for SQL
Server
Now we can run a database script to create the Northwind sample database:

1. If you have not previously downloaded or cloned the GitHub repository for this
book, then do so now using the following link: https://github.com/markjprice/
cs10dotnet6/.

2. Copy the script to create the Northwind database for SQL Server from the following
path in your local Git repository: /sql-scripts/Northwind4SQLServer.sql into the
WorkingWithEFCore folder.

3. Start SQL Server Management Studio.
4. In the Connect to Server dialog, for Server name, enter . (a dot) meaning the local

computer name, and then click Connect.

5. Navigate to File | Open | File....
6. Browse to select the Northwind4SQLServer.sql file and then click Open.
7. In the toolbar, click Execute, and note the the Command(s) completed successfully

message.
8. In Object Explorer, expand the Northwind database, and then expand Tables.
9. Right-click Products, click Select Top 1000 Rows, and note the returned results, as

shown in Figure 10.2:

Figure 10.2: The Products table in SQL Server Management Studio

If you had to create a named instance, like cs10dotnet6, then enter
.\cs10dotnet6

https://github.com/markjprice/cs10dotnet6/
https://github.com/markjprice/cs10dotnet6/

Chapter 10

[413]

10. In the Object Explorer toolbar, click the Disconnect button.
11. Exit SQL Server Management Studio.

Managing the Northwind sample database with
Server Explorer
We did not have to use SQL Server Management Studio to execute the database script. We can
also use tools in Visual Studio including the SQL Server Object Explorer and Server Explorer:

1. In Visual Studio, choose View | Server Explorer.
2. In the Server Explorer window, right-click Data Connections and choose Add

Connection....
3. If you see the Choose Data Source dialog, as shown in Figure 10.3, select Microsoft

SQL Server and then click Continue:

Figure 10.3: Choosing SQL Server as the data source

4. In the Add Connection dialog, enter the server name as ., enter the database name as
Northwind, and then click OK.

5. In Server Explorer, expand the data connection and its tables. You should see 13 tables,
including the Categories and Products tables.

6. Right-click the Products table, choose Show Table Data, and note the 77 rows of
products are returned.

7. To see the details of the Products table columns and types, right-click Products and
choose Open Table Definition, or double-click the table in Server Explorer.

Working with Data Using Entity Framework Core

[414]

Using SQLite
SQLite is a small, cross-platform, self-contained RDBMS that is available in the public domain.
It's the most common RDBMS for mobile platforms such as iOS (iPhone and iPad) and
Android. Even if you use Windows and set up SQL Server in the previous section, you might
want to set up SQLite too. The code that we write will work with both and it can be interesting
to see the subtle differences.

Setting up SQLite for macOS
SQLite is included in macOS in the /usr/bin/ directory as a command-line application named
sqlite3.

Setting up SQLite for Windows
On Windows, we need to add the folder for SQLite to the system path so it will be found when
we enter commands at a command prompt or terminal:

1. Start your favorite browser and navigate to the following link: https://www.sqlite.
org/download.html.

2. Scroll down the page to the Precompiled Binaries for Windows section.
3. Click sqlite-tools-win32-x86-3360000.zip. Note the file might have a higher version

number after this book is published.
4. Extract the ZIP file into a folder named C:\Sqlite\.
5. Navigate to Windows Settings.
6. Search for environment and choose Edit the system environment variables. On non-

English versions of Windows, please search for the equivalent word in your local
language to find the setting.

7. Click the Environment Variables button.
8. In System variables, select Path in the list, and then click Edit….
9. Click New, enter C:\Sqlite, and press Enter.
10. Click OK.
11. Click OK.
12. Click OK.
13. Close Windows Settings.

Setting up SQLite for other OSes
SQLite can be downloaded and installed for other OSes from the following link: https://www.
sqlite.org/download.html.

https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html

Chapter 10

[415]

Creating the Northwind sample database for SQLite
Now we can create the Northwind sample database for SQLite using an SQL script:

1. If you have not previously cloned the GitHub repository for this book, then do so now
using the following link: https://github.com/markjprice/cs10dotnet6/.

2. Copy the script to create the Northwind database for SQLite from the following
path in your local Git repository: /sql-scripts/Northwind4SQLite.sql into the
WorkingWithEFCore folder.

3. Start a command line in the WorkingWithEFCore folder:
1. On Windows, start File Explorer, right-click the WorkingWithEFCore folder, and

select New Command Prompt at Folder or Open in Windows Terminal.
2. On macOS, start Finder, right-click the WorkingWithEFCore folder, and select

New Terminal at Folder.

4. Enter the command to execute the SQL script using SQLite and create the Northwind.db
database, as shown in the following command:

sqlite3 Northwind.db -init Northwind4SQLite.sql

5. Be patient because this command might take a while to create the database structure.
Eventually, you will see the SQLite command prompt, as shown in the following
output:

-- Loading resources from Northwind4SQLite.sql
SQLite version 3.36.0 2021-08-24 15:20:15
Enter ".help" for usage hints.
sqlite>

6. Press Ctrl + C on Windows or Ctrl + D on macOS to exit SQLite command mode.
7. Leave your terminal or command prompt window open because you will use it again

soon.

Managing the Northwind sample database with
SQLiteStudio
You can use a cross-platform graphical database manager named SQLiteStudio to easily
manage SQLite databases:

1. Navigate to the following link, https://sqlitestudio.pl, and download and extract
the application to your preferred location.

2. Start SQLiteStudio.
3. On the Database menu, choose Add a database.

https://github.com/markjprice/cs10dotnet6/
https://sqlitestudio.pl

Working with Data Using Entity Framework Core

[416]

4. In the Database dialog, in the File section, click on the yellow folder button to browse
for an existing database file on the local computer, select the Northwind.db file in the
WorkingWithEFCore folder, and then click OK.

5. Right-click on the Northwind database and choose Connect to the database. You will
see the 10 tables that were created by the script. (The script for SQLite is simpler than
the one for SQL Server; it does not create as many tables or other database objects.)

6. Right-click on the Products table and choose Edit the table.
7. In the table editor window, note the structure of the Products table, including column

names, data types, keys, and constraints, as shown in Figure 10.4:

Figure 10.4: The table editor in SQLiteStudio showing the structure of the Products table

8. In the table editor window, click the Data tab, and you will see 77 products, as shown
in Figure 10.5:

Figure 10.5: The Data tab showing the rows in the Products table

9. In the Database window, right-click Northwind and select Disconnect from the
database.

10. Exit SQLiteStudio.

Chapter 10

[417]

Setting up EF Core
Before we dive into the practicalities of managing data using EF Core, let's briefly talk about
choosing between EF Core data providers.

Choosing an EF Core database provider
To manage data in a specific database, we need classes that know how to efficiently talk to that
database.

EF Core database providers are sets of classes that are optimized for a specific data store. There
is even a provider for storing the data in the memory of the current process, which can be
useful for high-performance unit testing since it avoids hitting an external system.

They are distributed as NuGet packages, as shown in the following table:

To manage this data store Install this NuGet package
Microsoft SQL Server 2012 or later Microsoft.EntityFrameworkCore.SqlServer
SQLite 3.7 or later Microsoft.EntityFrameworkCore.SQLite
MySQL MySQL.Data.EntityFrameworkCore
In-memory Microsoft.EntityFrameworkCore.InMemory
Azure Cosmos DB SQL API Microsoft.EntityFrameworkCore.Cosmos
Oracle DB 11.2 Oracle.EntityFrameworkCore

You can install as many EF Core database providers in the same project as you need. Each
package includes the shared types as well as provider-specific types.

Connecting to a database
To connect to an SQLite database, we just need to know the database filename, set using the
parameter Filename.

To connect to an SQL Server database, we need to know multiple pieces of information, as
shown in the following list:

• The name of the server (and the instance if it has one).
• The name of the database.
• Security information, such as username and password, or if we should pass the

currently logged-on user's credentials automatically.

We specify this information in a connection string.

For backward compatibility, there are multiple possible keywords we can use in an SQL Server
connection string for the various parameters, as shown in the following list:

Working with Data Using Entity Framework Core

[418]

• Data Source or server or addr: These keywords are the name of the server (and an
optional instance). You can use a dot . to mean the local server.

• Initial Catalog or database: These keywords are the name of the database.
• Integrated Security or trusted_connection: These keywords are set to true or SSPI to

pass the thread's current user credentials.
• MultipleActiveResultSets: This keyword is set to true to enable a single connection to

be used to work with multiple tables simultaneously to improve efficiency. It is used for
lazy loading rows from related tables.

As described in the list above, when you write code to connect to an SQL Server database, you
need to know its server name. The server name depends on the edition and version of SQL
Server that you will connect to, as shown in the following table:

SQL Server edition Server name \ Instance name
LocalDB 2012 (localdb)\v11.0
LocalDB 2016 or later (localdb)\mssqllocaldb
Express .\sqlexpress
Full/Developer (default instance) .
Full/Developer (named instance) .\cs10dotnet6

Defining the Northwind database context class
The Northwind class will be used to represent the database. To use EF Core, the class must
inherit from DbContext. This class understands how to communicate with databases and
dynamically generate SQL statements to query and manipulate data.

Your DbContext-derived class should have an overridden method named OnConfiguring, which
will set the database connection string.

To make it easy for you to try SQLite and SQL Server, we will create a project that supports
both, with a string field to control which is used at runtime:

1. In the WorkingWithEFCore project, add package references to the EF Core data provider
for both SQL Server and SQLite, as shown in the following markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite"

Good Practice: Use a dot . as shorthand for the local computer name.
Remember that server names for SQL Server are made of two parts: the name
of the computer and the name of an SQL Server instance. You provide instance
names during custom installation.

Chapter 10

[419]

 Version="6.0.0" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer"
 Version="6.0.0" />
</ItemGroup>

2. Build the project to restore packages.
3. Add a class file named ProjectConstants.cs.
4. In ProjectConstants.cs, define a class with a public string constant to store the

database provider name that you want to use, as shown in the following code:
namespace Packt.Shared;

public class ProjectConstants
{
 public const string DatabaseProvider = "SQLite"; // or "SQLServer"
}

5. In Program.cs, import the Packt.Shared namespace and output the database provider,
as shown in the following code:

WriteLine($"Using {ProjectConstants.DatabaseProvider} database
provider.");

6. Add a class file named Northwind.cs.
7. In Northwind.cs, define a class named Northwind, import the main namespace for EF

Core, make the class inherit from DbContext, and in an OnConfiguring method, check
the provider field to either use SQLite or SQL Server, as shown in the following code:

using Microsoft.EntityFrameworkCore; // DbContext, DbContextOptionsBuilder

using static System.Console;

namespace Packt.Shared;

// this manages the connection to the database
public class Northwind : DbContext
{
 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 if (ProjectConstants.DatabaseProvider == "SQLite")
 {
 string path = Path.Combine(
 Environment.CurrentDirectory, "Northwind.db");

 WriteLine($"Using {path} database file.");

Working with Data Using Entity Framework Core

[420]

 optionsBuilder.UseSqlite($"Filename={path}");
 }
 else
 {
 string connection = "Data Source=.;" +
 "Initial Catalog=Northwind;" +
 "Integrated Security=true;" +
 "MultipleActiveResultSets=true;";

 optionsBuilder.UseSqlServer(connection);
 }
 }
}

If you are using Visual Studio for Windows, then the compiled application executes in
the WorkingWithEFCore\bin\Debug\net6.0 folder so it will not find the database file.

8. In Solution Explorer, right-click the Northwind.db file and select Properties.
9. In Properties, set Copy to Output Directory to Copy always.
10. Open WorkingWithEFCore.csproj and note the new elements, as shown in the following

markup:
<ItemGroup>
 <None Update="Northwind.db">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </None>
</ItemGroup>

If you are using Visual Studio Code, then the compiled application executes in the
WorkingWithEFCore folder so it will find the database file without it being copied.

11. Run the console application and note the output showing which database provider you
chose to use.

Defining EF Core models
EF Core uses a combination of conventions, annotation attributes, and Fluent API statements
to build an entity model at runtime so that any actions performed on the classes can later
be automatically translated into actions performed on the actual database. An entity class
represents the structure of a table and an instance of the class represents a row in that table.

First, we will review the three ways to define a model, with code examples, and then we will
create some classes that implement those techniques.

Chapter 10

[421]

Using EF Core conventions to define the model
The code we will write will use the following conventions:

• The name of a table is assumed to match the name of a DbSet<T> property in the
DbContext class, for example, Products.

• The names of the columns are assumed to match the names of properties in the entity
model class, for example, ProductId.

• The string .NET type is assumed to be a nvarchar type in the database.
• The int .NET type is assumed to be an int type in the database.
• The primary key is assumed to be a property that is named Id or ID, or when the entity

model class is named Product, then the property can be named ProductId or ProductID.
If this property is an integer type or the Guid type, then it is also assumed to be an
IDENTITY column (a column type that automatically assigns a value when inserting).

Using EF Core annotation attributes to define the
model
Conventions often aren't enough to completely map the classes to the database objects. A
simple way of adding more smarts to your model is to apply annotation attributes.

Some common attributes are shown in the following table:

Attribute Description
[Required] Ensures the value is not null.
[StringLength(50)] Ensures the value is up to 50 characters in length.
[RegularExpression(expression)] Ensures the value matches the specified regular expression.
[Column(TypeName = "money", Name
= "UnitPrice")]

Specifies the column type and column name used in the
table.

For example, in the database, the maximum length of a product name is 40, and the value
cannot be null, as shown highlighted in the following Data Definition Language (DDL) code
that defines how to create a table named Products with its columns, data types, keys, and
other constraints:

CREATE TABLE Products (
 ProductId INTEGER PRIMARY KEY,
 ProductName NVARCHAR (40) NOT NULL,
 SupplierId "INT",

Good Practice: There are many other conventions that you should know, and
you can even define your own, but that is beyond the scope of this book. You
can read about them at the following link: https://docs.microsoft.com/
en-us/ef/core/modeling/

https://docs.microsoft.com/en-us/ef/core/modeling/
https://docs.microsoft.com/en-us/ef/core/modeling/

Working with Data Using Entity Framework Core

[422]

 CategoryId "INT",
 QuantityPerUnit NVARCHAR (20),
 UnitPrice "MONEY" CONSTRAINT DF_Products_UnitPrice DEFAULT (0),
 UnitsInStock "SMALLINT" CONSTRAINT DF_Products_UnitsInStock DEFAULT (0),
 UnitsOnOrder "SMALLINT" CONSTRAINT DF_Products_UnitsOnOrder DEFAULT (0),
 ReorderLevel "SMALLINT" CONSTRAINT DF_Products_ReorderLevel DEFAULT (0),
 Discontinued "BIT" NOT NULL
 CONSTRAINT DF_Products_Discontinued DEFAULT (0),
 CONSTRAINT FK_Products_Categories FOREIGN KEY (
 CategoryId
)
 REFERENCES Categories (CategoryId),
 CONSTRAINT FK_Products_Suppliers FOREIGN KEY (
 SupplierId
)
 REFERENCES Suppliers (SupplierId),
 CONSTRAINT CK_Products_UnitPrice CHECK (UnitPrice >= 0),
 CONSTRAINT CK_ReorderLevel CHECK (ReorderLevel >= 0),
 CONSTRAINT CK_UnitsInStock CHECK (UnitsInStock >= 0),
 CONSTRAINT CK_UnitsOnOrder CHECK (UnitsOnOrder >= 0)
);

In a Product class, we could apply attributes to specify this, as shown in the following code:

[Required]
[StringLength(40)]
public string ProductName { get; set; }

When there isn't an obvious map between .NET types and database types, an attribute can
be used.

For example, in the database, the column type of UnitPrice for the Products table is money.
.NET does not have a money type, so it should use decimal instead, as shown in the following
code:

[Column(TypeName = "money")]
public decimal? UnitPrice { get; set; }

Another example is for the Categories table, as shown in the following DDL code:

CREATE TABLE Categories (
 CategoryId INTEGER PRIMARY KEY,
 CategoryName NVARCHAR (15) NOT NULL,
 Description "NTEXT",
 Picture "IMAGE"
);

Chapter 10

[423]

The Description column can be longer than the maximum 8,000 characters that can be stored in
a nvarchar variable, so it needs to map to ntext instead, as shown in the following code:

[Column(TypeName = "ntext")]
public string Description { get; set; }

Using the EF Core Fluent API to define the model
The last way that the model can be defined is by using the Fluent API. This API can be used
instead of attributes, as well as being used in addition to them. For example, to define the
ProductName property, instead of decorating the property with two attributes, an equivalent
Fluent API statement could be written in the OnModelCreating method of the database context
class, as shown in the following code:

modelBuilder.Entity<Product>()
 .Property(product => product.ProductName)
 .IsRequired()
 .HasMaxLength(40);

This keeps the entity model class simpler.

Understanding data seeding with the Fluent API
Another benefit of the Fluent API is to provide initial data to populate a database. EF Core
automatically works out what insert, update, or delete operations must be executed.

For example, if we wanted to make sure that a new database has at least one row in the Product
table, then we would call the HasData method, as shown in the following code:

modelBuilder.Entity<Product>()
 .HasData(new Product
 {
 ProductId = 1,
 ProductName = "Chai",
 UnitPrice = 8.99M
 });

Our model will map to an existing database that is already populated with data so we will not
need to use this technique in our code.

Building an EF Core model for the Northwind tables
Now that you've learned about ways to define an EF Core model, let's build a model to
represent two tables in the Northwind database.

The two entity classes will refer to each other, so to avoid compiler errors, we will create the
classes without any members first:

Working with Data Using Entity Framework Core

[424]

1. In the WorkingWithEFCore project, add two class files named Category.cs and Product.cs.
2. In Category.cs, define a class named Category, as shown in the following code:

namespace Packt.Shared;

public class Category
{
}

3. In Product.cs, define a class named Product, as shown in the following code:

namespace Packt.Shared;

public class Product
{
}

Defining the Category and Product entity classes
The Category class, also known as an entity model, will be used to represent a row in the
Categories table. This table has four columns, as shown in the following DDL:

CREATE TABLE Categories (
 CategoryId INTEGER PRIMARY KEY,
 CategoryName NVARCHAR (15) NOT NULL,
 Description "NTEXT",
 Picture "IMAGE"
);

We will use conventions to define:

• Three of the four properties (we will not map the Picture column).
• The primary key.
• The one-to-many relationship to the Products table.

To map the Description column to the correct database type, we will need to decorate the
string property with the Column attribute.

Later in this chapter, we will use the Fluent API to define that CategoryName cannot be null and
is limited to a maximum of 15 characters.

Let's go:

1. Modify the Category entity model class, as shown in the following code:
using System.ComponentModel.DataAnnotations.Schema; // [Column]

namespace Packt.Shared;

Chapter 10

[425]

public class Category
{
 // these properties map to columns in the database
 public int CategoryId { get; set; }
 public string? CategoryName { get; set; }

 [Column(TypeName = "ntext")]
 public string? Description { get; set; }

 // defines a navigation property for related rows
 public virtual ICollection<Product> Products { get; set; }

 public Category()
 {
 // to enable developers to add products to a Category we must
 // initialize the navigation property to an empty collection
 Products = new HashSet<Product>();
 }
}

The Product class will be used to represent a row in the Products table, which has ten
columns.
You do not need to include all columns from a table as properties of a class. We
will only map six properties: ProductId, ProductName, UnitPrice, UnitsInStock,
Discontinued, and CategoryId.
Columns that are not mapped to properties cannot be read or set using the class
instances. If you use the class to create a new object, then the new row in the table will
have NULL or some other default value for the unmapped column values in that row.
You must make sure that those missing columns are optional or have default values set
by the database or an exception will be thrown at runtime. In this scenario, the rows
already have data values and I have decided that I do not need to read those values in
this application.
We can rename a column by defining a property with a different name, like Cost, and
then decorating the property with the [Column] attribute and specifying its column
name, like UnitPrice.
The final property, CategoryId, is associated with a Category property that will be used
to map each product to its parent category.

2. Modify the Product class, as shown in the following code:

using System.ComponentModel.DataAnnotations; // [Required], [StringLength]
using System.ComponentModel.DataAnnotations.Schema; // [Column]

namespace Packt.Shared;

Working with Data Using Entity Framework Core

[426]

public class Product
{
 public int ProductId { get; set; } // primary key

 [Required]
 [StringLength(40)]
 public string ProductName { get; set; } = null!;

 [Column("UnitPrice", TypeName = "money")]
 public decimal? Cost { get; set; } // property name != column name

 [Column("UnitsInStock")]
 public short? Stock { get; set; }

 public bool Discontinued { get; set; }

 // these two define the foreign key relationship
 // to the Categories table
 public int CategoryId { get; set; }
 public virtual Category Category { get; set; } = null!;
}

The two properties that relate the two entities, Category.Products and Product.Category, are
both marked as virtual. This allows EF Core to inherit and override the properties to provide
extra features, such as lazy loading.

Adding tables to the Northwind database context
class
Inside your DbContext-derived class, you must define at least one property of the DbSet<T>
type. These properties represent the tables. To tell EF Core what columns each table has, the
DbSet<T> properties use generics to specify a class that represents a row in the table. That entity
model class has properties that represent its columns.

The DbContext-derived class can optionally have an overridden method named
OnModelCreating. This is where you can write Fluent API statements as an alternative to
decorating your entity classes with attributes.

Let's write some code:

1. Modify the Northwind class to add statements to define two properties for the two tables
and an OnModelCreating method, as shown highlighted in the following code:

public class Northwind : DbContext
{
 // these properties map to tables in the database

Chapter 10

[427]

 public DbSet<Category>? Categories { get; set; }
 public DbSet<Product>? Products { get; set; }

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 ...
 }

 protected override void OnModelCreating(
 ModelBuilder modelBuilder)
 {
 // example of using Fluent API instead of attributes
 // to limit the length of a category name to 15
 modelBuilder.Entity<Category>()
 .Property(category => category.CategoryName)
 .IsRequired() // NOT NULL
 .HasMaxLength(15);

 if (ProjectConstants.DatabaseProvider == "SQLite")
 {
 // added to "fix" the lack of decimal support in SQLite
 modelBuilder.Entity<Product>()
 .Property(product => product.Cost)
 .HasConversion<double>();
 }
 }
}

Now that you have seen some examples of defining an entity model manually, let's see a tool
that can do some of the work for you.

Setting up the dotnet-ef tool
.NET has a command-line tool named dotnet. It can be extended with capabilities useful for
working with EF Core. It can perform design-time tasks like creating and applying migrations
from an older model to a newer model and generating code for a model from an existing
database.

In EF Core 3.0 and later, the decimal type is not supported by the SQLite
database provider for sorting and other operations. We can fix this by telling
the model that decimal values can be converted to double values when using
the SQLite database provider. This does not actually perform any conversion
at runtime.

Working with Data Using Entity Framework Core

[428]

The dotnet ef command-line tool is not automatically installed. You have to install this package
as either a global or local tool. If you have already installed an older version of the tool, then
you should uninstall any existing version:

1. At a command prompt or terminal, check if you have already installed dotnet-ef as a
global tool, as shown in the following command:

dotnet tool list --global

2. Check in the list if an older version of the tool has been installed, like the one for .NET
Core 3.1, as shown in the following output:

Package Id Version Commands

dotnet-ef 3.1.0 dotnet-ef

3. If an old version is already installed, then uninstall the tool, as shown in the following
command:

dotnet tool uninstall --global dotnet-ef

4. Install the latest version, as shown in the following command:
dotnet tool install --global dotnet-ef --version 6.0.0

5. If necessary, follow any OS-specific instructions to add the dotnet tools directory
to your PATH environment variable as described in the output of installing the
dotnet-ef tool.

Scaffolding models using an existing database
Scaffolding is the process of using a tool to create classes that represent the model of an
existing database using reverse engineering. A good scaffolding tool allows you to extend the
automatically generated classes and then regenerate those classes without losing your extended
classes.

If you know that you will never regenerate the classes using the tool, then feel free to change
the code for the automatically generated classes as much as you want. The code generated by
the tool is just the best approximation.

Let's see if the tool generates the same model as we did manually:

1. Add the Microsoft.EntityFrameworkCore.Design package to the WorkingWithEFCore
project.

Good Practice: Do not be afraid to overrule a tool when you know better.

Chapter 10

[429]

2. At a command prompt or terminal in the WorkingWithEFCore folder, generate a model
for the Categories and Products tables in a new folder named AutoGenModels, as shown
in the following command:

dotnet ef dbcontext scaffold "Filename=Northwind.db" Microsoft.
EntityFrameworkCore.Sqlite --table Categories --table Products --output-
dir AutoGenModels --namespace WorkingWithEFCore.AutoGen --data-annotations
--context Northwind

Note the following:
• The command action: dbcontext scaffold
• The connection string: "Filename=Northwind.db"
• The database provider: Microsoft.EntityFrameworkCore.Sqlite
• The tables to generate models for: --table Categories --table Products
• The output folder: --output-dir AutoGenModels
• The namespace: --namespace WorkingWithEFCore.AutoGen
• To use data annotations as well as the Fluent API: --data-annotations
• To rename the context from [database_name]Context: --context Northwind

3. Note the build messages and warnings, as shown in the following output:
Build started...
Build succeeded.
To protect potentially sensitive information in your connection string,
you should move it out of source code. You can avoid scaffolding the
connection string by using the Name= syntax to read it from configuration
- see https://go.microsoft.com/fwlink/?linkid=2131148. For more
guidance on storing connection strings, see http://go.microsoft.com/
fwlink/?LinkId=723263.
Skipping foreign key with identity '0' on table 'Products' since principal
table 'Suppliers' was not found in the model. This usually happens when
the principal table was not included in the selection set.

4. Open the AutoGenModels folder and note the three class files that were automatically
generated: Category.cs, Northwind.cs, and Product.cs.

5. Open Category.cs and note the differences compared to the one you created manually,
as shown in the following code:

For SQL Server, change the database provider and connection string,
as shown in the following command:

dotnet ef dbcontext scaffold "Data Source=.;Initial
Catalog=Northwind;Integrated Security=true;" Microsoft.
EntityFrameworkCore.SqlServer --table Categories
--table Products --output-dir AutoGenModels --namespace
WorkingWithEFCore.AutoGen --data-annotations --context
Northwind

Working with Data Using Entity Framework Core

[430]

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using Microsoft.EntityFrameworkCore;

namespace WorkingWithEFCore.AutoGen
{
 [Index(nameof(CategoryName), Name = "CategoryName")]
 public partial class Category
 {
 public Category()
 {
 Products = new HashSet<Product>();
 }

 [Key]
 public long CategoryId { get; set; }

 [Required]
 [Column(TypeName = "nvarchar (15)")] // SQLite
 [StringLength(15)] // SQL Server
 public string CategoryName { get; set; }

 [Column(TypeName = "ntext")]
 public string? Description { get; set; }

 [Column(TypeName = "image")]
 public byte[]? Picture { get; set; }

 [InverseProperty(nameof(Product.Category))]
 public virtual ICollection<Product> Products { get; set; }
 }
}

Note the following:
• It decorates the entity class with the [Index] attribute that was introduced in EF

Core 5.0. This indicates properties that should have an index. In earlier versions,
only the Fluent API was supported for defining indexes. Since we are working
with an existing database, this is not needed. But if we want to recreate a new
empty database from our code then this information will be needed.

• The table name in the database is Categories but the dotnet-ef tool uses the
Humanizer third-party library to automatically singularize the class name to
Category, which is a more natural name when creating a single entity.

Chapter 10

[431]

• The entity class is declared using the partial keyword so that you can create a
matching partial class for adding additional code. This allows you to rerun the
tool and regenerate the entity class without losing that extra code.

• The CategoryId property is decorated with the [Key] attribute to indicate that it
is the primary key for this entity. The data type for this property is int for SQL
Server and long for SQLite.

• The Products property uses the [InverseProperty] attribute to define the
foreign key relationship to the Category property on the Product entity class.

6. Open Product.cs and note the differences compared to the one you created manually.
7. Open Northwind.cs and note the differences compared to the one you created

manually, as shown in the following edited-for-space code:
using Microsoft.EntityFrameworkCore;

namespace WorkingWithEFCore.AutoGen
{
 public partial class Northwind : DbContext
 {
 public Northwind()
 {
 }

 public Northwind(DbContextOptions<Northwind> options)
 : base(options)
 {
 }

 public virtual DbSet<Category> Categories { get; set; } = null!;
 public virtual DbSet<Product> Products { get; set; } = null!;

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 if (!optionsBuilder.IsConfigured)
 {
#warning To protect potentially sensitive information in your connection
string, you should move it out of source code. You can avoid scaffolding
the connection string by using the Name= syntax to read it from
configuration - see https://go.microsoft.com/fwlink/?linkid=2131148. For
more guidance on storing connection strings, see http://go.microsoft.com/
fwlink/?LinkId=723263.
 optionsBuilder.UseSqlite("Filename=Northwind.db");
 }
 }

Working with Data Using Entity Framework Core

[432]

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Category>(entity =>
 {
 ...
 });

 modelBuilder.Entity<Product>(entity =>
 {
 ...
 });

 OnModelCreatingPartial(modelBuilder);
 }

 partial void OnModelCreatingPartial(ModelBuilder modelBuilder);
 }
}

Note the following:
• The Northwind data context class is partial to allow you to extend it and

regenerate it in the future.
• It has two constructors: a default parameter-less one and one that allows

options to be passed in. This is useful in apps where you want to specify the
connection string at runtime.

• The two DbSet<T> properties that represent the Categories and Products tables
are set to the null-forgiving value to prevent static compiler analysis warnings
at compile time. It has no effect at runtime.

• In the OnConfiguring method, if options have not been specified in the
constructor, then it defaults to using a connection string that looks for the
database file in the current folder. It has a compiler warning to remind you that
you should not hardcode security information in this connection string.

• In the OnModelCreating method, the Fluent API is used to configure the two
entity classes, and then a partial method named OnModelCreatingPartial is
invoked. This allows you to implement that partial method in your own partial
Northwind class to add your own Fluent API configuration that will not be lost if
you regenerate the model classes.

8. Close the automatically generated class files.

Configuring preconvention models
Along with support for the DateOnly and TimeOnly types for use with the SQLite database
provider, one of the new features introduced with EF Core 6 is configuring preconvention
models.

Chapter 10

[433]

As models become more complex, relying on conventions to discover entity types and their
properties and successfully map them to tables and columns becomes harder. It would be
useful if you could configure the conventions themselves before they are used to analyze and
build a model.

For example, you might want to define a convention to say that all string properties should
have a maximum length of 50 characters as a default, or any property types that implement a
custom interface should not be mapped, as shown in the following code:

protected override void ConfigureConventions(
 ModelConfigurationBuilder configurationBuilder)
{
 configurationBuilder.Properties<string>().HaveMaxLength(50);
 configurationBuilder.IgnoreAny<IDoNotMap>();
}

In the rest of this chapter, we will use the classes that you manually created.

Querying EF Core models
Now that we have a model that maps to the Northwind database and two of its tables, we can
write some simple LINQ queries to fetch data. You will learn much more about writing LINQ
queries in Chapter 11, Querying and Manipulating Data Using LINQ.

For now, just write the code and view the results:

1. At the top of Program.cs, import the main EF Core namespace to enable the use of the
Include extension method to prefetch from a related table:

using Microsoft.EntityFrameworkCore; // Include extension method

2. At the bottom of Program.cs, define a QueryingCategories method, and add
statements to do these tasks, as shown in the following code:

• Create an instance of the Northwind class that will manage the database.
Database context instances are designed for short lifetimes in a unit of work.
They should be disposed of as soon as possible so we will wrap it in a using
statement. In Chapter 14, Building Websites Using ASP.NET Core Razor Pages, you
will learn how to get a database context using dependency injection.

• Create a query for all categories that include their related products.
• Enumerate through the categories, outputting the name and number of

products for each one:
static void QueryingCategories()
{
 using (Northwind db = new())
 {
 WriteLine("Categories and how many products they have:");

Working with Data Using Entity Framework Core

[434]

 // a query to get all categories and their related products
 IQueryable<Category>? categories = db.Categories?
 .Include(c => c.Products);

 if (categories is null)
 {
 WriteLine("No categories found.");
 return;
 }

 // execute query and enumerate results
 foreach (Category c in categories)
 {
 WriteLine($"{c.CategoryName} has {c.Products.Count} products.");
 }
 }
}

3. At the top of Program.cs, after outputting the database provider name, call the
QueryingCategories method, as shown highlighted in the following code:

WriteLine($"Using {ProjectConstants.DatabaseProvider} database provider.");
QueryingCategories();

4. Run the code and view the result (if run with Visual Studio 2022 for Windows
using the SQLite database provider), as shown in the following output:

Using SQLite database provider.
Categories and how many products they have:
Using C:\Code\Chapter10\WorkingWithEFCore\bin\Debug\net6.0\Northwind.db
database file.
Beverages has 12 products.
Condiments has 12 products.
Confections has 13 products.
Dairy Products has 10 products.
Grains/Cereals has 7 products.
Meat/Poultry has 6 products.
Produce has 5 products.
Seafood has 12 products.

If you run with Visual Studio Code using the SQLite database provider, then
the path will be the WorkingWithEFCore folder. If you run using the SQL
Server database provider, then there is no database file path output.

Chapter 10

[435]

Filtering included entities
EF Core 5.0 introduced filtered includes, which means you can specify a lambda expression in
the Include method call to filter which entities are returned in the results:

1. At the bottom of Program.cs, define a FilteredIncludes method, and add statements to
do these tasks, as shown in the following code:

• Create an instance of the Northwind class that will manage the database.
• Prompt the user to enter a minimum value for units in stock.
• Create a query for categories that have products with that minimum number of

units in stock.
• Enumerate through the categories and products, outputting the name and units

in stock for each one:

static void FilteredIncludes()
{
 using (Northwind db = new())
 {
 Write("Enter a minimum for units in stock: ");
 string unitsInStock = ReadLine() ?? "10";
 int stock = int.Parse(unitsInStock);

 IQueryable<Category>? categories = db.Categories?
 .Include(c => c.Products.Where(p => p.Stock >= stock));

 if (categories is null)
 {
 WriteLine("No categories found.");
 return;
 }

 foreach (Category c in categories)
 {
 WriteLine($"{c.CategoryName} has {c.Products.Count} products with a
minimum of {stock} units in stock.");

 foreach(Product p in c.Products)
 {

Warning! If you see the following exception when using SQLite with Visual
Studio 2022, the most likely problem is that the Northwind.db file is not being
copied to the output directory. Make sure Copy to Output Directory is set to
Copy always:

Unhandled exception. Microsoft.Data.Sqlite.SqliteException
(0x80004005): SQLite Error 1: 'no such table: Categories'.

Working with Data Using Entity Framework Core

[436]

 WriteLine($" {p.ProductName} has {p.Stock} units in stock.");
 }
 }
 }
}

2. In Program.cs, comment out the QueryingCategories method and invoke the
FilteredIncludes method, as shown highlighted in the following code:

WriteLine($"Using {ProjectConstants.DatabaseProvider} database provider.");
// QueryingCategories();
FilteredIncludes();

3. Run the code, enter a minimum for units in stock like 100, and view the result,
as shown in the following output:

Enter a minimum for units in stock: 100
Beverages has 2 products with a minimum of 100 units in stock.
 Sasquatch Ale has 111 units in stock.
 Rhönbräu Klosterbier has 125 units in stock.
Condiments has 2 products with a minimum of 100 units in stock.
 Grandma's Boysenberry Spread has 120 units in stock.
 Sirop d'érable has 113 units in stock.
Confections has 0 products with a minimum of 100 units in stock.
Dairy Products has 1 products with a minimum of 100 units in stock.
 Geitost has 112 units in stock.
Grains/Cereals has 1 products with a minimum of 100 units in stock.
 Gustaf's Knäckebröd has 104 units in stock.
Meat/Poultry has 1 products with a minimum of 100 units in stock.
 Pâté chinois has 115 units in stock.
Produce has 0 products with a minimum of 100 units in stock.
Seafood has 3 products with a minimum of 100 units in stock.
 Inlagd Sill has 112 units in stock.
 Boston Crab Meat has 123 units in stock.
 Röd Kaviar has 101 units in stock.

Unicode characters in the Windows console
There is a limitation with the console provided by Microsoft on versions of Windows before the
Windows 10 Fall Creators Update. By default, the console cannot display Unicode characters,
for example, in the name Rhönbräu.

If you have this issue, then you can temporarily change the code page (also known as the
character set) in a console to Unicode UTF-8 by entering the following command at the prompt
before running the app:

chcp 65001

Chapter 10

[437]

Filtering and sorting products
Let's explore a more complex query that will filter and sort data:

1. At the bottom of Program.cs, define a QueryingProducts method, and add statements to
do the following, as shown in the following code:

• Create an instance of the Northwind class that will manage the database.
• Prompt the user for a price for products. Unlike the previous code example, we

will loop until the input is a valid price.
• Create a query for products that cost more than the price using LINQ.
• Loop through the results, outputting the Id, name, cost (formatted in US

dollars), and the number of units in stock:

static void QueryingProducts()
{
 using (Northwind db = new())
 {
 WriteLine("Products that cost more than a price, highest at top.");
 string? input;
 decimal price;

 do
 {
 Write("Enter a product price: ");
 input = ReadLine();
 } while (!decimal.TryParse(input, out price));

 IQueryable<Product>? products = db.Products?
 .Where(product => product.Cost > price)
 .OrderByDescending(product => product.Cost);

 if (products is null)
 {
 WriteLine("No products found.");
 return;
 }

 foreach (Product p in products)
 {
 WriteLine(
 "{0}: {1} costs {2:$#,##0.00} and has {3} in stock.",
 p.ProductId, p.ProductName, p.Cost, p.Stock);
 }
 }
}

Working with Data Using Entity Framework Core

[438]

2. In Program.cs, comment out the previous method, and call the QueryingProducts method
3. Run the code, enter 50 when prompted to enter a product price, and view the

result, as shown in the following output:

Products that cost more than a price, highest at top.
Enter a product price: 50
38: Côte de Blaye costs $263.50 and has 17 in stock.
29: Thüringer Rostbratwurst costs $123.79 and has 0 in stock.
9: Mishi Kobe Niku costs $97.00 and has 29 in stock.
20: Sir Rodney's Marmalade costs $81.00 and has 40 in stock.
18: Carnarvon Tigers costs $62.50 and has 42 in stock.
59: Raclette Courdavault costs $55.00 and has 79 in stock.
51: Manjimup Dried Apples costs $53.00 and has 20 in stock.

Getting the generated SQL
You might be wondering how well written the SQL statements are that are generated from the
C# queries we write. EF Core 5.0 introduced a quick and easy way to see the SQL generated:

1. In the FilteredIncludes method, before using the foreach statement to enumerate
the query, add a statement to output the generated SQL, as shown highlighted in the
following code:

WriteLine($"ToQueryString: {categories.ToQueryString()}");

foreach (Category c in categories)

2. In Program.cs, comment out the call to the QueryingProducts method and
uncomment the call to the FilteredIncludes method.

3. Run the code, enter a minimum for units in stock like 99, and view the result (when run
with SQLite), as shown in the following output:

Enter a minimum for units in stock: 99
Using SQLite database provider.
ToQueryString: .param set @_stock_0 99

SELECT "c"."CategoryId", "c"."CategoryName", "c"."Description",
"t"."ProductId", "t"."CategoryId", "t"."UnitPrice", "t"."Discontinued",
"t"."ProductName", "t"."UnitsInStock"
FROM "Categories" AS "c"
LEFT JOIN (
 SELECT "p"."ProductId", "p"."CategoryId", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"
 FROM "Products" AS "p"
 WHERE ("p"."UnitsInStock" >= @_stock_0)
) AS "t" ON "c"."CategoryId" = "t"."CategoryId"

Chapter 10

[439]

ORDER BY "c"."CategoryId", "t"."ProductId"
Beverages has 2 products with a minimum of 99 units in stock.
 Sasquatch Ale has 111 units in stock.
 Rhönbräu Klosterbier has 125 units in stock.
...

Note the SQL parameter named @_stock_0 has been set to a minimum stock value of 99.

For SQL Server, the SQL generated is slightly different, for example, it uses square brackets
instead of double-quotes around object names, as shown in the following output:

Enter a minimum for units in stock: 99
Using SqlServer database provider.
ToQueryString: DECLARE @__stock_0 smallint = CAST(99 AS smallint);

SELECT [c].[CategoryId], [c].[CategoryName], [c].[Description], [t].[ProductId],
[t].[CategoryId], [t].[UnitPrice], [t].[Discontinued], [t].[ProductName], [t].
[UnitsInStock]
FROM [Categories] AS [c]
LEFT JOIN (
 SELECT [p].[ProductId], [p].[CategoryId], [p].[UnitPrice], [p].
[Discontinued], [p].[ProductName], [p].[UnitsInStock]
 FROM [Products] AS [p]
 WHERE [p].[UnitsInStock] >= @__stock_0
) AS [t] ON [c].[CategoryId] = [t].[CategoryId]
ORDER BY [c].[CategoryId], [t].[ProductId]

Logging EF Core using a custom logging provider
To monitor the interaction between EF Core and the database, we can enable logging. This
requires the following two tasks:

• The registering of a logging provider.
• The implementation of a logger.

Let's see an example of this in action:

1. Add a file to your project named ConsoleLogger.cs.
2. Modify the file to define two classes, one to implement ILoggerProvider and one to

implement ILogger, as shown in the following code, and note the following:
• ConsoleLoggerProvider returns an instance of ConsoleLogger. It does not need

any unmanaged resources, so the Dispose method does not do anything, but it
must exist.

• ConsoleLogger is disabled for log levels None, Trace, and Information. It is
enabled for all other log levels.

Working with Data Using Entity Framework Core

[440]

• ConsoleLogger implements its Log method by writing to Console:

using Microsoft.Extensions.Logging; // ILoggerProvider, ILogger, LogLevel

using static System.Console;

namespace Packt.Shared;

public class ConsoleLoggerProvider : ILoggerProvider
{
 public ILogger CreateLogger(string categoryName)
 {
 // we could have different logger implementations for
 // different categoryName values but we only have one
 return new ConsoleLogger();
 }

 // if your logger uses unmanaged resources,
 // then you can release them here
 public void Dispose() { }
}

public class ConsoleLogger : ILogger
{
 // if your logger uses unmanaged resources, you can
 // return the class that implements IDisposable here
 public IDisposable BeginScope<TState>(TState state)
 {
 return null;
 }

 public bool IsEnabled(LogLevel logLevel)
 {
 // to avoid overlogging, you can filter on the log level
 switch(logLevel)
 {
 case LogLevel.Trace:
 case LogLevel.Information:
 case LogLevel.None:
 return false;
 case LogLevel.Debug:
 case LogLevel.Warning:
 case LogLevel.Error:
 case LogLevel.Critical:
 default:
 return true;

Chapter 10

[441]

 };
 }

 public void Log<TState>(LogLevel logLevel,
 EventId eventId, TState state, Exception? exception,
 Func<TState, Exception, string> formatter)
 {
 // log the level and event identifier
 Write($"Level: {logLevel}, Event Id: {eventId.Id}");

 // only output the state or exception if it exists
 if (state != null)
 {
 Write($", State: {state}");
 }

 if (exception != null)
 {
 Write($", Exception: {exception.Message}");
 }
 WriteLine();
 }
}

3. At the top of Program.cs, add statements to import the namespaces needed for
logging, as shown in the following code:

using Microsoft.EntityFrameworkCore.Infrastructure;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

4. We already used the ToQueryString method to get the SQL for
FilteredIncludes so we do not need to add logging to that method. To both the
QueryingCategories and QueryingProducts methods, add statements immediately
inside the using block for the Northwind database context to get the logging factory and
register your custom console logger, as shown highlighted in the following code:

using (Northwind db = new())
{
 ILoggerFactory loggerFactory = db.GetService<ILoggerFactory>();
 loggerFactory.AddProvider(new ConsoleLoggerProvider());

5. At the top of Program.cs, comment out the call to the FilteredIncludes method and
uncomment the call to the QueryingProducts method.

6. Run the code and view the logs, which are partially shown in the following output:

Working with Data Using Entity Framework Core

[442]

...
Level: Debug, Event Id: 20000, State: Opening connection to database
'main' on server '/Users/markjprice/Code/Chapter10/WorkingWithEFCore/
Northwind.db'.
Level: Debug, Event Id: 20001, State: Opened connection to database 'main'
on server '/Users/markjprice/Code/Chapter10/WorkingWithEFCore/Northwind.
db'.
Level: Debug, Event Id: 20100, State: Executing DbCommand [Parameters=[@__
price_0='?'], CommandType='Text', CommandTimeout='30']
SELECT "p"."ProductId", "p"."CategoryId", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"
FROM "Products" AS "p"
WHERE "p"."UnitPrice" > @__price_0
ORDER BY "product"."UnitPrice" DESC
...

Filtering logs by provider-specific values
The event id values and what they mean will be specific to the .NET data provider. If we want
to know how the LINQ query has been translated into SQL statements and is executing, then
the event Id to output has an Id value of 20100:

1. Modify the Log method in ConsoleLogger to only output events with an Id of 20100, as
highlighted in the following code:

public void Log<TState>(LogLevel logLevel, EventId eventId,
 TState state, Exception? exception,
 Func<TState, Exception, string> formatter)
{
 if (eventId.Id == 20100)
 {
 // log the level and event identifier
 Write("Level: {0}, Event Id: {1}, Event: {2}",
 logLevel, eventId.Id, eventId.Name);

 // only output the state or exception if it exists
 if (state != null)
 {
 Write($", State: {state}");
 }

Your logs might vary from those shown above based on your chosen database
provider and code editor, and future improvements to EF Core. For now, note
that different events like opening a connection or executing a command have
different event ids.

Chapter 10

[443]

 if (exception != null)
 {
 Write($", Exception: {exception.Message}");
 }
 WriteLine();
 }
}

2. In Program.cs, uncomment the QueryingCategories method and comment out the other
methods so that we can monitor the SQL statements that are generated when joining
two tables.

3. Run the code, and note the following SQL statements that were logged, as
shown in the following output that has been edited for space:

Using SQLServer database provider.
Categories and how many products they have:
Level: Debug, Event Id: 20100, State: Executing DbCommand [Parameters=[],
CommandType='Text', CommandTimeout='30']
SELECT [c].[CategoryId], [c].[CategoryName], [c].[Description], [p].
[ProductId], [p].[CategoryId], [p].[UnitPrice], [p].[Discontinued], [p].
[ProductName], [p].[UnitsInStock]
FROM [Categories] AS [c]
LEFT JOIN [Products] AS [p] ON [c].[CategoryId] = [p].[CategoryId]
ORDER BY [c].[CategoryId], [p].[ProductId]
Beverages has 12 products.
Condiments has 12 products.
Confections has 13 products.
Dairy Products has 10 products.
Grains/Cereals has 7 products.
Meat/Poultry has 6 products.
Produce has 5 products.
Seafood has 12 products.

Logging with query tags
When logging LINQ queries, it can be tricky to correlate log messages in complex scenarios.
EF Core 2.2 introduced the query tags feature to help by allowing you to add SQL comments
to the log.

You can annotate a LINQ query using the TagWith method, as shown in the following code:

IQueryable<Product>? products = db.Products?
 .TagWith("Products filtered by price and sorted.")
 .Where(product => product.Cost > price)
 .OrderByDescending(product => product.Cost);

Working with Data Using Entity Framework Core

[444]

This will add an SQL comment to the log, as shown in the following output:

-- Products filtered by price and sorted.

Pattern matching with Like
EF Core supports common SQL statements including Like for pattern matching:

1. At the bottom of Program.cs, add a method named QueryingWithLike, as shown in the
following code, and note:

• We have enabled logging.
• We prompt the user to enter part of a product name and then use the

EF.Functions.Like method to search anywhere in the ProductName property.
• For each matching product, we output its name, stock, and if it is discontinued:

static void QueryingWithLike()
{
 using (Northwind db = new())
 {
 ILoggerFactory loggerFactory = db.GetService<ILoggerFactory>();
 loggerFactory.AddProvider(new ConsoleLoggerProvider());

 Write("Enter part of a product name: ");
 string? input = ReadLine();

 IQueryable<Product>? products = db.Products?
 .Where(p => EF.Functions.Like(p.ProductName, $"%{input}%"));

 if (products is null)
 {
 WriteLine("No products found.");
 return;
 }

 foreach (Product p in products)
 {
 WriteLine("{0} has {1} units in stock. Discontinued? {2}",
 p.ProductName, p.Stock, p.Discontinued);
 }
 }
}

2. In Program.cs, comment out the existing methods, and call QueryingWithLike.

Chapter 10

[445]

3. Run the code, enter a partial product name such as che, and view the result, as shown
in the following output:

Using SQLServer database provider.
Enter part of a product name: che
Level: Debug, Event Id: 20100, State: Executing DbCommand [Parameters=[@__
Format_1='?' (Size = 40)], CommandType='Text', CommandTimeout='30']
SELECT "p"."ProductId", "p"."CategoryId", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock" FROM "Products"
AS "p"
WHERE "p"."ProductName" LIKE @__Format_1
Chef Anton's Cajun Seasoning has 53 units in stock. Discontinued? False
Chef Anton's Gumbo Mix has 0 units in stock. Discontinued? True
Queso Manchego La Pastora has 86 units in stock. Discontinued? False
Gumbär Gummibärchen has 15 units in stock. Discontinued? False

Defining global filters
Northwind products can be discontinued, so it might be useful to ensure that discontinued
products are never returned in results, even if the programmer does not use Where to filter them
out in their queries:

1. In Northwind.cs, modify the OnModelCreating method to add a global filter to remove
discontinued products, as shown highlighted in the following code:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 ...

 // global filter to remove discontinued products
 modelBuilder.Entity<Product>()
 .HasQueryFilter(p => !p.Discontinued);
}

2. Run the code, enter the partial product name che, view the result, and note
that Chef Anton's Gumbo Mix is now missing, because the SQL statement generated
includes a filter for the Discontinued column, as shown highlighted in the following
output:

SELECT "p"."ProductId", "p"."CategoryId", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"

EF Core 6.0 introduces another useful function, EF.Functions.Random, that
maps to a database function returning a pseudo-random number between 0
and 1 exclusive. For example, you could multiply the random number by the
count of rows in a table to select one random row from that table.

Working with Data Using Entity Framework Core

[446]

FROM "Products" AS "p"
WHERE ("p"."Discontinued" = 0) AND "p"."ProductName" LIKE @__Format_1
Chef Anton's Cajun Seasoning has 53 units in stock. Discontinued? False
Queso Manchego La Pastora has 86 units in stock. Discontinued? False
Gumbär Gummibärchen has 15 units in stock. Discontinued? False

Loading patterns with EF Core
There are three loading patterns that are commonly used with EF Core:

• Eager loading: Load data early.
• Lazy loading: Load data automatically just before it is needed.
• Explicit loading: Load data manually.

In this section, we're going to introduce each of them.

Eager loading entities
In the QueryingCategories method, the code currently uses the Categories property to loop
through each category, outputting the category name and the number of products in that
category.

This works because when we wrote the query, we enabled eager loading by calling the Include
method for the related products.

Let's see what happens if we do not call Include:

1. Modify the query to comment out the Include method call, as shown in the following
code:

IQueryable<Category>? categories =
 db.Categories; //.Include(c => c.Products);

2. In Program.cs, comment out all methods except QueryingCategories.
3. Run the code and view the result, as shown in the following partial output:

Beverages has 0 products.
Condiments has 0 products.
Confections has 0 products.
Dairy Products has 0 products.
Grains/Cereals has 0 products.
Meat/Poultry has 0 products.
Produce has 0 products.
Seafood has 0 products.

Chapter 10

[447]

Each item in foreach is an instance of the Category class, which has a property named
Products, that is, the list of products in that category. Since the original query is only selected
from the Categories table, this property is empty for each category.

Enabling lazy loading
Lazy loading was introduced in EF Core 2.1, and it can automatically load missing related data.
To enable lazy loading, developers must:

• Reference a NuGet package for proxies.
• Configure lazy loading to use a proxy.

Let's see this in action:

1. In the WorkingWithEFCore project, add a package reference for EF Core proxies, as
shown in the following markup:

<PackageReference
 Include="Microsoft.EntityFrameworkCore.Proxies"
 Version="6.0.0" />

2. Build the project to restore packages.
3. Open Northwind.cs, and call an extension method to use lazy loading proxies at

the top of the OnConfiguring method, as shown highlighted in the following code:
protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
{
 optionsBuilder.UseLazyLoadingProxies();

Now, every time the loop enumerates, and an attempt is made to read the Products
property, the lazy loading proxy will check if they are loaded. If not, it will load them
for us "lazily" by executing a SELECT statement to load just that set of products for the
current category, and then the correct count will be returned to the output.

4. Run the code and note that the product counts are now correct. But you will see
that the problem with lazy loading is that multiple round trips to the database server
are required to eventually fetch all the data, as shown in the following partial output:

Categories and how many products they have:
Level: Debug, Event Id: 20100, State: Executing DbCommand [Parameters=[],
CommandType='Text', CommandTimeout='30']
SELECT "c"."CategoryId", "c"."CategoryName", "c"."Description" FROM
"Categories" AS "c"
Level: Debug, Event Id: 20100, State: Executing DbCommand [Parameters=[@
p_0='?'], CommandType='Text', CommandTimeout='30']
SELECT "p"."ProductId", "p"."CategoryId", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"

Working with Data Using Entity Framework Core

[448]

FROM "Products" AS "p"
WHERE ("p"."Discontinued" = 0) AND ("p"."CategoryId" = @ p_0)
Beverages has 11 products.
Level: Debug, Event ID: 20100, State: Executing DbCommand [Parameters=[@
p_0='?'], CommandType='Text', CommandTimeout='30']
SELECT "p"."ProductId", "p"."CategoryId", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"
FROM "Products" AS "p"
WHERE ("p"."Discontinued" = 0) AND ("p"."CategoryId" = @ p_0)
Condiments has 11 products.

Explicit loading entities
Another type of loading is explicit loading. It works in a similar way to lazy loading, with the
difference being that you are in control of exactly what related data is loaded and when:

1. At the top of Program.cs, import the change tracking namespace to enable us to use the
CollectionEntry class to manually load related entities, as shown in the following code:

using Microsoft.EntityFrameworkCore.ChangeTracking; // CollectionEntry

2. In the QueryingCategories method, modify the statements to disable lazy
loading and then prompt the user as to whether they want to enable eager loading and
explicit loading, as shown in the following code:

IQueryable<Category>? categories;
 // = db.Categories;
 // .Include(c => c.Products);

db.ChangeTracker.LazyLoadingEnabled = false;

Write("Enable eager loading? (Y/N): ");
bool eagerloading = (ReadKey().Key == ConsoleKey.Y);
bool explicitloading = false;
WriteLine();

if (eagerloading)
{
 categories = db.Categories?.Include(c => c.Products);
}
else
{
 categories = db.Categories;

 Write("Enable explicit loading? (Y/N): ");
 explicitloading = (ReadKey().Key == ConsoleKey.Y);
 WriteLine();
}

Chapter 10

[449]

3. In the foreach loop, before the WriteLine method call, add statements to check if
explicit loading is enabled, and if so, prompt the user as to whether they want to
explicitly load each individual category, as shown in the following code:

if (explicitloading)
{
 Write($"Explicitly load products for {c.CategoryName}? (Y/N): ");
 ConsoleKeyInfo key = ReadKey();
 WriteLine();
 if (key.Key == ConsoleKey.Y)
 {
 CollectionEntry<Category, Product> products =
 db.Entry(c).Collection(c2 => c2.Products);
 if (!products.IsLoaded) products.Load();
 }
}
WriteLine($"{c.CategoryName} has {c.Products.Count} products.");

4. Run the code:
1. Press N to disable eager loading.
2. Then press Y to enable explicit loading.
3. For each category, press Y or N to load its products as you wish.

Categories and how many products they have:
Enable eager loading? (Y/N): n
Enable explicit loading? (Y/N): y
Level: Debug, Event Id: 20100, State: Executing DbCommand [Parameters=[],
CommandType='Text', CommandTimeout='30']
SELECT "c"."CategoryId", "c"."CategoryName", "c"."Description" FROM
"Categories" AS "c"
Explicitly load products for Beverages? (Y/N): y
Level: Debug, Event Id: 20100, State: Executing DbCommand [Parameters=[@
p_0='?'], CommandType='Text', CommandTimeout='30']
SELECT "p"."ProductId", "p"."CategoryId", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"
FROM "Products" AS "p"
WHERE ("p"."Discontinued" = 0) AND ("p"."CategoryId" = @ p_0)
Beverages has 11 products.
Explicitly load products for Condiments? (Y/N): n
Condiments has 0 products.

I chose to load products for only two of the eight categories,
Beverages and Seafood, as shown in the following output that has
been edited for space:

Working with Data Using Entity Framework Core

[450]

Explicitly load products for Confections? (Y/N): n
Confections has 0 products.
Explicitly load products for Dairy Products? (Y/N): n
Dairy Products has 0 products.
Explicitly load products for Grains/Cereals? (Y/N): n
Grains/Cereals has 0 products.
Explicitly load products for Meat/Poultry? (Y/N): n
Meat/Poultry has 0 products.
Explicitly load products for Produce? (Y/N): n
Produce has 0 products.
Explicitly load products for Seafood? (Y/N): y
Level: Debug, Event ID: 20100, State: Executing DbCommand [Parameters=[@
p_0='?'], CommandType='Text', CommandTimeout='30']
SELECT "p"."ProductId", "p"."CategoryId", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"
FROM "Products" AS "p"
WHERE ("p"."Discontinued" = 0) AND ("p"."CategoryId" = @ p_0)
Seafood has 12 products.

Manipulating data with EF Core
Inserting, updating, and deleting entities using EF Core is an easy task to accomplish.

DbContext maintains change tracking automatically, so the local entities can have multiple
changes tracked, including adding new entities, modifying existing entities, and removing
entities. When you are ready to send those changes to the underlying database, call the
SaveChanges method. The number of entities successfully changed will be returned.

Inserting entities
Let's start by looking at how to add a new row to a table:

1. In Program.cs, create a new method named AddProduct, as shown in the following code:
static bool AddProduct(
 int categoryId, string productName, decimal? price)
{
 using (Northwind db = new())
 {
 Product p = new()

Good Practice: Carefully consider which loading pattern is best for your code.
Lazy loading could literally make you a lazy database developer! Read more
about loading patterns at the following link: https://docs.microsoft.com/
en-us/ef/core/querying/related-data

https://docs.microsoft.com/en-us/ef/core/querying/related-data
https://docs.microsoft.com/en-us/ef/core/querying/related-data

Chapter 10

[451]

 {
 CategoryId = categoryId,
 ProductName = productName,
 Cost = price
 };

 // mark product as added in change tracking
 db.Products.Add(p);

 // save tracked change to database
 int affected = db.SaveChanges();
 return (affected == 1);
 }
}

2. In Program.cs, create a new method named ListProducts that outputs the Id,
name, cost, stock, and discontinued properties of each product sorted with the costliest
first, as shown in the following code:

static void ListProducts()
{
 using (Northwind db = new())
 {
 WriteLine("{0,-3} {1,-35} {2,8} {3,5} {4}",
 "Id", "Product Name", "Cost", "Stock", "Disc.");

 foreach (Product p in db.Products
 .OrderByDescending(product => product.Cost))
 {
 WriteLine("{0:000} {1,-35} {2,8:$#,##0.00} {3,5} {4}",
 p.ProductId, p.ProductName, p.Cost, p.Stock, p.Discontinued);
 }
 }
}

Remember that 1,-35 means left-align argument 1 within a 35-character-wide column
and 3,5 means right-align argument 3 within a 5-character-wide column.

3. In Program.cs, comment out previous method calls, and then call AddProduct and
ListProducts, as shown in the following code:

// QueryingCategories();
// FilteredIncludes();
// QueryingProducts();
// QueryingWithLike();

if (AddProduct(categoryId: 6,
 productName: "Bob's Burgers", price: 500M))

Working with Data Using Entity Framework Core

[452]

{
 WriteLine("Add product successful.");
}

ListProducts();

4. Run the code, view the result, and note the new product has been added, as
shown in the following partial output:

Add product successful.
Id Product Name Cost Stock Disc.
078 Bob's Burgers $500.00 False
038 Côte de Blaye $263.50 17 False
020 Sir Rodney's Marmalade $81.00 40 False
...

Updating entities
Now, let's modify an existing row in a table:

1. In Program.cs, add a method to increase the price of the first product with a name that
begins with a specified value (we'll use Bob in our example) by a specified amount like
$20, as shown in the following code:

static bool IncreaseProductPrice(
 string productNameStartsWith, decimal amount)
{
 using (Northwind db = new())
 {
 // get first product whose name starts with name
 Product updateProduct = db.Products.First(
 p => p.ProductName.StartsWith(productNameStartsWith));

 updateProduct.Cost += amount;

 int affected = db.SaveChanges();
 return (affected == 1);
 }
}

2. In Program.cs, comment out the whole if block that calls AddProduct, and add a call
to IncreaseProductPrice before the call to list products, as shown highlighted in the
following code:

/*
if (AddProduct(categoryId: 6,
 productName: "Bob's Burgers", price: 500M))
{

Chapter 10

[453]

 WriteLine("Add product successful.");
}
*/

if (IncreaseProductPrice(
 productNameStartsWith: "Bob", amount: 20M))
{
 WriteLine("Update product price successful.");
}

ListProducts();

3. Run the code, view the result, and note that the existing entity for Bob's Burgers
has increased in price by $20, as shown in the following partial output:

Update product price successful.
Id Product Name Cost Stock Disc.
078 Bob's Burgers $520.00 False
038 Côte de Blaye $263.50 17 False
020 Sir Rodney's Marmalade $81.00 40 False
...

Deleting entities
You can remove individual entities with the Remove method. RemoveRange is more efficient
when you want to delete multiple entities.

Now let's see how to delete rows from a table:

1. At the bottom of Program.cs, add a method to delete all products with a name that
begins with a specified value (Bob in our example), as shown in the following code:

static int DeleteProducts(string productNameStartsWith)
{
 using (Northwind db = new())
 {
 IQueryable<Product>? products = db.Products?.Where(
 p => p.ProductName.StartsWith(productNameStartsWith));

 if (products is null)
 {
 WriteLine("No products found to delete.");
 return 0;
 }
 else
 {
 db.Products.RemoveRange(products);

Working with Data Using Entity Framework Core

[454]

 }

 int affected = db.SaveChanges();
 return affected;
 }
}

2. In Program.cs, comment out the whole if statement block that calls
IncreaseProductPrice, and add a call to DeleteProducts, as shown in the following
code:

int deleted = DeleteProducts(productNameStartsWith: "Bob");
WriteLine($"{deleted} product(s) were deleted.");

3. Run the code and view the result, as shown in the following output:

1 product(s) were deleted.

If multiple product names started with Bob, then they are all deleted. As an optional challenge,
modify the statements to add three new products that start with Bob and then delete them.

Pooling database contexts
The DbContext class is disposable and is designed following the single-unit-of-work principle.
In the previous code examples, we created all the DbContext-derived Northwind instances in a
using block so that Dispose is properly called at the end of each unit of work.

A feature of ASP.NET Core that is related to EF Core is that it makes your code more efficient
by pooling database contexts when building websites and services. This allows you to create
and dispose of as many DbContext-derived objects as you want, knowing that your code is still
as efficient as possible.

Working with transactions
Every time you call the SaveChanges method, an implicit transaction is started so that if
something goes wrong, it will automatically roll back all the changes. If the multiple changes
within the transaction succeed, then the transaction and all changes are committed.

Transactions maintain the integrity of your database by applying locks to prevent reads and
writes while a sequence of changes is occurring.

Transactions are ACID, which is an acronym explained in the following list:

• A is for atomic. Either all the operations in the transaction commit, or none of them do.
• C is for consistent. The state of the database before and after a transaction is consistent.

This is dependent on your code logic; for example, when transferring money between
bank accounts, it is up to your business logic to ensure that if you debit $100 in one
account, you credit $100 in the other account.

Chapter 10

[455]

• I is for isolated. During a transaction, changes are hidden from other processes. There
are multiple isolation levels that you can pick from (refer to the following table). The
stronger the level, the better the integrity of the data. However, more locks must be
applied, which will negatively affect other processes. Snapshot is a special case because
it creates multiple copies of rows to avoid locks, but this will increase the size of your
database while transactions occur.

• D is for durable. If a failure occurs during a transaction, it can be recovered. This is
often implemented as a two-phase commit and transaction logs. Once the transaction is
committed it is guaranteed to endure even if there are subsequent errors. The opposite
of durable is volatile.

Controlling transactions using isolation levels
A developer can control transactions by setting an isolation level, as described in the
following table:

Isolation level Lock(s) Integrity problems allowed
ReadUncommitted None Dirty reads, nonrepeatable reads,

and phantom data
ReadCommitted When editing, it applies read lock(s) to

block other users from reading the record(s)
until the transaction ends

Nonrepeatable reads and
phantom data

RepeatableRead When reading, it applies edit lock(s) to
block other users from editing the record(s)
until the transaction ends

Phantom data

Serializable Applies key-range locks to prevent any
action that would affect the results,
including inserts and deletes

None

Snapshot None None

Defining an explicit transaction
You can control explicit transactions using the Database property of the database context:

1. In Program.cs, import the EF Core storage namespace to use the IDbContextTransaction
interface, as shown in the following code:

using Microsoft.EntityFrameworkCore.Storage; // IDbContextTransaction

2. In the DeleteProducts method, after the instantiation of the db variable, add statements
to start an explicit transaction and output its isolation level. At the bottom of the
method, commit the transaction, and close the brace, as shown highlighted in the
following code:

static int DeleteProducts(string name)
{

Working with Data Using Entity Framework Core

[456]

 using (Northwind db = new())
 {
 using (IDbContextTransaction t = db.Database.BeginTransaction())
 {
 WriteLine("Transaction isolation level: {0}",
 arg0: t.GetDbTransaction().IsolationLevel);

 IQueryable<Product>? products = db.Products?.Where(
 p => p.ProductName.StartsWith(name));

 if (products is null)
 {
 WriteLine("No products found to delete.");
 return 0;
 }
 else
 {
 db.Products.RemoveRange(products);
 }

 int affected = db.SaveChanges();
 t.Commit();
 return affected;
 }
 }
}

3. Run the code and view the result using SQL Server, as shown in the following
output:

Transaction isolation level: ReadCommitted

4. Run the code and view the result using SQLite, as shown in the following
output:

Transaction isolation level: Serializable

Code First EF Core models
Sometimes you will not have an existing database. Instead, you define the EF Core model as
Code First, and then EF Core can generate a matching database using create and drop APIs.

Good Practice: The create and drop APIs should only be used during
development. Once you release the app, you do not want it to delete a
production database!

Chapter 10

[457]

For example, we might need to create an application for managing students and courses for an
academy. One student can sign up to attend multiple courses. One course can be attended by
multiple students. This is an example of a many-to-many relationship between students and
courses.

Let's model this example:

1. Use your preferred code editor to add a new console app named CoursesAndStudents to
the Chapter10 solution/workspace.

2. In Visual Studio, set the startup project for the solution to the current selection.
3. In Visual Studio Code, select CoursesAndStudents as the active OmniSharp

project.
4. In the CoursesAndStudents project, add package references for the following

packages:
• Microsoft.EntityFrameworkCore.Sqlite

• Microsoft.EntityFrameworkCore.SqlServer

• Microsoft.EntityFrameworkCore.Design

5. Build the CoursesAndStudents project to restore packages.
6. Add classes named Academy.cs, Student.cs, and Course.cs.
7. Modify Student.cs, and note that it is a POCO (plain old CLR object) with no

attributes decorating the class, as shown in the following code:
namespace CoursesAndStudents;

public class Student
{
 public int StudentId { get; set; }
 public string? FirstName { get; set; }
 public string? LastName { get; set; }

 public ICollection<Course>? Courses { get; set; }
}

8. Modify Course.cs, and note that we have decorated the Title property with
some attributes to provide more information to the model, as shown in the following
code:

using System.ComponentModel.DataAnnotations;

namespace CoursesAndStudents;

public class Course
{
 public int CourseId { get; set; }

Working with Data Using Entity Framework Core

[458]

 [Required]
 [StringLength(60)]
 public string? Title { get; set; }

 public ICollection<Student>? Students { get; set; }
}

9. Modify Academy.cs, as shown in the following code:
using Microsoft.EntityFrameworkCore;

using static System.Console;

namespace CoursesAndStudents;

public class Academy : DbContext
{
 public DbSet<Student>? Students { get; set; }
 public DbSet<Course>? Courses { get; set; }

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 string path = Path.Combine(
 Environment.CurrentDirectory, "Academy.db");

 WriteLine($"Using {path} database file.");

 optionsBuilder.UseSqlite($"Filename={path}");

 // optionsBuilder.UseSqlServer(@"Data Source=.;Initial
Catalog=Academy;Integrated Security=true;MultipleActiveResultSets=true;");
 }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 // Fluent API validation rules

 modelBuilder.Entity<Student>()
 .Property(s => s.LastName).HasMaxLength(30).IsRequired();

 // populate database with sample data

 Student alice = new() { StudentId = 1,
 FirstName = "Alice", LastName = "Jones" };

Chapter 10

[459]

 Student bob = new() { StudentId = 2,
 FirstName = "Bob", LastName = "Smith" };

 Student cecilia = new() { StudentId = 3,
 FirstName = "Cecilia", LastName = "Ramirez" };

 Course csharp = new()
 {
 CourseId = 1,
 Title = "C# 10 and .NET 6",
 };

 Course webdev = new()
 {
 CourseId = 2,
 Title = "Web Development",
 };

 Course python = new()
 {
 CourseId = 3,
 Title = "Python for Beginners",
 };

 modelBuilder.Entity<Student>()
 .HasData(alice, bob, cecilia);

 modelBuilder.Entity<Course>()
 .HasData(csharp, webdev, python);

 modelBuilder.Entity<Course>()
 .HasMany(c => c.Students)
 .WithMany(s => s.Courses)
 .UsingEntity(e => e.HasData(
 // all students signed up for C# course
 new { CoursesCourseId = 1, StudentsStudentId = 1 },
 new { CoursesCourseId = 1, StudentsStudentId = 2 },
 new { CoursesCourseId = 1, StudentsStudentId = 3 },
 // only Bob signed up for Web Dev
 new { CoursesCourseId = 2, StudentsStudentId = 2 },
 // only Cecilia signed up for Python
 new { CoursesCourseId = 3, StudentsStudentId = 3 }
));
 }
}

Working with Data Using Entity Framework Core

[460]

10. In Program.cs, at the top of the file, import the namespace for EF Core and working
with tasks, and statically import Console, as shown in the following code:

using Microsoft.EntityFrameworkCore; // for GenerateCreateScript()
using CoursesAndStudents; // Academy

using static System.Console;

11. In Program.cs, add statements to create an instance of the Academy database
context and use it to delete the database if it exists, create the database from the model
and output the SQL script it uses, and then enumerate the students and their courses, as
shown in the following code:

using (Academy a = new())
{
 bool deleted = await a.Database.EnsureDeletedAsync();
 WriteLine($"Database deleted: {deleted}");

 bool created = await a.Database.EnsureCreatedAsync();
 WriteLine($"Database created: {created}");

 WriteLine("SQL script used to create database:");
 WriteLine(a.Database.GenerateCreateScript());

 foreach (Student s in a.Students.Include(s => s.Courses))
 {
 WriteLine("{0} {1} attends the following {2} courses:",
 s.FirstName, s.LastName, s.Courses.Count);

 foreach (Course c in s.Courses)
 {
 WriteLine($" {c.Title}");
 }
 }
}

12. Run the code, and note that the first time you run the code it will not need to
delete the database because it does not exist yet, as shown in the following output:

Using C:\Code\Chapter10\CoursesAndStudents\bin\Debug\net6.0\Academy.db
database file.

Good Practice: Use an anonymous type to supply data
for the intermediate table in a many-to-many relationship.
The property names follow the naming convention
NavigationPropertyNamePropertyName, for example, Courses is
the navigation property name and CourseId is the property name so
CoursesCourseId will be the property name of the anonymous type.

Chapter 10

[461]

Database deleted: False
Database created: True
SQL script used to create database:
CREATE TABLE "Courses" (
 "CourseId" INTEGER NOT NULL CONSTRAINT "PK_Courses" PRIMARY KEY
AUTOINCREMENT,
 "Title" TEXT NOT NULL
);

CREATE TABLE "Students" (
 "StudentId" INTEGER NOT NULL CONSTRAINT "PK_Students" PRIMARY KEY
AUTOINCREMENT,
 "FirstName" TEXT NULL,
 "LastName" TEXT NOT NULL
);

CREATE TABLE "CourseStudent" (
 "CoursesCourseId" INTEGER NOT NULL,
 "StudentsStudentId" INTEGER NOT NULL,
 CONSTRAINT "PK_CourseStudent" PRIMARY KEY ("CoursesCourseId",
"StudentsStudentId"),
 CONSTRAINT "FK_CourseStudent_Courses_CoursesCourseId" FOREIGN KEY
("CoursesCourseId") REFERENCES "Courses" ("CourseId") ON DELETE CASCADE,
 CONSTRAINT "FK_CourseStudent_Students_StudentsStudentId" FOREIGN
KEY ("StudentsStudentId") REFERENCES "Students" ("StudentId") ON DELETE
CASCADE
);

INSERT INTO "Courses" ("CourseId", "Title")
VALUES (1, 'C# 10 and .NET 6');

INSERT INTO "Courses" ("CourseId", "Title")
VALUES (2, 'Web Development');

INSERT INTO "Courses" ("CourseId", "Title")
VALUES (3, 'Python for Beginners');

INSERT INTO "Students" ("StudentId", "FirstName", "LastName")
VALUES (1, 'Alice', 'Jones');

INSERT INTO "Students" ("StudentId", "FirstName", "LastName")
VALUES (2, 'Bob', 'Smith');

INSERT INTO "Students" ("StudentId", "FirstName", "LastName")
VALUES (3, 'Cecilia', 'Ramirez');

Working with Data Using Entity Framework Core

[462]

INSERT INTO "CourseStudent" ("CoursesCourseId", "StudentsStudentId")
VALUES (1, 1);

INSERT INTO "CourseStudent" ("CoursesCourseId", "StudentsStudentId")
VALUES (1, 2);

INSERT INTO "CourseStudent" ("CoursesCourseId", "StudentsStudentId")
VALUES (2, 2);

INSERT INTO "CourseStudent" ("CoursesCourseId", "StudentsStudentId")
VALUES (1, 3);

INSERT INTO "CourseStudent" ("CoursesCourseId", "StudentsStudentId")
VALUES (3, 3);

CREATE INDEX "IX_CourseStudent_StudentsStudentId" ON "CourseStudent"
("StudentsStudentId");

Alice Jones attends the following 1 course(s):
 C# 10 and .NET 6
Bob Smith attends the following 2 course(s):
 C# 10 and .NET 6
 Web Development
Cecilia Ramirez attends the following 2 course(s):
 C# 10 and .NET 6
 Python for Beginners

Note the following:
• The Title column is NOT NULL because the model was decorated with

[Required].
• The LastName column is NOT NULL because the model used IsRequired().
• An intermediate table named CourseStudent was created to hold information

about which students attend which courses.

Chapter 10

[463]

13. Use Visual Studio Server Explorer or SQLiteStudio to connect to the Academy database
and view the tables, as shown in Figure 10.6:

Figure 10.6: Viewing the Academy database in SQL Server using Visual Studio 2022 Server Explorer

Understanding migrations
After publishing a project that uses a database, it is likely that you will later need to change
your entity data model and therefore the database structure. At that point, you should not use
the Ensure methods. Instead, you need to use a system that allows you to incrementally update
the database schema while preserving any existing data in the database. EF Core migrations
are that system.

Migrations get complex fast, so are beyond the scope of this book. You can read about them
at the following link: https://docs.microsoft.com/en-us/ef/core/managing-schemas/
migrations/

https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/

Working with Data Using Entity Framework Core

[464]

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore this chapter's topics with deeper research.

Exercise 10.1 – Test your knowledge
Answer the following questions:

1. What type would you use for the property that represents a table, for example, the
Products property of a database context?

2. What type would you use for the property that represents a one-to-many relationship,
for example, the Products property of a Category entity?

3. What is the EF Core convention for primary keys?
4. When might you use an annotation attribute in an entity class?
5. Why might you choose the Fluent API in preference to annotation attributes?
6. What does a transaction isolation level of Serializable mean?
7. What does the DbContext.SaveChanges() method return?
8. What is the difference between eager loading and explicit loading?
9. How should you define an EF Core entity class to match the following table?

CREATE TABLE Employees(
 EmpId INT IDENTITY,
 FirstName NVARCHAR(40) NOT NULL,
 Salary MONEY
)

10. What benefit do you get from declaring entity navigation properties as virtual?

Exercise 10.2 – Practice exporting data using
different serialization formats
In the Chapter10 solution/workspace, create a console application named Exercise02 that
queries the Northwind database for all the categories and products, and then serializes the data
using at least three formats of serialization available to .NET. Which format of serialization uses
the least number of bytes?

Exercise 10.3 – Explore topics
Use the links on the following page to learn more detail about the topics covered in this
chapter:

Chapter 10

[465]

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-10---
working-with-data-using-entity-framework-core

Exercise 10.4 – Explore NoSQL databases
This chapter focused on RDBMSs such as SQL Server and SQLite. If you wish to learn more
about NoSQL databases, such as Cosmos DB and MongoDB, and how to use them with EF
Core, then I recommend the following links:

• Welcome to Azure Cosmos DB: https://docs.microsoft.com/en-us/azure/cosmos-db/
introduction

• Use NoSQL databases as a persistence infrastructure: https://docs.microsoft.
com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-
patterns/nosql-database-persistence-infrastructure

• Document Database Providers for Entity Framework Core: https://github.com/
BlueshiftSoftware/EntityFrameworkCore

Summary
In this chapter, you learned how to connect to an existing database, how to execute a simple
LINQ query and process the results, how to use filtered includes, how to add, modify, and
delete data, and how to build entity data models for an existing database, such as Northwind.
You also learned how to define a Code First model and use it to create a new database and
populate it with data.

In the next chapter, you will learn how to write more advanced LINQ queries to select, filter,
sort, join, and group.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-10---working-with-data-using-entity-framework-core
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-10---working-with-data-using-entity-framework-core
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/nosql-database-persistence-infrastructure
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/nosql-database-persistence-infrastructure
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/nosql-database-persistence-infrastructure
https://github.com/BlueshiftSoftware/EntityFrameworkCore
https://github.com/BlueshiftSoftware/EntityFrameworkCore

[467]

11
Querying and Manipulating

Data Using LINQ
This chapter is about Language INtegrated Query (LINQ) expressions. LINQ is a set of
language extensions that add the ability to work with sequences of items and then filter, sort,
and project them into different outputs.

This chapter will cover the following topics:

• Writing LINQ expressions
• Working with sets using LINQ
• Using LINQ with EF Core
• Sweetening LINQ syntax with syntactic sugar
• Using multiple threads with parallel LINQ
• Creating your own LINQ extension methods
• Working with LINQ to XML

Writing LINQ expressions
Although we wrote a few LINQ expressions in Chapter 10, Working with Data Using Entity
Framework Core, they weren't the focus, and so I didn't properly explain how LINQ works, so
let's now take time to properly understand them.

What makes LINQ?
LINQ has several parts; some are required, and some are optional:

• Extension methods (required): These include examples such as Where, OrderBy, and
Select. These are what provide the functionality of LINQ.

Querying and Manipulating Data Using LINQ

[468]

• LINQ providers (required): These include LINQ to Objects for processing in-memory
objects, LINQ to Entities for processing data stored in external databases and modeled
with EF Core, and LINQ to XML for processing data stored as XML. These providers
are what execute LINQ expressions in a way specific to different types of data.

• Lambda expressions (optional): These can be used instead of named methods to
simplify LINQ queries, for example, for the conditional logic of the Where method for
filtering.

• LINQ query comprehension syntax (optional): These include C# keywords like from,
in, where, orderby, descending, and select. These are aliases for some of the LINQ
extension methods, and their use can simplify the queries you write, especially if
you already have experience with other query languages, such as Structured Query
Language (SQL).

When programmers are first introduced to LINQ, they often believe that LINQ query
comprehension syntax is LINQ, but ironically, that is one of the parts of LINQ that is optional!

Building LINQ expressions with the Enumerable
class
The LINQ extension methods, such as Where and Select, are appended by the Enumerable static
class to any type, known as a sequence, that implements IEnumerable<T>.

For example, an array of any type implements the IEnumerable<T> class, where T is the type of
item in the array. This means that all arrays support LINQ to query and manipulate them.

All generic collections, such as List<T>, Dictionary<TKey, TValue>, Stack<T>, and Queue<T>,
implement IEnumerable<T>, so they can be queried and manipulated with LINQ too.

Enumerable defines more than 50 extension methods, as summarized in the following table:

Method(s) Description
First, FirstOrDefault, Last,
LastOrDefault

Get the first or last item in the sequence or throw an exception, or
return the default value for the type, for example, 0 for an int and
null for a reference type, if there is not a first or last item.

Where Return a sequence of items that match a specified filter.
Single, SingleOrDefault Return an item that matches a specific filter or throw an exception,

or return the default value for the type if there is not exactly one
match.

ElementAt,
ElementAtOrDefault

Return an item at a specified index position or throw an exception,
or return the default value for the type if there is not an item at
that position. New in .NET 6 are overloads that can be passed an
Index instead of an int, which is more efficient when working
with Span<T> sequences.

Select, SelectMany Project items into a different shape, that is, a different type, and
flatten a nested hierarchy of items.

Chapter 11

[469]

OrderBy, OrderByDescending,
ThenBy, ThenByDescending

Sort items by a specified field or property.

Reverse Reverse the order of the items.
GroupBy, GroupJoin, Join Group and/or join two sequences.
Skip, SkipWhile Skip a number of items; or skip while an expression is true.
Take, TakeWhile Take a number of items; or take while an expression is true.

New in .NET 6 is a Take overload that can be passed a Range, for
example, Take(range: 3..^5) meaning take a subset starting
3 items in from the start and ending 5 items in from the end, or
instead of Skip(4) you could use Take(4..).

Aggregate, Average, Count,
LongCount, Max, Min, Sum

Calculate aggregate values.

TryGetNonEnumeratedCount Count() checks if a Count property is implemented on the
sequence and returns its value, or it enumerates the entire
sequence to count its items. New in .NET 6 is this method that
only checks for Count and if it is missing it returns false and sets
the out parameter to 0 to avoid a potentially poor-performing
operation.

All, Any, Contains Return true if all or any of the items match the filter, or if the
sequence contains a specified item.

Cast Cast items into a specified type. It is useful to convert non-generic
objects to a generic type in scenarios where the compiler would
otherwise complain.

OfType Remove items that do not match a specified type.
Distinct Remove duplicate items.
Except, Intersect, Union Perform operations that return sets. Sets cannot have duplicate

items. Although the inputs can be any sequence and so the inputs
can have duplicates, the result is always a set.

Chunk Divide a sequence into sized batches.
Append, Concat, Prepend Perform sequence-combining operations.
Zip Perform a match operation on two sequences based on the

position of items, for example, the item at position 1 in the first
sequence matches the item at position 1 in the second sequence.
New in .NET 6 is a match operation on three sequences.
Previously you would have had to run the two sequences
overload twice to achieve the same goal.

ToArray, ToList, ToDictionary,
ToHashSet, ToLookup

Convert the sequence into an array or collection. These are the
only extension methods that execute the LINQ expression.

DistinctBy, ExceptBy,
IntersectBy, UnionBy, MinBy,
MaxBy

New in .NET 6 are the By extension methods. They allow the
comparison to be performed on a subset of the item rather than
the entire item. For example, instead of removing duplicates by
comparing an entire Person object, you could remove duplicates
by comparing just their LastName and DateOfBirth.

Querying and Manipulating Data Using LINQ

[470]

The Enumerable class also has some methods that are not extension methods, as shown in the
following table:

Method Description
Empty<T> Returns an empty sequence of the specified type T. It is useful for passing an empty

sequence to a method that requires an IEnumerable<T>.
Range Returns a sequence of integers from the start value with count items. For example,

Enumerable.Range(start: 5, count: 3) would contain the integers 5, 6, and 7.
Repeat Returns a sequence that contains the same element repeated count times. For example,

Enumerable.Repeat(element: "5", count: 3) would contain the string values
"5", "5", and "5".

Understanding deferred execution
LINQ uses deferred execution. It is important to understand that calling most of these
extension methods does not execute the query and get the results. Most of these extension
methods return a LINQ expression that represents a question, not an answer. Let's explore:

1. Use your preferred code editor to create a new solution/workspace named Chapter11.
2. Add a console app project, as defined in the following list:

1. Project template: Console Application / console
2. Workspace/solution file and folder: Chapter11
3. Project file and folder: LinqWithObjects

3. In Program.cs, delete the existing code and statically import Console.
4. Add statements to define a sequence of string values for people who work in an office,

as shown in the following code:
// a string array is a sequence that implements IEnumerable<string>
string[] names = new[] { "Michael", "Pam", "Jim", "Dwight",
 "Angela", "Kevin", "Toby", "Creed" };

WriteLine("Deferred execution");

// Question: Which names end with an M?
// (written using a LINQ extension method)
var query1 = names.Where(name => name.EndsWith("m"));

// Question: Which names end with an M?
// (written using LINQ query comprehension syntax)
var query2 = from name in names where name.EndsWith("m") select name;

5. To ask the question and get the answer, i.e. execute the query, you must materialize it
by either calling one of the "To" methods like ToArray or ToLookup or by enumerating
the query, as shown in the following code:

Chapter 11

[471]

// Answer returned as an array of strings containing Pam and Jim
string[] result1 = query1.ToArray();

// Answer returned as a list of strings containing Pam and Jim
List<string> result2 = query2.ToList();

// Answer returned as we enumerate over the results
foreach (string name in query1)
{
 WriteLine(name); // outputs Pam
 names[2] = "Jimmy"; // change Jim to Jimmy
 // on the second iteration Jimmy does not end with an M
}

6. Run the console app and note the result, as shown in the following output:

Deferred execution
Pam

Due to deferred execution, after outputting the first result, Pam, if the original array values
change, then by the time we loop back around, there are no more matches because Jim has
become Jimmy and does not end with an M, so only Pam is outputted.

Before we get too deep into the weeds, let's slow down and look at some common LINQ
extension methods and how to use them, one at a time.

Filtering entities with Where
The most common reason for using LINQ is to filter items in a sequence using the Where
extension method. Let's explore filtering by defining a sequence of names and then applying
LINQ operations to it:

1. In the project file, comment out the element that enables implicit usings, as shown
highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <!--<ImplicitUsings>enable</ImplicitUsings>-->
 </PropertyGroup>

</Project>

Querying and Manipulating Data Using LINQ

[472]

2. In Program.cs, attempt to call the Where extension method on the array of names, as
shown in the following code:

WriteLine("Writing queries");

var query = names.W

3. As you try to type the Where method, note that it is missing from the IntelliSense list of
members of a string array, as shown in Figure 11.1:

Figure 11.1: IntelliSense with the Where extension method missing

This is because Where is an extension method. It does not exist on the array type.
To make the Where extension method available, we must import the System.Linq
namespace. This is implicitly imported by default in new .NET 6 projects, but we
disabled it.

4. In the project file, uncomment out the element that enables implicit usings.
5. Retype the Where method and note that the IntelliSense list now includes the extension

methods added by the Enumerable class, as shown in Figure 11.2:

Figure 11.2: IntelliSense showing LINQ Enumerable extension methods now

6. As you type the parentheses for the Where method, IntelliSense tells us that to call Where,
we must pass in an instance of a Func<string, bool> delegate.

Chapter 11

[473]

7. Enter an expression to create a new instance of a Func<string, bool> delegate, and for
now note that we have not yet supplied a method name because we will define it in the
next step, as shown in the following code:

var query = names.Where(new Func<string, bool>())

The Func<string, bool> delegate tells us that for each string variable passed to the method,
the method must return a bool value. If the method returns true, it indicates that we should
include the string in the results, and if the method returns false, it indicates that we should
exclude it.

Targeting a named method
Let's define a method that only includes names that are longer than four characters:

1. At the bottom of Program.cs, define a method that will include only names longer than
four characters, as shown in the following code:

static bool NameLongerThanFour(string name)
{
 return name.Length > 4;
}

2. Above the NameLongerThanFour method, pass the method's name into the Func<string,
bool> delegate, and then loop through the query items, as shown highlighted in the
following code:

var query = names.Where(
 new Func<string, bool>(NameLongerThanFour));

foreach (string item in query)
{
 WriteLine(item);
}

3. Run the code and view the results, noting that only names longer than four letters are
listed, as shown in the following output:

Writing queries
Michael
Dwight
Angela
Kevin
Creed

Querying and Manipulating Data Using LINQ

[474]

Simplifying the code by removing the explicit
delegate instantiation
We can simplify the code by deleting the explicit instantiation of the Func<string, bool>
delegate because the C# compiler can instantiate the delegate for us:

1. To help you learn by seeing progressively improved code, copy and paste the query
2. Comment out the first example, as shown in the following code:

// var query = names.Where(
// new Func<string, bool>(NameLongerThanFour));

3. Modify the copy to remove the explicit instantiation of the delegate, as shown in the
following code:

var query = names.Where(NameLongerThanFour);

4. Run the code and note that it has the same behavior.

Targeting a lambda expression
We can simplify our code even further using a lambda expression in place of a named method.

Although it can look complicated at first, a lambda expression is simply a nameless function. It
uses the => (read as "goes to") symbol to indicate the return value:

1. Copy and paste the query, comment the second example, and modify the query, as
shown in the following code:

var query = names.Where(name => name.Length > 4);

Note that the syntax for a lambda expression includes all the important parts of the
NameLongerThanFour method, but nothing more. A lambda expression only needs to
define the following:

• The names of input parameters: name
• A return value expression: name.Length > 4

The type of the name input parameter is inferred from the fact that the sequence contains
string values, and the return type must be a bool value as defined by the delegate for
Where to work, so the expression after the => symbol must return a bool value.
The compiler does most of the work for us, so our code can be as concise as possible.

2. Run the code and note that it has the same behavior.

Chapter 11

[475]

Sorting entities
Other commonly used extension methods are OrderBy and ThenBy, used for sorting a sequence.

Extension methods can be chained if the previous method returns another sequence, that is, a
type that implements the IEnumerable<T> interface.

Sorting by a single property using OrderBy
Let's continue working with the current project to explore sorting:

1. Append a call to OrderBy to the end of the existing query, as shown in the following
code:

var query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length);

2. Run the code and note that the names are now sorted by shortest first, as shown in the
following output:

Kevin
Creed
Dwight
Angela
Michael

To put the longest name first, you would use OrderByDescending.

Sorting by a subsequent property using ThenBy
We might want to sort by more than one property, for example, to sort names of the same
length in alphabetical order:

1. Add a call to the ThenBy method at the end of the existing query, as shown highlighted
in the following code:

var query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length)
 .ThenBy(name => name);

Good Practice: Format the LINQ statement so that each extension
method call happens on its own line to make them easier to read.

Querying and Manipulating Data Using LINQ

[476]

2. Run the code and note the slight difference in the following sort order. Within a group
of names of the same length, the names are sorted alphabetically by the full value of the
string, so Creed comes before Kevin, and Angela comes before Dwight, as shown in the
following output:

Creed
Kevin
Angela
Dwight
Michael

Declaring a query using var or a specified type
While writing a LINQ expression it is convenient to use var to declare the query object. This
is because the type frequently changes as you work on the LINQ expression. For example, our
query started as an IEnumerable<string> and is currently an IOrderedEnumerable<string>:

1. Hover your mouse over the var keyword and note that its type is
IOrderedEnumerable<string>

2. Replace var with the actual type, as shown highlighted in the following code:

IOrderedEnumerable<string> query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length)
 .ThenBy(name => name);

Filtering by type
The Where extension method is great for filtering by values, such as text and numbers. But what
if the sequence contains multiple types, and you want to filter by a specific type and respect
any inheritance hierarchy?

Imagine that you have a sequence of exceptions. There are hundreds of exception types that
form a complex hierarchy, as partially shown in Figure 11.3:

Good Practice: Once you have finished working on a query, you could change
the declared type from var to the actual type to make it clearer what the type
is. This is easy because your code editor can tell you what it is.

Chapter 11

[477]

Figure 11.3: A partial exception inheritance hierarchy

Let's explore filtering by type:

1. In Program.cs, define a list of exception-derived objects, as shown in the following code:
WriteLine("Filtering by type");

List<Exception> exceptions = new()
{
 new ArgumentException(),
 new SystemException(),
 new IndexOutOfRangeException(),
 new InvalidOperationException(),
 new NullReferenceException(),
 new InvalidCastException(),
 new OverflowException(),
 new DivideByZeroException(),
 new ApplicationException()
};

2. Write statements using the OfType<T> extension method to remove exceptions that are
not arithmetic exceptions and write only the arithmetic exceptions to the console, as
shown in the following code:

IEnumerable<ArithmeticException> arithmeticExceptionsQuery =
 exceptions.OfType<ArithmeticException>();

foreach (ArithmeticException exception in arithmeticExceptionsQuery)
{
 WriteLine(exception);
}

Querying and Manipulating Data Using LINQ

[478]

3. Run the code and note that the results only include exceptions of the
ArithmeticException type, or the ArithmeticException-derived types, as shown in the
following output:

System.OverflowException: Arithmetic operation resulted in an overflow.
System.DivideByZeroException: Attempted to divide by zero.

Working with sets and bags using LINQ
Sets are one of the most fundamental concepts in mathematics. A set is a collection of one or
more unique objects. A multiset, aka bag, is a collection of one or more objects that can have
duplicates.

You might remember being taught about Venn diagrams in school. Common set operations
include the intersect or union between sets.

Let's create a console application that will define three arrays of string values for cohorts of
apprentices and then perform some common set and multiset operations on them:

1. Use your preferred code editor to add a new console app named LinqWithSets to the
Chapter11 solution/workspace:

1. In Visual Studio, set the startup project for the solution to the current selection.
2. In Visual Studio Code, select LinqWithSets as the active OmniSharp project.

2. In Program.cs, delete the existing code and statically import the Console type, as shown
in the following code:

using static System.Console;

3. At the bottom of Program.cs, add the following method that outputs any sequence of
string variables as a comma-separated single string to the console output, along with
an optional description, as shown in the following code:

static void Output(IEnumerable<string> cohort, string description = "")
{
 if (!string.IsNullOrEmpty(description))
 {
 WriteLine(description);
 }
 Write(" ");
 WriteLine(string.Join(", ", cohort.ToArray()));
 WriteLine();
}

4. Above the Output method, add statements to define three arrays of names, output them,
and then perform various set operations on them, as shown in the following code:

string[] cohort1 = new[]
 { "Rachel", "Gareth", "Jonathan", "George" };

Chapter 11

[479]

string[] cohort2 = new[]
 { "Jack", "Stephen", "Daniel", "Jack", "Jared" };

string[] cohort3 = new[]
 { "Declan", "Jack", "Jack", "Jasmine", "Conor" };

Output(cohort1, "Cohort 1");
Output(cohort2, "Cohort 2");
Output(cohort3, "Cohort 3");

Output(cohort2.Distinct(), "cohort2.Distinct()");
Output(cohort2.DistinctBy(name => name.Substring(0, 2)),
 "cohort2.DistinctBy(name => name.Substring(0, 2)):");
Output(cohort2.Union(cohort3), "cohort2.Union(cohort3)");
Output(cohort2.Concat(cohort3), "cohort2.Concat(cohort3)");
Output(cohort2.Intersect(cohort3), "cohort2.Intersect(cohort3)");
Output(cohort2.Except(cohort3), "cohort2.Except(cohort3)");
Output(cohort1.Zip(cohort2,(c1, c2) => $"{c1} matched with {c2}"),
 "cohort1.Zip(cohort2)");

5. Run the code and view the results, as shown in the following output:

Cohort 1
 Rachel, Gareth, Jonathan, George

Cohort 2
 Jack, Stephen, Daniel, Jack, Jared

Cohort 3
 Declan, Jack, Jack, Jasmine, Conor

cohort2.Distinct()
 Jack, Stephen, Daniel, Jared

cohort2.DistinctBy(name => name.Substring(0, 2)):
 Jack, Stephen, Daniel

cohort2.Union(cohort3)
 Jack, Stephen, Daniel, Jared, Declan, Jasmine, Conor

cohort2.Concat(cohort3)
 Jack, Stephen, Daniel, Jack, Jared, Declan, Jack, Jack, Jasmine, Conor

cohort2.Intersect(cohort3)
 Jack

Querying and Manipulating Data Using LINQ

[480]

cohort2.Except(cohort3)
 Stephen, Daniel, Jared

cohort1.Zip(cohort2)
 Rachel matched with Jack, Gareth matched with Stephen, Jonathan matched
with Daniel, George matched with Jack

With Zip, if there are unequal numbers of items in the two sequences, then some items will not
have a matching partner. Those without a partner, like Jared, will not be included in the result.

For the DistinctBy example, instead of removing duplicates by comparing the whole name,
we define a lambda key selector to remove duplicates by comparing the first two characters, so
Jared is removed because Jack already is a name that starts with Ja.

So far, we have used the LINQ to Objects provider to work with in-memory objects. Next, we
will use the LINQ to Entities provider to work with entities stored in a database.

Using LINQ with EF Core
We have looked at LINQ queries that filter and sort, but none that change the shape of the
items in the sequence. This is called projection because it's about projecting items of one shape
into another shape. To learn about projection, it is best to have some more complex types to
work with, so in the next project, instead of using string sequences, we will use sequences of
entities from the Northwind sample database.

Building an EF Core model
We must define an EF Core model to represent the database and tables that we will work with.
We will define the model manually to take complete control and to prevent a relationship from
being automatically defined between the Categories and Products tables. Later, you will use
LINQ to join the two entity sets:

1. Use your preferred code editor to add a new console app named LinqWithEFCore to the
Chapter11 solution/workspace.

2. In Visual Studio Code, select LinqWithEFCore as the active OmniSharp project.
3. In the LinqWithEFCore project, add a package reference to the EF Core provider for

SQLite and/or SQL Server, as shown in the following markup:
<ItemGroup>

I will give instructions to use SQLite because it is cross-platform but if
you prefer to use SQL Server then feel free to do so. I have included some
commented code to enable SQL Server if you choose.

Chapter 11

[481]

 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="6.0.0" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer"
 Version="6.0.0" />
</ItemGroup>

4. Build the project to restore packages.
5. Copy the Northwind4Sqlite.sql file into the LinqWithEFCore folder.
6. At a command prompt or terminal, create the Northwind database by executing the

following command:
sqlite3 Northwind.db -init Northwind4Sqlite.sql

7. Be patient because this command might take a while to create the database structure.
Eventually you will see the SQLite command prompt, as shown in the following
output:

 -- Loading resources from Northwind.sql
SQLite version 3.36.0 2021-08-02 15:20:15
Enter ".help" for usage hints.
sqlite>

8. Press cmd + D on macOS or Ctrl + C on Windows to exit SQLite command mode.
9. Add three class files to the project, named Northwind.cs, Category.cs, and Product.cs.
10. Modify the class file named Northwind.cs, as shown in the following code:

using Microsoft.EntityFrameworkCore; // DbContext, DbSet<T>

namespace Packt.Shared;

// this manages the connection to the database
public class Northwind : DbContext
{
 // these properties map to tables in the database
 public DbSet<Category>? Categories { get; set; }
 public DbSet<Product>? Products { get; set; }

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 string path = Path.Combine(
 Environment.CurrentDirectory, "Northwind.db");

 optionsBuilder.UseSqlite($"Filename={path}");

Querying and Manipulating Data Using LINQ

[482]

 /*
 string connection = "Data Source=.;" +
 "Initial Catalog=Northwind;" +
 "Integrated Security=true;" +
 "MultipleActiveResultSets=true;";

 optionsBuilder.UseSqlServer(connection);
 */
 }

 protected override void OnModelCreating(
 ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Product>()
 .Property(product => product.UnitPrice)
 .HasConversion<double>();
 }
}

11. Modify the class file named Category.cs, as shown in the following code:
using System.ComponentModel.DataAnnotations;

namespace Packt.Shared;

public class Category
{
 public int CategoryId { get; set; }

 [Required]
 [StringLength(15)]
 public string CategoryName { get; set; } = null!;

 public string? Description { get; set; }
}

12. Modify the class file named Product.cs, as shown in the following code:
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace Packt.Shared;

public class Product
{
 public int ProductId { get; set; }

Chapter 11

[483]

 [Required]
 [StringLength(40)]
 public string ProductName { get; set; } = null!;

 public int? SupplierId { get; set; }
 public int? CategoryId { get; set; }

 [StringLength(20)]
 public string? QuantityPerUnit { get; set; }

 [Column(TypeName = "money")] // required for SQL Server provider
 public decimal? UnitPrice { get; set; }
 public short? UnitsInStock { get; set; }
 public short? UnitsOnOrder { get; set; }
 public short? ReorderLevel { get; set; }
 public bool Discontinued { get; set; }
}

13. Build the project and fix any compiler errors.
If you are using Visual Studio 2022 for Windows, then the compiled application
executes in the LinqWithEFCore\bin\Debug\net6.0 folder so it will not find the database
file unless we indicate that it should always be copied to the output directory.

14. In Solution Explorer, right-click the Northwind.db file and select Properties.
15. In Properties, set Copy to Output Directory to Copy always.

Filtering and sorting sequences
Now let's write statements to filter and sort sequences of rows from the tables:

1. In Program.cs, statically import the Console type and namespaces for working with EF
Core and your entity model using LINQ, as shown in the following code:

using Packt.Shared; // Northwind, Category, Product
using Microsoft.EntityFrameworkCore; // DbSet<T>

using static System.Console;

2. At the bottom of Program.cs, write a method to filter and sort products, as shown in the
following code:

static void FilterAndSort()
{
 using (Northwind db = new())
 {
 DbSet<Product> allProducts = db.Products;

 IQueryable<Product> filteredProducts =

Querying and Manipulating Data Using LINQ

[484]

 allProducts.Where(product => product.UnitPrice < 10M);

 IOrderedQueryable<Product> sortedAndFilteredProducts =
 filteredProducts.OrderByDescending(product => product.UnitPrice);

 WriteLine("Products that cost less than $10:");
 foreach (Product p in sortedAndFilteredProducts)
 {
 WriteLine("{0}: {1} costs {2:$#,##0.00}",
 p.ProductId, p.ProductName, p.UnitPrice);
 }
 WriteLine();
 }
}

DbSet<T> implements IEnumerable<T>, so LINQ can be used to query and manipulate
collections of entities in models built for EF Core. (Actually, I should say TEntity
instead of T but the name of this generic type has no functional effect. The only
requirement is that the type is a class. The name just indicates the class is expected to
be an entity model.)
You might have also noticed that the sequences implement IQueryable<T>
(or IOrderedQueryable<T> after a call to an ordering LINQ method) instead of
IEnumerable<T> or IOrderedEnumerable<T>.
This is an indication that we are using a LINQ provider that builds the query in
memory using expression trees. They represent code in a tree-like data structure and
enable the creation of dynamic queries, which is useful for building LINQ queries for
external data providers like SQLite.
The LINQ expression will be converted into another query language, such as SQL.
Enumerating the query with foreach or calling a method such as ToArray will force the
execution of the query and materialize the results.

3. After the namespace imports in Program.cs, call the FilterAndSort method.
4. Run the code and view the result, as shown in the following output:

Products that cost less than $10:
41: Jack's New England Clam Chowder costs $9.65
45: Rogede sild costs $9.50
47: Zaanse koeken costs $9.50
19: Teatime Chocolate Biscuits costs $9.20
23: Tunnbröd costs $9.00
75: Rhönbräu Klosterbier costs $7.75
54: Tourtière costs $7.45
52: Filo Mix costs $7.00
13: Konbu costs $6.00
24: Guaraná Fantástica costs $4.50
33: Geitost costs $2.50

Chapter 11

[485]

Although this query outputs the information we want, it does so inefficiently because it gets
all columns from the Products table instead of just the three columns we need, which is the
equivalent of the following SQL statement:

SELECT * FROM Products;

In Chapter 10, Working with Data Using Entity Framework Core, you learned how to log the SQL
commands executed against SQLite so that you could see this for yourself.

Projecting sequences into new types
Before we look at projection, we need to review object initialization syntax. If you have a class
defined, then you can instantiate an object using the class name, new(), and curly braces to set
initial values for fields and properties, as shown in the following code:

public class Person
{
 public string Name { get; set; }
 public DateTime DateOfBirth { get; set; }
}

Person knownTypeObject = new()
{
 Name = "Boris Johnson",
 DateOfBirth = new(year: 1964, month: 6, day: 19)
};

C# 3.0 and later allow instances of anonymous types to be instantiated using the var keyword,
as shown in the following code:

var anonymouslyTypedObject = new
{
 Name = "Boris Johnson",
 DateOfBirth = new DateTime(year: 1964, month: 6, day: 19)
};

Although we did not specify a type, the compiler can infer an anonymous type from the setting
of two properties named Name and DateOfBirth. The compiler can infer the types of the two
properties from the values assigned: a literal string and a new instance of a date/time value.

This capability is especially useful when writing LINQ queries to project an existing type into
a new type without having to explicitly define the new type. Since the type is anonymous, this
can only work with var-declared local variables.

Let's make the SQL command executed against the database table more efficient by adding
a call to the Select method to project instances of the Product class into instances of a new
anonymous type with only three properties:

Querying and Manipulating Data Using LINQ

[486]

1. In FilterAndSort, add a statement to extend the LINQ query to use the Select method
to return only the three properties (that is, table columns) that we need, and modify
the foreach statement to use the var keyword and the projection LINQ expression, as
shown highlighted in the following code:

IOrderedQueryable<Product> sortedAndFilteredProducts =
 filteredProducts.OrderByDescending(product => product.UnitPrice);

var projectedProducts = sortedAndFilteredProducts
 .Select(product => new // anonymous type
 {
 product.ProductId,
 product.ProductName,
 product.UnitPrice
 });

WriteLine("Products that cost less than $10:");
foreach (var p in projectedProducts)
{

2. Hover your mouse over the new keyword in the Select method call and the var
keyword in the foreach statement and note that it is an anonymous type, as shown in
Figure 11.4:

Figure 11.4: An anonymous type used during LINQ projection

3. Run the code and confirm that the output is the same as before.

Joining and grouping sequences
There are two extension methods for joining and grouping:

• Join: This method has four parameters: the sequence that you want to join with, the
property or properties on the left sequence to match on, the property or properties on
the right sequence to match on, and a projection.

Chapter 11

[487]

• GroupJoin: This method has the same parameters, but it combines the matches into a
group object with a Key property for the matching value and an IEnumerable<T> type
for the multiple matches.

Joining sequences
Let's explore these methods when working with two tables: Categories and Products:

1. At the bottom of Program.cs, create a method to select categories and products, join
them, and output them, as shown in the following code:

static void JoinCategoriesAndProducts()
{
 using (Northwind db = new())
 {
 // join every product to its category to return 77 matches
 var queryJoin = db.Categories.Join(
 inner: db.Products,
 outerKeySelector: category => category.CategoryId,
 innerKeySelector: product => product.CategoryId,
 resultSelector: (c, p) =>
 new { c.CategoryName, p.ProductName, p.ProductId });

 foreach (var item in queryJoin)
 {
 WriteLine("{0}: {1} is in {2}.",
 arg0: item.ProductId,
 arg1: item.ProductName,
 arg2: item.CategoryName);
 }
 }
}

In a join, there are two sequences, outer and inner. In the previous example, categories
is the outer sequence and products is the inner sequence.

2. At the top of Program.cs, comment out the call to FilterAndSort and call
JoinCategoriesAndProducts.

3. Run the code and view the results. Note that there is a single line of output for each of
the 77 products, as shown in the following output (edited to only include the first 10
items):

1: Chai is in Beverages.
2: Chang is in Beverages.
3: Aniseed Syrup is in Condiments.
4: Chef Anton's Cajun Seasoning is in Condiments.
5: Chef Anton's Gumbo Mix is in Condiments.
6: Grandma's Boysenberry Spread is in Condiments.

Querying and Manipulating Data Using LINQ

[488]

7: Uncle Bob's Organic Dried Pears is in Produce.
8: Northwoods Cranberry Sauce is in Condiments.
9: Mishi Kobe Niku is in Meat/Poultry.
10: Ikura is in Seafood.
...

4. At the end of the existing query, call the OrderBy method to sort by CategoryName, as
shown in the following code:

.OrderBy(cp => cp.CategoryName);

5. Run the code and view the results. Note that there is a single line of output for each of
the 77 products, and the results show all products in the Beverages category first, then
the Condiments category, and so on, as shown in the following partial output:

1: Chai is in Beverages.
2: Chang is in Beverages.
24: Guaraná Fantástica is in Beverages.
34: Sasquatch Ale is in Beverages.
35: Steeleye Stout is in Beverages.
38: Côte de Blaye is in Beverages.
39: Chartreuse verte is in Beverages.
43: Ipoh Coffee is in Beverages.
67: Laughing Lumberjack Lager is in Beverages.
70: Outback Lager is in Beverages.
75: Rhönbräu Klosterbier is in Beverages.
76: Lakkalikööri is in Beverages.
3: Aniseed Syrup is in Condiments.
4: Chef Anton's Cajun Seasoning is in Condiments.
...

Group-joining sequences
1. At the bottom of Program.cs, create a method to group and join, show the group name,

and then show all the items within each group, as shown in the following code:
static void GroupJoinCategoriesAndProducts()
{
 using (Northwind db = new())
 {
 // group all products by their category to return 8 matches
 var queryGroup = db.Categories.AsEnumerable().GroupJoin(
 inner: db.Products,
 outerKeySelector: category => category.CategoryId,
 innerKeySelector: product => product.CategoryId,
 resultSelector: (c, matchingProducts) => new
 {
 c.CategoryName,
 Products = matchingProducts.OrderBy(p => p.ProductName)

Chapter 11

[489]

 });

 foreach (var category in queryGroup)
 {
 WriteLine("{0} has {1} products.",
 arg0: category.CategoryName,
 arg1: category.Products.Count());

 foreach (var product in category.Products)
 {
 WriteLine($" {product.ProductName}");
 }
 }
 }
}

If we had not called the AsEnumerable method, then a runtime exception would have
been thrown, as shown in the following output:

Unhandled exception. System.ArgumentException: Argument type 'System.
Linq.IOrderedQueryable`1[Packt.Shared.Product]' does not match the
corresponding member type 'System.Linq.IOrderedEnumerable`1[Packt.Shared.
Product]' (Parameter 'arguments[1]')

This is because not all LINQ extension methods can be converted from expression
trees into some other query syntax like SQL. In these cases, we can convert from
IQueryable<T> to IEnumerable<T> by calling the AsEnumerable method, which forces
query processing to use LINQ to EF Core only to bring the data into the application and
then use LINQ to Objects to execute more complex processing in memory. But, often,
this is less efficient.

2. At the top of Program.cs, comment out the previous method call and call
GroupJoinCategoriesAndProducts.

3. Run the code, view the results, and note that the products inside each category have
been sorted by their name, as defined in the query and as shown in the following partial
output:

Beverages has 12 products.
 Chai
 Chang
 Chartreuse verte
 Côte de Blaye
 Guaraná Fantástica
 Ipoh Coffee
 Lakkalikööri
 Laughing Lumberjack Lager
 Outback Lager
 Rhönbräu Klosterbier
 Sasquatch Ale

Querying and Manipulating Data Using LINQ

[490]

 Steeleye Stout
Condiments has 12 products.
 Aniseed Syrup
 Chef Anton's Cajun Seasoning
 Chef Anton's Gumbo Mix
...

Aggregating sequences
There are LINQ extension methods to perform aggregation functions, such as Average and Sum.
Let's write some code to see some of these methods in action aggregating information from the
Products table:

1. At the bottom of Program.cs, create a method to show the use of the aggregation
extension methods, as shown in the following code:

static void AggregateProducts()
{
 using (Northwind db = new())
 {
 WriteLine("{0,-25} {1,10}",
 arg0: "Product count:",
 arg1: db.Products.Count());

 WriteLine("{0,-25} {1,10:$#,##0.00}",
 arg0: "Highest product price:",
 arg1: db.Products.Max(p => p.UnitPrice));

 WriteLine("{0,-25} {1,10:N0}",
 arg0: "Sum of units in stock:",
 arg1: db.Products.Sum(p => p.UnitsInStock));

 WriteLine("{0,-25} {1,10:N0}",
 arg0: "Sum of units on order:",
 arg1: db.Products.Sum(p => p.UnitsOnOrder));

 WriteLine("{0,-25} {1,10:$#,##0.00}",
 arg0: "Average unit price:",
 arg1: db.Products.Average(p => p.UnitPrice));

 WriteLine("{0,-25} {1,10:$#,##0.00}",
 arg0: "Value of units in stock:",
 arg1: db.Products
 .Sum(p => p.UnitPrice * p.UnitsInStock));
 }
}

Chapter 11

[491]

2. At the top of Program.cs, comment out the previous method and call
AggregateProducts

3. Run the code and view the result, as shown in the following output:

Product count: 77
Highest product price: $263.50
Sum of units in stock: 3,119
Sum of units on order: 780
Average unit price: $28.87
Value of units in stock: $74,050.85

Sweetening LINQ syntax with syntactic sugar
C# 3.0 introduced some new language keywords in 2008 to make it easier for programmers
with experience with SQL to write LINQ queries. This syntactic sugar is sometimes called the
LINQ query comprehension syntax.

Consider the following array of string values:

string[] names = new[] { "Michael", "Pam", "Jim", "Dwight",
 "Angela", "Kevin", "Toby", "Creed" };

To filter and sort the names, you could use extension methods and lambda expressions, as
shown in the following code:

var query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length)
 .ThenBy(name => name);

Or you could achieve the same results by using query comprehension syntax, as shown in the
following code:

var query = from name in names
 where name.Length > 4
 orderby name.Length, name
 select name;

The compiler changes the query comprehension syntax to the equivalent extension methods
and lambda expressions for you.

The select keyword is always required for LINQ query comprehension syntax. The Select
extension method is optional when using extension methods and lambda expressions because
if you do not call Select, then the whole item is implicitly selected.

Not all extension methods have a C# keyword equivalent, for example, the Skip and Take
extension methods, which are commonly used to implement paging for lots of data.

Querying and Manipulating Data Using LINQ

[492]

A query that skips and takes cannot be written using only the query comprehension syntax, so
we could write the query using all extension methods, as shown in the following code:

var query = names
 .Where(name => name.Length > 4)
 .Skip(80)
 .Take(10);

Or you can wrap query comprehension syntax in parentheses and then switch to using
extension methods, as shown in the following code:

var query = (from name in names
 where name.Length > 4
 select name)
 .Skip(80)
 .Take(10);

Using multiple threads with parallel LINQ
By default, only one thread is used to execute a LINQ query. Parallel LINQ (PLINQ) is an easy
way to enable multiple threads to execute a LINQ query.

Creating an app that benefits from multiple threads
To see it in action, we will start with some code that only uses a single thread to calculate
Fibonacci numbers for 45 integers. We will use the StopWatch type to measure the change in
performance.

We will use operating system tools to monitor the CPU and CPU core usage. If you do not have
multiple CPUs or at least multiple cores, then this exercise won't show much!

1. Use your preferred code editor to add a new console app named LinqInParallel to the
Chapter11 solution/workspace.

Good Practice: Learn both extension methods with lambda expressions and
the query comprehension syntax ways of writing LINQ queries, because you
are likely to have to maintain code that uses both.

Good Practice: Do not assume that using parallel threads will improve the
performance of your applications. Always measure real-world timings and
resource usage.

Chapter 11

[493]

2. In Visual Studio Code, select LinqInParallel as the active OmniSharp project.
3. In Program.cs, delete the existing statements and then import the System.Diagnostics

namespace so that we can use the StopWatch type, and statically import the System.
Console type.

4. Add statements to create a stopwatch to record timings, wait for a keypress before
starting the timer, create 45 integers, calculate the last Fibonacci number for each of
them, stop the timer, and display the elapsed milliseconds, as shown in the following
code:

Stopwatch watch = new();
Write("Press ENTER to start. ");
ReadLine();
watch.Start();

int max = 45;

IEnumerable<int> numbers = Enumerable.Range(start: 1, count: max);

WriteLine($"Calculating Fibonacci sequence up to {max}. Please wait...");

int[] fibonacciNumbers = numbers
 .Select(number => Fibonacci(number)).ToArray();

watch.Stop();
WriteLine("{0:#,##0} elapsed milliseconds.",
 arg0: watch.ElapsedMilliseconds);

Write("Results:");
foreach (int number in fibonacciNumbers)
{
 Write($" {number}");
}

static int Fibonacci(int term) =>
 term switch
 {
 1 => 0,
 2 => 1,
 _ => Fibonacci(term - 1) + Fibonacci(term - 2)
 };

5. Run the code, but do not press Enter to start the stopwatch yet because we need to make
sure a monitoring tool is showing processor activity.

Querying and Manipulating Data Using LINQ

[494]

Using Windows
1. If you are using Windows, then right-click on the Windows Start button or press Ctrl +

Alt + Delete, and then click on Task Manager.
2. At the bottom of the Task Manager window, click More details.
3. At the top of the Task Manager window, click on the Performance tab.
4. Right-click on the CPU Utilization graph, select Change graph to, and then select

Logical processors.

Using macOS
1. If you are using macOS, then launch Activity Monitor.
2. Navigate to View | Update Frequency Very often (1 sec).
3. To see the CPU graphs, navigate to Window | CPU History.

For all operating systems
1. Rearrange your monitoring tool and your code editor so that they are side by side.
2. Wait for the CPUs to settle and then press Enter to start the stopwatch and run the

query. The result should be a number of elapsed milliseconds, as shown in the
following output:

Press ENTER to start.
Calculating Fibonacci sequence up to 45. Please wait...
17,624 elapsed milliseconds.
Results: 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040
1346269 2178309 3524578 5702887 9227465 14930352 24157817 39088169
63245986 102334155 165580141 267914296 433494437 701408733

The monitoring tool will probably show that one or two CPUs were used the most,
alternating over time. Others may execute background tasks at the same time, such as
the garbage collector, so the other CPUs or cores won't be completely flat, but the work
is certainly not being evenly spread among all the possible CPUs or cores. Also, note
that some of the logical processors are maxing out at 100%.

3. In Program.cs, modify the query to make a call to the AsParallel extension method
and to sort the resulting sequence because when processing in parallel the results can
become misordered, as shown highlighted in the following code:

int[] fibonacciNumbers = numbers.AsParallel()
 .Select(number => Fibonacci(number))
 .OrderBy(number => number)
 .ToArray();

Chapter 11

[495]

4. Run the code, wait for CPU charts in your monitoring tool to settle, and then press Enter
to start the stopwatch and run the query. This time, the application should complete
in less time (although it might not be as less as you might hope for—managing those
multiple threads takes extra effort!):

Press ENTER to start.
Calculating Fibonacci sequence up to 45. Please wait...
9,028 elapsed milliseconds.
Results: 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040
1346269 2178309 3524578 5702887 9227465 14930352 24157817 39088169
63245986 102334155 165580141 267914296 433494437 701408733

5. The monitoring tool should show that all CPUs were used equally to execute the LINQ
query, and note that none of the logical processors max out at 100% because the work is
more evenly spread.

You will learn more about managing multiple threads in Chapter 12, Improving Performance and
Scalability Using Multitasking.

Creating your own LINQ extension methods
In Chapter 6, Implementing Interfaces and Inheriting Classes, you learned how to create your
own extension methods. To create LINQ extension methods, all you must do is extend the
IEnumerable<T> type.

We will improve the Average extension method as an example. A well-educated school child
will tell you that average can mean one of three things:

• Mean: Sum the numbers and divide by the count.
• Mode: The most common number.
• Median: The number in the middle of the numbers when ordered.

Good Practice: Never call AsParallel at the end of a query. This
does nothing. You must perform at least one operation after the call to
AsParallel for that operation to be parallelized. .NET 6 introduces a
code analyzer that will warn about this type of misuse.

Good Practice: Put your own extension methods in a separate class library so
that they can be easily deployed as their own assembly or NuGet package.

Querying and Manipulating Data Using LINQ

[496]

Microsoft's implementation of the Average extension method calculates the mean. We might
want to define our own extension methods for Mode and Median:

1. In the LinqWithEFCore project, add a new class file named MyLinqExtensions.cs.
2. Modify the class, as shown in the following code:

namespace System.Linq; // extend Microsoft's namespace

public static class MyLinqExtensions
{
 // this is a chainable LINQ extension method
 public static IEnumerable<T> ProcessSequence<T>(
 this IEnumerable<T> sequence)
 {
 // you could do some processing here
 return sequence;
 }

 public static IQueryable<T> ProcessSequence<T>(
 this IQueryable<T> sequence)
 {
 // you could do some processing here
 return sequence;
 }

 // these are scalar LINQ extension methods
 public static int? Median(
 this IEnumerable<int?> sequence)
 {
 var ordered = sequence.OrderBy(item => item);
 int middlePosition = ordered.Count() / 2;
 return ordered.ElementAt(middlePosition);
 }

 public static int? Median<T>(
 this IEnumerable<T> sequence, Func<T, int?> selector)
 {
 return sequence.Select(selector).Median();
 }

 public static decimal? Median(
 this IEnumerable<decimal?> sequence)
 {
 var ordered = sequence.OrderBy(item => item);
 int middlePosition = ordered.Count() / 2;
 return ordered.ElementAt(middlePosition);
 }

Chapter 11

[497]

 public static decimal? Median<T>(
 this IEnumerable<T> sequence, Func<T, decimal?> selector)
 {
 return sequence.Select(selector).Median();
 }

 public static int? Mode(
 this IEnumerable<int?> sequence)
 {
 var grouped = sequence.GroupBy(item => item);
 var orderedGroups = grouped.OrderByDescending(
 group => group.Count());
 return orderedGroups.FirstOrDefault()?.Key;
 }

 public static int? Mode<T>(
 this IEnumerable<T> sequence, Func<T, int?> selector)
 {
 return sequence.Select(selector)?.Mode();
 }

 public static decimal? Mode(
 this IEnumerable<decimal?> sequence)
 {
 var grouped = sequence.GroupBy(item => item);
 var orderedGroups = grouped.OrderByDescending(
 group => group.Count());
 return orderedGroups.FirstOrDefault()?.Key;
 }

 public static decimal? Mode<T>(
 this IEnumerable<T> sequence, Func<T, decimal?> selector)
 {
 return sequence.Select(selector).Mode();
 }
}

If this class was in a separate class library, to use your LINQ extension methods, you simply
need to reference the class library assembly because the System.Linq namespace is already
implicitly imported.

Warning! All but one of the above extension methods cannot be used with
IQueryable sequences like those used by LINQ to SQLite or LINQ to SQL
Server because we have not implemented a way to translate our code into the
underlying query language like SQL.

Querying and Manipulating Data Using LINQ

[498]

Trying the chainable extension method
First, we will try chaining the ProcessSequence method with other extension methods:

1. In Program.cs, in the FilterAndSort method, modify the LINQ query for Products to
call your custom chainable extension method, as shown highlighted in the following
code:

DbSet<Product>? allProducts = db.Products;

if (allProducts is null)
{
 WriteLine("No products found.");
 return;
}

IQueryable<Product> processedProducts = allProducts.ProcessSequence();

IQueryable<Product> filteredProducts = processedProducts
 .Where(product => product.UnitPrice < 10M);

2. In Program.cs, uncomment the FilterAndSort method and comment out any calls to
other methods.

3. Run the code and note that you see the same output as before because your method
doesn't modify the sequence. But you now know how to extend a LINQ expression
with your own functionality.

Trying the mode and median methods
Second, we will try using the Mode and Median methods to calculate other kinds of average:

1. At the bottom of Program.cs, create a method to output the mean, median, and mode,
for UnitsInStock and UnitPrice for products, using your custom extension methods
and the built-in Average extension method, as shown in the following code:

static void CustomExtensionMethods()
{
 using (Northwind db = new())
 {
 WriteLine("Mean units in stock: {0:N0}",
 db.Products.Average(p => p.UnitsInStock));

 WriteLine("Mean unit price: {0:$#,##0.00}",
 db.Products.Average(p => p.UnitPrice));

 WriteLine("Median units in stock: {0:N0}",
 db.Products.Median(p => p.UnitsInStock));

Chapter 11

[499]

 WriteLine("Median unit price: {0:$#,##0.00}",
 db.Products.Median(p => p.UnitPrice));

 WriteLine("Mode units in stock: {0:N0}",
 db.Products.Mode(p => p.UnitsInStock));

 WriteLine("Mode unit price: {0:$#,##0.00}",
 db.Products.Mode(p => p.UnitPrice));
 }
}

2. In Program.cs, comment any previous method calls and call CustomExtensionMethods.
3. Run the code and view the result, as shown in the following output:

Mean units in stock: 41
Mean unit price: $28.87
Median units in stock: 26
Median unit price: $19.50
Mode units in stock: 0
Mode unit price: $18.00

There are four products with a unit price of $18.00. There are five products with 0 units in
stock.

Working with LINQ to XML
LINQ to XML is a LINQ provider that allows you to query and manipulate XML.

Generating XML using LINQ to XML
Let's create a method to convert the Products table into XML:

1. In the LinqWithEFCore project, at the top of Program.cs, import the System.Xml.Linq
namespace.

2. At the bottom of Program.cs, create a method to output the products in XML format, as
shown in the following code:

static void OutputProductsAsXml()
{
 using (Northwind db = new())
 {
 Product[] productsArray = db.Products.ToArray();

 XElement xml = new("products",

Querying and Manipulating Data Using LINQ

[500]

 from p in productsArray
 select new XElement("product",
 new XAttribute("id", p.ProductId),
 new XAttribute("price", p.UnitPrice),
 new XElement("name", p.ProductName)));

 WriteLine(xml.ToString());
 }
}

3. In Program.cs, comment the previous method call and call OutputProductsAsXml.
4. Run the code, view the result, and note that the structure of the XML generated matches

the elements and attributes that the LINQ to XML statement declaratively described in
the preceding code, as shown in the following partial output:

<products>
 <product id="1" price="18">
 <name>Chai</name>
 </product>
 <product id="2" price="19">
 <name>Chang</name>
 </product>
...

Reading XML using LINQ to XML
You might want to use LINQ to XML to easily query or process XML files:

1. In the LinqWithEFCore project, add a file named settings.xml.
2. Modify its contents, as shown in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<appSettings>
 <add key="color" value="red" />
 <add key="size" value="large" />
 <add key="price" value="23.99" />
</appSettings>

If you are using Visual Studio 2022 for Windows, then the compiled application
executes in the LinqWithEFCore\bin\Debug\net6.0 folder so it will not find the
settings.xml file unless we indicate that it should always be copied to the output
directory.

3. In Solution Explorer, right-click the settings.xml file and select Properties.
4. In Properties, set Copy to Output Directory to Copy always.

Chapter 11

[501]

5. At the bottom of Program.cs, create a method to complete these tasks, as shown in the
following code:

• Load the XML file.
• Use LINQ to XML to search for an element named appSettings and its

descendants named add.
• Project the XML into an array of an anonymous type with Key and Value

properties.
• Enumerate through the array to show the results:

static void ProcessSettings()
{
 XDocument doc = XDocument.Load("settings.xml");

 var appSettings = doc.Descendants("appSettings")
 .Descendants("add")
 .Select(node => new
 {
 Key = node.Attribute("key")?.Value,
 Value = node.Attribute("value")?.Value
 }).ToArray();

 foreach (var item in appSettings)
 {
 WriteLine($"{item.Key}: {item.Value}");
 }
}

6. In Program.cs, comment the previous method call and call ProcessSettings.
7. Run the code and view the result, as shown in the following output:

color: red
size: large
price: 23.99

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore with deeper research into the topics covered in this chapter.

Exercise 11.1 – Test your knowledge
Answer the following questions:

1. What are the two required parts of LINQ?

Querying and Manipulating Data Using LINQ

[502]

2. Which LINQ extension method would you use to return a subset of properties from a
type?

3. Which LINQ extension method would you use to filter a sequence?
4. List five LINQ extension methods that perform aggregation.
5. What is the difference between the Select and SelectMany extension methods?
6. What is the difference between IEnumerable<T> and IQueryable<T>? And how

do you switch between them?
7. What does the last type parameter T in generic Func delegates like Func<T1, T2, T>

represent?
8. What is the benefit of a LINQ extension method that ends with OrDefault?
9. Why is query comprehension syntax optional?
10. How can you create your own LINQ extension methods?

Exercise 11.2 – Practice querying with LINQ
In the Chapter11 solution/workspace, create a console application, named Exercise02, that
prompts the user for a city and then lists the company names for Northwind customers in that
city, as shown in the following output:

Enter the name of a city: London
There are 6 customers in London:
Around the Horn
B's Beverages
Consolidated Holdings
Eastern Connection
North/South
Seven Seas Imports

Then, enhance the application by displaying a list of all unique cities that customers already
reside in as a prompt to the user before they enter their preferred city, as shown in the
following output:

Aachen, Albuquerque, Anchorage, Århus, Barcelona, Barquisimeto, Bergamo, Berlin,
Bern, Boise, Bräcke, Brandenburg, Bruxelles, Buenos Aires, Butte, Campinas,
Caracas, Charleroi, Cork, Cowes, Cunewalde, Elgin, Eugene, Frankfurt a.M.,
Genève, Graz, Helsinki, I. de Margarita, Kirkland, Kobenhavn, Köln, Lander,
Leipzig, Lille, Lisboa, London, Luleå, Lyon, Madrid, Mannheim, Marseille,
México D.F., Montréal, München, Münster, Nantes, Oulu, Paris, Portland, Reggio
Emilia, Reims, Resende, Rio de Janeiro, Salzburg, San Cristóbal, San Francisco,
Sao Paulo, Seattle, Sevilla, Stavern, Strasbourg, Stuttgart, Torino, Toulouse,
Tsawassen, Vancouver, Versailles, Walla Walla, Warszawa

Chapter 11

[503]

Exercise 11.3 – Explore topics
Use the links on the following page to learn more details about the topics covered in this
chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-11---
querying-and-manipulating-data-using-linq

Summary
In this chapter, you learned how to write LINQ queries to select, project, filter, sort, join, and
group data in many different formats, including XML, which are tasks you will perform every
day.

In the next chapter, you will use the Task type to improve the performance of your applications.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-11---querying-and-manipulating-data-using-linq
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-11---querying-and-manipulating-data-using-linq

[505]

12
Improving Performance and

Scalability Using Multitasking
This chapter is about allowing multiple actions to occur at the same time to improve
performance, scalability, and user productivity for the applications that you build.

In this chapter, we will cover the following topics:

• Understanding processes, threads, and tasks
• Monitoring performance and resource usage
• Running tasks asynchronously
• Synchronizing access to shared resources
• Understanding async and await

Understanding processes, threads, and tasks
A process, with one example being each of the console applications we have created, has
resources like memory and threads allocated to it.

A thread executes your code, statement by statement. By default, each process only has one
thread, and this can cause problems when we need to do more than one task at the same time.
Threads are also responsible for keeping track of things like the currently authenticated user
and any internationalization rules that should be followed for the current language and region.

Windows and most other modern operating systems use preemptive multitasking, which
simulates the parallel execution of tasks. It divides the processor time among the threads,
allocating a time slice to each thread one after another. The current thread is suspended when
its time slice finishes. The processor then allows another thread to run for a time slice.

Improving Performance and Scalability Using Multitasking

[506]

When Windows switches from one thread to another, it saves the context of the thread and
reloads the previously saved context of the next thread in the thread queue. This takes both
time and resources to complete.

As a developer, if you have a small number of complex pieces of work and you want complete
control over them, then you could create and manage individual Thread instances. If you have
one main thread and multiple small pieces of work that can be executed in the background,
then you can use the ThreadPool class to add delegate instances that point to those pieces of
work implemented as methods to a queue, and they will be automatically allocated to threads
in the thread pool.

In this chapter, we will use the Task type to manage threads at a higher abstraction level.

Threads may have to compete for and also wait for access to shared resources, such as
variables, files, and database objects. There are types for managing this that you will see in
action later in this chapter.

Depending on the task, doubling the number of threads (workers) to perform a task does not
halve the number of seconds that it will take to complete that task. In fact, it can increase the
duration of the task.

Monitoring performance and resource usage
Before we can improve the performance of any code, we need to be able to monitor its speed
and efficiency to record a baseline that we can then measure improvements against.

Evaluating the efficiency of types
What is the best type to use for a scenario? To answer this question, we need to carefully
consider what we mean by "best", and through this, we should consider the following factors:

• Functionality: This can be decided by checking whether the type provides the features
you need.

• Memory size: This can be decided by the number of bytes of memory the type takes up.
• Performance: This can be decided by how fast the type is.
• Future needs: This depends on the changes in requirements and maintainability.

There will be scenarios, such as when storing numbers, where multiple types have the same
functionality, so we will need to consider memory and performance to make a choice.

Good Practice: Never assume that more threads will improve performance!
Run performance tests on a baseline code implementation without multiple
threads, and then again on a code implementation with multiple threads. You
should also perform performance tests in a staging environment that is as close
as possible to the production environment.

Chapter 12

[507]

If we need to store millions of numbers, then the best type to use would be the one that
requires the fewest bytes of memory. But if we only need to store a few numbers, yet we need
to perform lots of calculations on them, then the best type to use would be the one that runs
fastest on a specific CPU.

You have seen the use of the sizeof() function, which shows the number of bytes a single
instance of a type uses in memory. When we are storing a large number of values in more
complex data structures, such as arrays and lists, then we need a better way of measuring
memory usage.

You can read lots of advice online and in books, but the only way to know for sure what the
best type would be for your code is to compare the types yourself.

In the next section, you will learn how to write code to monitor the actual memory
requirements and performance when using different types.

Today a short variable might be the best choice, but it might be an even better choice to use an
int variable, even though it takes twice as much space in the memory. This is because we might
need a wider range of values to be stored in the future.

There is an important metric that developers often forget: maintenance. This is a measure of
how much effort another programmer would have to put in to understand and modify your
code. If you make a nonobvious choice of type without explaining that choice with a helpful
comment, then it might confuse the programmer who comes along later and needs to fix a bug
or add a feature.

Monitoring performance and memory using
diagnostics
The System.Diagnostics namespace has lots of useful types for monitoring your code. The first
useful type that we will look at is the Stopwatch type:

1. Use your preferred coding tool to create a new workspace/solution named Chapter12.
2. Add a class library project, as defined in the following list:

1. Project template: Class Library / classlib
2. Workspace/solution file and folder: Chapter12
3. Project file and folder: MonitoringLib

3. Add a console app project, as defined in the following list:
1. Project template: Console Application / console
2. Workspace/solution file and folder: Chapter12
3. Project file and folder: MonitoringApp

4. In Visual Studio, set the startup project for the solution to the current selection.
5. In Visual Studio Code, select MonitoringApp as the active OmniSharp project.

Improving Performance and Scalability Using Multitasking

[508]

6. In the MonitoringLib project, rename the Class1.cs file to Recorder.cs.
7. In the MonitoringApp project, add a project reference to the MonitoringLib class library,

as shown in the following markup:
<ItemGroup>
 <ProjectReference
 Include="..\MonitoringLib\MonitoringLib.csproj" />
</ItemGroup>

8. Build the MonitoringApp project.

Useful members of the Stopwatch and Process types
The Stopwatch type has some useful members, as shown in the following table:

Member Description
Restart method This resets the elapsed time to zero and then starts the timer.
Stop method This stops the timer.
Elapsed property This is the elapsed time stored as a TimeSpan format (for

example, hours:minutes:seconds)
ElapsedMilliseconds property This is the elapsed time in milliseconds stored as an Int64 value.

The Process type has some useful members, as shown in the following table:

Member Description
VirtualMemorySize64 This displays the amount of virtual memory, in bytes, allocated for the

process.
WorkingSet64 This displays the amount of physical memory, in bytes, allocated for the

process.

Implementing a Recorder class
We will create a Recorder class that makes it easy to monitor time and memory resource usage.
To implement our Recorder class, we will use the Stopwatch and Process classes:

1. In Recorder.cs, change its contents to use a Stopwatch instance to record timings and
the current Process instance to record memory usage, as shown in the following code:

using System.Diagnostics; // Stopwatch

using static System.Console;
using static System.Diagnostics.Process; // GetCurrentProcess()

namespace Packt.Shared;

Chapter 12

[509]

public static class Recorder
{
 private static Stopwatch timer = new();

 private static long bytesPhysicalBefore = 0;
 private static long bytesVirtualBefore = 0;

 public static void Start()
 {
 // force two garbage collections to release memory that is
 // no longer referenced but has not been released yet
 GC.Collect();
 GC.WaitForPendingFinalizers();
 GC.Collect();

 // store the current physical and virtual memory use
 bytesPhysicalBefore = GetCurrentProcess().WorkingSet64;
 bytesVirtualBefore = GetCurrentProcess().VirtualMemorySize64;
 timer.Restart();
 }

 public static void Stop()
 {
 timer.Stop();
 long bytesPhysicalAfter =
 GetCurrentProcess().WorkingSet64;

 long bytesVirtualAfter =
 GetCurrentProcess().VirtualMemorySize64;

 WriteLine("{0:N0} physical bytes used.",
 bytesPhysicalAfter - bytesPhysicalBefore);

 WriteLine("{0:N0} virtual bytes used.",
 bytesVirtualAfter - bytesVirtualBefore);

 WriteLine("{0} time span ellapsed.", timer.Elapsed);

 WriteLine("{0:N0} total milliseconds ellapsed.",
 timer.ElapsedMilliseconds);
 }
}

The Start method of the Recorder class uses the GC type (garbage collector) to ensure
that any currently allocated but not referenced memory is collected before recording the
amount of used memory. This is an advanced technique that you should almost never
use in application code.

Improving Performance and Scalability Using Multitasking

[510]

2. In Program.cs, write statements to start and stop the Recorder while generating an array
of 10,000 integers, as shown in the following code:

using Packt.Shared; // Recorder

using static System.Console;

WriteLine("Processing. Please wait...");
Recorder.Start();

// simulate a process that requires some memory resources...
int[] largeArrayOfInts = Enumerable.Range(
 start: 1, count: 10_000).ToArray();

// ...and takes some time to complete
Thread.Sleep(new Random().Next(5, 10) * 1000);

Recorder.Stop();

3. Run the code and view the result, as shown in the following output:

Processing. Please wait...
655,360 physical bytes used.
536,576 virtual bytes used.
00:00:09.0038702 time span ellapsed.
9,003 total milliseconds ellapsed.

Remember that the time elapsed is randomly between 5 and 10 seconds. Your results will vary.
For example, when run on my Mac mini M1, less physical memory but more virtual memory
was used, as shown in the following output:

Processing. Please wait...
294,912 physical bytes used.
10,485,760 virtual bytes used.
00:00:06.0074221 time span ellapsed.
6,007 total milliseconds ellapsed.

Measuring the efficiency of processing strings
Now that you've seen how the Stopwatch and Process types can be used to monitor your code,
we will use them to evaluate the best way to process string variables.

1. In Program.cs, comment out the previous statements by wrapping them in multi-line
comment characters: /* */.

2. Write statements to create an array of 50,000 int variables and then concatenate them
with commas as separators using a string and StringBuilder class, as shown in the
following code:

Chapter 12

[511]

int[] numbers = Enumerable.Range(
 start: 1, count: 50_000).ToArray();

WriteLine("Using string with +");
Recorder.Start();
string s = string.Empty; // i.e. ""
for (int i = 0; i < numbers.Length; i++)
{
 s += numbers[i] + ", ";
}
Recorder.Stop();

WriteLine("Using StringBuilder");
Recorder.Start();
System.Text.StringBuilder builder = new();
for (int i = 0; i < numbers.Length; i++)
{
 builder.Append(numbers[i]);
 builder.Append(", ");
}
Recorder.Stop();

3. Run the code and view the result, as shown in the following output:

Using string with +
14,883,072 physical bytes used.
3,609,728 virtual bytes used.
00:00:01.6220879 time span ellapsed.
1,622 total milliseconds ellapsed.
Using StringBuilder
12,288 physical bytes used.
0 virtual bytes used.
00:00:00.0006038 time span ellapsed.
0 total milliseconds ellapsed.

We can summarize the results as follows:

• The string class with the + operator used about 14 MB of physical memory, 1.5 MB of
virtual memory, and took 1.5 seconds.

• The StringBuilder class used 12 KB of physical memory, zero virtual memory, and
took less than 1 millisecond.

In this scenario, StringBuilder is more than 1,000 times faster and about 10,000 times more
memory efficient when concatenating text! This is because string concatenation creates a new
string each time you use it because string values are immutable so they can be safely pooled
for reuse. StringBuilder creates a single buffer while it appends more characters.

Improving Performance and Scalability Using Multitasking

[512]

Now that you've learned how to measure the performance and resource efficiency of your code
using types built into .NET, let's learn about a NuGet package that provides more sophisticated
performance measurements.

Monitoring performance and memory using
Benchmark.NET
There is a popular benchmarking NuGet package for .NET that Microsoft uses in its blog posts
about performance improvements, so it is good for .NET developers to know how it works and
use it for their own performance testing. Let's see how we could use it to compare performance
between string concatenation and StringBuilder:

1. Use your preferred code editor to add a new console app to the Chapter12 solution/
workspace named Benchmarking.

2. In Visual Studio Code, select Benchmarking as the active OmniSharp project.
3. Add a package reference to Benchmark.NET, remembering that you can find out the

latest version and use that instead of the version I used, as shown in the following
markup:

<ItemGroup>
 <PackageReference Include="BenchmarkDotNet" Version="0.13.1" />
</ItemGroup>

4. Build the project to restore packages.
5. In Program.cs, delete the existing statements and then import the namespace for

running benchmarks, as shown in the following code:
using BenchmarkDotNet.Running;

6. Add a new class file named StringBenchmarks.cs.
7. In StringBenchmarks.cs, add statements to define a class with methods for each

benchmark you want to run, in this case, two methods that both combine twenty
numbers comma-separated using either string concatenation or StringBuilder, as
shown in the following code:

using BenchmarkDotNet.Attributes; // [Benchmark]

public class StringBenchmarks
{
 int[] numbers;

 public StringBenchmarks()

Good Practice: Avoid using the String.Concat method or the + operator
inside loops. Use StringBuilder instead.

Chapter 12

[513]

 {
 numbers = Enumerable.Range(
 start: 1, count: 20).ToArray();
 }

 [Benchmark(Baseline = true)]
 public string StringConcatenationTest()
 {
 string s = string.Empty; // e.g. ""
 for (int i = 0; i < numbers.Length; i++)
 {
 s += numbers[i] + ", ";
 }
 return s;
 }

 [Benchmark]
 public string StringBuilderTest()
 {
 System.Text.StringBuilder builder = new();
 for (int i = 0; i < numbers.Length; i++)
 {
 builder.Append(numbers[i]);
 builder.Append(", ");
 }
 return builder.ToString();
 }
}

8. In Program.cs, add a statement to run the benchmarks, as shown in the following code:
BenchmarkRunner.Run<StringBenchmarks>();

9. In Visual Studio 2022, in the toolbar, set Solution Configurations to Release.
10. In Visual Studio Code, in a terminal, use the dotnet run --configuration Release

command.
11. Run the console app and note the results, including some artifacts like report files, and

the most important, a summary table that shows that string concatenation took a mean
of 412.990 ns and StringBuilder took a mean of 275.082 ns, as shown in the following
partial output and in Figure 12.1:

// ***** BenchmarkRunner: Finish *****

// * Export *
 BenchmarkDotNet.Artifacts\results\StringBenchmarks-report.csv
 BenchmarkDotNet.Artifacts\results\StringBenchmarks-report-github.md

Improving Performance and Scalability Using Multitasking

[514]

 BenchmarkDotNet.Artifacts\results\StringBenchmarks-report.html

// * Detailed results *
StringBenchmarks.StringConcatenationTest: DefaultJob
Runtime = .NET 6.0.0 (6.0.21.37719), X64 RyuJIT; GC = Concurrent
Workstation
Mean = 412.990 ns, StdErr = 2.353 ns (0.57%), N = 46, StdDev = 15.957 ns
Min = 373.636 ns, Q1 = 413.341 ns, Median = 417.665 ns, Q3 = 420.775 ns,
Max = 434.504 ns
IQR = 7.433 ns, LowerFence = 402.191 ns, UpperFence = 431.925 ns
ConfidenceInterval = [404.708 ns; 421.273 ns] (CI 99.9%), Margin = 8.282
ns (2.01% of Mean)
Skewness = -1.51, Kurtosis = 4.09, MValue = 2
-------------------- Histogram --------------------
[370.520 ns ; 382.211 ns) | @@@@@@
[382.211 ns ; 394.583 ns) | @
[394.583 ns ; 411.300 ns) | @@
[411.300 ns ; 422.990 ns) | @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
[422.990 ns ; 436.095 ns) | @@@@@

StringBenchmarks.StringBuilderTest: DefaultJob
Runtime = .NET 6.0.0 (6.0.21.37719), X64 RyuJIT; GC = Concurrent
Workstation
Mean = 275.082 ns, StdErr = 0.558 ns (0.20%), N = 15, StdDev = 2.163 ns
Min = 271.059 ns, Q1 = 274.495 ns, Median = 275.403 ns, Q3 = 276.553 ns,
Max = 278.030 ns
IQR = 2.058 ns, LowerFence = 271.409 ns, UpperFence = 279.639 ns
ConfidenceInterval = [272.770 ns; 277.394 ns] (CI 99.9%), Margin = 2.312
ns (0.84% of Mean)
Skewness = -0.69, Kurtosis = 2.2, MValue = 2
-------------------- Histogram --------------------
[269.908 ns ; 278.682 ns) | @@@@@@@@@@@@@@@

// * Summary *

BenchmarkDotNet=v0.13.1, OS=Windows 10.0.19043.1165 (21H1/May2021Update)
11th Gen Intel Core i7-1165G7 2.80GHz, 1 CPU, 8 logical and 4 physical
cores
.NET SDK=6.0.100
 [Host] : .NET 6.0.0 (6.0.21.37719), X64 RyuJIT
 DefaultJob : .NET 6.0.0 (6.0.21.37719), X64 RyuJIT

| Method | Mean | Error | StdDev | Ratio |
RatioSD |

Chapter 12

[515]

|------------------------ |---------:|--------:|---------:|------:|------
--:|
| StringConcatenationTest | 413.0 ns | 8.28 ns | 15.96 ns | 1.00 |
0.00 |
| StringBuilderTest | 275.1 ns | 2.31 ns | 2.16 ns | 0.69 |
0.04 |

// * Hints *
Outliers
 StringBenchmarks.StringConcatenationTest: Default -> 7 outliers
were removed, 14 outliers were detected (376.78 ns..391.88 ns, 440.79
ns..506.41 ns)
 StringBenchmarks.StringBuilderTest: Default -> 2 outliers were
detected (274.68 ns, 274.69 ns)

// * Legends *
 Mean : Arithmetic mean of all measurements
 Error : Half of 99.9% confidence interval
 StdDev : Standard deviation of all measurements
 Ratio : Mean of the ratio distribution ([Current]/[Baseline])
 RatioSD : Standard deviation of the ratio distribution ([Current]/
[Baseline])
 1 ns : 1 Nanosecond (0.000000001 sec)

// ***** BenchmarkRunner: End *****
// ** Remained 0 benchmark(s) to run **
Run time: 00:01:13 (73.35 sec), executed benchmarks: 2

Global total time: 00:01:29 (89.71 sec), executed benchmarks: 2
// * Artifacts cleanup *

Figure 12.1: Summary table that shows StringBuilder takes 69% of the time compared to string concatenation

The Outliers section is especially interesting because it shows that not only is string
concatenation slower than StringBuilder, but it is also more inconsistent in how long it takes.
Your results will vary, of course.

Improving Performance and Scalability Using Multitasking

[516]

You have now seen two ways to measure performance. Now let's see how we can run tasks
asynchronously to potentially improve performance.

Running tasks asynchronously
To understand how multiple tasks can be run simultaneously (at the same time), we will create
a console application that needs to execute three methods.

There will be three methods that need to be executed: the first takes 3 seconds, the second takes
2 seconds, and the third takes 1 second. To simulate that work, we can use the Thread class to
tell the current thread to go to sleep for a specified number of milliseconds.

Running multiple actions synchronously
Before we make the tasks run simultaneously, we will run them synchronously, that is, one
after the other.

1. Use your preferred code editor to add a new console app to the Chapter12 solution/
workspace named WorkingWithTasks.

2. In Visual Studio Code, select WorkingWithTasks as the active OmniSharp project.
3. In Program.cs, import the namespace to work with a stopwatch (namespaces for

working with threading and tasks are implicitly imported), and statically import
Console, as shown in the following code:

using System.Diagnostics; // Stopwatch

using static System.Console;

4. At the bottom of Program.cs, create a method to output information about the current
thread, as shown in the following code:

static void OutputThreadInfo()
{
 Thread t = Thread.CurrentThread;

 WriteLine(
 "Thread Id: {0}, Priority: {1}, Background: {2}, Name: {3}",
 t.ManagedThreadId, t.Priority,
 t.IsBackground, t.Name ?? "null");
}

5. At the bottom of Program.cs, add three methods that simulate work, as shown in the
following code:

static void MethodA()
{
 WriteLine("Starting Method A...");

Chapter 12

[517]

 OutputThreadInfo();
 Thread.Sleep(3000); // simulate three seconds of work
 WriteLine("Finished Method A.");
}

static void MethodB()
{
 WriteLine("Starting Method B...");
 OutputThreadInfo();
 Thread.Sleep(2000); // simulate two seconds of work
 WriteLine("Finished Method B.");
}

static void MethodC()
{
 WriteLine("Starting Method C...");
 OutputThreadInfo();
 Thread.Sleep(1000); // simulate one second of work
 WriteLine("Finished Method C.");
}

6. At the top of Program.cs, add statements to call the method to output information
about the thread, define and start a stopwatch, call the three simulated work methods,
and then output the milliseconds elapsed, as shown in the following code:

OutputThreadInfo();
Stopwatch timer = Stopwatch.StartNew();

WriteLine("Running methods synchronously on one thread.");
MethodA();
MethodB();
MethodC();

WriteLine($"{timer.ElapsedMilliseconds:#,##0}ms elapsed.");

7. Run the code, view the result, and note that when there is only one unnamed
foreground thread doing the work, the total time required is just over 6 seconds, as
shown in the following output:

Thread Id: 1, Priority: Normal, Background: False, Name: null
Running methods synchronously on one thread.
Starting Method A...
Thread Id: 1, Priority: Normal, Background: False, Name: null
Finished Method A.
Starting Method B...
Thread Id: 1, Priority: Normal, Background: False, Name: null
Finished Method B.

Improving Performance and Scalability Using Multitasking

[518]

Starting Method C...
Thread Id: 1, Priority: Normal, Background: False, Name: null
Finished Method C.
6,017ms elapsed.

Running multiple actions asynchronously using
tasks
The Thread class has been available since the first version of .NET and can be used to create
new threads and manage them, but it can be tricky to work with directly.

.NET Framework 4.0 introduced the Task class in 2010, which is a wrapper around a thread that
enables easier creation and management. Managing multiple threads wrapped in tasks will
allow our code to execute at the same time, aka asynchronously.

Each Task has a Status property and a CreationOptions property. A Task has a ContinueWith
method that can be customized with the TaskContinuationOptions enum, and can be managed
with the TaskFactory class.

Starting tasks
We will look at three ways to start the methods using Task instances. There are links in the
GitHub repository to articles that discuss the pros and cons. Each has a slightly different
syntax, but they all define a Task and start it:

1. Comment out the calls to the three methods and their associated console message,
and add statements to create and start three tasks, one for each method, as shown
highlighted in the following code:

OutputThreadInfo();
Stopwatch timer = Stopwatch.StartNew();

/*
WriteLine("Running methods synchronously on one thread.");
MethodA();
MethodB();
MethodC();
*/

WriteLine("Running methods asynchronously on multiple threads.");

Task taskA = new(MethodA);
taskA.Start();

Task taskB = Task.Factory.StartNew(MethodB);

Task taskC = Task.Run(MethodC);

Chapter 12

[519]

WriteLine($"{timer.ElapsedMilliseconds:#,##0}ms elapsed.");

2. Run the code, view the result, and note that the elapsed milliseconds appear almost
immediately. This is because each of the three methods is now being executed by
three new background worker threads allocated from the thread pool, as shown in the
following output:

Thread Id: 1, Priority: Normal, Background: False, Name: null
Running methods asynchronously on multiple threads.
Starting Method A...
Thread Id: 4, Priority: Normal, Background: True, Name: .NET ThreadPool
Worker
Starting Method C...
Thread Id: 7, Priority: Normal, Background: True, Name: .NET ThreadPool
Worker
Starting Method B...
Thread Id: 6, Priority: Normal, Background: True, Name: .NET ThreadPool
Worker
6ms elapsed.

It is even possible that the console app will end before one or more of the tasks have a chance to
start and write to the console!

Waiting for tasks
Sometimes, you need to wait for a task to complete before continuing. To do this, you can use
the Wait method on a Task instance, or the WaitAll or WaitAny static methods on an array of
tasks, as described in the following table:

Method Description
t.Wait() This waits for the task instance named t to complete execution.
Task.WaitAny(Task[]) This waits for any of the tasks in the array to complete execution.
Task.WaitAll(Task[]) This waits for all the tasks in the array to complete execution.

Using wait methods with tasks
Let's see how we can use these wait methods to fix the problem with our console app.

1. In Program.cs, add statements after creating the three tasks and before outputting the
elapsed time to combine references to the three tasks into an array and pass them to the
WaitAll method, as shown in the following code:

Task[] tasks = { taskA, taskB, taskC };
Task.WaitAll(tasks);

Improving Performance and Scalability Using Multitasking

[520]

2. Run the code and view the result, and note the original thread will pause on the call to
WaitAll, waiting for all three tasks to finish before outputting the elapsed time, which is
a little over 3 seconds, as shown in the following output:

Id: 1, Priority: Normal, Background: False, Name: null
Running methods asynchronously on multiple threads.
Starting Method A...
Id: 6, Priority: Normal, Background: True, Name: .NET ThreadPool Worker
Starting Method B...
Id: 7, Priority: Normal, Background: True, Name: .NET ThreadPool Worker
Starting Method C...
Id: 4, Priority: Normal, Background: True, Name: .NET ThreadPool Worker
Finished Method C.
Finished Method B.
Finished Method A.
3,013ms elapsed.

The three new threads execute their code simultaneously, and they can potentially start in any
order. MethodC should finish first because it takes only 1 second, then MethodB, which takes 2
seconds, and finally MethodA, because it takes 3 seconds.

However, the actual CPU used has a big effect on the results. It is the CPU that allocates time
slices to each process to allow them to execute their threads. You have no control over when
the methods run.

Continuing with another task
If all three tasks can be performed at the same time, then waiting for all tasks to finish will be
all we need to do. However, often a task is dependent on the output from another task. To
handle this scenario, we need to define continuation tasks.

We will create some methods to simulate a call to a web service that returns a monetary amount
that then needs to be used to retrieve how many products cost more than that amount in a
database. The result returned from the first method needs to be fed into the input of the second
method. This time, instead of waiting for fixed amounts of time, we will use the Random class to
wait for a random interval between 2 and 4 seconds for each method call to simulate the work.

1. At the bottom of Program.cs, add two methods that simulate calling a web service and
a database-stored procedure, as shown in the following code:

static decimal CallWebService()
{
 WriteLine("Starting call to web service...");
 OutputThreadInfo();
 Thread.Sleep((new Random()).Next(2000, 4000));

Chapter 12

[521]

 WriteLine("Finished call to web service.");
 return 89.99M;
}

static string CallStoredProcedure(decimal amount)
{
 WriteLine("Starting call to stored procedure...");
 OutputThreadInfo();
 Thread.Sleep((new Random()).Next(2000, 4000));
 WriteLine("Finished call to stored procedure.");
 return $"12 products cost more than {amount:C}.";
}

2. Comment out the calls to the previous three tasks by wrapping them in multiline
comment characters, /* */. Leave the statement that outputs the elapsed milliseconds.

3. Add statements before the existing statement to output the total time, as shown in the
following code:

WriteLine("Passing the result of one task as an input into another.");

Task<string> taskServiceThenSProc = Task.Factory
 .StartNew(CallWebService) // returns Task<decimal>
 .ContinueWith(previousTask => // returns Task<string>
 CallStoredProcedure(previousTask.Result));

WriteLine($"Result: {taskServiceThenSProc.Result}");

4. Run the code and view the result, as shown in the following output:

Thread Id: 1, Priority: Normal, Background: False, Name: null
Passing the result of one task as an input into another.
Starting call to web service...
Thread Id: 4, Priority: Normal, Background: True, Name: .NET ThreadPool
Worker
Finished call to web service.
Starting call to stored procedure...
Thread Id: 6, Priority: Normal, Background: True, Name: .NET ThreadPool
Worker
Finished call to stored procedure.
Result: 12 products cost more than £89.99.
5,463ms elapsed.

You might see different threads running the web service and stored procedure calls as in the
output above (threads 4 and 6), or the same thread might be reused since it is no longer busy.

Improving Performance and Scalability Using Multitasking

[522]

Nested and child tasks
As well as defining dependencies between tasks, you can define nested and child tasks. A
nested task is a task that is created inside another task. A child task is a nested task that must
finish before its parent task is allowed to finish.

Let's explore how these types of tasks work:

1. Use your preferred code editor to add a new console app to the Chapter12 solution/
workspace named NestedAndChildTasks.

2. In Visual Studio Code, select NestedAndChildTasks as the active OmniSharp project.
3. In Program.cs, delete the existing statements, statically import Console, and then add

two methods, one of which starts a task to run the other, as shown in the following
code:

static void OuterMethod()
{
 WriteLine("Outer method starting...");
 Task innerTask = Task.Factory.StartNew(InnerMethod);
 WriteLine("Outer method finished.");
}

static void InnerMethod()
{
 WriteLine("Inner method starting...");
 Thread.Sleep(2000);
 WriteLine("Inner method finished.");
}

4. Above the methods, add statements to start a task to run the outer method and wait for
it to finish before stopping, as shown in the following code:

Task outerTask = Task.Factory.StartNew(OuterMethod);
outerTask.Wait();
WriteLine("Console app is stopping.");

5. Run the code and view the result, as shown in the following output:

Outer method starting...
Inner method starting...
Outer method finished.
Console app is stopping.

Note that, although we wait for the outer task to finish, its inner task does not have to
finish as well. In fact, the outer task might finish, and the console app could end, before
the inner task even starts!

Chapter 12

[523]

To link these nested tasks as parent and child, we must use a special option.
6. Modify the existing code that defines the inner task to add a TaskCreationOption value

of AttachedToParent, as shown highlighted in the following code:
Task innerTask = Task.Factory.StartNew(InnerMethod,
 TaskCreationOptions.AttachedToParent);

7. Run the code, view the result, and note that the inner task must finish before the outer
task can, as shown in the following output:

Outer method starting...
Inner method starting...
Outer method finished.
Inner method finished.
Console app is stopping.

The OuterMethod can finish before the InnerMethod, as shown by its writing to the console,
but its task must wait, as shown by the console not stopping until both the outer and inner
tasks finish.

Wrapping tasks around other objects
Sometimes you might have a method that you want to be asynchronous, but the result to be
returned is not itself a task. You can wrap the return value in a successfully completed task,
return an exception, or indicate that the task was canceled by using one of the methods shown
in the following table:

Method Description
FromResult<TResult>(TResult) Creates a Task<TResult> object whose Result

property is the non-task result and whose Status
property is RanToCompletion.

FromException<TResult>(Exception) Creates a Task<TResult> that's completed with a
specified exception.

FromCanceled<TResult>(CancellationToken) Creates a Task<TResult> that's completed due to
cancellation with a specified cancellation token.

These methods are useful when you need to:

• Implement an interface that has async methods, but your implementation is
synchronous. This is common for websites and services.

• Mock asynchronous implementations during unit testing.

In Chapter 7, Packaging and Distributing .NET Types, we created a class library with functions to
check valid XML, passwords, and hex codes.

Improving Performance and Scalability Using Multitasking

[524]

If we had wanted to make those methods conform to an interface that requires a Task<T> to be
returned, we could use these helpful methods, as shown in the following code:

using System.Text.RegularExpressions;

namespace Packt.Shared;

public static class StringExtensions
{
 public static Task<bool> IsValidXmlTagAsync(this string input)
 {
 if (input == null)
 {
 return Task.FromException<bool>(
 new ArgumentNullException("Missing input parameter"));
 }
 if (input.Length == 0)
 {
 return Task.FromException<bool>(
 new ArgumentException("input parameter is empty."));
 }
 return Task.FromResult(Regex.IsMatch(input,
 @"^<([a-z]+)([^<]+)*(?:>(.*)<\/\1>|\s+\/>)$"));
 }

 // other methods
}

If the method you need to implement returns a Task (equivalent to void in a synchronous
method) then you can return a predefined completed Task object, as shown in the following code:

public Task DeleteCustomerAsync()
{
 // ...
 return Task.CompletedTask;
}

Synchronizing access to shared resources
When you have multiple threads executing at the same time, there is a possibility that two or
more of the threads may access the same variable or another resource at the same time, and as
a result, may cause a problem. For this reason, you should carefully consider how to make your
code thread-safe.

The simplest mechanism for implementing thread safety is to use an object variable as a flag or
traffic light to indicate when a shared resource has an exclusive lock applied.

Chapter 12

[525]

In William Golding's Lord of the Flies, Piggy and Ralph spot a conch shell and use it to call a
meeting. The boys impose a "rule of the conch" on themselves, deciding that no one can speak
unless they're holding the conch.

I like to name the object variable I use for implementing thread-safe code the "conch." When a
thread has the conch, no other thread should access the shared resource(s) represented by that
conch. Note that I say, should. Only code that respects the conch enables synchronized access.
A conch is not a lock.

We will explore a couple of types that can be used to synchronize access to shared resources:

• Monitor: An object that can be used by multiple threads to check if they should access a
shared resource within the same process.

• Interlocked: An object for manipulating simple numeric types at the CPU level.

Accessing a resource from multiple threads
1. Use your preferred code editor to add a new console app to the Chapter12 solution/

workspace named SynchronizingResourceAccess.
2. In Visual Studio Code, select SynchronizingResourceAccess as the active OmniSharp

project.
3. In Program.cs, delete the existing statements and then add statements to do the

following:
• Import the namespace for diagnostic types like Stopwatch.
• Statically import the Console type.
• At the bottom of Program.cs, create a static class with two fields:

• A field to generate random wait times.
• A string field to store a message (this is a shared resource).

• Above the class, create two static methods that add a letter, A or B, to the shared
string five times in a loop, and wait for a random interval of up to 2 seconds
for each iteration:

static void MethodA()
{
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(SharedObjects.Random.Next(2000));
 SharedObjects.Message += "A";
 Write(".");
 }
}

static void MethodB()
{

Improving Performance and Scalability Using Multitasking

[526]

 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(SharedObjects.Random.Next(2000));
 SharedObjects.Message += "B";
 Write(".");
 }
}

static class SharedObjects
{
 public static Random Random = new();
 public static string? Message; // a shared resource
}

4. After the namespace imports, write statements to execute both methods on separate
threads using a pair of tasks and wait for them to complete before outputting the
elapsed milliseconds, as shown in the following code:

WriteLine("Please wait for the tasks to complete.");
Stopwatch watch = Stopwatch.StartNew();

Task a = Task.Factory.StartNew(MethodA);
Task b = Task.Factory.StartNew(MethodB);

Task.WaitAll(new Task[] { a, b });

WriteLine();
WriteLine($"Results: {SharedObjects.Message}.");
WriteLine($"{watch.ElapsedMilliseconds:N0} elapsed milliseconds.");

5. Run the code and view the result, as shown in the following output:

Please wait for the tasks to complete.
..........
Results: BABABAABBA.
5,753 elapsed milliseconds.

This shows that both threads were modifying the message concurrently. In an actual
application, this could be a problem. But we can prevent concurrent access by applying a
mutually exclusive lock to a conch object and code to the two methods to voluntarily check the
conch before modifying the shared resource, which we will do in the following section.

Applying a mutually exclusive lock to a conch
Now, let's use a conch to ensure that only one thread accesses the shared resource at a time.

Chapter 12

[527]

1. In SharedObjects, declare and instantiate an object variable to act as a conch, as shown
in the following code:

public static object Conch = new();

2. In both MethodA and MethodB, add a lock statement for the conch around the for
statements, as shown highlighted in the following code:

lock (SharedObjects.Conch)
{
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(SharedObjects.Random.Next(2000));
 SharedObjects.Message += "A";
 Write(".");
 }
}

3. Run the code and view the result, as shown in the following output:

Please wait for the tasks to complete.
..........
Results: BBBBBAAAAA.
10,345 elapsed milliseconds.

Although the time elapsed was longer, only one method at a time could access the shared
resource. Either MethodA or MethodB can start first. Once a method has finished its work on
the shared resource, then the conch gets released, and the other method has the chance to do
its work.

Understanding the lock statement
You might wonder what the lock statement does when it "locks" an object variable (hint: it does
not lock the object!), as shown in the following code:

lock (SharedObjects.Conch)
{
 // work with shared resource
}

Good Practice: Note that since checking the conch is voluntary, if you
only use the lock statement in one of the two methods, the shared
resource will continue to be accessed by both methods. Make sure that
all methods that access a shared resource respect the conch.

Improving Performance and Scalability Using Multitasking

[528]

The C# compiler changes the lock statement into a try-finally statement that uses the Monitor
class to enter and exit the conch object (I like to think of it as take and release the conch object), as
shown in the following code:

try
{
 Monitor.Enter(SharedObjects.Conch);

 // work with shared resource
}
finally
{
 Monitor.Exit(SharedObjects.Conch);
}

When a thread calls Monitor.Enter on any object, aka reference type, it checks to see if some
other thread has already taken the conch. If it has, the thread waits. If it has not, the thread
takes the conch and gets on with its work on the shared resource. Once the thread has finished
its work, it calls Monitor.Exit, releasing the conch. If another thread was waiting, it can
now take the conch and do its work. This requires all threads to respect the conch by calling
Monitor.Enter and Monitor.Exit appropriately.

Avoiding deadlocks
Knowing how the lock statement is translated by the compiler to method calls on the Monitor
class is also important because using the lock statement can cause a deadlock.

Deadlocks can occur when there are two or more shared resources (each with a conch to
monitor which thread is currently doing work on each shared resource), and the following
sequence of events happens:

• Thread X "locks" conch A and starts working on shared resource A.
• Thread Y "locks" conch B and starts working on shared resource B.
• While still working on resource A, thread X needs to also work with resource B, and so

it attempts to "lock" conch B but is blocked because thread Y already has conch B.
• While still working on resource B, thread Y needs to also work with resource A, and so

it attempts to "lock" conch A but is blocked because thread X already has conch A.

One way to prevent deadlocks is to specify a timeout when attempting to get a lock. To do this,
you must manually use the Monitor class instead of using the lock statement.

1. Modify your code to replace the lock statements with code that tries to enter the conch
with a timeout and outputs an error and then exits the monitor, allowing other threads
to enter the monitor, as shown highlighted in the following code:

try
{

Chapter 12

[529]

 if (Monitor.TryEnter(SharedObjects.Conch, TimeSpan.FromSeconds(15)))
 {
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(SharedObjects.Random.Next(2000));
 SharedObjects.Message += "A";
 Write(".");
 }
 }
 else
 {
 WriteLine("Method A timed out when entering a monitor on conch.");
 }
}
finally
{
 Monitor.Exit(SharedObjects.Conch);
}

2. Run the code and view the result, which should return the same results as before
(although either A or B could grab the conch first) but is better code because it will
prevent potential deadlocks.

Synchronizing events
In Chapter 6, Implementing Interfaces and Inheriting Classes, you learned how to raise and handle
events. But .NET events are not thread-safe, so you should avoid using them in multithreaded
scenarios and follow the standard event raising code I showed you earlier.

After learning that .NET events are not thread-safe, some developers attempt to use exclusive
locks when adding and removing event handlers or when raising an event, as shown in the
following code:

// event delegate field
public event EventHandler Shout;

// conch

Good Practice: Only use the lock keyword if you can write your code such
that it avoids potential deadlocks. If you cannot avoid potential deadlocks,
then always use the Monitor.TryEnter method instead of lock, in
combination with a try-finally statement, so that you can supply a timeout
and one of the threads will back out of a deadlock if it occurs. You can
read more about good threading practices at the following link: https://
docs.microsoft.com/en-us/dotnet/standard/threading/managed-
threading-best-practices

https://docs.microsoft.com/en-us/dotnet/standard/threading/managed-threading-best-practices
https://docs.microsoft.com/en-us/dotnet/standard/threading/managed-threading-best-practices
https://docs.microsoft.com/en-us/dotnet/standard/threading/managed-threading-best-practices

Improving Performance and Scalability Using Multitasking

[530]

private object eventLock = new();

// method
public void Poke()
{
 lock (eventLock) // bad idea
 {
 // if something is listening...
 if (Shout != null)
 {
 // ...then call the delegate to raise the event
 Shout(this, EventArgs.Empty);
 }
 }
}

Making CPU operations atomic
Atomic is from the Greek word atomos, which means undividable. It is important to understand
which operations are atomic in multithreading because if they are not atomic, then they
could be interrupted by another thread partway through their operation. Is the C# increment
operator atomic, as shown in the following code?

int x = 3;
x++; // is this an atomic CPU operation?

It is not atomic! Incrementing an integer requires the following three CPU operations:

1. Load a value from an instance variable into a register.
2. Increment the value.
3. Store the value in the instance variable.

A thread could be interrupted after executing the first two steps. A second thread could then
execute all three steps. When the first thread resumes execution, it will overwrite the value in
the variable, and the effect of the increment or decrement performed by the second thread will
be lost!

Good Practice: You can read more about events and thread-safety at the
following link: https://docs.microsoft.com/en-us/archive/blogs/
cburrows/field-like-events-considered-harmful

But it is complicated, as explained by Stephen Cleary in the following blog
post: https://blog.stephencleary.com/2009/06/threadsafe-events.
html

https://docs.microsoft.com/en-us/archive/blogs/cburrows/field-like-events-considered-harmful
https://docs.microsoft.com/en-us/archive/blogs/cburrows/field-like-events-considered-harmful
https://blog.stephencleary.com/2009/06/threadsafe-events.html
https://blog.stephencleary.com/2009/06/threadsafe-events.html

Chapter 12

[531]

There is a type named Interlocked that can perform atomic actions on value types, such as
integers and floats. Let's see it in action:

1. Declare another field in the SharedObjects class that will count how many operations
have occurred, as shown in the following code:

public static int Counter; // another shared resource

2. In both methods A and B, inside the for statement and after modifying the string
value, add a statement to safely increment the counter, as shown in the following code:

Interlocked.Increment(ref SharedObjects.Counter);

3. After outputting the elapsed time, write the current value of the counter to the console,
as shown in the following code:

WriteLine($"{SharedObjects.Counter} string modifications.");

4. Run the code and view the result, as shown highlighted in the following output:

Please wait for the tasks to complete.
..........
Results: BBBBBAAAAA.
13,531 elapsed milliseconds.
10 string modifications.

Observant readers will realize that the existing conch object protects all shared resources
accessed within a block of code locked by the conch, and therefore it is actually unnecessary
to use Interlocked in this specific example. But if we had not already been protecting another
shared resource like Message then using Interlocked would be necessary.

Applying other types of synchronization
Monitor and Interlocked are mutually exclusive locks that are simple and effective, but
sometimes, you need more advanced options to synchronize access to shared resources, as
shown in the following table:

Type Description
ReaderWriterLock and
ReaderWriterLockSlim

These allow multiple threads to be in read mode, one thread to be in write
mode with exclusive ownership of the write lock, and one thread that has
read access to be in upgradeable read mode, from which the thread can
upgrade to write mode without having to relinquish its read access to the
resource.

Mutex Like Monitor, this provides exclusive access to a shared resource, except it
is used for inter-process synchronization.

Semaphore and
SemaphoreSlim

These limit the number of threads that can access a resource or pool
of resources concurrently by defining slots. This is known as resource
throttling rather than resource locking.

AutoResetEvent and
ManualResetEvent

Event wait handles allow threads to synchronize activities by signaling
each other and by waiting for each other's signals.

Improving Performance and Scalability Using Multitasking

[532]

Understanding async and await
C# 5 introduced two C# keywords when working with the Task type. They are especially
useful for the following:

• Implementing multitasking for a graphical user interface (GUI).
• Improving the scalability of web applications and web services.

In Chapter 15, Building Websites Using the Model-View-Controller Pattern, we will see how the
async and await keywords can improve scalability for websites.

In Chapter 19, Building Mobile and Desktop Apps Using .NET MAUI, we will see how the async
and await keywords can implement multitasking for a GUI.

But for now, let's learn the theory of why these two C# keywords were introduced, and then
later you will see them used in practice.

Improving responsiveness for console apps
One of the limitations with console applications is that you can only use the await keyword
inside methods that are marked as async but C# 7 and earlier do not allow the Main method to
be marked as async! Luckily, a new feature introduced in C# 7.1 was support for async in Main:

1. Use your preferred code editor to add a new console app to the Chapter12 solution/
workspace named AsyncConsole.

2. In Visual Studio Code, select AsyncConsole as the active OmniSharp project.
3. In Program.cs, delete the existing statements and statically import Console, as shown in

the following code:
using static System.Console;

4. Add statements to create an HttpClient instance, make a request for Apple's home
page, and output how many bytes it has, as shown in the following code:

HttpClient client = new();

HttpResponseMessage response =
 await client.GetAsync("http://www.apple.com/");

WriteLine("Apple's home page has {0:N0} bytes.",
 response.Content.Headers.ContentLength);

5. Build the project and note that it builds successfully. In .NET 5 and earlier, you would
have seen an error message, as shown in the following output:

Program.cs(14,9): error CS4033: The 'await' operator can only be used
within an async method. Consider marking this method with the 'async'
modifier and changing its return type to 'Task'. [/Users/markjprice/Code/
Chapter12/AsyncConsole/AsyncConsole.csproj]

Chapter 12

[533]

6. You would have had to add the async keyword to the Main method and change its
return type to Task. With .NET 6 and later, the console app project template uses
the top-level program feature to automatically define the Program class with an
asynchronous Main method for you.

7. Run the code and view the result, which is likely to have a different number of bytes
since Apple changes its home page frequently, as shown in the following output:

Apple's home page has 40,252 bytes.

Improving responsiveness for GUI apps
So far in this book, we have only built console applications. Life for a programmer gets more
complicated when building web applications, web services, and apps with GUIs such as
Windows desktop and mobile apps.

One reason for this is that for a GUI app, there is a special thread: the user interface (UI) thread.

There are two rules for working in GUIs:

• Do not perform long-running tasks on the UI thread.
• Do not access UI elements on any thread except the UI thread.

To handle these rules, programmers used to have to write complex code to ensure that long-
running tasks were executed by a non-UI thread, but once complete, the results of the task
were safely passed to the UI thread to present to the user. It could quickly get messy!

Luckily, with C# 5 and later, you have the use of async and await. They allow you to continue
to write your code as if it is synchronous, which keeps your code clean and easy to understand,
but underneath, the C# compiler creates a complex state machine and keeps track of running
threads. It's kind of magical!

Let's see an example. We will build a Windows desktop app using WPF that gets employees
from the Northwind database in an SQL Server database using low-level types like
SqlConnection, SqlCommand, and SqlDataReader. You will only be able to complete this task if
you have Windows and the Northwind database stored in SQL Server. This is the only section
in this book that is not cross-platform and modern (WPF is 16 years old!).

At this point, we are focusing on making a GUI app responsive. You will learn about XAML
and building cross-platform GUI apps in Chapter 19, Building Mobile and Desktop Apps Using
.NET MAUI. Since this book does not cover WPF elsewhere, I thought this task would be a
good opportunity to at least see an example app built using WPF even if we do not look at it in
detail.

Let's go!

1. If you are using Visual Studio 2022 for Windows, add a new WPF Application [C#]
project named WpfResponsive to the Chapter12 solution. If you are using Visual Studio
Code, use the following command: dotnet new wpf.

Improving Performance and Scalability Using Multitasking

[534]

2. In the project file, note the output type is a Windows EXE, the target framework is
.NET 6 for Windows (it will not run on other platforms like macOS and Linux), and the
project uses WPF.

3. Add a package reference for Microsoft.Data.SqlClient to the project, as shown
highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>WinExe</OutputType>
 <TargetFramework>net6.0-windows</TargetFramework>
 <Nullable>enable</Nullable>
 <UseWPF>true</UseWPF>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.Data.SqlClient" Version="3.0.0"
/>
 </ItemGroup>

</Project>

4. Build the project to restore packages.
5. In MainWindow.xaml, in the <Grid> element, add elements to define two buttons, a text

box and a list box, laid out vertically in a stack panel, as shown highlighted in the
following markup:

<Grid>
 <StackPanel>
 <Button Name="GetEmployeesSyncButton"
 Click="GetEmployeesSyncButton_Click">
 Get Employees Synchronously</Button>
 <Button Name="GetEmployeesAsyncButton"
 Click="GetEmployeesAsyncButton_Click">
 Get Employees Asynchronously</Button>
 <TextBox HorizontalAlignment="Stretch" Text="Type in here" />
 <ListBox Name="EmployeesListBox" Height="400" />
 </StackPanel>
</Grid>

Visual Studio 2022 for Windows has good support for building
WPF apps and will provide IntelliSense as you edit code and XAML
markup. Visual Studio Code does not.

Chapter 12

[535]

6. In MainWindow.xaml.cs, in the MainWindow class, import the System.Diagnostics and
Microsoft.Data.SqlClient namespaces, then create two string constants for the
database connection string and SQL statement and create event handlers for clicking on
the two buttons that use those string constants to open a connection to the Northwind
database and populate the list box with the ids and names of all employees, as shown in
the following code:

private const string connectionString =
 "Data Source=.;" +
 "Initial Catalog=Northwind;" +
 "Integrated Security=true;" +
 "MultipleActiveResultSets=true;";

private const string sql =
 "WAITFOR DELAY '00:00:05';" +
 "SELECT EmployeeId, FirstName, LastName FROM Employees";

private void GetEmployeesSyncButton_Click(object sender, RoutedEventArgs
e)
{
 Stopwatch timer = Stopwatch.StartNew();
 using (SqlConnection connection = new(connectionString))
 {
 connection.Open();
 SqlCommand command = new(sql, connection);
 SqlDataReader reader = command.ExecuteReader();

 while (reader.Read())
 {
 string employee = string.Format("{0}: {1} {2}",
 reader.GetInt32(0), reader.GetString(1), reader.GetString(2));

 EmployeesListBox.Items.Add(employee);
 }
 reader.Close();
 connection.Close();
 }
 EmployeesListBox.Items.Add($"Sync: {timer.ElapsedMilliseconds:N0}ms");
}

private async void GetEmployeesAsyncButton_Click(
 object sender, RoutedEventArgs e)
{
 Stopwatch timer = Stopwatch.StartNew();
 using (SqlConnection connection = new(connectionString))
 {

Improving Performance and Scalability Using Multitasking

[536]

 await connection.OpenAsync();
 SqlCommand command = new(sql, connection);
 SqlDataReader reader = await command.ExecuteReaderAsync();

 while (await reader.ReadAsync())
 {
 string employee = string.Format("{0}: {1} {2}",
 await reader.GetFieldValueAsync<int>(0),
 await reader.GetFieldValueAsync<string>(1),
 await reader.GetFieldValueAsync<string>(2));

 EmployeesListBox.Items.Add(employee);
 }
 await reader.CloseAsync();
 await connection.CloseAsync();
 }
 EmployeesListBox.Items.Add($"Async: {timer.ElapsedMilliseconds:N0}ms");
}

Note the following:
• The SQL statement uses the SQL Server command WAITFOR DELAY to simulate

processing that takes five seconds. It then selects three columns from the
Employees table.

• The GetEmployeesSyncButton_Click event handler uses synchronous methods
to open a connection and fetch the employee rows.

• The GetEmployeesAsyncButton_Click event handler is marked as async and uses
asynchronous methods with the await keyword to open a connection and fetch
the employee rows.

• Both event handlers use a stopwatch to record the number of milliseconds the
operation takes and add it to the list box.

7. Start the WPF app without debugging.
8. Click in the text box, enter some text, and note the GUI is responsive.
9. Click the Get Employees Synchronously button.
10. Try to click in the text box, and note the GUI is not responsive.
11. Wait for at least five seconds until the list box is filled with employees.
12. Click in the text box, enter some text, and note the GUI is responsive again.
13. Click the Get Employees Asynchronously button.
14. Click in the text box, enter some text, and note the GUI is still responsive while it

performs the operation. Continue typing until the list box is filled with the employees.

Chapter 12

[537]

15. Note the difference in timings for the two operations. The UI is blocked when
fetching data synchronously, while the UI remains responsive when fetching data
asynchronously.

16. Close the WPF app.

Improving scalability for web applications and web
services
The async and await keywords can also be applied on the server side when building websites,
applications, and services. From the client application's point of view, nothing changes (or they
might even notice a small increase in the time taken for a request to return). So, from a single
client's point of view, the use of async and await to implement multitasking on the server side
makes their experience worse!

On the server side, additional, cheaper worker threads are created to wait for long-running
tasks to finish so that expensive I/O threads can handle other client requests instead of being
blocked. This improves the overall scalability of a web application or service. More clients can
be supported simultaneously.

Common types that support multitasking
There are many common types that have asynchronous methods that you can await, as shown
in the following table:

Type Methods
DbContext<T> AddAsync, AddRangeAsync, FindAsync, and SaveChangesAsync
DbSet<T> AddAsync, AddRangeAsync, ForEachAsync, SumAsync, ToListAsync,

ToDictionaryAsync, AverageAsync, and CountAsync
HttpClient GetAsync, PostAsync, PutAsync, DeleteAsync, and SendAsync
StreamReader ReadAsync, ReadLineAsync, and ReadToEndAsync
StreamWriter WriteAsync, WriteLineAsync, and FlushAsync

Using await in catch blocks
When async and await were first introduced in C# 5, it was only possible to use the await
keyword in a try block, but not in a catch block. In C# 6 and later, it is now possible to use
await in both try and catch blocks.

Good Practice: Any time you see a method that ends in the suffix Async, check
to see whether it returns Task or Task<T>. If it does, then you could use it
instead of the synchronous non-Async suffixed method. Remember to call it
using await and decorate your method with async.

Improving Performance and Scalability Using Multitasking

[538]

Working with async streams
With .NET Core 3.0, Microsoft introduced the asynchronous processing of streams.

You can complete a tutorial about async streams at the following link: https://docs.
microsoft.com/en-us/dotnet/csharp/tutorials/generate-consume-asynchronous-stream

Before C# 8.0 and .NET Core 3.0, the await keyword only worked with tasks that return
scalar values. Async stream support in .NET Standard 2.1 allows an async method to return a
sequence of values.

Let's see a simulated example that returns three random integers as an async stream.

1. Use your preferred code editor to add a new console app to the Chapter12 solution/
workspace named AsyncEnumerable.

2. In Visual Studio Code, select AsyncEnumerable as the active OmniSharp project.
3. In Program.cs, delete the existing statements and statically import Console, as shown in

the following code:
using static System.Console; // WriteLine()

4. At the bottom of Program.cs, create a method that uses the yield keyword to return a
random sequence of three numbers asynchronously, as shown in the following code:

async static IAsyncEnumerable<int> GetNumbersAsync()
{
 Random r = new();

 // simulate work
 await Task.Delay(r.Next(1500, 3000));
 yield return r.Next(0, 1001);

 await Task.Delay(r.Next(1500, 3000));
 yield return r.Next(0, 1001);

 await Task.Delay(r.Next(1500, 3000));
 yield return r.Next(0, 1001);
}

5. Above GetNumbersAsync, add statements to enumerate the sequence of numbers, as
shown in the following code:

await foreach (int number in GetNumbersAsync())
{
 WriteLine($"Number: {number}");
}

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/generate-consume-asynchronous-stream
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/generate-consume-asynchronous-stream

Chapter 12

[539]

6. Run the code and view the result, as shown in the following output:

Number: 509
Number: 813
Number: 307

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore this chapter's topics with deeper research.

Exercise 12.1 – Test your knowledge
Answer the following questions:

1. What information can you find out about a process?
2. How accurate is the Stopwatch class?
3. By convention, what suffix should be applied to a method that returns Task or Task<T>?
4. To use the await keyword inside a method, what keyword must be applied to the

method declaration?
5. How do you create a child task?
6. Why should you avoid the lock keyword?
7. When should you use the Interlocked class?
8. When should you use the Mutex class instead of the Monitor class?
9. What is the benefit of using async and await in a website or web service?
10. Can you cancel a task? If so, how?

Exercise 12.2 – Explore topics
Use the links on the following webpage to learn more detail about the topics covered in this
chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-12---
improving-performance-and-scalability-using-multitasking

Summary
In this chapter, you learned not only how to define and start a task but also how to wait for one
or more tasks to finish and how to control task completion order. You've also learned how to
synchronize access to shared resources and the magic behind async and await.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-12---improving-performance-and-scalability-using-multitasking
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-12---improving-performance-and-scalability-using-multitasking

Improving Performance and Scalability Using Multitasking

[540]

In the seven chapters that follow, you will learn how to create applications for the app models,
aka workloads supported by .NET, such as websites and services, and cross-platform desktop
and mobile apps.

[541]

13
Introducing Practical Applications

of C# and .NET
The third and final part of this book is about practical applications of C# and .NET. You will learn
how to build cross-platform projects such as websites, services, and mobile and desktop apps.

Microsoft calls platforms for building applications app models or workloads.

In Chapters 1 to 18 and 20, you can use OS-specific Visual Studio or cross-platform Visual
Studio Code and JetBrains Rider to build all the apps. In Chapter 19, Building Mobile and Desktop
Apps Using .NET MAUI, although you could use Visual Studio Code to build the mobile and
desktop app, it is not easy. Visual Studio 2022 for Windows has better support for .NET MAUI
than Visual Studio Code does (for now).

I recommend that you work through this and subsequent chapters sequentially because later
chapters will reference projects in earlier chapters, and you will build up sufficient knowledge
and skills to tackle the trickier problems in later chapters.

In this chapter, we will cover the following topics:

• Understanding app models for C# and .NET
• New features in ASP.NET Core
• Structuring projects
• Using other project templates
• Building an entity data model for Northwind

Understanding app models for C# and .NET
Since this book is about C# 10 and .NET 6, we will learn about app models that use them to
build the practical applications that we will encounter in the remaining chapters of this book.

Introducing Practical Applications of C# and .NET

[542]

Building websites using ASP.NET Core
Websites are made up of multiple web pages loaded statically from the filesystem or generated
dynamically by a server-side technology such as ASP.NET Core. A web browser makes GET
requests using Unique Resource Locators (URLs) that identify each page and can manipulate
data stored on the server using POST, PUT, and DELETE requests.

With many websites, the web browser is treated as a presentation layer, with almost all the
processing performed on the server side. Some JavaScript might be used on the client side to
implement some presentation features, such as carousels.

ASP.NET Core provides multiple technologies for building websites:

• ASP.NET Core Razor Pages and Razor class libraries are ways to dynamically
generate HTML for simple websites. You will learn about them in detail in Chapter 14,
Building Websites Using ASP.NET Core Razor Pages.

• ASP.NET Core MVC is an implementation of the Model-View-Controller (MVC)
design pattern that is popular for developing complex websites. You will learn about it
in detail in Chapter 15, Building Websites Using the Model-View-Controller Pattern.

• Blazor lets you build user interface components using C# and .NET instead of a
JavaScript-based UI framework like Angular, React, and Vue. Blazor WebAssembly
runs your code in the browser like a JavaScript-based framework would. Blazor Server
runs your code on the server and updates the web page dynamically. You will learn
about Blazor in detail in Chapter 17, Building User Interfaces Using Blazor. Blazor is not
just for building websites; it can also be used to create hybrid mobile and desktop apps.

Building websites using a content management system
Most websites have a lot of content, and if developers had to be involved every time some
content needed to be changed, that would not scale well. A Content Management System
(CMS) enables developers to define content structure and templates to provide consistency
and good design while making it easy for a non-technical content owner to manage the actual
content. They can create new pages or blocks of content, and update existing content, knowing
it will look great for visitors with minimal effort.

Learn More: Microsoft has extensive guidance for implementing app models
in its .NET Application Architecture Guidance documentation, which you
can read at the following link: https://www.microsoft.com/net/learn/
architecture

https://www.microsoft.com/net/learn/architecture
https://www.microsoft.com/net/learn/architecture

Chapter 13

[543]

There is a multitude of CMSs available for all web platforms, like WordPress for PHP or Django
CMS for Python. CMSs that support modern .NET include Optimizely Content Cloud, Piranha
CMS, and Orchard Core.

The key benefit of using a CMS is that it provides a friendly content management user interface.
Content owners log in to the website and manage the content themselves. The content is then
rendered and returned to visitors using ASP.NET Core MVC controllers and views, or via web
service endpoints, known as a headless CMS, to provide that content to "heads" implemented
as mobile or desktop apps, in-store touchpoints, or clients built with JavaScript frameworks or
Blazor.

This book does not cover .NET CMSs, so I have included links where you can learn more about
them in the GitHub repository:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#net-content-
management-systems

Building web applications using SPA frameworks
Web applications, also known as Single-Page Applications (SPAs), are made up of a single
web page built with a frontend technology such as Blazor WebAssembly, Angular, React, Vue,
or a proprietary JavaScript library that can make requests to a backend web service for getting
more data when needed and posting updated data using common serialization formats such as
XML and JSON. The canonical examples are Google web apps like Gmail, Maps, and Docs.

With a web application, the client side uses JavaScript frameworks or Blazor WebAssembly
to implement sophisticated user interactions, but most of the important processing and data
access still happens on the server side, because the web browser has limited access to local
system resources.

JavaScript is loosely typed and is not designed for complex projects, so most JavaScript libraries
these days use Microsoft TypeScript, which adds strong typing to JavaScript and is designed
with many modern language features for handling complex implementations.

.NET SDK has project templates for JavaScript and TypeScript-based SPAs, but we will not
spend any time learning how to build JavaScript- and TypeScript-based SPAs in this book,
even though these are commonly used with ASP.NET Core as the backend, because this book is
about C#, it is not about other languages.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#net-content-management-systems
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#net-content-management-systems

Introducing Practical Applications of C# and .NET

[544]

In summary, C# and .NET can be used on both the server side and the client side to build
websites, as shown in Figure 13.1:

Figure 13.1: The use of C# and .NET to build websites on both the server side and the client side

Building web and other services
Although we will not learn about JavaScript- and TypeScript-based SPAs, we will learn how
to build a web service using the ASP.NET Core Web API, and then call that web service from
the server-side code in our ASP.NET Core websites, and then later, we will call that web service
from Blazor WebAssembly components and cross-platform mobile and desktop apps.

There are no formal definitions, but services are sometimes described based on their
complexity:

• Service: all functionality needed by a client app in one monolithic service.
• Microservice: multiple services that each focus on a smaller set of functionalities.
• Nanoservice: a single function provided as a service. Unlike services and microservices

that are hosted 24/7/365, nanoservices are often inactive until called upon to reduce
resources and costs.

As well as web services that use HTTP as the underlying communication technology and the
design principles of the API, we will learn how to build services using other technologies and
design philosophies, including:

• gRPC for building highly efficient and performant services with support for almost any
platform.

• SignalR for building real-time communications between components.
• OData for wrapping Entity Framework Core and other data models with a web API.
• GraphQL for letting the client control what data is retrieved across multiple data

sources.
• Azure Functions for hosting serverless nanoservices in the cloud.

Chapter 13

[545]

Building mobile and desktop apps
There are two major mobile platforms: Apple's iOS and Google's Android, each with its own
programming languages and platform APIs. There are also two major desktop platforms:
Apple's macOS and Microsoft's Windows, each with its own programming languages and
platform APIs, as shown in the following list:

• iOS: Objective C or Swift and UIkit.
• Android: Java or Kotlin and the Android API.
• macOS: Objective C or Swift and AppKit or Catalyst.
• Windows: C, C++, or many other languages and the Win32 API or Windows App SDK.

Since this book is about modern cross-platform development using C# and .NET it does not
include coverage of building desktop apps using Windows Forms, Windows Presentation
Foundation (WPF), or Universal Windows Platform (UWP) apps because they are Windows-
only.

Cross-platform mobile and desktop apps can be built once for the .NET Multi-platform App
User Interfaces (MAUI) platform, and then can run on many mobile and desktop platforms.

.NET MAUI makes it easy to develop those apps by sharing user interface components as
well as business logic. They can target the same .NET APIs as used by console apps, websites,
and web services. The app will be executed by the Mono runtime on mobile devices and
the CoreCLR runtime on desktop devices. The Mono runtime is better optimized for mobile
devices compared to the normal .NET CoreCLR runtime. Blazor WebAssembly also uses the
Mono runtime because like a mobile app, it is resource constrained.

The apps can exist on their own, but they usually call services to provide an experience that
spans across all your computing devices, from servers and laptops to phones and gaming
systems.

Future updates to .NET MAUI will support existing MVVM and XAML patterns as well as
ones like Model-View-Update (MVU) with C#, which is like Apple's Swift UI.

The penultimate chapter in this sixth edition is Chapter 19, Building Mobile and Desktop Apps
Using .NET MAUI, and covers using .NET MAUI to build cross-platform mobile and desktop
apps.

Alternatives to .NET MAUI
Before Microsoft created .NET MAUI, third parties created open-source initiatives to enable
.NET developers to build cross-platform apps using XAML named Uno and Avalonia.

Understanding Uno Platform
As Uno state on their website, it is "the first and only UI Platform for single-codebase
applications for Windows, WebAssembly, iOS, macOS, Android, and Linux."

Introducing Practical Applications of C# and .NET

[546]

Developers can reuse 99% of the business logic and UI layer across native mobile, web, and
desktop.

Uno Platform uses the Xamarin native platform but not Xamarin.Forms. For WebAssembly,
Uno uses the Mono-WASM runtime just like Blazor WebAssembly. For Linux, Uno uses Skia
to draw the user interface on the canvas.

Understanding Avalonia
As stated on .NET Foundation's website, Avalonia "is a cross-platform XAML-based UI
framework providing a flexible styling system and supporting a wide range of Operating
Systems such as Windows, Linux via Xorg, macOS. Avalonia is ready for General-Purpose
Desktop App Development."

You can think of Avalonia as a spiritual successor to WPF. WPF, Silverlight, and UWP
developers familiar with WPF can continue to benefit from their years of pre-existing
knowledge and skills.

It was used by JetBrains to modernize their WPF-based tools and take them cross-platform.

The Avalonia extension for Visual Studio and deep integration with JetBrains Rider makes
development easier and more productive.

New features in ASP.NET Core
Over the past few years, Microsoft has rapidly expanded the capabilities of ASP.NET Core. You
should note which .NET platforms are supported, as shown in the following list:

• ASP.NET Core 1.0 to 2.2 runs on either .NET Core or .NET Framework.
• ASP.NET Core 3.0 or later only runs on .NET Core 3.0 or later.

ASP.NET Core 1.0
ASP.NET Core 1.0 was released in June 2016 and focused on implementing a minimum API
suitable for building modern cross-platform web apps and services for Windows, macOS,
and Linux.

ASP.NET Core 1.1
ASP.NET Core 1.1 was released in November 2016 and focused on bug fixes and general
improvements to features and performance.

ASP.NET Core 2.0
ASP.NET Core 2.0 was released in August 2017 and focused on adding new features such as
Razor Pages, bundling assemblies into a Microsoft.AspNetCore.All metapackage, targeting
.NET Standard 2.0, providing a new authentication model, and performance improvements.

Chapter 13

[547]

The biggest new features introduced with ASP.NET Core 2.0 are ASP.NET Core Razor Pages,
which is covered in Chapter 14, Building Websites Using ASP.NET Core Razor Pages, and ASP.NET
Core OData support, which is covered in Chapter 18, Building and Consuming Specialized Services.

ASP.NET Core 2.1
ASP.NET Core 2.1 was released in May 2018 and was a Long Term Support (LTS) release,
meaning it was supported for three years until August 21, 2021 (LTS designation was not
officially assigned to it until August 2018 with version 2.1.3).

It focused on adding new features such as SignalR for real-time communication, Razor class
libraries for reusing web components, ASP.NET Core Identity for authentication, and better
support for HTTPS and the European Union's General Data Protection Regulation (GDPR),
including the topics listed in the following table:

Feature Chapter Topic
Razor class libraries 14 Using Razor class libraries
GDPR support 15 Creating and exploring an ASP.NET Core

MVC website
Identity UI library and scaffolding 15 Exploring an ASP.NET Core MVC website
Integration tests 15 Testing an ASP.NET Core MVC website
[ApiController], ActionResult<T> 16 Creating an ASP.NET Core Web API project
Problem details 16 Implementing a Web API controller
IHttpClientFactory 16 Configuring HTTP clients using

HttpClientFactory
ASP.NET Core SignalR 18 Implementing Real-time communication

using SignalR

ASP.NET Core 2.2
ASP.NET Core 2.2 was released in December 2018 and focused on improving the building
of RESTful HTTP APIs, updating the project templates to Bootstrap 4 and Angular 6, an
optimized configuration for hosting in Azure, and performance improvements, including the
topics listed in the following table:

Feature Chapter Topic

HTTP/2 in Kestrel 14 Classic ASP.NET versus modern ASP.NET Core

In-process hosting model 14 Creating an ASP.NET Core project

Endpoint routing 14 Understanding endpoint routing

Health Check API 16 Implementing a health check API

Open API analyzers 16 Implementing Open API analyzers and conventions

Introducing Practical Applications of C# and .NET

[548]

ASP.NET Core 3.0
ASP.NET Core 3.0 was released in September 2019 and focused on fully leveraging .NET Core
3.0 and .NET Standard 2.1, which meant it could not support .NET Framework, and it added
useful refinements, including the topics listed in the following table:

Feature Chapter Topic
Static assets in Razor class libraries 14 Using Razor class libraries
New options for MVC service registration 15 Understanding ASP.NET Core MVC startup
ASP.NET Core gRPC 18 Building services using ASP.NET Core gRPC
Blazor Server 17 Building components using Blazor Server

ASP.NET Core 3.1
ASP.NET Core 3.1 was released in December 2019 and is an LTS release, meaning it will be
supported until December 3, 2022. It focused on refinements like partial class support for
Razor components and a new <component> tag helper.

Blazor WebAssembly 3.2
Blazor WebAssembly 3.2 was released in May 2020. It was a Current release, meaning that
projects had to be upgraded to the .NET 5 version within three months of the .NET 5 release,
that is, by February 10, 2021. Microsoft finally delivered on the promise of full-stack web
development with .NET, and both Blazor Server and Blazor WebAssembly are covered in
Chapter 17, Building User Interfaces Using Blazor.

ASP.NET Core 5.0
ASP.NET Core 5.0 was released in November 2020 and focused on bug fixes, performance
improvements using caching for certificate authentication, HPACK dynamic compression of
HTTP/2 response headers in Kestrel, nullable annotations for ASP.NET Core assemblies, and
a reduction in container image sizes, including the topics listed in the following table:

Feature Chapter Topic
Extension method to allow
anonymous access to an endpoint

16 Securing web services

JSON extension methods for
HttpRequest and HttpResponse

16 Getting customers as JSON in the controller

ASP.NET Core 6.0
ASP.NET Core 6.0 was released in November 2021 and focused on productivity improvements
like minimizing code to implement basic websites and services, .NET Hot Reload, and new
hosting options for Blazor, like hybrid apps using .NET MAUI, including the topics listed in
the following table:

Chapter 13

[549]

Feature Chapter Topic
New empty web project template 14 Understanding the empty web template
HTTP logging middleware 16 Enabling HTTP logging
Minimal APIs 16 Implementing minimal Web APIs
Blazor error boundaries 17 Defining Blazor error boundaries
Blazor WebAssembly AOT 17 Enabling Blazor WebAssembly ahead-of-time

compilation
.NET Hot Reload 17 Fixing code using .NET Hot Reload
.NET MAUI Blazor apps 19 Hosting Blazor components in .NET MAUI apps

Building Windows-only desktop apps
Technologies for building Windows-only desktop apps include:

• Windows Forms, 2002.
• Windows Presentation Foundation (WPF), 2006.
• Windows Store apps, 2012.
• Universal Windows Platform (UWP) apps, 2015.
• Windows App SDK (formerly WinUI 3 and Project Reunion) apps, 2021.

Understanding legacy Windows application
platforms
With the Microsoft Windows 1.0 release in 1985, the only way to create Windows applications
was to use the C language and call functions in three core DLLs named kernel, user, and GDI.
Once Windows became 32-bit with Windows 95, the DLLs were suffixed with 32 and became
known as Win32 API.

In 1991, Microsoft introduced Visual Basic, which provided developers with a visual, drag-and-
drop-from-a-toolbox-of-controls way to build the user interface for Windows applications. It was
immensely popular, and the Visual Basic runtime is still distributed as part of Windows 10 today.

With the first version of C# and .NET Framework released in 2002, Microsoft provided
technology for building Windows desktop applications named Windows Forms. The
equivalent at the time for web development was named Web Forms, hence the complimentary
names. The code could be written in either Visual Basic or C# languages. Windows Forms
had a similar drag-and-drop visual designer, although it generated C# or Visual Basic code to
define the user interface, which can be difficult for humans to understand and edit directly.

In 2006, Microsoft released a more powerful technology for building Windows desktop
applications, named Windows Presentation Foundation (WPF), as a key component of .NET
Framework 3.0 alongside Windows Communication Foundation (WCF) and Windows
Workflow (WF).

Introducing Practical Applications of C# and .NET

[550]

Although a WPF app can be created by writing only C# statements, it can also use eXtensible
Application Markup Language (XAML) to specify its user interface, which is easy for both
humans and code to understand. Visual Studio for Windows is partially built with WPF.

In 2012, Microsoft released Windows 8 with its Windows Store apps that run in a protected
sandbox.

In 2015, Microsoft released Windows 10 with an updated Windows Store app concept named
Universal Windows Platform (UWP). UWP apps can be built using C++ and the DirectX UI, or
JavaScript and HTML, or C# using a custom fork of modern .NET that is not cross-platform but
provides full access to the underlying WinRT APIs.

UWP apps can only execute on the Windows 10 platform, not earlier versions of Windows, but
UWP apps can run on Xbox and Windows Mixed Reality headsets with motion controllers.

Many Windows developers rejected Windows Store and UWP apps because they have limited
access to the underlying system. Microsoft recently created Project Reunion and WinUI 3, which
work together to allow Windows developers to bring some of the benefits of modern Windows
development to their existing WPF apps and allow them to have the same benefits and system
integrations that UWP apps have. This initiative is now known as Windows App SDK.

Understanding modern .NET support for legacy
Windows platforms
The on-disk size of the .NET SDKs for Linux and macOS is about 330 MB. The on-disk size of
the .NET SDK for Windows is about 440 MB. This is because it includes the Windows Desktop
Runtime, which allows the legacy Windows application platforms Windows Forms and WPF to
be run on modern .NET.

There are many enterprise applications built using Windows Forms and WPF that need to
be maintained or enhanced with new features, but until recently they were stuck on .NET
Framework, which is now a legacy platform. With modern .NET and its Windows Desktop
Pack, these apps can now use the full modern capabilities of .NET.

Structuring projects
How should you structure your projects? So far, we have built small individual console apps
to illustrate language or library features. In the rest of this book, we will build multiple projects
using different technologies that work together to provide a single solution.

With large, complex solutions, it can be difficult to navigate amongst all the code. So, the
primary reason to structure your projects is to make it easier to find components. It is good to
have an overall name for your solution or workspace that reflects the application or solution.

We will build multiple projects for a fictional company named Northwind. We will name the
solution or workspace PracticalApps and use the name Northwind as a prefix for all the project
names.

Chapter 13

[551]

There are many ways to structure and name projects and solutions, for example, using a folder
hierarchy as well as a naming convention. If you work in a team, make sure you know how
your team does it.

Structuring projects in a solution or workspace
It is good to have a naming convention for your projects in a solution or workspace so that any
developer can tell what each one does instantly. A common choice is to use the type of project,
for example, class library, console app, website, and so on, as shown in the following table:

Name Description
Northwind.Common A class library project for common types like interfaces, enums,

classes, records, and structs, used across multiple projects.
Northwind.Common.
EntityModels

A class library project for common EF Core entity models. Entity
models are often used on both the server and client side, so it is
best to separate dependencies on specific database providers.

Northwind.Common.DataContext A class library project for the EF Core database context with
dependencies on specific database providers.

Northwind.Web An ASP.NET Core project for a simple website that uses a
mixture of static HTML files and dynamic Razor Pages.

Northwind.Razor.Component A class library project for Razor Pages used in multiple projects.
Northwind.Mvc An ASP.NET Core project for a complex website that uses the

MVC pattern and can be more easily unit tested.
Northwind.WebApi An ASP.NET Core project for an HTTP API service. A good

choice for integrating with websites because they can use any
JavaScript library or Blazor to interact with the service.

Northwind.OData An ASP.NET Core project for an HTTP API service that
implements the OData standard to enable a client to control
queries.

Northwind.GraphQL An ASP.NET Core project for an HTTP API service that
implements the GraphQL standard to enable a client to control
queries.

Northwind.gRPC An ASP.NET Core project for a gRPC service. A good choice
for integrating with apps built with any language and platform
since gRPC has wide support and is highly efficient and
performant.

Northwind.SignalR An ASP.NET Core project for real-time communication.
Northwind.AzureFuncs An ASP.NET Core project for implementing a serverless

nanoservice for hosting in Azure Functions.
Northwind.BlazorServer An ASP.NET Core Blazor Server project.
Northwind.BlazorWasm.Client An ASP.NET Core Blazor WebAssembly client-side project.
Northwind.BlazorWasm.Server An ASP.NET Core Blazor WebAssembly server-side project.
Northwind.Maui A .NET MAUI project for a cross-platform desktop/mobile app.
Northwind.MauiBlazor A .NET MAUI project for hosting Blazor components with

native integrations with the OS.

Introducing Practical Applications of C# and .NET

[552]

Using other project templates
When you install the .NET SDK, there are many project templates included:

1. At a command prompt or terminal, enter the following command:
dotnet new --list

2. You will see a list of currently installed templates, including templates for Windows
desktop development if you are running on Windows, as shown in Figure 13.2:

Figure 13.2: A list of dotnet project templates

3. Note the web-related project templates, including ones for creating SPAs using Blazor,
Angular, and React. But another common JavaScript SPA library is missing: Vue.

Installing additional template packs
Developers can install lots of additional template packs:

1. Start a browser and navigate to http://dotnetnew.azurewebsites.net/.

http://dotnetnew.azurewebsites.net/

Chapter 13

[553]

2. Enter vue in the textbox and note the list of available templates for Vue.js, including one
published by Microsoft, as shown in Figure 13.3:

Figure 13.3: A project template for Vue.js by Microsoft

3. Click on ASP.NET Core with Vue.js by Microsoft, and note the instructions for
installing and using this template, as shown in the following commands:

dotnet new --install "Microsoft.AspNetCore.SpaTemplates"
dotnet new vue

4. Click View other templates in this package, and note that as well as a project template
for Vue.js, it also has project templates for Aurelia and Knockout.js.

Building an entity data model for the
Northwind database
Practical applications usually need to work with data in a relational database or another data
store. In this chapter, we will define an entity data model for the Northwind database stored in
SQL Server or SQLite. It will be used in most of the apps that we create in subsequent chapters.

Instructions to install SQL Server and SQLite can be found in Chapter 10, Working with Data
Using Entity Framework Core. In that chapter, you will also find instructions for installing the
dotnet-ef tool, which you will use to scaffold an entity model from an existing database.

The Northwind4SQLServer.sql and Northwind4SQLite.sql script files are
different. The script for SQL Server creates 13 tables as well as related views
and stored procedures. The script for SQLite is a simplified version that only
creates 10 tables because SQLite does not support as many features. The main
projects in this book only need those 10 tables so you can complete every task
in this book with either database.

Good Practice: You should create a separate class library project for your
entity data models. This allows easier sharing between backend web servers
and frontend desktop, mobile, and Blazor WebAssembly clients.

Introducing Practical Applications of C# and .NET

[554]

Creating a class library for entity models using
SQLite
You will now define entity data models in a class library so that they can be reused in other
types of projects including client-side app models. If you are not using SQL Server, you will
need to create this class library for SQLite. If you are using SQL Server, then you can create
both a class library for SQLite and one for SQL Server and then switch between them as you
choose.

We will automatically generate some entity models using the EF Core command-line tool:

1. Use your preferred code editor to create a new solution/workspace named
PracticalApps.

2. Add a class library project, as defined in the following list:
1. Project template: Class Library / classlib
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.Common.EntityModels.Sqlite

3. In the Northwind.Common.EntityModels.Sqlite project, add package references for the
SQLite database provider and EF Core design-time support, as shown in the following
markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="6.0.0" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Design"
 Version="6.0.0">
 <PrivateAssets>all</PrivateAssets>
 <IncludeAssets>runtime; build; native; contentfiles; analyzers;
buildtransitive</IncludeAssets>
 </PackageReference>
</ItemGroup>

4. Delete the Class1.cs file.
5. Build the project.
6. Create the Northwind.db file for SQLite by copying the Northwind4SQLite.sql file into

the PracticalApps folder, and then enter the following command at a command prompt
or terminal:

sqlite3 Northwind.db -init Northwind4SQLite.sql

7. Be patient because this command might take a while to create the database structure, as
shown in the following output:

Chapter 13

[555]

-- Loading resources from Northwind4SQLite.sql
SQLite version 3.35.5 2021-04-19 14:49:49
Enter ".help" for usage hints.
sqlite>

8. Press Ctrl + C on Windows or Cmd + D on macOS to exit SQLite command mode.
9. Open a command prompt or terminal for the Northwind.Common.EntityModels.Sqlite

folder.
10. At the command line, generate entity class models for all tables, as shown in the

following commands:
dotnet ef dbcontext scaffold "Filename=../Northwind.db" Microsoft.
EntityFrameworkCore.Sqlite --namespace Packt.Shared --data-annotations

Note the following:
• The command to perform: dbcontext scaffold
• The connection strings. "Filename=../Northwind.db"
• The database provider: Microsoft.EntityFrameworkCore.Sqlite
• The namespace: --namespace Packt.Shared
• To use data annotations as well as the Fluent API: --data-annotations

11. Note the build messages and warnings, as shown in the following output:

Build started...
Build succeeded.
To protect potentially sensitive information in your connection string,
you should move it out of source code. You can avoid scaffolding the
connection string by using the Name= syntax to read it from configuration
- see https://go.microsoft.com/fwlink/?linkid=2131148. For more
guidance on storing connection strings, see http://go.microsoft.com/
fwlink/?LinkId=723263.

Improving the class-to-table mapping
The dotnet-ef command-line tool generates different code for SQL Server and SQLite because
they support different levels of functionality.

For example, SQL Server text columns can have limits to the number of characters. SQLite does
not support this. So, dotnet-ef will generate validation attributes to ensure string properties
are limited to a specified number of characters for SQL Server but not for SQLite, as shown in
the following code:

// SQLite database provider-generated code
[Column(TypeName = "nvarchar (15)")]
public string CategoryName { get; set; } = null!;

Introducing Practical Applications of C# and .NET

[556]

// SQL Server database provider-generated code
[StringLength(15)]
public string CategoryName { get; set; } = null!;

Neither database provider will mark non-nullable string properties as required:

// no runtime validation of non-nullable property
public string CategoryName { get; set; } = null!;
// nullable property
public string? Description { get; set; }

// decorate with attribute to perform runtime validation
[Required]
public string CategoryName { get; set; } = null!;

We will make some small changes to improve the entity model mapping and validation rules
for SQLite:

1. Open the Customer.cs file and add a regular expression to validate its primary key
value to only allow uppercase Western characters, as shown highlighted in the
following code:

[Key]
[Column(TypeName = "nchar (5)")]
[RegularExpression("[A-Z]{5}")]
public string CustomerId { get; set; }

2. Activate your code editor's find and replace feature (in Visual Studio 2022, navigate to
Edit | Find and Replace | Quick Replace), toggle on Use Regular Expressions, and
then type a regular expression in the search box, as shown in the following expression:

\[Column\(TypeName = "(nchar|nvarchar) \((.*)\)"\)\]

3. In the replace box, type a replacement regular expression, as shown in the following
expression:

$&\n [StringLength($2)]

4. Set the find and replace to search files in the current project.
5. Execute the search and replace to replace all, as shown in Figure 13.4:

After the newline character, \n, I have included four space characters
to indent correctly on my system, which uses two space characters per
indentation level. You can insert as many as you wish.

Chapter 13

[557]

Figure 13.4: Search and replace all matches using regular expressions in Visual Studio 2022

6. Change any date/time properties, for example, in Employee.cs, to use a nullable
DateTime instead of an array of bytes, as shown in the following code:

// before
[Column(TypeName = "datetime")]
public byte[] BirthDate { get; set; }

// after
[Column(TypeName = "datetime")]
public DateTime? BirthDate { get; set; }

7. Change any money properties, for example, in Order.cs, to use a nullable decimal
instead of an array of bytes, as shown in the following code:

// before
[Column(TypeName = "money")]
public byte[] Freight { get; set; }

// after
[Column(TypeName = "money")]
public decimal? Freight { get; set; }

Use your code editor's find feature to search for "datetime" to find
all the properties that need changing.

Use your code editor's find feature to search for "money" to find all
the properties that need changing.

Introducing Practical Applications of C# and .NET

[558]

8. Change any bit properties, for example, in Product.cs, to use a bool instead of an array
of bytes, as shown in the following code:

// before
[Column(TypeName = "bit")]
public byte[] Discontinued { get; set; } = null!;

// after
[Column(TypeName = "bit")]
public bool Discontinued { get; set; }

9. In Category.cs, make the CategoryId property an int, as shown highlighted in the
following code:

[Key]
public int CategoryId { get; set; }

10. In Category.cs, make the CategoryName property required, as shown highlighted in the
following code:

[Required]
[Column(TypeName = "nvarchar (15)")]
[StringLength(15)]
public string CategoryName { get; set; }

11. In Customer.cs, make the CompanyName property required, as shown highlighted in the
following code:

[Required]
[Column(TypeName = "nvarchar (40)")]
[StringLength(40)]
public string CompanyName { get; set; }

12. In Employee.cs, make the EmployeeId property an int instead of a long.
13. In Employee.cs, make the FirstName and LastName properties required.
14. In Employee.cs, make the ReportsTo property an int? instead of a long?.
15. In EmployeeTerritory.cs, make the EmployeeId property an int instead of a long.
16. In EmployeeTerritory.cs, make the TerritoryId property required.
17. In Order.cs, make the OrderId property an int instead of a long.
18. In Order.cs, decorate the CustomerId property with a regular expression to enforce five

uppercase characters.
19. In Order.cs, make the EmployeeId property an int? instead of a long?.

Use your code editor's find feature to search for "bit" to find all the
properties that need changing.

Chapter 13

[559]

20. In Order.cs, make the ShipVia property an int? instead of a long?.
21. In OrderDetail.cs, make the OrderId property an int instead of a long.
22. In OrderDetail.cs, make the ProductId property an int instead of a long.
23. In OrderDetail.cs, make the Quantity property a short instead of a long.
24. In Product.cs, make the ProductId property an int instead of a long.
25. In Product.cs, make the ProductName property required.
26. In Product.cs, make the SupplierId and CategoryId properties an int? instead of a

long?.
27. In Product.cs, make the UnitsInStock, UnitsOnOrder, and ReorderLevel properties a

short? instead of a long?.
28. In Shipper.cs, make the ShipperId property an int instead of a long.
29. In Shipper.cs, make the CompanyName property required.
30. In Supplier.cs, make the SupplierId property an int instead of a long.
31. In Supplier.cs, make the CompanyName property required.
32. In Territory.cs, make the RegionId property an int instead of a long.
33. In Territory.cs, make the TerritoryId and TerritoryDescription properties required.

Now that we have a class library for the entity classes, we can create a class library for the
database context.

Creating a class library for a Northwind database context
You will now define a database context class library:

1. Add a class library project to the solution/workspace, as defined in the following list:
1. Project template: Class Library / classlib
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.Common.DataContext.Sqlite

2. In Visual Studio, set the startup project for the solution to the current selection.
3. In Visual Studio Code, select Northwind.Common.DataContext.Sqlite as the active

OmniSharp project.
4. In the Northwind.Common.DataContext.Sqlite project, add a project reference to the

Northwind.Common.EntityModels.Sqlite project and add a package reference to the EF
Core data provider for SQLite, as shown in the following markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SQLite"
 Version="6.0.0" />
</ItemGroup>
<ItemGroup>

Introducing Practical Applications of C# and .NET

[560]

 <ProjectReference Include=
 "..\Northwind.Common.EntityModels.Sqlite\Northwind.Common
.EntityModels.Sqlite.csproj" />
</ItemGroup>

5. In the Northwind.Common.DataContext.Sqlite project, delete the Class1.cs class file.
6. Build the Northwind.Common.DataContext.Sqlite project.
7. Move the NorthwindContext.cs file from the Northwind.Common.EntityModels.Sqlite

project/folder to the Northwind.Common.DataContext.Sqlite project/folder.

8. In NorthwindContext.cs, in the OnConfiguring method, remove the compiler #warning
about the connection string.

9. In the OnModelCreating method, remove all Fluent API statements that call the
ValueGeneratedNever method to configure primary key properties like SupplierId to
never generate a value automatically or call the HasDefaultValueSql method, as shown
in the following code:

modelBuilder.Entity<Supplier>(entity =>
{
 entity.Property(e => e.SupplierId).ValueGeneratedNever();
});

The path to the project reference should not have a line break in your
project file.

In Visual Studio Solution Explorer, if you drag and drop a file
between projects it will be copied. If you hold down Shift while
dragging and dropping, it will be moved. In Visual Studio Code
EXPLORER, if you drag and drop a file between projects it will be
moved. If you hold down Ctrl while dragging and dropping, it will be
copied.

Good Practice: We will override the default database connection string
in any projects such as websites that need to work with the Northwind
database, so the class derived from DbContext must have a constructor
with a DbContextOptions parameter for this to work, as shown in the
following code:

public NorthwindContext(DbContextOptions<NorthwindConte
xt> options)
 : base(options)
{
}

Chapter 13

[561]

10. For the Product entity, tell SQLite that the UnitPrice can be converted from decimal to
double. The OnModelCreating method should now be much simplified, as shown in the
following code:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<OrderDetail>(entity =>
 {
 entity.HasKey(e => new { e.OrderId, e.ProductId });

 entity.HasOne(d => d.Order)
 .WithMany(p => p.OrderDetails)
 .HasForeignKey(d => d.OrderId)
 .OnDelete(DeleteBehavior.ClientSetNull);

 entity.HasOne(d => d.Product)
 .WithMany(p => p.OrderDetails)
 .HasForeignKey(d => d.ProductId)
 .OnDelete(DeleteBehavior.ClientSetNull);
 });

 modelBuilder.Entity<Product>()
 .Property(product => product.UnitPrice)
 .HasConversion<double>();

 OnModelCreatingPartial(modelBuilder);
}

11. Add a class named NorthwindContextExtensions.cs and modify its contents to define
an extension method that adds the Northwind database context to a collection of
dependency services, as shown in the following code:

using Microsoft.EntityFrameworkCore; // UseSqlite
using Microsoft.Extensions.DependencyInjection; // IServiceCollection

namespace Packt.Shared;

public static class NorthwindContextExtensions
{
 /// <summary>
 /// Adds NorthwindContext to the specified IServiceCollection. Uses the
Sqlite database provider.

If we do not remove the configuration like the statements above, then
when we add new suppliers, the SupplierId value would always be
0 and we would only be able to add one supplier with that value and
then all other attempts would throw an exception.

Introducing Practical Applications of C# and .NET

[562]

 /// </summary>
 /// <param name="services"></param>
 /// <param name="relativePath">Set to override the default of ".."</
param>
 /// <returns>An IServiceCollection that can be used to add more
services.</returns>
 public static IServiceCollection AddNorthwindContext(
 this IServiceCollection services, string relativePath = "..")
 {
 string databasePath = Path.Combine(relativePath, "Northwind.db");

 services.AddDbContext<NorthwindContext>(options =>
 options.UseSqlite($"Data Source={databasePath}")
);

 return services;
 }
}

12. Build the two class libraries and fix any compiler errors.

Creating a class library for entity models using SQL
Server
To use SQL Server, you will not need to do anything if you already set up the Northwind
database in Chapter 10, Working with Data Using Entity Framework Core. But you will now create
the entity models using the dotnet-ef tool:

1. Use your preferred code editor to create a new solution/workspace named
PracticalApps.

2. Add a class library project, as defined in the following list:
1. Project template: Class Library / classlib
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.Common.EntityModels.SqlServer

3. In the Northwind.Common.EntityModels.SqlServer project, add package references for
the SQL Server database provider and EF Core design-time support, as shown in the
following markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer"
 Version="6.0.0" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Design"

Chapter 13

[563]

 Version="6.0.0">
 <PrivateAssets>all</PrivateAssets>
 <IncludeAssets>runtime; build; native; contentfiles; analyzers;
buildtransitive</IncludeAssets>
 </PackageReference>
</ItemGroup>

4. Delete the Class1.cs file.
5. Build the project.
6. Open a command prompt or terminal for the Northwind.Common.EntityModels.

SqlServer folder.
7. At the command line, generate entity class models for all tables, as shown in the

following commands:
dotnet ef dbcontext scaffold "Data Source=.;Initial
Catalog=Northwind;Integrated Security=true;" Microsoft.
EntityFrameworkCore.SqlServer --namespace Packt.Shared --data-annotations

Note the following:
• The command to perform: dbcontext scaffold
• The connection strings. "Data Source=.;Initial

Catalog=Northwind;Integrated Security=true;"

• The database provider: Microsoft.EntityFrameworkCore.SqlServer
• The namespace: --namespace Packt.Shared
• To use data annotations as well as the Fluent API: --data-annotations

8. In Customer.cs, add a regular expression to validate its primary key value to only allow
uppercase Western characters, as shown highlighted in the following code:

[Key]
[StringLength(5)]
[RegularExpression("[A-Z]{5}")]
public string CustomerId { get; set; } = null!;

9. In Customer.cs, make the CustomerId and CompanyName properties required.
10. Add a class library project to the solution/workspace, as defined in the following list:

1. Project template: Class Library / classlib
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.Common.DataContext.SqlServer

11. In Visual Studio Code, select Northwind.Common.DataContext.SqlServer as the active
OmniSharp project.

Introducing Practical Applications of C# and .NET

[564]

12. In the Northwind.Common.DataContext.SqlServer project, add a project reference to the
Northwind.Common.EntityModels.SqlServer project and add a package reference to the
EF Core data provider for SQL Server, as shown in the following markup:

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer"
 Version="6.0.0" />
</ItemGroup>

<ItemGroup>
 <ProjectReference Include=
 "..\Northwind.Common.EntityModels.SqlServer\Northwind.Common
.EntityModels.SqlServer.csproj" />
</ItemGroup>

13. In the Northwind.Common.DataContext.SqlServer project, delete the Class1.cs class file.
14. Build the Northwind.Common.DataContext.SqlServer project.
15. Move the NorthwindContext.cs file from the Northwind.Common.EntityModels.

SqlServer project/folder to the Northwind.Common.DataContext.SqlServer project/
folder.

16. In NorthwindContext.cs, remove the compiler warning about the connection string.
17. Add a class named NorthwindContextExtensions.cs, and modify its contents to define

an extension method that adds the Northwind database context to a collection of
dependency services, as shown in the following code:

using Microsoft.EntityFrameworkCore; // UseSqlServer
using Microsoft.Extensions.DependencyInjection; // IServiceCollection

namespace Packt.Shared;

public static class NorthwindContextExtensions
{
 /// <summary>
 /// Adds NorthwindContext to the specified IServiceCollection. Uses the
SqlServer database provider.
 /// </summary>
 /// <param name="services"></param>
 /// <param name="connectionString">Set to override the default.</param>
 /// <returns>An IServiceCollection that can be used to add more
services.</returns>
 public static IServiceCollection AddNorthwindContext(
 this IServiceCollection services, string connectionString =
 "Data Source=.;Initial Catalog=Northwind;"
 + "Integrated Security=true;MultipleActiveResultsets=true;")
 {

Chapter 13

[565]

 services.AddDbContext<NorthwindContext>(options =>
 options.UseSqlServer(connectionString));

 return services;
 }
}

18. Build the two class libraries and fix any compiler errors.

Practicing and exploring
Explore this chapter's topics with deeper research.

Exercise 13.1 – Test your knowledge
1. .NET 6 is cross-platform. Windows Forms and WPF apps can run on .NET 6. Can those

apps therefore run on macOS and Linux?
2. How does a Windows Forms app define its user interface, and why is this a potential

problem?
3. How can a WPF or UWP app define its user interface, and why is this good for

developers?

Exercise 13.2 – Explore topics
Use the links on the following page to learn more detail about the topics covered in this
chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-13---
introducing-practical-applications-of-c-and-net

Summary
In this chapter, you have been introduced to some of the app models and workloads that you
can use to build practical applications using C# and .NET.

You have created two to four class libraries to define an entity data model for working with the
Northwind database using either SQLite or SQL Server or both.

Good Practice: We have provided optional arguments for the
AddNorthwindContext method so that we can override the hardcoded
SQLite database filename path or the SQL Server database connection string.
This will allow us more flexibility, for example, to load these values from a
configuration file.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-13---introducing-practical-applications-of-c-and-net
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-13---introducing-practical-applications-of-c-and-net

Introducing Practical Applications of C# and .NET

[566]

In the following six chapters, you will learn the details about how to build the following:

• Simple websites using static HTML pages and dynamic Razor Pages.
• Complex websites using the Model-View-Controller (MVC) design pattern.
• Web services that can be called by any platform that can make an HTTP request and

client websites that call those web services.
• Blazor user interface components that can be hosted on a web server, in the browser, or

on hybrid web-native mobile and desktop apps.
• Services that implement remote procedure calls using gRPC.
• Services that implement real-time communication using SignalR.
• Services that provide easy and flexible access to an EF Core model.
• Serverless nano services hosted in Azure Functions.
• Cross-platform native mobile and desktop apps using .NET MAUI.

[567]

14
Building Websites Using

ASP.NET Core Razor Pages
This chapter is about building websites with a modern HTTP architecture on the server side
using Microsoft ASP.NET Core. You will learn about building simple websites using the
ASP.NET Core Razor Pages feature introduced with ASP.NET Core 2.0 and the Razor class
library feature introduced with ASP.NET Core 2.1.

This chapter will cover the following topics:

• Understanding web development
• Understanding ASP.NET Core
• Exploring ASP.NET Core Razor Pages
• Using Entity Framework Core with ASP.NET Core
• Using Razor class libraries
• Configuring services and the HTTP request pipeline

Understanding web development
Developing for the web means developing with Hypertext Transfer Protocol (HTTP), so we
will start by reviewing this important foundational technology.

Understanding HTTP
To communicate with a web server, the client, also known as the user agent, makes calls over
the network using HTTP. As such, HTTP is the technical underpinning of the web. So, when we
talk about websites and web services, we mean that they use HTTP to communicate between a
client (often a web browser) and a server.

Building Websites Using ASP.NET Core Razor Pages

[568]

A client makes an HTTP request for a resource, such as a page, uniquely identified by a
Uniform Resource Locator (URL), and the server sends back an HTTP response, as shown in
Figure 14.1:

Figure 14.1: An HTTP request and response

You can use Google Chrome and other browsers to record requests and responses.

Understanding the components of a URL
A URL is made up of several components:

• Scheme: http (clear text) or https (encrypted).
• Domain: For a production website or service, the top-level domain (TLD) might be

example.com. You might have subdomains such as www, jobs, or extranet. During
development, you typically use localhost for all websites and services.

Good Practice: Google Chrome is available on more operating systems
than any other browser, and it has powerful, built-in developer tools, so it
is a good first choice of browser for testing your websites. Always test your
web application with Chrome and at least two other browsers, for example,
Firefox and Safari for macOS and iPhone. Microsoft Edge switched from using
Microsoft's own rendering engine to using Chromium in 2019, so it is less
important to test with it. If Microsoft's Internet Explorer is used at all, it tends
to mostly be inside organizations for intranets.

Chapter 14

[569]

• Port number: For a production website or service, 80 for http, 443 for https. These
port numbers are usually inferred from the scheme. During development, other port
numbers are commonly used, such as 5000, 5001, and so on, to differentiate between
websites and services that all use the shared domain localhost.

• Path: A relative path to a resource, for example, /customers/germany.
• Query string: A way to pass parameter values, for example, ?country=Germany&searcht

ext=shoes.
• Fragment: A reference to an element on a web page using its id, for example, #toc.

Assigning port numbers for projects in this book
In this book, we will use the domain localhost for all websites and services, so we will use port
numbers to differentiate projects when multiple need to execute at the same time, as shown in
the following table:

Project Description Port numbers
Northwind.Web ASP.NET Core Razor Pages website 5000 HTTP, 5001 HTTPS
Northwind.Mvc ASP.NET Core MVC website 5000 HTTP, 5001 HTTPS
Northwind.WebApi ASP.NET Core Web API service 5002 HTTPS, 5008 HTTP
Minimal.WebApi ASP.NET Core Web API (minimal) 5003 HTTPS
Northwind.OData ASP.NET Core OData service 5004 HTTPS
Northwind.GraphQL ASP.NET Core GraphQL service 5005 HTTPS
Northwind.gRPC ASP.NET Core gRPC service 5006 HTTPS
Northwind.AzureFuncs Azure Functions nanoservice 7071 HTTP

Using Google Chrome to make HTTP requests
Let's explore how to use Google Chrome to make HTTP requests:

1. Start Google Chrome.
2. Navigate to More tools | Developer tools.

Building Websites Using ASP.NET Core Razor Pages

[570]

3. Click the Network tab, and Chrome should immediately start recording the network
traffic between your browser and any web servers (note the red circle), as shown in
Figure 14.2:

Figure 14.2: Chrome Developer Tools recording network traffic

4. In Chrome's address box, enter the address of Microsoft's website for learning
ASP.NET, as shown in the following URL:
https://dotnet.microsoft.com/learn/aspnet

5. In Developer Tools, in the list of recorded requests, scroll to the top and click on the
first entry, the row where the Type is document, as shown in Figure 14.3:

Figure 14.3: Recorded requests in Developer Tools

6. On the right-hand side, click on the Headers tab, and you will see details about Request
Headers and Response Headers, as shown in Figure 14.4:

https://dotnet.microsoft.com/learn/aspnet

Chapter 14

[571]

Figure 14.4: Request and response headers

Note the following aspects:
• Request Method is GET. Other HTTP methods that you could see here include

POST, PUT, DELETE, HEAD, and PATCH.
• Status Code is 200 OK. This means that the server found the resource that

the browser requested and has returned it in the body of the response. Other
status codes that you might see in response to a GET request include 301 Moved
Permanently, 400 Bad Request, 401 Unauthorized, and 404 Not Found.

• Request Headers sent by the browser to the web server include:
• accept, which lists what formats the browser accepts. In this case, the

browser is saying it understands HTML, XHTML, XML, and some image
formats, but it will accept all other files (*/*). Default weightings, also
known as quality values, are 1.0. XML is specified with a quality value of
0.9 so it is preferred less than HTML or XHTML. All other file types are
given a quality value of 0.8 so are least preferred.

• accept-encoding, which lists what compression algorithms the browser
understands, in this case, GZIP, DEFLATE, and Brotli.

• accept-language, which lists the human languages it would prefer the
content to use. In this case, US English, which has a default quality value
of 1.0, then any dialect of English that has an explicitly specified quality
value of 0.9, and then any dialect of Swedish that has an explicitly specified
quality value of 0.8.

Building Websites Using ASP.NET Core Razor Pages

[572]

• Response Headers, content-encoding tells me the server has sent back the
HTML web page response compressed using the GZIP algorithm because it
knows that the client can decompress that format. (This is not visible in Figure
14.4 because there is not enough space to expand the Response Headers
section.)

7. Close Chrome.

Understanding client-side web development
technologies
When building websites, a developer needs to know more than just C# and .NET. On the client
(that is, in the web browser), you will use a combination of the following technologies:

• HTML5: This is used for the content and structure of a web page.
• CSS3: This is used for the styles applied to elements on the web page.
• JavaScript: This is used to code any business logic needed on the web page, for

example, validating form input or making calls to a web service to fetch more data
needed by the web page.

Although HTML5, CSS3, and JavaScript are the fundamental components of frontend web
development, there are many additional technologies that can make frontend web development
more productive, including Bootstrap, the world's most popular frontend open-source toolkit,
and CSS preprocessors such as SASS and LESS for styling, Microsoft's TypeScript language for
writing more robust code, and JavaScript libraries such as jQuery, Angular, React, and Vue.
All these higher-level technologies ultimately translate or compile to the underlying three core
technologies, so they work across all modern browsers.

As part of the build and deploy process, you will likely use technologies such as Node.js;
Node Package Manager (npm) and Yarn, which are both client-side package managers;
and webpack, which is a popular module bundler, a tool for compiling, transforming, and
bundling website source files.

Understanding ASP.NET Core
Microsoft ASP.NET Core is part of a history of Microsoft technologies used to build websites
and services that have evolved over the years:

• Active Server Pages (ASP) was released in 1996 and was Microsoft's first attempt at a
platform for dynamic server-side execution of website code. ASP files contain a mix of
HTML and code that executes on the server written in the VBScript language.

• ASP.NET Web Forms was released in 2002 with the .NET Framework and was
designed to enable non-web developers, such as those familiar with Visual Basic, to
quickly create websites by dragging and dropping visual components and writing
event-driven code in Visual Basic or C#. Web Forms should be avoided for new .NET
Framework web projects in favor of ASP.NET MVC.

Chapter 14

[573]

• Windows Communication Foundation (WCF) was released in 2006 and enables
developers to build SOAP and REST services. SOAP is powerful but complex, so it
should be avoided unless you need advanced features, such as distributed transactions
and complex messaging topologies.

• ASP.NET MVC was released in 2009 to cleanly separate the concerns of web
developers between the models, which temporarily store the data; the views, which
present the data using various formats in the UI; and the controllers, which fetch the
model and pass it to a view. This separation enables improved reuse and unit testing.

• ASP.NET Web API was released in 2012 and enables developers to create HTTP
services (aka REST services) that are simpler and more scalable than SOAP services.

• ASP.NET SignalR was released in 2013 and enables real-time communication in
websites by abstracting underlying technologies and techniques, such as WebSockets
and Long Polling. This enables website features such as live chat or updates to time-
sensitive data such as stock prices across a wide variety of web browsers, even when
they do not support an underlying technology such as WebSockets.

• ASP.NET Core was released in 2016 and combines modern implementations of .NET
Framework technologies such as MVC, Web API, and SignalR, with newer technologies
such as Razor Pages, gRPC, and Blazor, all running on modern .NET. Therefore, it can
execute cross-platform. ASP.NET Core has many project templates to get you started
with its supported technologies.

ASP.NET Core 2.0 to 2.2 can run on .NET Framework 4.6.1 or later (Windows only) as well
as .NET Core 2.0 or later (cross-platform). ASP.NET Core 3.0 only supports .NET Core 3.0.
ASP.NET Core 6.0 only supports .NET 6.0.

Classic ASP.NET versus modern ASP.NET Core
Until now, ASP.NET has been built on top of a large assembly in the .NET Framework named
System.Web.dll and it is tightly coupled to Microsoft's Windows-only web server named
Internet Information Services (IIS). Over the years, this assembly has accumulated a lot of
features, many of which are not suitable for modern cross-platform development.

ASP.NET Core is a major redesign of ASP.NET. It removes the dependency on the System.
Web.dll assembly and IIS and is composed of modular lightweight packages, just like the rest
of modern .NET. Using IIS as the web server is still supported by ASP.NET Core but there is a
better option.

You can develop and run ASP.NET Core applications cross-platform on Windows, macOS,
and Linux. Microsoft has even created a cross-platform, super-performant web server named
Kestrel, and the entire stack is open source.

Good Practice: Choose ASP.NET Core to develop websites and services
because it includes web-related technologies that are modern and cross-
platform.

Building Websites Using ASP.NET Core Razor Pages

[574]

ASP.NET Core 2.2 or later projects default to the new in-process hosting model. This gives a
400% performance improvement when hosting in Microsoft IIS, but Microsoft still recommends
using Kestrel for even better performance.

Creating an empty ASP.NET Core project
We will create an ASP.NET Core project that will show a list of suppliers from the Northwind
database.

The dotnet tool has many project templates that do a lot of work for you, but it can be difficult
to know which works best for a given situation, so we will start with the empty website project
template and then add features step by step so that you can understand all the pieces:

1. Use your preferred code editor to add a new project, as defined in the following list:
1. Project template: ASP.NET Core Empty / web
2. Language: C#
3. Workspace/solution file and folder: PracticalApps
4. Project file and folder: Northwind.Web
5. For Visual Studio 2022, leave all other options as their defaults, for example,

Configure for HTTPS selected, and Enable Docker cleared
2. In Visual Studio Code, select Northwind.Web as the active OmniSharp project.
3. Build the Northwind.Web project.
4. Open the Northwind.Web.csproj file and note that the project is like a class library

except that the SDK is Microsoft.NET.Sdk.Web, as shown highlighted in the following
markup:

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

</Project>

5. If you are using Visual Studio 2022, in Solution Explorer, toggle Show All Files.
6. Expand the obj folder, expand the Debug folder, expand the net6.0 folder, select the

Northwind.Web.GlobalUsings.g.cs file, and note the implicitly imported namespaces
include all the ones for a console app or class library, as well as some ASP.NET Core
ones, such as Microsoft.AspNetCore.Builder, as shown in the following code:

// <autogenerated />
global using global::Microsoft.AspNetCore.Builder;

Chapter 14

[575]

global using global::Microsoft.AspNetCore.Hosting;
global using global::Microsoft.AspNetCore.Http;
global using global::Microsoft.AspNetCore.Routing;
global using global::Microsoft.Extensions.Configuration;
global using global::Microsoft.Extensions.DependencyInjection;
global using global::Microsoft.Extensions.Hosting;
global using global::Microsoft.Extensions.Logging;
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Net.Http.Json;
global using global::System.Threading;
global using global::System.Threading.Tasks;

7. Collapse the obj folder.
8. Open Program.cs, and note the following:

• An ASP.NET Core project is like a top-level console application, with a hidden
Main method as its entry point that has an argument passed using the name
args.

• It calls WebApplication.CreateBuilder, which creates a host for the website
using defaults for a web host that is then built.

• The website will respond to all HTTP GET requests with plain text: Hello
World!.

• The call to the Run method is a blocking call, so the hidden Main method does
not return until the web server stops running, as shown in the following code:

var builder = WebApplication.CreateBuilder(args);
var app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

9. At the bottom of the file, add a statement to write a message to the console after the call
to the Run method and therefore after the web server has stopped, as shown highlighted
in the following code:

app.Run();

Console.WriteLine("This executes after the web server has stopped!");

Building Websites Using ASP.NET Core Razor Pages

[576]

Testing and securing the website
We will now test the functionality of the ASP.NET Core Empty website project. We will also
enable encryption of all traffic between the browser and web server for privacy by switching
from HTTP to HTTPS. HTTPS is the secure encrypted version of HTTP.

1. For Visual Studio:
1. In the toolbar, make sure that Northwind.Web is selected rather than IIS

Express or WSL, and switch the Web Browser (Microsoft Edge) to Google
Chrome, as shown in Figure 14.5:

Figure 14.5: Selecting the Northwind.Web profile with its Kestrel web server in Visual Studio

2. Navigate to Debug | Start Without Debugging….
3. The first time you start a secure website, you will be prompted that your project

is configured to use SSL, and to avoid warnings in the browser you can choose
to trust the self-signed certificate that ASP.NET Core has generated. Click Yes.

4. When you see the Security Warning dialog box, click Yes again.

2. For Visual Studio Code, in TERMINAL, enter the dotnet run command.
3. In either Visual Studio's command prompt window or Visual Studio Code's terminal,

note the Kestrel web server has started listening on random ports for HTTP and HTTPS,
that you can press Ctrl + C to shut down the Kestrel web server, and the hosting
environment is Development, as shown in the following output:

info: Microsoft.Hosting.Lifetime[14]
 Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://localhost:5000
info: Microsoft.Hosting.Lifetime[0]

Chapter 14

[577]

 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
 Content root path: C:\Code\PracticalApps\Northwind.Web

4. Leave the web server running.
5. In Chrome, show Developer Tools, and click the Network tab.
6. Enter the address http://localhost:5000/, or whatever port number was assigned

to HTTP, and note the response is Hello World! in plain text, from the cross-platform
Kestrel web server, as shown in Figure 14.6:

Figure 14.6: Plain text response from http://localhost:5000/

Visual Studio will also start your chosen browser automatically. If
you are using Visual Studio Code, you will have to start Chrome
manually.

Chrome also requests a favicon.ico file automatically to show in the
browser tab but this is missing so it shows as a 404 Not Found error.

Building Websites Using ASP.NET Core Razor Pages

[578]

7. Enter the address https://localhost:5001/, or whatever port number was assigned
to HTTPS, and note if you are not using Visual Studio or if you clicked No when
prompted to trust the SSL certificate, then the response is a privacy error, as shown in
Figure 14.7:

Figure 14.7: Privacy error showing SSL encryption has not been enabled with a certificate

You will see this error when you have not configured a certificate that the browser
can trust to encrypt and decrypt HTTPS traffic (and so if you do not see this error, it is
because you have already configured a certificate).
In a production environment, you would want to pay a company such as Verisign for
an SSL certificate because they provide liability protection and technical support.

During development, you can tell your OS to trust a temporary development certificate
provided by ASP.NET Core.

8. At the command line or in TERMINAL, press Ctrl + C to shut down the web server,
and note the message that is written, as shown highlighted in the following output:

info: Microsoft.Hosting.Lifetime[0]
 Application is shutting down...
This executes after the web server has stopped!

C:\Code\PracticalApps\Northwind.Web\bin\Debug\net6.0\Northwind.Web.exe
(process 19888) exited with code 0.

For Linux Developers: If you use a Linux variant that cannot create
self-signed certificates or you do not mind reapplying for a new
certificate every 90 days, then you can get a free certificate from the
following link: https://letsencrypt.org

https://letsencrypt.org

Chapter 14

[579]

9. If you need to trust a local self-signed SSL certificate, then at the command line or
in TERMINAL, enter the dotnet dev-certs https --trust command, and note the
message, Trusting the HTTPS development certificate was requested. You might
be prompted to enter your password and a valid HTTPS certificate may already be
present.

Enabling stronger security and redirect to a secure
connection
It is good practice to enable stricter security and automatically redirect requests for HTTP to
HTTPS.

Let's do that now:

1. In Program.cs, add an if statement to enable HSTS when not in development, as shown
in the following code:

if (!app.Environment.IsDevelopment())
{
 app.UseHsts();
}

2. Add a statement before the call to app.MapGet to redirect HTTP requests to HTTPS, as
shown in the following code:

app.UseHttpsRedirection();

3. Start the Northwind.Web website project.
4. If Chrome is still running, close and restart it.
5. In Chrome, show Developer Tools, and click the Network tab.

Good Practice: HTTP Strict Transport Security (HSTS) is an opt-in security
enhancement that you should always enable. If a website specifies it and
a browser supports it, then it forces all communication over HTTPS and
prevents the visitor from using untrusted or invalid certificates.

Building Websites Using ASP.NET Core Razor Pages

[580]

6. Enter the address http://localhost:5000/, or whatever port number was assigned to
HTTP, and note how the server responds with a 307 Temporary Redirect to port 5001
and that the certificate is now valid and trusted, as shown in Figure 14.8:

Figure 14.8: The connection is now secured using a valid certificate and a 307 redirect

7. Close Chrome.
8. Shut down the web server.

Controlling the hosting environment
In earlier versions of ASP.NET Core, the project template set a rule to say that while in
development mode, any unhandled exceptions will be shown in the browser window for the
developer to see the details of the exception, as shown in the following code:

if (app.Environment.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
}

With ASP.NET Core 6 and later, this code is executed automatically by default so it is not
included in the project template.

How does ASP.NET Core know when we are running in development mode so that the
IsDevelopment method returns true? Let's find out.

Good Practice: Remember to shut down the Kestrel web server whenever you
have finished testing a website.

Chapter 14

[581]

ASP.NET Core can read from environment variables to determine what hosting environment to
use, for example, DOTNET_ENVIRONMENT or ASPNETCORE_ENVIRONMENT.

You can override these settings during local development:

1. In the Northwind.Web folder, expand the folder named Properties, open the file named
launchSettings.json, and note the profile named Northwind.Web that sets the hosting
environment to Development, as shown highlighted in the following configuration:

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:56111",
 "sslPort": 44329
 }
 },
 "profiles": {
 "Northwind.Web": {
 "commandName": "Project",
 "dotnetRunMessages": "true",
 "launchBrowser": true,
 "applicationUrl": "https://localhost:5001;http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

2. Change the randomly assigned port numbers for HTTP to 5000 and HTTPS to 5001.
3. Change the environment to Production. Optionally, change launchBrowser to false to

prevent Visual Studio from automatically launching a browser.
4. Start the website and note the hosting environment is Production, as shown in the

following output:
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Production

Building Websites Using ASP.NET Core Razor Pages

[582]

5. Shut down the web server.
6. In launchSettings.json, change the environment back to Development.

Separating configuration for services and pipeline
Putting all code to initialize a simple web project in Program.cs can be a good idea, especially
for web services, so we will see this style again in Chapter 16, Building and Consuming Web
Services.

However, for anything more than the most basic web project, you might prefer to separate
configuration into a separate Startup class with two methods:

• ConfigureServices(IServiceCollection services): to add dependency services to a
dependency injection container, such as Razor Pages support, Cross-Origin Resource
Sharing (CORS) support, or a database context for working with the Northwind
database.

• Configure(IApplicationBuilder app, IWebHostEnvironment env): to set up the HTTP
pipeline through which requests and responses flow. Call various Use methods on the
app parameter to construct the pipeline in the order the features should be processed.

Figure 14.9: Startup class ConfigureServices and Configure methods diagram

Both methods will get called automatically by the runtime.

Let's create a Startup class now:

1. Add a new class file to the Northwind.Web project named Startup.cs.
2. Modify Startup.cs, as shown in the following code:

namespace Northwind.Web;

public class Startup

The launchSettings.json file also has a configuration for using IIS as the
web server using random port numbers. In this book, we will only be using
Kestrel as the web server since it is cross-platform.

Chapter 14

[583]

{
 public void ConfigureServices(IServiceCollection services)
 {
 }

 public void Configure(
 IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (!env.IsDevelopment())
 {
 app.UseHsts();
 }

 app.UseRouting(); // start endpoint routing

 app.UseHttpsRedirection();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/", () => "Hello World!");
 });
 }
}

Note the following about the code:
• The ConfigureServices method is currently empty because we do not yet need

any dependency services added.
• The Configure method sets up the HTTP request pipeline and enables the use of

endpoint routing. It configures a routed endpoint to wait for requests using the
same map for each HTTP GET request for the root path / that responds to those
requests by returning the plain text "Hello World!". We will learn about routed
endpoints and their benefits at the end of this chapter.

Now we must specify that we want to use the Startup class in the application entry
point.

3. Modify Program.cs, as shown in the following code:
using Northwind.Web; // Startup

Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 }).Build().Run();

Console.WriteLine("This executes after the web server has stopped!");

Building Websites Using ASP.NET Core Razor Pages

[584]

4. Start the website and note that it has the same behavior as before.
5. Shut down the web server.

Enabling a website to serve static content
A website that only ever returns a single plain text message isn't very useful!

At a minimum, it ought to return static HTML pages, CSS that the web pages will use for
styling, and any other static resources, such as images and videos.

By convention, these files should be stored in a directory named wwwroot to keep them separate
from the dynamically executing parts of your website project.

Creating a folder for static files and a web page
You will now create a folder for your static website resources and a basic index page that uses
Bootstrap for styling:

1. In the Northwind.Web project/folder, create a folder named wwwroot.
2. Add a new HTML page file to the wwwroot folder named index.html.
3. Modify its content to link to CDN-hosted Bootstrap for styling, and use modern good

practices such as setting the viewport, as shown in the following markup:

<!doctype html>
<html lang="en">

<head>
 <!-- Required meta tags -->
 <meta charset="utf-8" />
 <meta name="viewport" content=
 "width=device-width, initial-scale=1 " />

 <!-- Bootstrap CSS -->
 <link href=
"https://cdn.jsdelivr.net/npm/bootstrap@5.1.0/dist/css/bootstrap.min.css"
rel="stylesheet" integrity="sha384-KyZXEAg3QhqLMpG8r+8fhAXLRk2vvoC2f3B09zV
Xn8CA5QIVfZOJ3BCsw2P0p/We" crossorigin="anonymous">

 <title>Welcome ASP.NET Core!</title>
</head>

In all the other website and service projects that we create in this book, we will
use the single Program.cs file created by .NET 6 project templates. If you like
the Startup.cs way of doing things, then you will see in this chapter how to
use it.

Chapter 14

[585]

<body>
 <div class="container">
 <div class="jumbotron">
 <h1 class="display-3">Welcome to Northwind B2B</h1>
 <p class="lead">We supply products to our customers.</p>
 <hr />
 <h2>This is a static HTML page.</h2>
 <p>Our customers include restaurants, hotels, and cruise lines.</p>
 <p>
 <a class="btn btn-primary"
 href="https://www.asp.net/">Learn more
 </p>
 </div>
 </div>
</body>

</html>

Enabling static and default files
If you were to start the website now and enter http://localhost:5000/index.html in the
address box, the website would return a 404 Not Found error saying no web page was found.
To enable the website to return static files such as index.html, we must explicitly configure that
feature.

Even if we enable static files, if you were to start the website and enter http://localhost:5000/
in the address box, the website will return a 404 Not Found error because the web server does
not know what to return by default if no named file is requested.

You will now enable static files, explicitly configure default files, and change the URL path
registered that returns the plain text Hello World! response:

1. In Startup.cs, in the Configure method, add statements after enabling HTTPS
redirection to enable static files and default files, and modify the statement that maps a
GET request to return the Hello World! plain text response to only respond to the URL
path /hello, as shown highlighted in the following code:

app.UseHttpsRedirection();

app.UseDefaultFiles(); // index.html, default.html, and so on

Good Practice: To get the latest <link> element for Bootstrap, copy and paste
it from the documentation at the following link: https://getbootstrap.
com/docs/5.0/getting-started/introduction/#starter-template.

https://getbootstrap.com/docs/5.0/getting-started/introduction/#starter-template
https://getbootstrap.com/docs/5.0/getting-started/introduction/#starter-template

Building Websites Using ASP.NET Core Razor Pages

[586]

app.UseStaticFiles();

app.UseEndpoints(endpoints =>
{
 endpoints.MapGet("/hello", () => "Hello World!");
});

2. Start the website.
3. Start Chrome and show Developer Tools.
4. In Chrome, enter http://localhost:5000/ and note that you are redirected to the

HTTPS address on port 5001, and the index.html file is now returned over that secure
connection because it is one of the possible default files for this website.

5. In Developer Tools, note the request for the Bootstrap stylesheet.
6. In Chrome, enter http://localhost:5000/hello and note that it returns the plain text

Hello World! as before.
7. Close Chrome and shut down the web server.

If all web pages are static, that is, they only get changed manually by a web editor, then our
website programming work is complete. But almost all websites need dynamic content, which
means a web page that is generated at runtime by executing code.

The easiest way to do that is to use a feature of ASP.NET Core named Razor Pages.

Exploring ASP.NET Core Razor Pages
ASP.NET Core Razor Pages allow a developer to easily mix C# code statements with HTML
markup to make the generated web page dynamic. That is why they use the .cshtml file
extension.

By convention, ASP.NET Core looks for Razor Pages in a folder named Pages.

Enabling Razor Pages
You will now copy and change the static HTML page into a dynamic Razor Page, and then add
and enable the Razor Pages service:

1. In the Northwind.Web project folder, create a folder named Pages.
2. Copy the index.html file into the Pages folder.

The call to UseDefaultFiles must come before the call to
UseStaticFiles, or it will not work! You will learn more about
the ordering of middleware and endpoint routing at the end of this
chapter.

Chapter 14

[587]

3. For the file in the Pages folder, rename the file extension from .html to .cshtml.
4. Remove the <h2> element that says that this is a static HTML page.
5. In Startup.cs, in the ConfigureServices method, add a statement to add ASP.NET

Core Razor Pages and its related services, such as model binding, authorization, anti-
forgery, views, and tag helpers, to the builder, as shown in the following code:

services.AddRazorPages();

6. In Startup.cs, in the Configure method, in the configuration to use endpoints, add
a statement to call the MapRazorPages method, as shown highlighted in the following
code:

app.UseEndpoints(endpoints =>
{
 endpoints.MapRazorPages();

 endpoints.MapGet("/hello", () => "Hello World!");
});

Adding code to a Razor Page
In the HTML markup of a web page, Razor syntax is indicated by the @ symbol. Razor Pages
can be described as follows:

• They require the @page directive at the top of the file.
• They can optionally have an @functions section that defines any of the following:

• Properties for storing data values, like in a class definition. An instance of that
class is automatically instantiated named Model that can have its properties set
in special methods and you can get the property values in the HTML.

• Methods named OnGet, OnPost, OnDelete, and so on that execute when HTTP
requests are made, such as GET, POST, and DELETE.

Let's now convert the static HTML page into a Razor Page:

1. In the Pages folder, open index.cshtml.
2. Add the @page statement to the top of the file.
3. After the @page statement, add an @functions statement block.
4. Define a property to store the name of the current day as a string value.
5. Define a method to set DayName that executes when an HTTP GET request is made for the

page, as shown in the following code:
@page

@functions
{

Building Websites Using ASP.NET Core Razor Pages

[588]

 public string? DayName { get; set; }

 public void OnGet()
 {
 Model.DayName = DateTime.Now.ToString("dddd");
 }
}

6. Output the day name inside the second HTML paragraph, as shown highlighted in the
following markup:

<p>It's @Model.DayName! Our customers include restaurants, hotels, and
cruise lines.</p>

7. Start the website.
8. In Chrome, enter https://localhost:5001/ and note the current day name is output on

the page, as shown in Figure 14.10:

Figure 14.10: Welcome to Northwind page showing the current day

9. In Chrome, enter https://localhost:5001/index.html, which exactly matches the static
filename, and note that it returns the static HTML page as before.

10. In Chrome, enter https://localhost:5001/hello, which exactly matches the endpoint
route that returns plain text, and note that it returns Hello World! as before.

11. Close Chrome and shut down the web server.

Using shared layouts with Razor Pages
Most websites have more than one page. If every page had to contain all of the boilerplate
markup that is currently in index.cshtml, that would become a pain to manage. So, ASP.NET
Core has a feature named layouts.

To use layouts, we must create a Razor file to define the default layout for all Razor Pages (and
all MVC views) and store it in a Shared folder so that it can be easily found by convention.
The name of this file can be anything, because we will specify it, but _Layout.cshtml is good
practice.

Chapter 14

[589]

We must also create a specially named file to set the default layout file for all Razor Pages (and
all MVC views). This file must be named _ViewStart.cshtml.

Let's see layouts in action:

1. In the Pages folder, add a file named _ViewStart.cshtml. (The Visual Studio item
template is named Razor View Start.)

2. Modify its content, as shown in the following markup:
@{
 Layout = "_Layout";
}

3. In the Pages folder, create a folder named Shared.
4. In the Shared folder, create a file named _Layout.cshtml. (The Visual Studio item

template is named Razor Layout.)
5. Modify the content of _Layout.cshtml (it is similar to index.cshtml so you can copy and

paste the HTML markup from there), as shown in the following markup:
<!doctype html>
<html lang="en">

<head>
 <!-- Required meta tags -->
 <meta charset="utf-8" />
 <meta name="viewport" content=
 "width=device-width, initial-scale=1, shrink-to-fit=no" />

 <!-- Bootstrap CSS -->
 <link href=
"https://cdn.jsdelivr.net/npm/bootstrap@5.1.0/dist/css/bootstrap.min.css"
rel="stylesheet" integrity="sha384-KyZXEAg3QhqLMpG8r+8fhAXLRk2vvoC2f3B09zV
Xn8CA5QIVfZOJ3BCsw2P0p/We" crossorigin="anonymous">

 <title>@ViewData["Title"]</title>
</head>

<body>
 <div class="container">
 @RenderBody()
 <hr />
 <footer>
 <p>Copyright © 2021 - @ViewData["Title"]</p>
 </footer>
 </div>

 <!-- JavaScript to enable features like carousel -->

Building Websites Using ASP.NET Core Razor Pages

[590]

 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.0/
dist/js/bootstrap.bundle.min.js" integrity="sha384-
U1DAWAznBHeqEIlVSCgzq+c9gqGAJn5c/t99JyeKa9xxaYpSvHU5awsuZVVFIhvj"
crossorigin="anonymous"></script>

 @RenderSection("Scripts", required: false)

</body>
</html>

While reviewing the preceding markup, note the following:
• <title> is set dynamically using server-side code from a dictionary named

ViewData. This is a simple way to pass data between different parts of an
ASP.NET Core website. In this case, the data will be set in a Razor Page class
file and then output in the shared layout.

• @RenderBody() marks the insertion point for the view being requested.
• A horizontal rule and footer will appear at the bottom of each page.
• At the bottom of the layout is a script to implement some cool features of

Bootstrap that we can use later, such as a carousel of images.
• After the <script> elements for Bootstrap, we have defined a section named

Scripts so that a Razor Page can optionally inject additional scripts that it
needs.

6. Modify index.cshtml to remove all HTML markup except <div class="jumbotron">
and its contents, and leave the C# code in the @functions block that you added earlier.

7. Add a statement to the OnGet method to store a page title in the ViewData dictionary,
and modify the button to navigate to a suppliers page (which we will create in the next
section), as shown highlighted in the following markup:

@page

@functions
{
 public string? DayName { get; set; }

 public void OnGet()
 {
 ViewData["Title"] = "Northwind B2B";

 Model.DayName = DateTime.Now.ToString("dddd");
 }
}
<div class="jumbotron">
 <h1 class="display-3">Welcome to Northwind B2B</h1>
 <p class="lead">We supply products to our customers.</p>

Chapter 14

[591]

 <hr />
 <p>It's @Model.DayName! Our customers include restaurants, hotels, and
cruise lines.</p>
 <p>

 Learn more about our suppliers
 </p>
</div>

8. Start the website, visit it with Chrome, and note that it has similar behavior as before,
although clicking the button for suppliers will give a 404 Not Found error because we
have not created that page yet.

Using code-behind files with Razor Pages
Sometimes, it is better to separate the HTML markup from the data and executable code, so
Razor Pages allows you to do this by putting the C# code in code-behind class files. They have
the same name as the .cshtml file but end with .cshtml.cs.

You will now create a page that shows a list of suppliers. In this example, we are focusing on
learning about code-behind files. In the next topic, we will load the list of suppliers from a
database, but for now, we will simulate that with a hardcoded array of string values:

1. In the Pages folder, add two new files named Suppliers.cshtml and
Suppliers.cshtml.cs. (The Visual Studio item template is named Razor Page - Empty
and it creates both files.)

2. Add statements to the code-behind file named Suppliers.cshtml.cs, as shown in the
following code:

using Microsoft.AspNetCore.Mvc.RazorPages; // PageModel

namespace Northwind.Web.Pages;

public class SuppliersModel : PageModel
{
 public IEnumerable<string>? Suppliers { get; set; }

 public void OnGet()
 {
 ViewData["Title"] = "Northwind B2B - Suppliers";

 Suppliers = new[]
 {
 "Alpha Co", "Beta Limited", "Gamma Corp"
 };
 }
}

Building Websites Using ASP.NET Core Razor Pages

[592]

While reviewing the preceding markup, note the following:
• SuppliersModel inherits from PageModel, so it has members such as the ViewData

dictionary for sharing data. You can right-click on PageModel and select Go
To Definition to see that it has lots more useful features, such as the entire
HttpContext of the current request.

• SuppliersModel defines a property for storing a collection of string values
named Suppliers.

• When an HTTP GET request is made for this Razor Page, the Suppliers property
is populated with some example supplier names from an array of string values.
Later, we will populate this from the Northwind database.

3. Modify the contents of Suppliers.cshtml, as shown in the following markup:
@page
@model Northwind.Web.Pages.SuppliersModel
<div class="row">
 <h1 class="display-2">Suppliers</h1>
 <table class="table">
 <thead class="thead-inverse">
 <tr><th>Company Name</th></tr>
 </thead>
 <tbody>
 @if (Model.Suppliers is not null)
 {
 @foreach(string name in Model.Suppliers)
 {
 <tr><td>@name</td></tr>
 }
 }
 </tbody>
 </table>
</div>

While reviewing the preceding markup, note the following:
• The model type for this Razor Page is set to SuppliersModel.
• The page outputs an HTML table with Bootstrap styles.
• The data rows in the table are generated by looping through the Suppliers

property of Model if it is not null.

4. Start the website and visit it using Chrome.
5. Click on the button to learn more about suppliers, and note the table of suppliers, as

shown in Figure 14.11:

Chapter 14

[593]

Figure 14.11: The table of suppliers loaded from an array of strings

Using Entity Framework Core with ASP.NET
Core
Entity Framework Core is a natural way to get real data into a website. In Chapter 13,
Introducing Practical Applications of C# and .NET, you created two pairs of class libraries: one for
the entity models and one for the Northwind database context, for either SQL Server or SQLite
or both. You will now use them in your website project.

Configure Entity Framework Core as a service
Functionality such as Entity Framework Core database contexts that are needed by ASP.NET
Core must be registered as a service during website startup. The code in the GitHub repository
solution and below uses SQLite, but you can easily use SQL Server if you prefer.

Let's see how:

1. In the Northwind.Web project, add a project reference to the Northwind.Common.
DataContext project for either SQLite or SQL Server, as shown in the following markup:

<!-- change Sqlite to SqlServer if you prefer -->
<ItemGroup>
 <ProjectReference Include="..\Northwind.Common.DataContext.Sqlite\
Northwind.Common.DataContext.Sqlite.csproj" />
</ItemGroup>

Building Websites Using ASP.NET Core Razor Pages

[594]

2. Build the Northwind.Web project.
3. In Startup.cs, import namespaces to work with your entity model types, as shown in

the following code:
using Packt.Shared; // AddNorthwindContext extension method

4. Add a statement to the ConfigureServices method to register the Northwind database
context class, as shown in the following code:

services.AddNorthwindContext();

5. In the Northwind.Web project, in the Pages folder, open Suppliers.cshtml.cs, and
import the namespace for our database context, as shown in the following code:

using Packt.Shared; // NorthwindContext

6. In the SuppliersModel class, add a private field to store the Northwind database context
and a constructor to set it, as shown in the following code:

private NorthwindContext db;

public SuppliersModel(NorthwindContext injectedContext)
{
 db = injectedContext;
}

7. Change the Suppliers property to contain Supplier objects instead of string values.
8. In the OnGet method, modify the statements to set the Suppliers property from the

Suppliers property of the database context, sorted by country and then company name,
as shown highlighted in the following code:

public void OnGet()
{
 ViewData["Title"] = "Northwind B2B - Suppliers";

 Suppliers = db.Suppliers
 .OrderBy(c => c.Country).ThenBy(c => c.CompanyName);
}

9. Modify the contents of Suppliers.cshtml to import the Packt.Shared namespace and
render multiple columns for each supplier, as shown highlighted in the following
markup:

@page
@using Packt.Shared

The project reference must go all on one line with no line break.

Chapter 14

[595]

@model Northwind.Web.Pages.SuppliersModel
<div class="row">
 <h1 class="display-2">Suppliers</h1>
 <table class="table">
 <thead class="thead-inverse">
 <tr>
 <th>Company Name</th>
 <th>Country</th>
 <th>Phone</th>
 </tr>
 </thead>
 <tbody>
 @if (Model.Suppliers is not null)
 {
 @foreach(Supplier s in Model.Suppliers)
 {
 <tr>
 <td>@s.CompanyName</td>
 <td>@s.Country</td>
 <td>@s.Phone</td>
 </tr>
 }
 }
 </tbody>
 </table>
</div>

10. Start the website.
11. In Chrome, enter https://localhost:5001/.
12. Click Learn more about our suppliers and note that the supplier table now loads from

the database, as shown in Figure 14.12:

Figure 14.12: The suppliers table loaded from the Northwind database

Building Websites Using ASP.NET Core Razor Pages

[596]

Manipulating data using Razor Pages
You will now add functionality to insert a new supplier.

Enabling a model to insert entities
First, you will modify the supplier model so that it responds to HTTP POST requests when a
visitor submits a form to insert a new supplier:

1. In the Northwind.Web project, in the Pages folder, open Suppliers.cshtml.cs and import
the following namespace:

using Microsoft.AspNetCore.Mvc; // [BindProperty], IActionResult

2. In the SuppliersModel class, add a property to store a single supplier and a method
named OnPost that adds the supplier to the Suppliers table in the Northwind database
if its model is valid, as shown in the following code:

[BindProperty]
public Supplier? Supplier { get; set; }

public IActionResult OnPost()
{
 if ((Supplier is not null) && ModelState.IsValid)
 {
 db.Suppliers.Add(Supplier);
 db.SaveChanges();
 return RedirectToPage("/suppliers");
 }
 else
 {
 return Page(); // return to original page
 }
}

While reviewing the preceding code, note the following:

• We added a property named Supplier that is decorated with the [BindProperty]
attribute so that we can easily connect HTML elements on the web page to properties in
the Supplier class.

• We added a method that responds to HTTP POST requests. It checks that all property
values conform to validation rules on the Supplier class entity model (such as
[Required] and [StringLength]) and then adds the supplier to the existing table and
saves changes to the database context. This will generate a SQL statement to perform
the insert into the database. Then it redirects to the Suppliers page so that the visitor
sees the newly added supplier.

Chapter 14

[597]

Defining a form to insert a new supplier
Next, you will modify the Razor Page to define a form that a visitor can fill in and submit to
insert a new supplier:

1. In Suppliers.cshtml, add tag helpers after the @model declaration so that we can use tag
helpers such as asp-for on this Razor Page, as shown in the following markup:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

2. At the bottom of the file, add a form to insert a new supplier, and use the asp-
for tag helper to bind the CompanyName, Country, and Phone properties of the Supplier
class to the input box, as shown in the following markup:

<div class="row">
 <p>Enter details for a new supplier:</p>
 <form method="POST">
 <div><input asp-for="Supplier.CompanyName"
 placeholder="Company Name" /></div>
 <div><input asp-for="Supplier.Country"
 placeholder="Country" /></div>
 <div><input asp-for="Supplier.Phone"
 placeholder="Phone" /></div>
 <input type="submit" />
 </form>
</div>

While reviewing the preceding markup, note the following:
• The <form> element with a POST method is normal HTML, so an <input

type="submit" /> element inside it will make an HTTP POST request back to the
current page with values of any other elements inside that form.

• An <input> element with a tag helper named asp-for enables data binding to
the model behind the Razor Page.

3. Start the website.
4. Click Learn more about our suppliers, scroll down to the bottom of the page,

enter Bob's Burgers, USA, and (603) 555-4567, and click Submit.
5. Note that you see a refreshed suppliers table with the new supplier added.
6. Close Chrome and shut down the web server.

Injecting a dependency service into a Razor Page
If you have a .cshtml Razor Page that does not have a code-behind file, then you can inject a
dependency service using the @inject directive instead of constructor parameter injection, and
then directly reference the injected database context using Razor syntax in the middle of the
markup.

Building Websites Using ASP.NET Core Razor Pages

[598]

Let's create a simple example:

1. In the Pages folder, add a new file named Orders.cshtml. (The Visual Studio item
template is named Razor Page - Empty and it creates two files. Delete the .cs file.)

2. In Orders.cshtml, write code to output the number of orders in the Northwind
database, as shown in the following markup:

@page
@using Packt.Shared
@inject NorthwindContext db
@{
 string title = "Orders";
 ViewData["Title"] = $"Northwind B2B - {title}";
}
<div class="row">
 <h1 class="display-2">@title</h1>
 <p>
 There are @db.Orders.Count() orders in the Northwind database.
 </p>
</div>

3. Start the website.
4. Navigate to /orders and note that you see that there are 830 orders in the Northwind

database.
5. Close Chrome and shut down the web server.

Using Razor class libraries
Everything related to a Razor Page can be compiled into a class library for easier reuse in
multiple projects. With ASP.NET Core 3.0 and later, this can include static files such as HTML,
CSS, JavaScript libraries, and media assets such as image files. A website can either use the
Razor Page's view as defined in the class library or override it.

Creating a Razor class library
Let's create a new Razor class library:

Use your preferred code editor to add a new project, as defined in the following list:

1. Project template: Razor Class Library / razorclasslib
2. Checkbox/switch: Support pages and views / -s
3. Workspace/solution file and folder: PracticalApps
4. Project file and folder: Northwind.Razor.Employees

Chapter 14

[599]

Disabling compact folders for Visual Studio Code
Before we implement our Razor class library, I want to explain a Visual Studio Code feature
that confused some readers of a previous edition because the feature was added after
publishing.

The compact folders feature means that nested folders such as /Areas/MyFeature/Pages/ are
shown in a compact form if the intermediate folders in the hierarchy do not contain files, as
shown in Figure 14.13:

Figure 14.13: Compact folders enabled or disabled

If you would like to disable the Visual Studio Code compact folders feature, complete the
following steps:

1. On Windows, navigate to File | Preferences | Settings. On macOS, navigate to Code |
Preferences | Settings.

2. In the Search settings box, enter compact.

-s is short for the --support-pages-and-views switch that enables the class
library to use Razor Pages and .cshtml file views.

Building Websites Using ASP.NET Core Razor Pages

[600]

3. Clear the Explorer: Compact Folders checkbox, as shown in Figure 14.14:

Figure 14.14: Disabling compact folders for Visual Studio Code

4. Close the Settings tab.

Implementing the employees feature using EF Core
Now we can add a reference to our entity models to get the employees to show in the Razor
class library:

1. In the Northwind.Razor.Employees project, add a project reference to the Northwind.
Common.DataContext project for either SQLite or SQL Server and note the SDK is
Microsoft.NET.Sdk.Razor, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk.Razor">

 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <AddRazorSupportForMvc>true</AddRazorSupportForMvc>
 </PropertyGroup>

 <ItemGroup>
 <FrameworkReference Include="Microsoft.AspNetCore.App" />
 </ItemGroup>

 <!-- change Sqlite to SqlServer if you prefer -->
 <ItemGroup>
 <ProjectReference Include="..\Northwind.Common.DataContext.Sqlite
\Northwind.Common.DataContext.Sqlite.csproj" />
 </ItemGroup>

</Project>

Chapter 14

[601]

2. Build the Northwind.Razor.Employees project.
3. In the Areas folder, right-click the MyFeature folder, select Rename, enter the

new name PacktFeatures, and press Enter.
4. In the PacktFeatures folder, in the Pages subfolder, add a new file named

_ViewStart.cshtml. (The Visual Studio item template is named Razor View Start.
Or just copy it from the Northwind.Web project.)

5. Modify its content to inform this class library that any Razor Pages should look for
a layout with the same name as used in the Northwind.Web project, as shown in the
following markup:

@{
 Layout = "_Layout";
}

6. In the Pages subfolder, rename Page1.cshtml to Employees.cshtml, and rename
Page1.cshtml.cs to Employees.cshtml.cs.

7. Modify Employees.cshtml.cs to define a page model with an array of Employee
entity instances loaded from the Northwind database, as shown in the following code:

using Microsoft.AspNetCore.Mvc.RazorPages; // PageModel
using Packt.Shared; // Employee, NorthwindContext

namespace PacktFeatures.Pages;

public class EmployeesPageModel : PageModel
{
 private NorthwindContext db;

 public EmployeesPageModel(NorthwindContext injectedContext)
 {
 db = injectedContext;
 }

The project reference must go all on one line with no line break.
Also, do not mix our SQLite and SQL Server projects or you will see
compiler errors. If you used SQL Server in the Northwind.Web project,
then you must use SQL Server in the Northwind.Razor.Employees
project as well.

We do not need to create the _Layout.cshtml file in this project.
It will use the one in its host project, for example, the one in the
Northwind.Web project.

Building Websites Using ASP.NET Core Razor Pages

[602]

 public Employee[] Employees { get; set; } = null!;

 public void OnGet()
 {
 ViewData["Title"] = "Northwind B2B - Employees";
 Employees = db.Employees.OrderBy(e => e.LastName)
 .ThenBy(e => e.FirstName).ToArray();
 }
}

8. Modify Employees.cshtml, as shown in the following markup:
@page
@using Packt.Shared
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@model PacktFeatures.Pages.EmployeesPageModel
<div class="row">
 <h1 class="display-2">Employees</h1>
</div>
<div class="row">
@foreach(Employee employee in Model.Employees)
{
 <div class="col-sm-3">
 <partial name="_Employee" model="employee" />
 </div>
}
</div>

While reviewing the preceding markup, note the following:

• We import the Packt.Shared namespace so that we can use classes in it such as
Employee.

• We add support for tag helpers so that we can use the <partial> element.
• We declare the @model type for this Razor Page to use the page model class that you

just defined.
• We enumerate through the Employees in the model, outputting each one using a

partial view.

Implementing a partial view to show a single
employee
The <partial> tag helper was introduced in ASP.NET Core 2.1. A partial view is like a piece of
a Razor Page. You will create one in the next few steps to render a single employee:

Chapter 14

[603]

1. In the Northwind.Razor.Employees project, in the Pages folder, create a Shared folder.
2. In the Shared folder, create a file named _Employee.cshtml. (The Visual Studio item

template is named Razor View - Empty.)
3. Modify _Employee.cshtml, as shown in the following markup:

@model Packt.Shared.Employee
<div class="card border-dark mb-3" style="max-width: 18rem;">
 <div class="card-header">@Model?.LastName, @Model?.FirstName</div>
 <div class="card-body text-dark">
 <h5 class="card-title">@Model?.Country</h5>
 <p class="card-text">@Model?.Notes</p>
 </div>
</div>

While reviewing the preceding markup, note the following:

• By convention, the names of partial views start with an underscore.
• If you put a partial view in the Shared folder, then it can be found automatically.
• The model type for this partial view is a single Employee entity.
• We use Bootstrap card styles to output information about each employee.

Using and testing a Razor class library
You will now reference and use the Razor class library in the website project:

1. In the Northwind.Web project, add a project reference to the Northwind.Razor.Employees
project, as shown in the following markup:

<ProjectReference Include=
 "..\Northwind.Razor.Employees\Northwind.Razor.Employees.csproj" />

2. Modify Pages\index.cshtml to add a paragraph with a link to the Packt feature
employees page after the link to the suppliers page, as shown in the following markup:

<p>

 Contact our employees

</p>

Building Websites Using ASP.NET Core Razor Pages

[604]

3. Start the website, visit the website using Chrome, and click the Contact our employees
button to see the cards of employees, as shown in Figure 14.15:

Figure 14.15: A list of employees from a Razor class library feature

Configuring services and the HTTP request
pipeline
Now that we have built a website, we can return to the Startup configuration and review how
services and the HTTP request pipeline work in more detail.

Understanding endpoint routing
In earlier versions of ASP.NET Core, the routing system and the extendable middleware system
did not always work easily together; for example, if you wanted to implement a policy such
as CORS in both middleware and MVC. Microsoft has invested in improving routing with a
system named endpoint routing introduced with ASP.NET Core 2.2.

Endpoint routing is designed to enable better interoperability between frameworks that need
routing, such as Razor Pages, MVC, or Web APIs, and middleware that needs to understand
how routing affects them, such as localization, authorization, CORS, and so on.

Endpoint routing gets its name because it represents the route table as a compiled tree
of endpoints that can be walked efficiently by the routing system. One of the biggest
improvements is the performance of routing and action method selection.

Good Practice: Endpoint routing replaces the IRouter-based routing used in
ASP.NET Core 2.1 and earlier. Microsoft recommends every older ASP.NET
Core project migrates to endpoint routing if possible.

Chapter 14

[605]

It is on by default with ASP.NET Core 2.2 or later if compatibility is set to 2.2 or later.
Traditional routes registered using the MapRoute method or with attributes are mapped to the
new system.

The new routing system includes a link generation service registered as a dependency service
that does not need an HttpContext.

Configuring endpoint routing
Endpoint routing requires a pair of calls to the UseRouting and UseEndpoints methods:

• UseRouting marks the pipeline position where a routing decision is made.
• UseEndpoints marks the pipeline position where the selected endpoint is executed.

Middleware such as localization that runs in between these methods can see the selected
endpoint and can switch to a different endpoint if necessary.

Endpoint routing uses the same route template syntax that has been used in ASP.NET MVC
since 2010 and the [Route] attribute introduced with ASP.NET MVC 5 in 2013. Migration often
only requires changes to the Startup configuration.

MVC controllers, Razor Pages, and frameworks such as SignalR used to be enabled by a call
to UseMvc or similar methods, but they are now added inside the UseEndpoints method call
because they are all integrated into the same routing system along with middleware.

Reviewing the endpoint routing configuration in our
project
Review the Startup.cs class file, as shown in the following code:

using Packt.Shared; // AddNorthwindContext extension method

namespace Northwind.Web;

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRazorPages();

 services.AddNorthwindContext();
 }

 public void Configure(
 IApplicationBuilder app, IWebHostEnvironment env)
 {

Building Websites Using ASP.NET Core Razor Pages

[606]

 if (!env.IsDevelopment())
 {
 app.UseHsts();
 }

 app.UseRouting();

 app.UseHttpsRedirection();

 app.UseDefaultFiles(); // index.html, default.html, and so on
 app.UseStaticFiles();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapRazorPages();

 endpoints.MapGet("/hello", () => "Hello World!");
 });
 }
}

The Startup class has two methods that are called automatically by the host to configure the
website.

The ConfigureServices method registers services that can then be retrieved when the
functionality they provide is needed using dependency injection. Our code registers two
services: Razor Pages and an EF Core database context.

Registering services in the ConfigureServices method
Common methods that register dependency services, including services that combine other
method calls that register services, are shown in the following table:

Method Services that it registers
AddMvcCore Minimum set of services necessary to route requests and invoke

controllers. Most websites will need more configuration than this.
AddAuthorization Authentication and authorization services.
AddDataAnnotations MVC data annotations service.
AddCacheTagHelper MVC cache tag helper service.

Chapter 14

[607]

AddRazorPages Razor Pages service including the Razor view engine. Commonly
used in simple website projects. It calls the following additional
methods:

AddMvcCore

AddAuthorization

AddDataAnnotations

AddCacheTagHelper
AddApiExplorer Web API explorer service.
AddCors CORS support for enhanced security.
AddFormatterMappings Mappings between a URL format and its corresponding media

type.
AddControllers Controller services but not services for views or pages. Commonly

used in ASP.NET Core Web API projects. It calls the following
additional methods:

AddMvcCore

AddAuthorization

AddDataAnnotations

AddCacheTagHelper

AddApiExplorer

AddCors

AddFormatterMappings
AddViews Support for .cshtml views including default conventions.
AddRazorViewEngine Support for Razor view engine including processing the @ symbol.

Building Websites Using ASP.NET Core Razor Pages

[608]

AddControllersWithViews Controller, views, and pages services. Commonly used in ASP.
NET Core MVC website projects. It calls the following additional
methods:

AddMvcCore

AddAuthorization

AddDataAnnotations

AddCacheTagHelper

AddApiExplorer

AddCors

AddFormatterMappings

AddViews

AddRazorViewEngine
AddMvc Similar to AddControllersWithViews, but you should only use it

for backward compatibility.
AddDbContext<T> Your DbContext type and its optional

DbContextOptions<TContext>.
AddNorthwindContext A custom extension method we created to make it easier to register

the NorthwindContext class for either SQLite or SQL Server based
on the project referenced.

You will see more examples of using these extension methods for registering services in the
next few chapters when working with MVC and Web API services.

Setting up the HTTP request pipeline in the Configure
method
The Configure method configures the HTTP request pipeline, which is made up of a connected
sequence of delegates that can perform processing and then decide to either return a response
themselves or pass processing on to the next delegate in the pipeline. Responses that come back
can also be manipulated.

Remember that delegates define a method signature that a delegate implementation can plug
into. The delegate for the HTTP request pipeline is simple, as shown in the following code:

public delegate Task RequestDelegate(HttpContext context);

You can see that the input parameter is an HttpContext. This provides access to everything
you might need to process the incoming HTTP request, including the URL path, query string
parameters, cookies, and user agent.

Chapter 14

[609]

These delegates are often called middleware because they sit in between the browser client and
the website or service.

Middleware delegates are configured using one of the following methods or a custom method
that calls them itself:

• Run: Adds a middleware delegate that terminates the pipeline by immediately returning
a response instead of calling the next middleware delegate.

• Map: Adds a middleware delegate that creates a branch in the pipeline when there is a
matching request usually based on a URL path like /hello.

• Use: Adds a middleware delegate that forms part of the pipeline so it can decide if it
wants to pass the request to the next delegate in the pipeline and it can modify the
request and response before and after the next delegate.

For convenience, there are many extension methods that make it easier to build the pipeline, for
example, UseMiddleware<T>, where T is a class that has:

1. A constructor with a RequestDelegate parameter that will be passed the next pipeline
component

2. An Invoke method with a HttpContext parameter and returns a Task

Summarizing key middleware extension methods
Key middleware extension methods used in our code include the following:

• UseDeveloperExceptionPage: Captures synchronous and asynchronous System.
Exception instances from the pipeline and generates HTML error responses.

• UseHsts: Adds middleware for using HSTS, which adds the Strict-Transport-
Security header.

• UseRouting: Adds middleware that defines a point in the pipeline where routing
decisions are made and must be combined with a call to UseEndpoints where the
processing is then executed. This means that for our code, any URL paths that match
/ or /index or /suppliers will be mapped to Razor Pages and a match on /hello will
be mapped to the anonymous delegate. Any other URL paths will be passed on to the
next delegate for matching, for example, static files. This is why, although it looks like
the mapping for Razor Pages and /hello happen after static files in the pipeline, they
actually take priority because the call to UseRouting happens before UseStaticFiles.

• UseHttpsRedirection: Adds middleware for redirecting HTTP requests to HTTPS,
so in our code a request for http://localhost:5000 would be modified to https://
localhost:5001.

• UseDefaultFiles: Adds middleware that enables default file mapping on the current
path, so in our code it would identify files such as index.html.

• UseStaticFiles: Adds middleware that looks in wwwroot for static files to return in the
HTTP response.

Building Websites Using ASP.NET Core Razor Pages

[610]

• UseEndpoints: Adds middleware to execute to generate responses from decisions made
earlier in the pipeline. Two endpoints are added, as shown in the following sub-list:

• MapRazorPages: Adds middleware that will map URL paths such as /suppliers
to a Razor Page file in the /Pages folder named suppliers.cshtml and return
the results as the HTTP response.

• MapGet: Adds middleware that will map URL paths such as /hello to an inline
delegate that writes plain text directly to the HTTP response.

Visualizing the HTTP pipeline
The HTTP request and response pipeline can be visualized as a sequence of request delegates,
called one after the other, as shown in the following simplified diagram, which excludes some
middleware delegates, such as UseHsts:

Figure 14.16: The HTTP request and response pipeline

As mentioned before, the UseRouting and UseEndpoints methods must be used together.
Although the code to define the mapped routes such as /hello are written in UseEndpoints,
the decision about whether an incoming HTTP request URL path matches and therefore which
endpoint to execute is made at the UseRouting point in the pipeline.

Implementing an anonymous inline delegate as
middleware
A delegate can be specified as an inline anonymous method. We will register one that plugs
into the pipeline after routing decisions for endpoints have been made.

Chapter 14

[611]

It will output which endpoint was chosen, as well as handling one specific route: /bonjour.
If that route is matched, it will respond with plain text, without calling any further into the
pipeline:

1. In Startup.cs, statically import Console, as shown in the following code:
using static System.Console;

2. Add statements after the call to UseRouting and before the call to
UseHttpsRedirection to use an anonymous method as a middleware delegate, as
shown in the following code:

app.Use(async (HttpContext context, Func<Task> next) =>
{
 RouteEndpoint? rep = context.GetEndpoint() as RouteEndpoint;
 if (rep is not null)
 {
 WriteLine($"Endpoint name: {rep.DisplayName}");
 WriteLine($"Endpoint route pattern: {rep.RoutePattern.RawText}");
 }

 if (context.Request.Path == "/bonjour")
 {
 // in the case of a match on URL path, this becomes a terminating
 // delegate that returns so does not call the next delegate
 await context.Response.WriteAsync("Bonjour Monde!");
 return;
 }

 // we could modify the request before calling the next delegate
 await next();
 // we could modify the response after calling the next delegate
});

3. Start the website.
4. In Chrome, navigate to https://localhost:5001/, look at the console output

and note that there was a match on an endpoint route /, it was processed as /index,
and the Index.cshtml Razor Page was executed to return the response, as shown in the
following output:

Endpoint name: /index
Endpoint route pattern:

5. Navigate to https://localhost:5001/suppliers and note that you can see that
there was a match on an endpoint route /Suppliers and the Suppliers.cshtml Razor
Page was executed to return the response, as shown in the following output:

Endpoint name: /Suppliers
Endpoint route pattern: Suppliers

Building Websites Using ASP.NET Core Razor Pages

[612]

6. Navigate to https://localhost:5001/index and note that there was a match on an
endpoint route /index and the Index.cshtml Razor Page was executed to return the
response, as shown in the following output:

Endpoint name: /index
Endpoint route pattern: index

7. Navigate to https://localhost:5001/index.html and note that there is no
output written to the console because there was no match on an endpoint route but
there was a match for a static file, so it was returned as the response.

8. Navigate to https://localhost:5001/bonjour and note that there is no output
written to the console because there was no match on an endpoint route. Instead, our
delegate matched on /bonjour, wrote directly to the response stream, and returned with
no further processing.

9. Close Chrome and shut down the web server.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore this chapter's topics with deeper research.

Exercise 14.1 – Test your knowledge
Answer the following questions:

1. List six method names that can be specific in an HTTP request.
2. List six status codes and their descriptions that can be returned in an HTTP response.
3. In ASP.NET Core, what is the Startup class used for?
4. What does the acronym HSTS stand for and what does it do?
5. How do you enable static HTML pages for a website?
6. How do you mix C# code into the middle of HTML to create a dynamic page?
7. How can you define shared layouts for Razor Pages?
8. How can you separate the markup from the code-behind in a Razor Page?
9. How do you configure an Entity Framework Core data context for use with an

ASP.NET Core website?
10. How can you reuse Razor Pages with ASP.NET Core 2.2 or later?

Chapter 14

[613]

Exercise 14.2 – Practice building a data-driven web
page
Add a Razor Page to the Northwind.Web website that enables the user to see a list of customers
grouped by country. When the user clicks on a customer record, they then see a page showing
the full contact details of that customer, and a list of their orders.

Exercise 14.3 – Practice building web pages for
console apps
Reimplement some of the console apps from earlier chapters as Razor Pages, for example, from
Chapter 4, Writing, Debugging, and Testing Functions, provide a web user interface to output
times tables, calculate tax, and generate factorials and the Fibonacci sequence.

Exercise 14.4 – Explore topics
Use the links on the following page to learn more about the topics covered in this chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-14---
building-websites-using-aspnet-core-razor-pages

Summary
In this chapter, you learned about the foundations of web development using HTTP, how to
build a simple website that returns static files, and you used ASP.NET Core Razor Pages with
Entity Framework Core to create web pages that were dynamically generated from information
in a database.

We reviewed the HTTP request and response pipeline, what the helper extension methods do,
and how you can add your own middleware that affects processing.

In the next chapter, you will learn how to build more complex websites using ASP.NET Core
MVC, which separates the technical concerns of building a website into models, views, and
controllers to make them easier to manage.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-14---building-websites-using-aspnet-core-razor-pages
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-14---building-websites-using-aspnet-core-razor-pages

[615]

15
Building Websites Using the

Model-View-Controller Pattern
This chapter is about building websites with a modern HTTP architecture on the server side
using Microsoft ASP.NET Core MVC, including the startup configuration, authentication,
authorization, routes, request and response pipeline, models, views, and controllers that make
up an ASP.NET Core MVC project.

This chapter will cover the following topics:

• Setting up an ASP.NET Core MVC website
• Exploring an ASP.NET Core MVC website
• Customizing an ASP.NET Core MVC website
• Querying a database and using display templates
• Improving scalability using asynchronous tasks

Setting up an ASP.NET Core MVC website
ASP.NET Core Razor Pages are great for simple websites. For more complex websites, it would
be better to have a more formal structure to manage that complexity.

This is where the Model-View-Controller (MVC) design pattern is useful. It uses technologies
like Razor Pages, but allows a cleaner separation between technical concerns, as shown in the
following list:

• Models: Classes that represent the data entities and view models used on the website.
• Views: Razor files, that is, .cshtml files, that render data in view models into HTML

web pages. Blazor uses the .razor file extension, but do not confuse them with Razor
files!

Building Websites Using the Model-View-Controller Pattern

[616]

• Controllers: Classes that execute code when an HTTP request arrives at the web server.
The controller methods usually create a view model that may contain entity models and
passes it to a view to generate an HTTP response to send back to the web browser or
other client.

The best way to understand using the MVC design pattern for web development is to see a
working example.

Creating an ASP.NET Core MVC website
You will use a project template to create an ASP.NET Core MVC website project that has a
database for authenticating and authorizing users. Visual Studio 2022 defaults to using SQL
Server LocalDB for the accounts database. Visual Studio Code (or more accurately the dotnet
tool) uses SQLite by default and you can specify a switch to use SQL Server LocalDB instead.

Let's see it in action:

1. Use your preferred code editor to add a MVC website project with authentication
accounts stored in a database, as defined in the following list:

1. Project template: ASP.NET Core Web App (Model-View-Controller) / mvc
2. Language: C#
3. Workspace/solution file and folder: PracticalApps
4. Project file and folder: Northwind.Mvc
5. Options: Authentication Type: Individual Accounts / --auth Individual
6. For Visual Studio, leave all other options as their defaults

2. In Visual Studio Code, select Northwind.Mvc as the active OmniSharp project.
3. Build the Northwind.Mvc project.
4. At the command line or terminal, use the help switch to see other options for this

project template, as shown in the following command:
dotnet new mvc --help

5. Note the results, as shown in the following partial output:

ASP.NET Core Web App (Model-View-Controller) (C#)
Author: Microsoft
Description: A project template for creating an ASP.NET Core application
with example ASP.NET Core MVC Views and Controllers. This template can
also be used for RESTful HTTP services.
This template contains technologies from parties other than Microsoft, see
https://aka.ms/aspnetcore/6.0-third-party-notices for details.

Chapter 15

[617]

There are many options, especially related to authentication, as shown in the following table:

Switches Description
-au|--auth The type of authentication to use:

None (default): This choice also allows you to disable HTTPS.

Individual: Individual authentication that stores registered users and
their passwords in a database (SQLite by default). We will use this in the
project we create for this chapter.

IndividualB2C: Individual authentication with Azure AD B2C.

SingleOrg: Organizational authentication for a single tenant.

MultiOrg: Organizational authentication for multiple tenants.

Windows: Windows authentication. Mostly useful for intranets.
-uld|--use-local-db Whether to use SQL Server LocalDB instead of SQLite. This option only

applies if --auth Individual or --auth IndividualB2C is specified.
The value is an optional bool with a default of false.

-rrc|--razor-
runtime-compilation

Determines if the project is configured to use Razor runtime compilation
in Debug builds. This can improve the performance of startup during
debugging because it can defer the compilation of Razor views. The value
is an optional bool with a default of false.

-f|--framework The target framework for the project. Values can be: net6.0 (default),
net5.0, or netcoreapp3.1

Creating the authentication database for SQL
Server LocalDB
If you created the MVC project using Visual Studio 2022, or you used dotnet new mvc with the
-uld or --use-local-db switch, then the database for authentication and authorization will be
stored in SQL Server LocalDB. But the database does not yet exist. Let's create it now.

At a command prompt or terminal, in the Northwind.Mvc folder, enter the command to run
database migrations so that the database used to store credentials for authentication is created,
as shown in the following command:

dotnet ef database update

If you created the MVC project using dotnet new, then the database for authentication and
authorization will be stored in SQLite and the file has already been created named app.db.

The connection string for the authentication database is named DefaultConnection and it is
stored in the appsettings.json file in the root folder for the MVC website project.

Building Websites Using the Model-View-Controller Pattern

[618]

For SQL Server LocalDB (with a truncated connection string), see the following markup:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;Database=aspnet-
Northwind.Mvc-...;Trusted_Connection=True;MultipleActiveResultSets=true"
 },

For SQLite, see the following markup:

{
 "ConnectionStrings": {
 "DefaultConnection": "DataSource=app.db;Cache=Shared"
 },

Exploring the default ASP.NET Core MVC website
Let's review the behavior of the default ASP.NET Core MVC website project template:

1. In the Northwind.Mvc project, expand the Properties folder, open the
launchSettings.json file, and note the random port numbers (yours will be different)
configured for the project for HTTPS and HTTP, as shown in the following markup:

"profiles": {
 "Northwind.Mvc": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "https://localhost:7274;http://localhost:5274",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },

2. Change the port numbers to 5001 for HTTPS and 5000 for HTTP, as shown in the following
markup:

"applicationUrl": "https://localhost:5001;http://localhost:5000",

3. Save the changes to the launchSettings.json file.
4. Start the website.
5. Start Chrome and open Developer Tools.
6. Navigate to http://localhost:5000/ and note the following, as shown in Figure 15.1:

• Requests for HTTP are automatically redirected to HTTPS on port 5001.

Chapter 15

[619]

• The top navigation menu with links to Home, Privacy, Register, and Login.
If the viewport width is 575 pixels or less, then the navigation collapses into a
hamburger menu.

• The title of the website, Northwind.Mvc, shown in the header and footer.

Figure 15.1: The ASP.NET Core MVC project template website home page

Understanding visitor registration
By default, passwords must have at least one non-alphanumeric character, they must have at
least one digit (0-9), and they must have at least one uppercase letter (A-Z). I use Pa$$w0rd in
scenarios like this when I am just exploring.

The MVC project template follows best practice for double-opt-in (DOI), meaning that after
filling in an email and password to register, an email is sent to the email address, and the
visitor must click a link in that email to confirm that they want to register.

We have not yet configured an email provider to send that email, so we must simulate that
step:

1. In the top navigation menu, click Register.
2. Enter an email and password, and then click the Register button. (I used

test@example.com and Pa$$w0rd.)
3. Click the link with the text Click here to confirm your account and note that you are

redirected to a Confirm email web page that you could customize.
4. In the top navigation menu, click Login, enter your email and password (note that there

is an optional checkbox to remember you, and there are links if the visitor has forgotten
their password or they want to register as a new visitor), and then click the Log in
button.

Building Websites Using the Model-View-Controller Pattern

[620]

5. Click your email address in the top navigation menu. This will navigate to an account
management page. Note that you can set a phone number, change your email address,
change your password, enable two-factor authentication (if you add an authenticator
app), and download and delete your personal data.

6. Close Chrome and shut down the web server.

Reviewing an MVC website project structure
In your code editor, in Visual Studio Solution Explorer (toggle on Show All Files) or in
Visual Studio Code EXPLORER, review the structure of an MVC website project, as shown
in Figure 15.2:

Figure 15.2: The default folder structure of an ASP.NET Core MVC project

We will look in more detail at some of these parts later, but for now, note the following:

• Areas: This folder contains nested folders and a file needed to integrate your website
project with ASP.NET Core Identity, which is used for authentication.

• bin, obj: These folders contain temporary files needed during the build process and the
compiled assemblies for the project.

• Controllers: This folder contains C# classes that have methods (known as actions) that
fetch a model and pass it to a view, for example, HomeController.cs.

Chapter 15

[621]

• Data: This folder contains Entity Framework Core migration classes used by the
ASP.NET Core Identity system to provide data storage for authentication and
authorization, for example, ApplicationDbContext.cs.

• Models: This folder contains C# classes that represent all of the data gathered together
by a controller and passed to a view, for example, ErrorViewModel.cs.

• Properties: This folder contains a configuration file for IIS or IIS Express on Windows
and for launching the website during development named launchSettings.json.
This file is only used on the local development machine and is not deployed to your
production website.

• Views: This folder contains the .cshtml Razor files that combine HTML and C# code to
dynamically generate HTML responses. The _ViewStart file sets the default layout and
_ViewImports imports common namespaces used in all views like tag helpers:

• Home: This subfolder contains Razor files for the home and privacy pages.
• Shared: This subfolder contains Razor files for the shared layout, an error page,

and two partial views for logging in and validation scripts.

• wwwroot: This folder contains static content used by the website, such as CSS for styling,
libraries of JavaScript, JavaScript for this website project, and a favicon.ico file. You
also put images and other static file resources like PDF documents in here. The project
template includes Bootstrap and jQuery libraries.

• app.db: This is the SQLite database that stores registered visitors. (If you used SQL
Server LocalDB, then it will not be needed.)

• appsettings.json and appsettings.Development.json: These files contain settings that
your website can load at runtime, for example, the database connection string for the
ASP.NET Core Identity system and logging levels.

• Northwind.Mvc.csproj: This file contains project settings like the use of the Web .NET
SDK, an entry for SQLite to ensure that the app.db file is copied to the website's output
folder, and a list of NuGet packages that your project requires, including:

• Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore

• Microsoft.AspNetCore.Identity.EntityFrameworkCore

• Microsoft.AspNetCore.Identity.UI

• Microsoft.EntityFrameworkCore.Sqlite or Microsoft.EntityFrameworkCore.
SqlServer

• Microsoft.EntityFrameworkCore.Tools

• Program.cs: This file defines a hidden Program class that contains the Main entry point.
It builds a pipeline for processing incoming HTTP requests and hosts the website using
default options like configuring the Kestrel web server and loading appsettings. It
adds and configures services that your website needs, for example, ASP.NET Core
Identity for authentication, SQLite or SQL Server for identity data storage, and so on,
and routes for your application.

Building Websites Using the Model-View-Controller Pattern

[622]

Reviewing the ASP.NET Core Identity database
Open appsettings.json to find the connection string used for the ASP.NET Core Identity
database, as shown highlighted for SQL Server LocalDB in the following markup:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;Database=aspnet-
Northwind.Mvc-2F6A1E12-F9CF-480C-987D-FEFB4827DE22;Trusted_Connection=True;Multi
pleActiveResultSets=true"
 },
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*"
}

If you used SQL Server LocalDB for the identity data store, then you can use Server
Explorer to connect to the database. You can copy and paste the connection string from the
appsettings.json file (but remove the second backslash between (localdb) and mssqllocaldb).

If you installed an SQLite tool such as SQLiteStudio, then you can open the SQLite app.db
database file.

You can then see the tables that the ASP.NET Core Identity system uses to register users
and roles, including the AspNetUsers table used to store the registered visitor.

Exploring an ASP.NET Core MVC website
Let's walk through the parts that make up a modern ASP.NET Core MVC website.

Understanding ASP.NET Core MVC initialization
Appropriately enough, we will start by exploring the MVC website's default initialization and
configuration:

Good Practice: The ASP.NET Core MVC project template follows good
practice by storing a hash of the password instead of the password itself,
which you will learn more about in Chapter 20, Protecting Your Data and
Applications.

Chapter 15

[623]

1. Open the Program.cs file and note that it uses the top-level program feature (so there is
a hidden Program class with a Main method). This file can be considered to be divided
into four important sections from top to bottom.

2. The first section imports some namespaces, as shown in the following code:
using Microsoft.AspNetCore.Identity; // IdentityUser
using Microsoft.EntityFrameworkCore; // UseSqlServer, UseSqlite
using Northwind.Mvc.Data; // ApplicationDbContext

3. The second section creates and configures a web host builder. It registers an application
database context using SQL Server or SQLite with its database connection string loaded
from the appsettings.json file for its data storage, adds ASP.NET Core Identity for
authentication and configures it to use the application database, and adds support for
MVC controllers with views, as shown in the following code:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
var connectionString = builder.Configuration
 .GetConnectionString("DefaultConnection");

builder.Services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(connectionString)); // or UseSqlite

builder.Services.AddDatabaseDeveloperPageExceptionFilter();

builder.Services.AddDefaultIdentity<IdentityUser>(options =>
 options.SignIn.RequireConfirmedAccount = true)
 .AddEntityFrameworkStores<ApplicationDbContext>();

builder.Services.AddControllersWithViews();

.NET 5 and earlier ASP.NET Core project templates used a Startup
class to separate these parts into separate methods but with .NET 6,
Microsoft encourages putting everything in a single Program.cs file.

Remember that by default, many other namespaces are imported
using the implicit usings feature of .NET 6 and later. Build the
project and then the globally imported namespaces can be found
in the following path: obj\Debug\net6.0\Northwind.Mvc.
GlobalUsings.g.cs.

Building Websites Using the Model-View-Controller Pattern

[624]

The builder object has two commonly used objects: Configuration and Services:
• Configuration contains merged values from all the places you could set

configuration: appsettings.json, environment variables, command-line
arguments, and so on

• Services is a collection of registered dependency services

The call to AddDbContext is an example of registering a dependency service.
ASP.NET Core implements the dependency injection (DI) design pattern so
that other components like controllers can request needed services through their
constructors. Developers register those services in this section of Program.cs (or if
using a Startup class then in its ConfigureServices method.)

4. The third section configures the HTTP request pipeline. It configures a relative URL
path to run database migrations if the website runs in development, or a friendlier error
page and HSTS for production. HTTPS redirection, static files, routing, and ASP.NET
Identity are enabled, and an MVC default route and Razor Pages are configured, as
shown in the following code:

// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
 app.UseMigrationsEndPoint();
}
else
{
 app.UseExceptionHandler("/Home/Error");
 // The default HSTS value is 30 days. You may want to change this for
production scenarios, see https://aka.ms/aspnetcore-hsts.
 app.UseHsts();
}

app.UseHttpsRedirection();
app.UseStaticFiles();

app.UseRouting();

app.UseAuthentication();
app.UseAuthorization();

app.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");

app.MapRazorPages();

We learned about most of these methods and features in Chapter 14, Building Websites
Using ASP.NET Core Razor Pages.

Chapter 15

[625]

Apart from the UseAuthentication and UseAuthorization methods, the most important
new method in this section of Program.cs is MapControllerRoute, which maps a default
route for use by MVC. This route is very flexible because it will map to almost any
incoming URL, as you will see in the next topic.
Although we will not create any Razor Pages in this chapter, we need to leave the
method call that maps Razor Page support because our MVC website uses ASP.NET
Core Identity for authentication and authorization, and it uses a Razor Class Library for
its user interface components, like visitor registration and login.

5. The fourth and final section has a thread-blocking method call that runs the website
and waits for incoming HTTP requests to respond to, as shown in the following code:

app.Run(); // blocking call

Understanding the default MVC route
The responsibility of a route is to discover the name of a controller class to instantiate and
an action method to execute with an optional id parameter to pass into the method that will
generate an HTTP response.

A default route is configured for MVC, as shown in the following code:

endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");

The route pattern has parts in curly brackets {} called segments, and they are like named
parameters of a method. The value of these segments can be any string. Segments in URLs are
not case-sensitive.

The route pattern looks at any URL path requested by the browser and matches it to extract the
name of a controller, the name of an action, and an optional id value (the ? symbol makes it
optional).

Good Practice: What does the extension method
UseMigrationsEndPoint do? You could read the official
documentation, but it does not help much. For example, it does
not tell us what relative URL path it defines by default: https://
docs.microsoft.com/en-us/dotnet/api/microsoft.
aspnetcore.builder.migrationsendpointextensions.
usemigrationsendpoint. Luckily, ASP.NET Core is open source,
so we can read the source code and discover what it does, at the
following link: https://github.com/dotnet/aspnetcore/blob/
main/src/Middleware/Diagnostics.EntityFrameworkCore/
src/MigrationsEndPointOptions.cs#L18. Get into the habit of
exploring the source code for ASP.NET Core to understand how it
works.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.migrationsendpointextensions.usemigrationsendpoint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.migrationsendpointextensions.usemigrationsendpoint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.migrationsendpointextensions.usemigrationsendpoint
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.migrationsendpointextensions.usemigrationsendpoint
https://github.com/dotnet/aspnetcore/blob/main/src/Middleware/Diagnostics.EntityFrameworkCore/src/MigrationsEndPointOptions.cs#L18
https://github.com/dotnet/aspnetcore/blob/main/src/Middleware/Diagnostics.EntityFrameworkCore/src/MigrationsEndPointOptions.cs#L18
https://github.com/dotnet/aspnetcore/blob/main/src/Middleware/Diagnostics.EntityFrameworkCore/src/MigrationsEndPointOptions.cs#L18

Building Websites Using the Model-View-Controller Pattern

[626]

If the user hasn't entered these names, it uses defaults of Home for the controller and Index for
the action (the = assignment sets a default for a named segment).

The following table contains example URLs and how the default route would work out the
names of a controller and action:

URL Controller Action ID
/ Home Index
/Muppet Muppet Index
/Muppet/Kermit Muppet Kermit
/Muppet/Kermit/Green Muppet Kermit Green
/Products Products Index
/Products/Detail Products Detail
/Products/Detail/3 Products Detail 3

Understanding controllers and actions
In MVC, the C stands for controller. From the route and an incoming URL, ASP.NET Core
knows the name of the controller, so it will then look for a class that is decorated with the
[Controller] attribute or derives from a class decorated with that attribute, for example, the
Microsoft-provided class named ControllerBase, as shown in the following code:

namespace Microsoft.AspNetCore.Mvc
{
 //
 // Summary:
 // A base class for an MVC controller without view support.
 [Controller]
 public abstract class ControllerBase
 {
...

Understanding the ControllerBase class
As you can see in the XML comment, ControllerBase does not support views. It is used for
creating web services, as you will see in Chapter 16, Building and Consuming Web Services.

ControllerBase has many useful properties for working with the current HTTP context, as
shown in the following table:

Chapter 15

[627]

Property Description
Request Just the HTTP request. For example, headers, query string parameters, the body of

the request as a stream that you can read from, the content type and length, and
cookies.

Response Just the HTTP response. For example, headers, the body of the response as a stream
that you can write to, the content type and length, status code, and cookies. There are
also delegates like OnStarting and OnCompleted that you can hook a method up to.

HttpContext Everything about the current HTTP context including the request and response,
information about the connection, a collection of features that have been enabled on
the server with middleware, and a User object for authentication and authorization.

Understanding the Controller class
Microsoft provides another class named Controller that your classes can inherit from if they
do need view support, as shown in the following code:

namespace Microsoft.AspNetCore.Mvc
{
 //
 // Summary:
 // A base class for an MVC controller with view support.
 public abstract class Controller : ControllerBase,
 IActionFilter, IFilterMetadata, IAsyncActionFilter, IDisposable
 {
...

Controller has many useful properties for working with views, as shown in the following
table:

Property Description
ViewData A dictionary that the controller can store key/value pairs in that is accessible in a

view. The dictionary's lifetime is only for the current request/response.
ViewBag A dynamic object that wraps the ViewData to provide a friendlier syntax for setting

and getting dictionary values.
TempData A dictionary that the controller can store key/value pairs in that is accessible in

a view. The dictionary's lifetime is for the current request/response and the next
request/response for the same visitor session. This is useful for storing a value
during an initial request, responding with a redirect, and then reading the stored
value in the subsequent request.

Building Websites Using the Model-View-Controller Pattern

[628]

Controller has many useful methods for working with views, as shown in the following table:

Property Description
View Returns a ViewResult after executing a view that renders a full response, for

example, a dynamically generated web page. The view can be selected using a
convention or be specified with a string name. A model can be passed to the view.

PartialView Returns a PartialViewResult after executing a view that is part of a full
response, for example, a dynamically generated chunk of HTML. The view can
be selected using a convention or be specified with a string name. A model can be
passed to the view.

ViewComponent Returns a ViewComponentResult after executing a component that dynamically
generates HTML. The component must be selected by specifying its type or its
name. An object can be passed as an argument.

Json Returns a JsonResult containing a JSON-serialized object. This can be useful
for implementing a simple Web API as part of an MVC controller that primarily
returns HTML for a human to view.

Understanding the responsibilities of a controller
The responsibilities of a controller are as follows:

• Identify the services that the controller needs to be in a valid state and to function
properly in their class constructor(s).

• Use the action name to identify a method to execute.
• Extract parameters from the HTTP request.
• Use the parameters to fetch any additional data needed to construct a view model and

pass it to the appropriate view for the client. For example, if the client is a web browser,
then a view that renders HTML would be most appropriate. Other clients might prefer
alternative renderings, like document formats such as a PDF file or an Excel file, or data
formats, like JSON or XML.

• Return the results from the view to the client as an HTTP response with an appropriate
status code.

Let's review the controller used to generate the home, privacy, and error pages:

1. Expand the Controllers folder
2. Open the file named HomeController.cs
3. Note, as shown in the following code, that:

• Extra namespaces are imported, which I have added comments for to show
which types they are needed for.

• A private read-only field is declared to store a reference to a logger for the
HomeController that is set in a constructor.

• All three action methods call a method named View and return the results as an
IActionResult interface to the client.

Chapter 15

[629]

• The Error action method passes a view model into its view with a request ID
used for tracing. The error response will not be cached:

using Microsoft.AspNetCore.Mvc; // Controller, IActionResult
using Northwind.Mvc.Models; // ErrorViewModel
using System.Diagnostics; // Activity

namespace Northwind.Mvc.Controllers;
public class HomeController : Controller
{
 private readonly ILogger<HomeController> _logger;

 public HomeController(ILogger<HomeController> logger)
 {
 _logger = logger;
 }

 public IActionResult Index()
 {
 return View();
 }

 public IActionResult Privacy()
 {
 return View();
 }

 [ResponseCache(Duration = 0,
 Location = ResponseCacheLocation.None, NoStore = true)]
 public IActionResult Error()
 {
 return View(new ErrorViewModel { RequestId =
 Activity.Current?.Id ?? HttpContext.TraceIdentifier });
 }
}

If the visitor navigates to a path of / or /Home, then it is the equivalent of /Home/Index because
those were the default names for controller and action in the default route.

Understanding the view search path convention
The Index and Privacy methods are identical in implementation, yet they return different web
pages. This is because of conventions. The call to the View method looks in different paths for
the Razor file to generate the web page.

Let's deliberately break one of the page names so that we can see the paths searched by default:

1. In the Northwind.Mvc project, expand the Views folder and then the Home folder.

Building Websites Using the Model-View-Controller Pattern

[630]

2. Rename the Privacy.cshtml file to Privacy2.cshtml.
3. Start the website.
4. Start Chrome, navigate to https://localhost:5001/, click Privacy, and note the paths

that are searched for a view to render the web page (including in Shared folders for
MVC views and Razor Pages), as shown in Figure 15.3:

Figure 15.3: An exception showing the default search path for views

5. Close Chrome and shut down the web server.
6. Rename the Privacy2.cshtml file back to Privacy.cshtml.

You have now seen the view search path convention, as shown in the following list:

• Specific Razor view: /Views/{controller}/{action}.cshtml
• Shared Razor view: /Views/Shared/{action}.cshtml
• Shared Razor Page: /Pages/Shared/{action}.cshtml

Understanding logging
You have just seen that some errors are caught and written to the console. You can write
messages to the console in the same way by using the logger.

1. In the Controllers folder, in HomeController.cs, in the Index method, add statements
to use the logger to write some messages of various levels to the console, as shown in
the following code:

_logger.LogError("This is a serious error (not really!)");
_logger.LogWarning("This is your first warning!");

Chapter 15

[631]

_logger.LogWarning("Second warning!");
_logger.LogInformation("I am in the Index method of the HomeController.");

2. Start the Northwind.Mvc website project.
3. Start a web browser and navigate to the home page for the website.
4. At the command prompt or terminal, note the messages, as shown in the following

output:
fail: Northwind.Mvc.Controllers.HomeController[0]
 This is a serious error (not really!)
warn: Northwind.Mvc.Controllers.HomeController[0]
 This is your first warning!
warn: Northwind.Mvc.Controllers.HomeController[0]
 Second warning!
info: Northwind.Mvc.Controllers.HomeController[0]
 I am in the Index method of the HomeController.

5. Close Chrome and shut down the web server.

Understanding filters
When you need to add some functionality to multiple controllers and actions, you can use or
define your own filters that are implemented as an attribute class.

Filters can be applied at the following levels:

• At the action level by decorating an action method with the attribute. This will only
affect the one action method.

• At the controller level by decorating the controller class with the attribute. This will
affect all methods of the controller.

• At the global level by adding the attribute type to the Filters collection of
the MvcOptions instance that can be used to configure MVC when calling the
AddControllersWithViews method, as shown in the following code:

builder.Services.AddControllersWithViews(options =>
 {
 options.Filters.Add(typeof(MyCustomFilter));
 });

Using a filter to secure an action method
You might want to ensure that one particular action method of a controller class can only be
called by members of certain security roles. You do this by decorating the method with the
[Authorize] attribute, as described in the following list:

• [Authorize]: Only allow authenticated (non-anonymous, logged-in) visitors to access
this action method.

Building Websites Using the Model-View-Controller Pattern

[632]

• [Authorize(Roles = "Sales,Marketing")]: Only allow visitors who are members of the
specified role(s) to access this action method.

Let's see an example:

1. In HomeController.cs, import the Microsoft.AspNetCore.Authorization namespace.
2. Add an attribute to the Privacy method to only allow access to logged-in users who

are members of a group/role named Administrators, as shown highlighted in the
following code:

[Authorize(Roles = "Administrators")]
public IActionResult Privacy()

3. Start the website.
4. Click Privacy and note that you are redirected to the log in page.
5. Enter your email and password.
6. Click Log in and note that you are denied access.
7. Close Chrome and shut down the web server.

Enabling role management and creating a role
programmatically
By default, role management is not enabled in an ASP.NET Core MVC project, so we must first
enable it before creating roles, and then we will create a controller that will programmatically
create an Administrators role (if it does not already exist) and assign a test user to that role:

1. In Program.cs, in the setup of ASP.NET Core Identity and its database, add a call to
AddRoles to enable role management, as shown highlighted in the following code:

services.AddDefaultIdentity<IdentityUser>(
 options => options.SignIn.RequireConfirmedAccount = true)
 .AddRoles<IdentityRole>() // enable role management
 .AddEntityFrameworkStores<ApplicationDbContext>();

2. In Controllers, add an empty controller class named RolesController.cs and modify
its contents, as shown in the following code:

using Microsoft.AspNetCore.Identity; // RoleManager, UserManager
using Microsoft.AspNetCore.Mvc; // Controller, IActionResult

using static System.Console;

namespace Northwind.Mvc.Controllers;

public class RolesController : Controller
{
 private string AdminRole = "Administrators";

Chapter 15

[633]

 private string UserEmail = "test@example.com";

 private readonly RoleManager<IdentityRole> roleManager;
 private readonly UserManager<IdentityUser> userManager;

 public RolesController(RoleManager<IdentityRole> roleManager,
 UserManager<IdentityUser> userManager)
 {
 this.roleManager = roleManager;
 this.userManager = userManager;
 }

 public async Task<IActionResult> Index()
 {
 if (!(await roleManager.RoleExistsAsync(AdminRole)))
 {
 await roleManager.CreateAsync(new IdentityRole(AdminRole));
 }

 IdentityUser user = await userManager.FindByEmailAsync(UserEmail);

 if (user == null)
 {
 user = new();
 user.UserName = UserEmail;
 user.Email = UserEmail;
 IdentityResult result = await userManager.CreateAsync(
 user, "Pa$$w0rd");

 if (result.Succeeded)
 {
 WriteLine($"User {user.UserName} created successfully.");
 }
 else
 {
 foreach (IdentityError error in result.Errors)
 {
 WriteLine(error.Description);
 }
 }
 }

 if (!user.EmailConfirmed)
 {
 string token = await userManager

Building Websites Using the Model-View-Controller Pattern

[634]

 .GenerateEmailConfirmationTokenAsync(user);
 IdentityResult result = await userManager
 .ConfirmEmailAsync(user, token);

 if (result.Succeeded)
 {
 WriteLine($"User {user.UserName} email confirmed successfully.");
 }
 else
 {
 foreach (IdentityError error in result.Errors)
 {
 WriteLine(error.Description);
 }
 }
 }

 if (!(await userManager.IsInRoleAsync(user, AdminRole)))
 {
 IdentityResult result = await userManager
 .AddToRoleAsync(user, AdminRole);

 if (result.Succeeded)
 {
 WriteLine($"User {user.UserName} added to {AdminRole}
successfully.");
 }
 else
 {
 foreach (IdentityError error in result.Errors)
 {
 WriteLine(error.Description);
 }
 }
 }

 return Redirect("/");
 }
}

Note the following:
• Two fields for the name of the role and email of the user.
• The constructor gets and stores the registered user and role manager

dependency services.
• If the Administrators role does not exist, we use the role manager to create it.

Chapter 15

[635]

• We try to find a test user by its email, create it if it does not exist, and then
assign the user to the Administrators role.

• Since the website uses DOI, we must generate an email confirmation token and
use it to confirm the new users email address.

• Success messages and any errors are written out to the console.
• You will be automatically redirected to the home page.

3. Start the website.
4. Click Privacy and note that you are redirected to the login page.
5. Enter your email and password. (I used mark@example.com.)
6. Click Log in and note that you are denied access as before.
7. Click Home.
8. In the address bar, manually enter roles as a relative URL path, as shown in the

following link: https://localhost:5001/roles.
9. View the success messages written to the console, as shown in the following output:

User test@example.com created successfully.
User test@example.com email confirmed successfully.
User test@example.com added to Administrators successfully.

10. Click Logout, because you must log out and log back in to load your role memberships
when they are created after you have already logged in.

11. Try accessing the Privacy page again, enter the email for the new user that was
programmatically created, for example, test@example.com, and their password, and
then click Log in, and you should now have access.

12. Close Chrome and shut down the web server.

Using a filter to cache a response
To improve response times and scalability, you might want to cache the HTTP response that is
generated by an action method by decorating the method with the [ResponseCache] attribute.

You control where the response is cached and for how long by setting parameters, as shown in
the following list:

• Duration: In seconds. This sets the max-age HTTP response header measured in
seconds. Common choices are one hour (3600 seconds) and one day (86400 seconds).

• Location: One of the ResponseCacheLocation values, Any, Client, or None. This sets the
cache-control HTTP response header.

• NoStore: If true, this ignores Duration and Location and sets the cache-control HTTP
response header to no-store.

Building Websites Using the Model-View-Controller Pattern

[636]

Let's see an example:

1. In HomeController.cs, add an attribute to the Index method to cache the response for
10 seconds on the browser or any proxies between the server and browser, as shown
highlighted in the following code:

[ResponseCache(Duration = 10, Location = ResponseCacheLocation.Any)]
public IActionResult Index()

2. In Views, in Home, open Index.cshtml, and add a paragraph to output the current time in
long format to include seconds, as shown in the following markup:

<p class="alert alert-primary">@DateTime.Now.ToLongTimeString()</p>

3. Start the website.
4. Note the time on the home page.
5. Click Register.
6. Click Home and note the time on the home page is the same because a cached version

of the page is used.
7. Click Register. Wait at least ten seconds.
8. Click Home and note the time has now updated.
9. Click Log in, enter your email and password, and then click Log in.
10. Note the time on the home page.
11. Click Privacy.
12. Click Home and note the page is not cached.
13. View the console and note the warning message explaining that your caching has been

overridden because the visitor is logged in and, in this scenario, ASP.NET Core uses
anti-forgery tokens and they should not be cached, as shown in the following output:

warn: Microsoft.AspNetCore.Antiforgery.DefaultAntiforgery[8]
 The 'Cache-Control' and 'Pragma' headers have been overridden and
set to 'no-cache, no-store' and 'no-cache' respectively to prevent caching
of this response. Any response that uses antiforgery should not be cached.

14. Close Chrome and shut down the web server.

Using a filter to define a custom route
You might want to define a simplified route for an action method instead of using the default
route.

For example, to show the privacy page currently requires the following URL path, which
specifies both the controller and action:

https://localhost:5001/home/privacy

Chapter 15

[637]

We could make the route simpler, as shown in the following link:

https://localhost:5001/private

Let's see how to do that:

1. In HomeController.cs, add an attribute to the Privacy method to define a simplified
route, as shown highlighted in the following code:

[Route("private")]
[Authorize(Roles = "Administrators")]
public IActionResult Privacy()

2. Start the website.
3. In the address bar, enter the following URL path:

https://localhost:5001/private

4. Enter your email and password, click Log in, and note that the simplified path shows
the Privacy page.

5. Close Chrome and shut down the web server.

Understanding entity and view models
In MVC, the M stands for model. Models represent the data required to respond to a request.
There are two types of models commonly used: entity models and view models.

Entity models represent entities in a database like SQL Server or SQLite. Based on the request,
one or more entities might need to be retrieved from data storage. Entity models are defined
using classes since they might need to change and then be used to update the underlying data
store.

All the data that we want to show in response to a request is the MVC model, sometimes called
a view model, because it is a model that is passed into a view for rendering into a response
format like HTML or JSON. View models should be immutable, so they are commonly defined
using records.

For example, the following HTTP GET request might mean that the browser is asking for the
product details page for product number 3:

http://www.example.com/products/details/3

The controller would need to use the ID route value 3 to retrieve the entity for that product and
pass it to a view that can then turn the model into HTML for display in a browser.

Imagine that when a user comes to our website, we want to show them a carousel of categories,
a list of products, and a count of the number of visitors we have had this month.

http://www.example.com/products/details/3

Building Websites Using the Model-View-Controller Pattern

[638]

We will reference the Entity Framework Core entity data model for the Northwind database
that you created in Chapter 13, Introducing Practical Applications of C# and .NET:

1. In the Northwind.Mvc project, add a project reference to Northwind.Common.DataContext
for either SQLite or SQL Server, as shown in the following markup:

<ItemGroup>
 <!-- change Sqlite to SqlServer if you prefer -->
 <ProjectReference Include=
"..\Northwind.Common.DataContext.Sqlite\Northwind.Common.DataContext.
Sqlite.csproj" />
</ItemGroup>

2. Build the Northwind.Mvc project to compile its dependencies.
3. If you are using SQL Server, or might want to switch between SQL Server and SQLite,

then in appsettings.json, add a connection string for the Northwind database using
SQL Server, as shown highlighted in the following markup:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;Database=aspnet-
Northwind.Mvc-DC9C4FAF-DD84-4FC9-B925-69A61240EDA7;Trusted_Connection=True
;MultipleActiveResultSets=true",
 "NorthwindConnection": "Server=.;Database=Northwind;Trusted_Connection
=True;MultipleActiveResultSets=true"
 },

4. In Program.cs, import the namespace to work with your entity model types, as shown
in the following code:

using Packt.Shared; // AddNorthwindContext extension method

5. Before the builder.Build method call, add statements to load the appropriate
connection string and then to register the Northwind database context, as shown in the
following code:

// if you are using SQL Server
string sqlServerConnection = builder.Configuration
 .GetConnectionString("NorthwindConnection");
builder.Services.AddNorthwindContext(sqlServerConnection);

// if you are using SQLite default is ..\Northwind.db
builder.Services.AddNorthwindContext();

6. Add a class file to the Models folder and name it HomeIndexViewModel.cs.

Good Practice: Although the ErrorViewModel class created by the
MVC project template does not follow this convention, I recommend
that you use the naming convention {Controller}{Action}
ViewModel for your view model classes.

Chapter 15

[639]

7. Modify the statements to define a record that has three properties for a count of the
number of visitors, and lists of categories and products, as shown in the following code:

using Packt.Shared; // Category, Product

namespace Northwind.Mvc.Models;

public record HomeIndexViewModel
(
 int VisitorCount,
 IList<Category> Categories,
 IList<Product> Products
);

8. In HomeController.cs, import the Packt.Shared namespace, as shown in the following
code:

using Packt.Shared; // NorthwindContext

9. Add a field to store a reference to a Northwind instance, and initialize it in the
constructor, as shown highlighted in the following code:

public class HomeController : Controller
{
 private readonly ILogger<HomeController> _logger;
 private readonly NorthwindContext db;

 public HomeController(ILogger<HomeController> logger,
 NorthwindContext injectedContext)
 {
 _logger = logger;
 db = injectedContext;
 }
...

ASP.NET Core will use constructor parameter injection to pass an instance of the
NorthwindContext database context using the connection string you specified in
Program.cs.

10. Modify the statements in the Index action method to create an instance of the view
model for this method, simulating a visitor count using the Random class to generate a
number between 1 and 1000, and using the Northwind database to get lists of categories
and products, and then pass the model to the view, as shown highlighted in the
following code:

[ResponseCache(Duration = 10, Location = ResponseCacheLocation.Any)]
public IActionResult Index()
{
 _logger.LogError("This is a serious error (not really!)");
 _logger.LogWarning("This is your first warning!");

Building Websites Using the Model-View-Controller Pattern

[640]

 _logger.LogWarning("Second warning!");
 _logger.LogInformation("I am in the Index method of the
HomeController.");

 HomeIndexViewModel model = new
 (
 VisitorCount: (new Random()).Next(1, 1001),
 Categories: db.Categories.ToList(),
 Products: db.Products.ToList()
);
 return View(model); // pass model to view
}

Remember the view search convention: when the View method is called in a controller's action
method, ASP.NET Core MVC looks in the Views folder for a subfolder with the same name as
the current controller, that is, Home. It then looks for a file with the same name as the current
action, that is, Index.cshtml. It will also search for views that match the action method name in
the Shared folder and for Razor Pages in the Pages folder.

Understanding views
In MVC, the V stands for view. The responsibility of a view is to transform a model into HTML
or other formats.

There are multiple view engines that could be used to do this. The default view engine is called
Razor, and it uses the @ symbol to indicate server-side code execution. The Razor Pages feature
introduced with ASP.NET Core 2.0 uses the same view engine and so can use the same Razor
syntax.

Let's modify the home page view to render the lists of categories and products:

1. Expand the Views folder, and then expand the Home folder.
2. Open the Index.cshtml file and note the block of C# code wrapped in @{ }. This will

execute first and can be used to store data that needs to be passed into a shared layout
file like the title of the web page, as shown in the following code:

@{
 ViewData["Title"] = "Home Page";
}

3. Note the static HTML content in the <div> element that uses Bootstrap for styling.

Good Practice: As well as defining your own styles, base your styles
on a common library, such as Bootstrap, that implements responsive
design.

Chapter 15

[641]

Just as with Razor Pages, there is a file named _ViewStart.cshtml that gets executed by
the View method. It is used to set defaults that apply to all views.
For example, it sets the Layout property of all views to a shared layout file, as shown in
the following markup:

@{
 Layout = "_Layout";
}

4. In the Views folder, open the _ViewImports.cshtml file and note that it imports some
namespaces and then adds the ASP.NET Core tag helpers, as shown in the following
code:

@using Northwind.Mvc
@using Northwind.Mvc.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

5. In the Shared folder, open the _Layout.cshtml file.
6. Note that the title is being read from the ViewData dictionary that was set earlier in the

Index.cshtml view, as shown in the following markup:
<title>@ViewData["Title"] – Northwind.Mvc</title>

7. Note the rendering of links to support Bootstrap and a site stylesheet, where ~ means
the wwwroot folder, as shown in the following markup:

<link rel="stylesheet"
 href="~/lib/bootstrap/dist/css/bootstrap.css" />
<link rel="stylesheet" href="~/css/site.css" />

8. Note the rendering of a navigation bar in the header, as shown in the following
markup:

<body>
 <header>
 <nav class="navbar ...">

9. Note the rendering of a collapsible <div> containing a partial view for logging in and
hyperlinks to allow users to navigate between pages using ASP.NET Core tag helpers
with attributes like asp-controller and asp-action, as shown in the following markup:

<div class=
 "navbar-collapse collapse d-sm-inline-flex justify-content-between">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area=""
 asp-controller="Home" asp-action="Index">Home

 <li class="nav-item">
 <a class="nav-link text-dark"

Building Websites Using the Model-View-Controller Pattern

[642]

 asp-area="" asp-controller="Home"
 asp-action="Privacy">Privacy

 <partial name="_LoginPartial" />
</div>

The <a> elements use tag helper attributes named asp-controller and asp-action to
specify the controller name and action name that will execute when the link is clicked
on. If you want to navigate to a feature in a Razor Class Library, like the employees
component that you created in the previous chapter, then you use asp-area to specify
the feature name.

10. Note the rendering of the body inside the <main> element, as shown in the following
markup:

<div class="container">
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
</div>

The RenderBody method injects the contents of a specific Razor view for a page like the
Index.cshtml file at that point in the shared layout.

11. Note the rendering of <script> elements at the bottom of the page so that it does not
slow down the display of the page and that you can add your own script blocks into an
optional defined section named scripts, as shown in the following markup:

<script src="~/lib/jquery/dist/jquery.min.js"></script>
<script src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js">
</script>
<script src="~/js/site.js" asp-append-version="true"></script>
@await RenderSectionAsync("scripts", required: false)

When asp-append-version is specified with a true value in any element like or <script>
along with a src attribute, the Image Tag Helper is invoked (this helper is poorly named
because it does not only affect images!).

It works by automatically appending a query string value named v that is generated from a
hash of the referenced source file, as shown in the following example generated output:

<script src="~/js/site.js? v=Kl_dqr9NVtnMdsM2MUg4qthUnWZm5T1fCEimBPWDNgM"></
script>

If even a single byte within the site.js file changes, then its hash value will be different, and
therefore if a browser or CDN is caching the script file, then it will bust the cached copy and
replace it with the new version.

Chapter 15

[643]

Customizing an ASP.NET Core MVC website
Now that you've reviewed the structure of a basic MVC website, you will customize and
extend it. You have already registered an EF Core model for the Northwind database, so the next
task is to output some of that data on the home page.

Defining a custom style
The home page will show a list of the 77 products in the Northwind database. To make efficient
use of space, we want to show the list in three columns. To do this, we need to customize the
stylesheet for the website:

1. In the wwwroot\css folder, open the site.css file.
2. At the bottom of the file, add a new style that will apply to an element with the

product-columns ID, as shown in the following code:

#product-columns
{
 column-count: 3;
}

Setting up the category images
The Northwind database includes a table of eight categories, but they do not have images, and
websites look better with some colorful pictures:

1. In the wwwroot folder, create a folder named images.
2. In the images folder, add eight image files named category1.jpeg, category2.jpeg, and

so on, up to category8.jpeg.

Understanding Razor syntax
Before we customize the home page view, let's review an example Razor file that has an
initial Razor code block that instantiates an order with price and quantity and then outputs
information about the order on the web page, as shown in the following markup:

@{
 Order order = new()
 {
 OrderId = 123,

You can download images from the GitHub repository for this book at the
following link: https://github.com/markjprice/cs10dotnet6/tree/
master/Assets/Categories

https://github.com/markjprice/cs10dotnet6/tree/master/Assets/Categories
https://github.com/markjprice/cs10dotnet6/tree/master/Assets/Categories

Building Websites Using the Model-View-Controller Pattern

[644]

 Product = "Sushi",
 Price = 8.49M,
 Quantity = 3
 };
}

<div>Your order for @order.Quantity of @order.Product has a total cost of $@
order.Price * @order.Quantity</div>

The preceding Razor file would result in the following incorrect output:

Your order for 3 of Sushi has a total cost of $8.49 * 3

Although Razor markup can include the value of any single property using the @object.
property syntax, you should wrap expressions in parentheses, as shown in the following
markup:

<div>Your order for @order.Quantity of @order.Product has a total cost of $@
(order.Price * order.Quantity)</div>

The preceding Razor expression results in the following correct output:

Your order for 3 of Sushi has a total cost of $25.47

Defining a typed view
To improve the IntelliSense when writing a view, you can define what type the view can expect
using an @model directive at the top:

1. In the Views\Home folder, open Index.cshtml.
2. At the top of the file, add a statement to set the model type to use the

HomeIndexViewModel, as shown in the following code:
@model HomeIndexViewModel

Now, whenever we type Model in this view, your code editor will know the correct type
for the model and will provide IntelliSense for it.
While entering code in a view, remember the following:

• Declare the type for the model, use @model (with a lowercase m).
• Interact with the instance of the model, use @Model (with an uppercase M).

Let's continue customizing the view for the home page.
3. In the initial Razor code block, add a statement to declare a string variable for

the current item and under the existing <div> element add new markup to output
categories in a carousel and products as an unordered list, as shown in the following
markup:

Chapter 15

[645]

@using Packt.Shared
@model HomeIndexViewModel
@{
 ViewData["Title"] = "Home Page";
 string currentItem = "";
}

<div class="text-center">
 <h1 class="display-4">Welcome</h1>
 <p>Learn about building
Web apps with ASP.NET Core.</p>
 <p class="alert alert-primary">@DateTime.Now.ToLongTimeString()</p>
</div>
@if (Model is not null)
{
<div id="categories" class="carousel slide" data-ride="carousel"
 data-interval="3000" data-keyboard="true">
 <ol class="carousel-indicators">
 @for (int c = 0; c < Model.Categories.Count; c++)
 {
 if (c == 0)
 {
 currentItem = "active";
 }
 else
 {
 currentItem = "";
 }
 <li data-target="#categories" data-slide-to="@c"
 class="@currentItem">
 }

 <div class="carousel-inner">
 @for (int c = 0; c < Model.Categories.Count; c++)
 {
 if (c == 0)
 {
 currentItem = "active";
 }
 else
 {
 currentItem = "";
 }
 <div class="carousel-item @currentItem">
 <img class="d-block w-100" src=

Building Websites Using the Model-View-Controller Pattern

[646]

 "~/images/category@(Model.Categories[c].CategoryId).jpeg"
 alt="@Model.Categories[c].CategoryName" />
 <div class="carousel-caption d-none d-md-block">
 <h2>@Model.Categories[c].CategoryName</h2>
 <h3>@Model.Categories[c].Description</h3>
 <p>
 <a class="btn btn-primary"
 href="/category/@Model.Categories[c].CategoryId">View
 </p>
 </div>
 </div>
 }
 </div>
 <a class="carousel-control-prev" href="#categories"
 role="button" data-slide="prev">
 <span class="carousel-control-prev-icon"
 aria-hidden="true">
 Previous

 <a class="carousel-control-next" href="#categories"
 role="button" data-slide="next">

 Next

</div>
}
<div class="row">
 <div class="col-md-12">
 <h1>Northwind</h1>
 <p class="lead">
 We have had @Model?.VisitorCount visitors this month.
 </p>
 @if (Model is not null)
 {
 <h2>Products</h2>
 <div id="product-columns">

 @foreach (Product p in @Model.Products)
 {

Chapter 15

[647]

 <a asp-controller="Home"
 asp-action="ProductDetail"
 asp-route-id="@p.ProductId">
 @p.ProductName costs
@(p.UnitPrice is null ? "zero" : p.UnitPrice.Value.ToString("C"))

 }

 </div>
 }
 </div>
</div>

While reviewing the preceding Razor markup, note the following:

• It is easy to mix static HTML elements such as and with C# code to output
the carousel of categories and the list of product names.

• The <div> element with the id attribute of product-columns will use the custom style
that we defined earlier, so all of the content in that element will display in three
columns.

• The element for each category uses parentheses around a Razor expression to
ensure that the compiler does not include the .jpeg as part of the expression, as shown
in the following markup: "~/images/category@(Model.Categories[c].CategoryID).
jpeg"

• The <a> elements for the product links use tag helpers to generate URL paths. Clicks on
these hyperlinks will be handled by the HomeController and its ProductDetail action
method. This action method does not exist yet, but you will add it later in this chapter.
The ID of the product is passed as a route segment named id, as shown in the following
URL path for Ipoh Coffee: https://localhost:5001/Home/ProductDetail/43.

Reviewing the customized home page
Let's see the result of our customized home page:

1. Start the Northwind.Mvc website project.

Building Websites Using the Model-View-Controller Pattern

[648]

2. Note the home page has a rotating carousel showing categories, a random number of
visitors, and a list of products in three columns, as shown in Figure 15.4:

Figure 15.4: The updated Northwind MVC website home page

For now, clicking on any of the categories or product links gives 404 Not Found errors,
so let's see how we can implement pages that use the passed parameters to see the
details of a product or category.

3. Close Chrome and shut down the web server.

Passing parameters using a route value
One way to pass a simple parameter is to use the id segment defined in the default route:

1. In the HomeController class, add an action method named ProductDetail, as shown in
the following code:

public IActionResult ProductDetail(int? id)
{
 if (!id.HasValue)
 {
 return BadRequest("You must pass a product ID in the route, for
example, /Home/ProductDetail/21");
 }

 Product? model = db.Products
 .SingleOrDefault(p => p.ProductId == id);

 if (model == null)
 {

Chapter 15

[649]

 return NotFound($"ProductId {id} not found.");
 }

 return View(model); // pass model to view and then return result
}

Note the following:
• This method uses a feature of ASP.NET Core called model binding to

automatically match the id passed in the route to the parameter named id in the
method.

• Inside the method, we check to see whether id does not have a value, and if
so, we call the BadRequest method to return a 400 status code with a custom
message explaining the correct URL path format.

• Otherwise, we can connect to the database and try to retrieve a product using
the id value.

• If we find a product, we pass it to a view; otherwise, we call the NotFound
method to return a 404 status code and a custom message explaining that a
product with that ID was not found in the database.

2. Inside the Views/Home folder, add a new file named ProductDetail.cshtml.
3. Modify the contents, as shown in the following markup:

@model Packt.Shared.Product
@{
 ViewData["Title"] = "Product Detail - " + Model.ProductName;
}
<h2>Product Detail</h2>
<hr />
<div>
 <dl class="dl-horizontal">
 <dt>Product Id</dt>
 <dd>@Model.ProductId</dd>
 <dt>Product Name</dt>
 <dd>@Model.ProductName</dd>
 <dt>Category Id</dt>
 <dd>@Model.CategoryId</dd>
 <dt>Unit Price</dt>
 <dd>@Model.UnitPrice.Value.ToString("C")</dd>
 <dt>Units In Stock</dt>
 <dd>@Model.UnitsInStock</dd>
 </dl>
</div>

4. Start the Northwind.Mvc project.

Building Websites Using the Model-View-Controller Pattern

[650]

5. When the home page appears with the list of products, click on one of them, for
example, the second product, Chang.

6. Note the URL path in the browser's address bar, the page title shown in the browser
tab, and the product details page, as shown in Figure 15.5:

Figure 15.5: The product detail page for Chang

7. View Developer tools.
8. Edit the URL in the address box of Chrome to request a product ID that does not exist,

like 99, and note the 404 Not Found status code and custom error response.

Understanding model binders in more detail
Model binders are powerful, and the default one does a lot for you. After the default route
identifies a controller class to instantiate and an action method to call, if that method has
parameters, then those parameters need to have values set.

Model binders do this by looking for parameter values passed in the HTTP request as any of
the following types of parameters:

• Route parameter, like id as we did in the previous section, as shown in the following
URL path: /Home/ProductDetail/2

• Query string parameter, as shown in the following URL path: /Home/
ProductDetail?id=2

• Form parameter, as shown in the following markup:

Chapter 15

[651]

<form action="post" action="/Home/ProductDetail">
 <input type="text" name="id" value="2" />
 <input type="submit" />
</form>

Model binders can populate almost any type:

• Simple types, like int, string, DateTime, and bool.
• Complex types defined by class, record, or struct.
• Collection types, like arrays and lists.

Let's create a somewhat artificial example to illustrate what can be achieved using the default
model binder:

1. In the Models folder, add a new file named Thing.cs.
2. Modify the contents to define a class with two properties for a nullable integer named

Id and a string named Color, as shown in the following code:
namespace Northwind.Mvc.Models;

public class Thing
{
 public int? Id { get; set; }
 public string? Color { get; set; }
}

3. In HomeController, add two new action methods, one to show a page with a
form and one to display a thing with a parameter using your new model type, as shown
in the following code:

public IActionResult ModelBinding()
{
 return View(); // the page with a form to submit
}

public IActionResult ModelBinding(Thing thing)
{
 return View(thing); // show the model bound thing
}

4. In the Views\Home folder, add a new file named ModelBinding.cshtml.
5. Modify its contents, as shown in the following markup:

@model Thing
@{
 ViewData["Title"] = "Model Binding Demo";
}
<h1>@ViewData["Title"]</h1>

Building Websites Using the Model-View-Controller Pattern

[652]

<div>
 Enter values for your thing in the following form:
</div>
<form method="POST" action="/home/modelbinding?id=3">
 <input name="color" value="Red" />
 <input type="submit" />
</form>
@if (Model != null)
{
<h2>Submitted Thing</h2>
<hr />
<div>
 <dl class="dl-horizontal">
 <dt>Model.Id</dt>
 <dd>@Model.Id</dd>
 <dt>Model.Color</dt>
 <dd>@Model.Color</dd>
 </dl>
</div>
}

6. In Views/Home, open Index.cshtml, and in the first <div>, add a new paragraph
with a link to the model binding page, as shown in the following markup:

<p><a asp-action="ModelBinding" asp-controller="Home">Binding</p>

7. Start the website.
8. On the home page, click Binding.
9. Note the unhandled exception about an ambiguous match, as shown in Figure 15.6:

Figure 15.6: An unhandled ambiguous action method mismatch exception

10. Close Chrome and shut down the web server.

Disambiguating action methods
Although the C# compiler can differentiate between the two methods by noting that the
signatures are different, from the routing of an HTTP request's point of view, both methods are
potential matches. We need an HTTP-specific way to disambiguate the action methods.

Chapter 15

[653]

We could do this by creating different names for the actions or by specifying that one method
should be used for a specific HTTP verb, like GET, POST, or DELETE. That is how we will solve the
problem:

1. In HomeController, decorate the second ModelBinding action method to indicate that it
should be used for processing HTTP POST requests, that is, when a form is submitted, as
shown highlighted in the following code:

[HttpPost]
public IActionResult ModelBinding(Thing thing)

2. Start the website.
3. On the home page, click Binding.
4. Click the Submit button and note the value for the Id property is set from the query

string parameter and the value for the color property is set from the form parameter, as
shown in Figure 15.7:

Figure 15.7: The Model Binding Demo page

5. Close Chrome and shut down the web server.

The other ModelBinding action method will implicitly be used for all
other types of HTTP request, like GET, PUT, DELETE, and so on.

Building Websites Using the Model-View-Controller Pattern

[654]

Passing a route parameter
Now we will set the property using a route parameter:

1. Modify the action for the form to pass the value 2 as a route parameter, as shown
highlighted in the following markup:

<form method="POST" action="/home/modelbinding/2?id=3">

2. Start the website.
3. On the home page, click Binding.
4. Click the Submit button and note the value for the Id property is set from the

route parameter and the value for the Color property is set from the form parameter.
5. Close Chrome and shut down the web server.

Passing a form parameter
Now we will set the property using a form parameter:

1. Modify the action for the form to pass the value 1 as a form parameter, as shown
highlighted in the following markup:

<form method="POST" action="/home/modelbinding/2?id=3">
 <input name="id" value="1" />
 <input name="color" value="Red" />
 <input type="submit" />
</form>

2. Start the website.
3. On the home page, click Binding.
4. Click the Submit button and note the values for the Id and Color properties are

both set from the form parameters.

Validating the model
The process of model binding can cause errors, for example, data type conversions or
validation errors if the model has been decorated with validation rules. What data has been
bound and any binding or validation errors are stored in ControllerBase.ModelState.

Let's explore what we can do with model state by applying some validation rules to the bound
model and then showing invalid data messages in the view:

Good Practice: If you have multiple parameters with the same name, then
remember that form parameters have the highest priority and query string
parameters have the lowest priority for automatic model binding.

Chapter 15

[655]

1. In the Models folder, open Thing.cs.
2. Import the System.ComponentModel.DataAnnotations namespace.
3. Decorate the Id property with a validation attribute to limit the range of allowed

numbers to 1 to 10, and one to ensure that the visitor supplies a color, and add a new
Email property with a regular expression for validation, as shown highlighted in the
following code:

public class Thing
{
 [Range(1, 10)]
 public int? Id { get; set; }

 [Required]
 public string? Color { get; set; }

 [EmailAddress]
 public string? Email { get; set; }
}

4. In the Models folder, add a new file named HomeModelBindingViewModel.cs.
5. Modify its contents to define a record with properties to store the bound model,

a flag to indicate that there are errors, and a sequence of error messages, as shown in
the following code:

namespace Northwind.Mvc.Models;

public record HomeModelBindingViewModel
(
 Thing Thing,
 bool HasErrors,
 IEnumerable<string> ValidationErrors
);

6. In HomeController, in the ModelBinding method that handles HTTP POST,
comment out the previous statement that passed the thing to the view, and instead
add statements to create an instance of the view model. Validate the model and store
an array of error messages, and then pass the view model to the view, as shown
highlighted in the following code:

[HttpPost]
public IActionResult ModelBinding(Thing thing)
{
 HomeModelBindingViewModel model = new(
 thing,
 !ModelState.IsValid,
 ModelState.Values
 .SelectMany(state => state.Errors)

Building Websites Using the Model-View-Controller Pattern

[656]

 .Select(error => error.ErrorMessage)
);
 return View(model);
}

7. In Views\Home, open ModelBinding.cshtml.
8. Modify the model type declaration to use the view model class, as shown in the

following markup:
@model Northwind.Mvc.Models.HomeModelBindingViewModel

9. Add a <div> to show any model validation errors, and change the output of the
thing's properties because the view model has changed, as shown highlighted in the
following markup:

<form method="POST" action="/home/modelbinding/2?id=3">
 <input name="id" value="1" />
 <input name="color" value="Red" />
 <input name="email" value="test@example.com" />
 <input type="submit" />
</form>
@if (Model != null)
{
 <h2>Submitted Thing</h2>
 <hr />
 <div>
 <dl class="dl-horizontal">
 <dt>Model.Thing.Id</dt>
 <dd>@Model.Thing.Id</dd>
 <dt>Model.Thing.Color</dt>
 <dd>@Model.Thing.Color</dd>
 <dt>Model.Thing.Email</dt>
 <dd>@Model.Thing.Email</dd>
 </dl>
 </div>
 @if (Model.HasErrors)
 {
 <div>
 @foreach(string errorMessage in Model.ValidationErrors)
 {
 <div class="alert alert-danger" role="alert">@errorMessage</div>
 }
 </div>
 }
}

10. Start the website.

Chapter 15

[657]

11. On the home page, click Binding.
12. Click the Submit button and note that 1, Red, and test@example.com are valid

values.
13. Enter an Id of 13, clear the color textbox, delete the @ from the email address, click the

Submit button, and note the error messages, as shown in Figure 15.8:

Figure 15.8: The Model Binding Demo page with field validations

14. Close Chrome and shut down the web server.

Understanding view helper methods
While creating a view for ASP.NET Core MVC, you can use the Html object and its methods to
generate markup.

Good Practice: What regular expression does Microsoft use for the
implementation of the EmailAddress validation attribute? Find out at the
following link: https://github.com/microsoft/referencesource/blob/
5697c29004a34d80acdaf5742d7e699022c64ecd/System.ComponentModel.
DataAnnotations/DataAnnotations/EmailAddressAttribute.cs#L54

https://github.com/microsoft/referencesource/blob/5697c29004a34d80acdaf5742d7e699022c64ecd/System.ComponentModel.DataAnnotations/DataAnnotations/EmailAddressAttribute.cs#L54
https://github.com/microsoft/referencesource/blob/5697c29004a34d80acdaf5742d7e699022c64ecd/System.ComponentModel.DataAnnotations/DataAnnotations/EmailAddressAttribute.cs#L54
https://github.com/microsoft/referencesource/blob/5697c29004a34d80acdaf5742d7e699022c64ecd/System.ComponentModel.DataAnnotations/DataAnnotations/EmailAddressAttribute.cs#L54

Building Websites Using the Model-View-Controller Pattern

[658]

Some useful methods include the following:

• ActionLink: Use this to generate an anchor <a> element that contains a URL path to the
specified controller and action. For example, Html.ActionLink(linkText: "Binding",
actionName: "ModelBinding", controllerName: "Home") would generate <a href="/
home/modelbinding">Binding. You can achieve the same result using the anchor tag
helper: <a asp-action="ModelBinding" asp-controller="Home">Binding.

• AntiForgeryToken: Use this inside a <form> to insert a <hidden> element containing an
anti-forgery token that will be validated when the form is submitted.

• Display and DisplayFor: Use this to generate HTML markup for the expression relative
to the current model using a display template. There are built-in display templates for
.NET types and custom templates can be created in the DisplayTemplates folder. The
folder name is case-sensitive on case-sensitive filesystems.

• DisplayForModel: Use this to generate HTML markup for an entire model instead of a
single expression.

• Editor and EditorFor: Use this to generate HTML markup for the expression relative to
the current model using an editor template. There are built-in editor templates for .NET
types that use <label> and <input> elements, and custom templates can be created
in the EditorTemplates folder. The folder name is case-sensitive on case-sensitive
filesystems.

• EditorForModel: Use this to generate HTML markup for an entire model instead of a
single expression.

• Encode: Use this to safely encode an object or string into HTML. For example, the
string value "<script>" would be encoded as "<script>". This is not normally
necessary since the Razor @ symbol encodes string values by default.

• Raw: Use this to render a string value without encoding as HTML.
• PartialAsync and RenderPartialAsync: Use these to generate HTML markup for a

partial view. You can optionally pass a model and view data.

Let's see an example:

1. In Views/Home, open ModelBinding.cshtml.
2. Modify the rendering of the Email property to use DisplayFor, as shown in the

following markup:
<dd>@Html.DisplayFor(model => model.Thing.Email)</dd>

3. Start the website.
4. Click Binding.
5. Click Submit.
6. Note the email address is a clickable hyperlink instead of just text.
7. Close Chrome and shut down the web server.

Chapter 15

[659]

8. In Models/Thing.cs, comment out the [EmailAddress] attribute above the Email
property.

9. Start the website.
10. Click Binding.
11. Click Submit.
12. Note the email address is just text.
13. Close Chrome and shut down the web server.
14. In Models/Thing.cs, uncomment the [EmailAddress] attribute.

It is the combination of decorating the Email property with the [EmailAddress] validation
attribute and rendering it using DisplayFor that notifies ASP.NET Core to treat the value as an
email address and therefore render it as a clickable link.

Querying a database and using display
templates
Let's create a new action method that can have a query string parameter passed to it and use
that to query the Northwind database for products that cost more than a specified price.

In previous examples, we defined a view model that contained properties for every value that
needed to be rendered in the view. In this example, there will be two values: a list of products
and the price the visitor entered. To avoid having to define a class or record for the view model,
we will pass the list of products as the model and store the maximum price in the ViewData
collection.

Let's implement this feature:

1. In HomeController, import the Microsoft.EntityFrameworkCore namespace. We need
this to add the Include extension method so that we can include related entities, as you
learned in Chapter 10, Working with Data Using Entity Framework Core.

2. Add a new action method, as shown in the following code:
public IActionResult ProductsThatCostMoreThan(decimal? price)
{
 if (!price.HasValue)
 {
 return BadRequest("You must pass a product price in the query string,
for example, /Home/ProductsThatCostMoreThan?price=50");
 }

 IEnumerable<Product> model = db.Products
 .Include(p => p.Category)
 .Include(p => p.Supplier)
 .Where(p => p.UnitPrice > price);

Building Websites Using the Model-View-Controller Pattern

[660]

 if (!model.Any())
 {
 return NotFound(
 $"No products cost more than {price:C}.");
 }

 ViewData["MaxPrice"] = price.Value.ToString("C");
 return View(model); // pass model to view
}

3. In the Views/Home folder, add a new file named ProductsThatCostMoreThan.cshtml.
4. Modify the contents, as shown in the following code:

@using Packt.Shared
@model IEnumerable<Product>
@{
 string title =
 "Products That Cost More Than " + ViewData["MaxPrice"];
 ViewData["Title"] = title;
}
<h2>@title</h2>
@if (Model is null)
{
 <div>No products found.</div>
}
else
{
 <table class="table">
 <thead>
 <tr>
 <th>Category Name</th>
 <th>Supplier's Company Name</th>
 <th>Product Name</th>
 <th>Unit Price</th>
 <th>Units In Stock</th>
 </tr>
 </thead>
 <tbody>
 @foreach (Product p in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => p.Category.CategoryName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => p.Supplier.CompanyName)
 </td>

Chapter 15

[661]

 <td>
 @Html.DisplayFor(modelItem => p.ProductName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => p.UnitPrice)
 </td>
 <td>
 @Html.DisplayFor(modelItem => p.UnitsInStock)
 </td>
 </tr>
 }
 <tbody>
 </table>
}

5. In the Views/Home folder, open Index.cshtml.
6. Add the following form element below the visitor count and above the Products

heading and its listing of products. This will provide a form for the user to enter a price.
The user can then click Submit to call the action method that shows only products that
cost more than the entered price:

<h3>Query products by price</h3>
<form asp-action="ProductsThatCostMoreThan" method="GET">
 <input name="price" placeholder="Enter a product price" />
 <input type="submit" />
</form>

7. Start the website.
8. On the home page, enter a price in the form, for example, 50, and then click on

Submit.
9. Note the table of the products that cost more than the price that you entered, as shown

in Figure 15.9:

Figure 15.9: A filtered list of products that cost more than £50

10. Close Chrome and shut down the web server.

Building Websites Using the Model-View-Controller Pattern

[662]

Improving scalability using asynchronous
tasks
When building a desktop or mobile app, multiple tasks (and their underlying threads) can be
used to improve responsiveness, because while one thread is busy with the task, another can
handle interactions with the user.

Tasks and their threads can be useful on the server side too, especially with websites that work
with files, or request data from a store or a web service that could take a while to respond.
But they are detrimental to complex calculations that are CPU-bound, so leave these to be
processed synchronously as normal.

When an HTTP request arrives at the web server, a thread from its pool is allocated to handle
the request. But if that thread must wait for a resource, then it is blocked from handling any
more incoming requests. If a website receives more simultaneous requests than it has threads
in its pool, then some of those requests will respond with a server timeout error, 503 Service
Unavailable.

The threads that are locked are not doing useful work. They could handle one of those other
requests but only if we implement asynchronous code in our websites.

Whenever a thread is waiting for a resource it needs, it can return to the thread pool and handle
a different incoming request, improving the scalability of the website, that is, increasing the
number of simultaneous requests it can handle.

Why not just have a larger thread pool? In modern operating systems, every thread in the pool
has a 1 MB stack. An asynchronous method uses a smaller amount of memory. It also removes
the need to create new threads in the pool, which takes time. The rate at which new threads are
added to the pool is typically one every two seconds, which is a loooooong time compared to
switching between asynchronous threads.

Making controller action methods asynchronous
It is easy to make an existing action method asynchronous:

1. Modify the Index action method to be asynchronous, to return a task, and to await the
calls to asynchronous methods to get the categories and products, as shown highlighted
in the following code:

public async Task<IActionResult> Index()
{

Good Practice: Make your controller action methods asynchronous.

Chapter 15

[663]

 HomeIndexViewModel model = new
 (
 VisitorCount = (new Random()).Next(1, 1001),
 Categories = await db.Categories.ToListAsync(),
 Products = await db.Products.ToListAsync()
);
 return View(model); // pass model to view
}

2. Modify the ProductDetail action method in a similar way, as shown highlighted in the
following code:

public async Task<IActionResult> ProductDetail(int? id)
{
 if (!id.HasValue)
 {
 return BadRequest("You must pass a product ID in the route, for
example,
/Home/ProductDetail/21");
 }

 Product? model = await db.Products
 .SingleOrDefaultAsync(p => p.ProductId == id);

 if (model == null)
 {
 return NotFound($"ProductId {id} not found.");
 }
 return View(model); // pass model to view and then return result
}

3. Start the website and note that the functionality of the website is the same, but
trust that it will now scale better.

4. Close Chrome and shut down the web server.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore this chapter's topics with deeper research.

Exercise 15.1 – Test your knowledge
Answer the following questions:

1. What do the files with the special names _ViewStart and _ViewImports do when created
in the Views folder?

Building Websites Using the Model-View-Controller Pattern

[664]

2. What are the names of the three segments defined in the default ASP.NET Core MVC
route, what do they represent, and which are optional?

3. What does the default model binder do, and what data types can it handle?
4. In a shared layout file like _Layout.cshtml, how do you output the content of the

current view?
5. In a shared layout file like _Layout.cshtml, how do you output a section that the

current view can supply content for, and how does the view supply the contents for
that section?

6. When calling the View method inside a controller's action method, what paths
are searched for the view by convention?

7. How can you instruct the visitor's browser to cache the response for 24 hours?
8. Why might you enable Razor Pages even if you are not creating any yourself?
9. How does ASP.NET Core MVC identify classes that can act as controllers?
10. In what ways does ASP.NET Core MVC make it easier to test a website?

Exercise 15.2 – Practice implementing MVC by
implementing a category detail page
The Northwind.Mvc project has a home page that shows categories, but when the View button is
clicked, the website returns a 404 Not Found error, for example, for the following URL:

https://localhost:5001/category/1

Extend the Northwind.Mvc project by adding the ability to show a detail page for a category.

Exercise 15.3 – Practice improving scalability by
understanding and implementing async action
methods
A few years ago, Stephen Cleary wrote an excellent article for MSDN Magazine explaining the
scalability benefits of implementing async action methods for ASP.NET. The same principles
apply to ASP.NET Core, but even more so, because unlike the old ASP.NET as described in the
article, ASP.NET Core supports asynchronous filters and other components.

Read the article at the following link:

https://docs.microsoft.com/en-us/archive/msdn-magazine/2014/october/async-
programming-introduction-to-async-await-on-asp-net

https://docs.microsoft.com/en-us/archive/msdn-magazine/2014/october/async-programming-introduction-to-async-await-on-asp-net
https://docs.microsoft.com/en-us/archive/msdn-magazine/2014/october/async-programming-introduction-to-async-await-on-asp-net

Chapter 15

[665]

Exercise 15.4 – Practice unit testing MVC
controllers
Controllers are where the business logic of your website runs, so it is important to test the
correctness of that logic using unit tests, as you learned in Chapter 4, Writing, Debugging, and
Testing Functions.

Write some unit tests for HomeController.

Exercise 15.5 – Explore topics
Use the links on the following page to learn more about the topics covered in this chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-15---
building-websites-using-the-model-view-controller-pattern

Summary
In this chapter, you learned how to build large, complex websites in a way that is easy to unit
test by registering and injecting dependency services like database contexts and loggers and is
easier to manage with teams of programmers using ASP.NET Core MVC. You learned about
configuration, authentication, routes, models, views, and controllers.

In the next chapter, you will learn how to build and consume services that use HTTP as the
communication layer, aka web services.

Good Practice: You can read more about how to unit test controllers at the
following link: https://docs.microsoft.com/en-us/aspnet/core/mvc/
controllers/testing

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-15---building-websites-using-the-model-view-controller-pattern
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-15---building-websites-using-the-model-view-controller-pattern
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/testing
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/testing

[667]

16
Building and Consuming

Web Services
This chapter is about learning how to build web services (aka HTTP or REST services) using
the ASP.NET Core Web API and consuming web services using HTTP clients that could be any
other type of .NET app, including a website or a mobile or desktop app.

This chapter requires knowledge and skills that you learned in Chapter 10, Working with Data
Using Entity Framework Core, and Chapters 13 to 15, about practical applications of C# and .NET
and building websites using ASP.NET Core.

In this chapter, we will cover the following topics:

• Building web services using ASP.NET Core Web API
• Documenting and testing web services
• Consuming web services using HTTP clients
• Implementing advanced features for web services
• Building web services using minimal APIs

Building web services using ASP.NET Core
Web API
Before we build a modern web service, we need to cover some background to set the context
for this chapter.

Understanding web service acronyms
Although HTTP was designed originally to request and respond with HTML and other
resources for humans to look at, it is also good for building services.

Building and Consuming Web Services

[668]

Roy Fielding stated in his doctoral dissertation, describing the Representational State Transfer
(REST) architectural style, that the HTTP standard would be good for building services
because it defines the following:

• URIs to uniquely identify resources, like https://localhost:5001/api/products/23.
• Methods to perform common tasks on those resources, like GET, POST, PUT, and DELETE.
• The ability to negotiate the media type of content exchanged in requests and responses,

such as XML and JSON. Content negotiation happens when the client specifies a
request header like Accept: application/xml,*/*;q=0.8. The default response format
used by the ASP.NET Core Web API is JSON, which means one of the response headers
would be Content-Type: application/json; charset=utf-8.

Web services use the HTTP communication standard, so they are sometimes called HTTP or
RESTful services. HTTP or RESTful services are what this chapter is about.

Web services can also mean Simple Object Access Protocol (SOAP) services that implement
some of the WS-* standards. These standards enable clients and services implemented on
different systems to communicate with each other. The WS-* standards were originally defined
by IBM with input from other companies like Microsoft.

Understanding Windows Communication Foundation
(WCF)
.NET Framework 3.0 and later includes a remote procedure call (RPC) technology named
Windows Communication Foundation (WCF). RPC technologies enable code on one system to
execute code on another over a network.

WCF makes it easy for developers to create services, including SOAP services that implement
WS-* standards. It later also supported building Web/HTTP/REST-style services, but it was
rather over-engineered if that was all you needed.

If you have existing WCF services and you would like to port them to modern .NET, then there
is an open-source project that had its first General Availability (GA) release in February 2021.
You can read about it at the following link:

https://corewcf.github.io/blog/2021/02/19/corewcf-ga-release

An alternative to WCF
The Microsoft recommended alternative to WCF is gRPC. gRPC is a modern cross-platform
open-source RPC framework created by Google (unofficially the "g" in gRPC). You will learn
more about gRPC in Chapter 18, Building and Consuming Specialized Services.

https://corewcf.github.io/blog/2021/02/19/corewcf-ga-release

Chapter 16

[669]

Understanding HTTP requests and responses for
Web APIs
HTTP defines standard types of requests and standard codes to indicate a type of response.
Most of them can be used to implement Web API services.

The most common type of request is GET, to retrieve a resource identified by a unique path,
with additional options like what media type is acceptable, set as request headers, as shown in
the following example:

GET /path/to/resource
Accept: application/json

Common responses include success and multiple types of failure, as shown in the following
table:

Status code Description
200 OK The path was correctly formed, the resource was successfully found,

serialized into an acceptable media type, and then returned in the response
body. The response headers specify the Content-Type, Content-Length,
and Content-Encoding, for example, GZIP.

301 Moved
Permanently

Over time a web service may change its resource model including the path
used to identify an existing resource. The web service can indicate the new
path by returning this status code and a response header named Location
that has the new path.

302 Found Similar to 301.
304 Not Modified If the request included the If-Modified-Since header, then the web service

can respond with this status code. The response body is empty because the
client should use its cached copy of the resource.

400 Bad Request The request was invalid, for example, it used a path for a product using an
integer ID where the ID value is missing.

401 Unauthorized The request was valid, the resource was found, but the client did not supply
credentials or is not authorized to access that resource. Re-authenticating
may enable access, for example, by adding or changing the Authorization
request header.

403 Forbidden The request was valid, the resource was found, but the client is not
authorized to access that resource. Re-authenticating will not fix the issue.

404 Not Found The request was valid, but the resource was not found. The resource may be
found if the request is repeated later. To indicate that a resource will never be
found, return 410 Gone.

406 Not Acceptable If the request has an Accept header that only lists media types that the web
service does not support. For example, if the client requests JSON but the
web service can only return XML.

Building and Consuming Web Services

[670]

451 Unavailable
for Legal Reasons

A website hosted in the USA might return this for requests coming from
Europe to avoid having to comply with the General Data Protection
Regulation (GDPR). The number was chosen as a reference to the novel
Fahrenheit 451 in which books are banned and burned.

500 Server Error The request was valid, but something went wrong on the server side while
processing the request. Retrying again later might work.

503 Service
Unavailable

The web service is busy and cannot handle the request. Trying again later
might work.

Other common types of HTTP requests include POST, PUT, PATCH, or DELETE that create, modify,
or delete resources.

To create a new resource, you might make a POST request with a body that contains the new
resource, as shown in the following code:

POST /path/to/resource
Content-Length: 123
Content-Type: application/json

To create a new resource or update an existing resource, you might make a PUT request with a
body that contains a whole new version of the existing resource, and if the resource does not
exist, it is created, or if it does exist, it is replaced (sometimes called an upsert operation), as
shown in the following code:

PUT /path/to/resource
Content-Length: 123
Content-Type: application/json

To update an existing resource more efficiently, you might make a PATCH request with a body
that contains an object with only the properties that need changing, as shown in the following
code:

PATCH /path/to/resource
Content-Length: 123
Content-Type: application/json

To delete an existing resource, you might make a DELETE request, as shown in the following
code:

DELETE /path/to/resource

As well as the responses shown in the table above for a GET request, all the types of requests
that create, modify, or delete a resource have additional possible common responses, as shown
in the following table:

Chapter 16

[671]

Status code Description
201 Created The new resource was created successfully, the response header named

Location contains its path, and the response body contains the newly
created resource. Immediately GET-ing the resource should return 200.

202 Accepted The new resource cannot be created immediately so the request is queued for
later processing and immediately GET-ing the resource might return 404. The
body can contain a resource that points to some form of status checker or an
estimate of when the resource will become available.

204 No Content Commonly used in response to a DELETE request since returning the resource
in the body after deleting it does not usually make sense! Sometimes used
in response to POST, PUT, or PATCH requests if the client does not need to
confirm that the request was processed correctly.

405 Method Not
Allowed

Returned when the request used a method that is not supported. For
example, a web service designed to be read-only may explicitly disallow PUT,
DELETE, and so on.

415 Unsupported
Media Type

Returned when the resource in the request body uses a media type that the
web service cannot handle. For example, if the body contains a resource in
XML format but the web service can only process JSON.

Creating an ASP.NET Core Web API project
We will build a web service that provides a way to work with data in the Northwind database
using ASP.NET Core so that the data can be used by any client application on any platform that
can make HTTP requests and receive HTTP responses:

1. Use your preferred code editor to add a new project, as defined in the following list:
1. Project template: ASP.NET Core Web API / webapi
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.WebApi
4. Other Visual Studio options: Authentication Type: None, Configure for

HTTPS: selected, Enable Docker: cleared, Enable OpenAPI support: selected.

2. In Visual Studio Code, select Northwind.WebApi as the active OmniSharp project.
3. Build the Northwind.WebApi project.
4. In the Controllers folder, open and review WeatherForecastController.cs, as shown

in the following code:
using Microsoft.AspNetCore.Mvc;

namespace Northwind.WebApi.Controllers;

[ApiController]
[Route("[controller]")]

Building and Consuming Web Services

[672]

public class WeatherForecastController : ControllerBase
{
 private static readonly string[] Summaries = new[]
 {
 "Freezing", "Bracing", "Chilly", "Cool", "Mild",
 "Warm", "Balmy", "Hot", "Sweltering", "Scorching"
 };

 private readonly ILogger<WeatherForecastController> _logger;

 public WeatherForecastController(
 ILogger<WeatherForecastController> logger)
 {
 _logger = logger;
 }

 [HttpGet]
 public IEnumerable<WeatherForecast> Get()
 {
 return Enumerable.Range(1, 5).Select(index =>
 new WeatherForecast
 {
 Date = DateTime.Now.AddDays(index),
 TemperatureC = Random.Shared.Next(-20, 55),
 Summary = Summaries[Random.Shared.Next(Summaries.Length)]
 })
 .ToArray();
 }
}

While reviewing the preceding code, note the following:
• The Controller class inherits from ControllerBase. This is simpler than the

Controller class used in MVC because it does not have methods like View to
generate HTML responses by passing a view model to a Razor file.

• The [Route] attribute registers the /weatherforecast relative URL for clients to
use to make HTTP requests that will be handled by this controller. For example,
an HTTP request for https://localhost:5001/weatherforecast/ would be
handled by this controller. Some developers like to prefix the controller name
with api/, which is a convention to differentiate between MVC and Web API in
mixed projects. If you use [controller] as shown, it uses the characters before
Controller in the class name, in this case, WeatherForecast, or you can simply
enter a different name without the square brackets, for example, [Route("api/
forecast")].

Chapter 16

[673]

• The [ApiController] attribute was introduced with ASP.NET Core 2.1 and
it enables REST-specific behavior for controllers, like automatic HTTP 400
responses for invalid models, as you will see later in this chapter.

• The [HttpGet] attribute registers the Get method in the Controller class to
respond to HTTP GET requests, and its implementation uses the shared Random
object to return an array of WeatherForecast objects with random temperatures
and summaries like Bracing or Balmy for the next five days of weather.

5. Add a second Get method that allows the call to specify how many days ahead the
forecast should be by implementing the following:

• Add a comment above the original method to show the action method and URL
path that it responds to.

• Add a new method with an integer parameter named days.
• Cut and paste the original Get method implementation code statements into the

new Get method.
• Modify the new method to create an IEnumerable of integers up to the number

of days requested, and modify the original Get method to call the new Get
method and pass the value 5.

Your methods should be as shown highlighted in the following code:

// GET /weatherforecast
[HttpGet]
public IEnumerable<WeatherForecast> Get() // original method
{
 return Get(5); // five day forecast
}

// GET /weatherforecast/7
[HttpGet("{days:int}")]
public IEnumerable<WeatherForecast> Get(int days) // new method
{
 return Enumerable.Range(1, days).Select(index =>
 new WeatherForecast
 {
 Date = DateTime.Now.AddDays(index),
 TemperatureC = Random.Shared.Next(-20, 55),
 Summary = Summaries[Random.Shared.Next(Summaries.Length)]
 })
 .ToArray();
}

In the [HttpGet] attribute, note the route format pattern {days:int} that constrains the days
parameter to int values.

Building and Consuming Web Services

[674]

Reviewing the web service's functionality
Now, we will test the web service's functionality:

1. If you are using Visual Studio, in Properties, open the launchSettings.json file, and
note that by default, it will launch the browser and navigate to the /swagger relative
URL path, as shown highlighted in the following markup:

"profiles": {
 "Northwind.WebApi": {
 "commandName": "Project",
 "dotnetRunMessages": "true",
 "launchBrowser": true,
 "launchUrl": "swagger",
 "applicationUrl": "https://localhost:5001;http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },

2. Modify the profile named Northwind.WebApi to set launchBrowser to false.
3. For the applicationUrl, change the random port number for HTTP to 5000 and for HTTPS

to 5001.
4. Start the web service project.
5. Start Chrome.
6. Navigate to https://localhost:5001/ and note you will get a 404 status code response

because we have not enabled static files and there is not an index.html, nor is there
an MVC controller with a route configured, either. Remember that this project is not
designed for a human to view and interact with, so this is expected behavior for a web
service.

7. In Chrome, show Developer tools.
8. Navigate to https://localhost:5001/weatherforecast and note the Web API service

should return a JSON document with five random weather forecast objects in an array,
as shown in Figure 16.1:

The solution on GitHub is configured to use port 5002 because we
will change its configuration later in the book.

Chapter 16

[675]

Figure 16.1: A request and response from a weather forecast web service

9. Close Developer tools.
10. Navigate to https://localhost:5001/weatherforecast/14 and note the response when

requesting a two-week weather forecast, as shown in Figure 16.2:

Figure 16.2: A two-week weather forecast as a JSON document

11. Close Chrome and shut down the web server.

Creating a web service for the Northwind database
Unlike MVC controllers, Web API controllers do not call Razor views to return HTML
responses for website visitors to see in browsers. Instead, they use content negotiation with the
client application that made the HTTP request to return data in formats such as XML, JSON, or
X-WWW-FORM-URLENCODED in their HTTP response.

Building and Consuming Web Services

[676]

The client application must then deserialize the data from the negotiated format. The most
commonly used format for modern web services is JavaScript Object Notation (JSON) because
it is compact and works natively with JavaScript in a browser when building Single-Page
Applications (SPAs) with client-side technologies like Angular, React, and Vue.

We will reference the Entity Framework Core entity data model for the Northwind database
that you created in Chapter 13, Introducing Practical Applications of C# and .NET:

1. In the Northwind.WebApi project, add a project reference to Northwind.Common.
DataContext for either SQLite or SQL Server, as shown in the following markup:

<ItemGroup>
 <!-- change Sqlite to SqlServer if you prefer -->
 <ProjectReference Include=
"..\Northwind.Common.DataContext.Sqlite\Northwind.Common.DataContext.
Sqlite.csproj" />
</ItemGroup>

2. Build the project and fix any compile errors in your code.
3. Open Program.cs and import namespaces for working with web media formatters and

the shared Packt classes, as shown in the following code:
using Microsoft.AspNetCore.Mvc.Formatters;
using Packt.Shared; // AddNorthwindContext extension method

using static System.Console;

4. Add a statement before the call to AddControllers to register the Northwind database
context class (it will use either SQLite or SQL Server depending on which database
provider you referenced in the project file), as shown in the following code:

// Add services to the container.
builder.Services.AddNorthwindContext();

5. In the call to AddControllers, add a lambda block with statements to write the names
and supported media types of the default output formatters to the console, and then
add XML serializer formatters, as shown in the following code:

builder.Services.AddControllers(options =>
{
 WriteLine("Default output formatters:");
 foreach (IOutputFormatter formatter in options.OutputFormatters)
 {
 OutputFormatter? mediaFormatter = formatter as OutputFormatter;
 if (mediaFormatter == null)
 {
 WriteLine($" {formatter.GetType().Name}");
 }
 else // OutputFormatter class has SupportedMediaTypes

Chapter 16

[677]

 {
 WriteLine(" {0}, Media types: {1}",
 arg0: mediaFormatter.GetType().Name,
 arg1: string.Join(", ",
 mediaFormatter.SupportedMediaTypes));
 }
 }
})
.AddXmlDataContractSerializerFormatters()
.AddXmlSerializerFormatters();

6. Start the web service.
7. In a command prompt or terminal, note that there are four default output formatters,

including ones that convert null values into 204 No Content and ones to support
responses that are plain text, byte streams, and JSON, as shown in the following output:

Default output formatters:
 HttpNoContentOutputFormatter
 StringOutputFormatter, Media types: text/plain
 StreamOutputFormatter
 SystemTextJsonOutputFormatter, Media types: application/json, text/json,
application/*+json

8. Shut down the web server.

Creating data repositories for entities
Defining and implementing a data repository to provide CRUD operations is good practice.
The CRUD acronym includes the following operations:

• C for Create
• R for Retrieve (or Read)
• U for Update
• D for Delete

We will create a data repository for the Customers table in Northwind. There are only 91
customers in this table, so we will store a copy of the whole table in memory to improve
scalability and performance when reading customer records.

Good Practice: In a real web service, you should use a distributed cache
like Redis, an open-source data structure store that can be used as a high-
performance, high-availability database, cache, or message broker.

Building and Consuming Web Services

[678]

We will follow modern good practice and make the repository API asynchronous. It will be
instantiated by a Controller class using constructor parameter injection, so a new instance is
created to handle every HTTP request:

1. In the Northwind.WebApi project, create a folder named Repositories.
2. Add two class files to the Repositories folder named ICustomerRepository.cs and

CustomerRepository.cs.
3. The ICustomerRepository interface will define five methods, as shown in the following

code:
using Packt.Shared; // Customer

namespace Northwind.WebApi.Repositories;

public interface ICustomerRepository
{
 Task<Customer?> CreateAsync(Customer c);
 Task<IEnumerable<Customer>> RetrieveAllAsync();
 Task<Customer?> RetrieveAsync(string id);
 Task<Customer?> UpdateAsync(string id, Customer c);
 Task<bool?> DeleteAsync(string id);
}

4. The CustomerRepository class will implement the five methods, remembering that
methods that use await inside them must be marked as async, as shown in the
following code:

using Microsoft.EntityFrameworkCore.ChangeTracking; // EntityEntry<T>
using Packt.Shared; // Customer
using System.Collections.Concurrent; // ConcurrentDictionary

namespace Northwind.WebApi.Repositories;

public class CustomerRepository : ICustomerRepository
{
 // use a static thread-safe dictionary field to cache the customers
 private static ConcurrentDictionary
 <string, Customer>? customersCache;

 // use an instance data context field because it should not be
 // cached due to their internal caching
 private NorthwindContext db;

 public CustomerRepository(NorthwindContext injectedContext)
 {
 db = injectedContext;

Chapter 16

[679]

 // pre-load customers from database as a normal
 // Dictionary with CustomerId as the key,
 // then convert to a thread-safe ConcurrentDictionary
 if (customersCache is null)
 {
 customersCache = new ConcurrentDictionary<string, Customer>(
 db.Customers.ToDictionary(c => c.CustomerId));
 }
 }

 public async Task<Customer?> CreateAsync(Customer c)
 {
 // normalize CustomerId into uppercase
 c.CustomerId = c.CustomerId.ToUpper();

 // add to database using EF Core
 EntityEntry<Customer> added = await db.Customers.AddAsync(c);
 int affected = await db.SaveChangesAsync();
 if (affected == 1)
 {
 if (customersCache is null) return c;
 // if the customer is new, add it to cache, else
 // call UpdateCache method
 return customersCache.AddOrUpdate(c.CustomerId, c, UpdateCache);
 }
 else
 {
 return null;
 }
 }

 public Task<IEnumerable<Customer>> RetrieveAllAsync()
 {
 // for performance, get from cache
 return Task.FromResult(customersCache is null
 ? Enumerable.Empty<Customer>() : customersCache.Values);
 }

 public Task<Customer?> RetrieveAsync(string id)
 {
 // for performance, get from cache
 id = id.ToUpper();
 if (customersCache is null) return null!;
 customersCache.TryGetValue(id, out Customer? c);

Building and Consuming Web Services

[680]

 return Task.FromResult(c);
 }

 private Customer UpdateCache(string id, Customer c)
 {
 Customer? old;
 if (customersCache is not null)
 {
 if (customersCache.TryGetValue(id, out old))
 {
 if (customersCache.TryUpdate(id, c, old))
 {
 return c;
 }
 }
 }
 return null!;
 }

 public async Task<Customer?> UpdateAsync(string id, Customer c)
 {
 // normalize customer Id
 id = id.ToUpper();
 c.CustomerId = c.CustomerId.ToUpper();

 // update in database
 db.Customers.Update(c);
 int affected = await db.SaveChangesAsync();
 if (affected == 1)
 {
 // update in cache
 return UpdateCache(id, c);
 }
 return null;
 }

 public async Task<bool?> DeleteAsync(string id)
 {
 id = id.ToUpper();

 // remove from database
 Customer? c = db.Customers.Find(id);
 if (c is null) return null;
 db.Customers.Remove(c);
 int affected = await db.SaveChangesAsync();

Chapter 16

[681]

 if (affected == 1)
 {
 if (customersCache is null) return null;
 // remove from cache
 return customersCache.TryRemove(id, out c);
 }
 else
 {
 return null;
 }
 }
}

Implementing a Web API controller
There are some useful attributes and methods for implementing a controller that returns data
instead of HTML.

With MVC controllers, a route like /home/index tells us the controller class name and the action
method name, for example, the HomeController class and the Index action method.

With Web API controllers, a route like /weatherforecast only tells us the controller class name,
for example, WeatherForecastController. To determine the action method name to execute, we
must map HTTP methods like GET and POST to methods in the controller class.

You should decorate controller methods with the following attributes to indicate the HTTP
method that they will respond to:

• [HttpGet], [HttpHead]: These action methods respond to GET or HEAD requests to
retrieve a resource and return either the resource and its response headers or just the
response headers.

• [HttpPost]: This action method responds to POST requests to create a new resource or
perform some other action defined by the service.

• [HttpPut], [HttpPatch]: These action methods respond to PUT or PATCH requests to
update an existing resource either by replacing it or updating a subset of its properties.

• [HttpDelete]: This action method responds to DELETE requests to remove a resource.
• [HttpOptions]: This action method responds to OPTIONS requests.

Understanding action method return types
An action method can return .NET types like a single string value, complex objects defined
by a class, record, or struct, or collections of complex objects. The ASP.NET Core Web API
will serialize them into the requested data format set in the HTTP request Accept header, for
example, JSON, if a suitable serializer has been registered.

Building and Consuming Web Services

[682]

For more control over the response, there are helper methods that return an ActionResult
wrapper around the .NET type.

Declare the action method's return type to be IActionResult if it could return different
return types based on inputs or other variables. Declare the action method's return type to be
ActionResult<T> if it will only return a single type but with different status codes.

For example, an action method that gets a product based on an id parameter would be
decorated with three attributes – one to indicate that it responds to GET requests and has an
id parameter, and two to indicate what happens when it succeeds and when the client has
supplied an invalid product ID, as shown in the following code:

[HttpGet("{id}")]
[ProducesResponseType(200, Type = typeof(Product))]
[ProducesResponseType(404)]
public IActionResult Get(string id)

The ControllerBase class has methods to make it easy to return different responses, as shown
in the following table:

Method Description
Ok Returns a 200 status code and a resource converted to the client's preferred

format, like JSON or XML. Commonly used in response to a GET request.
CreatedAtRoute Returns a 201 status code and the path to the new resource. Commonly used in

response to a POST request to create a resource that can be performed quickly.
Accepted Returns a 202 status code to indicate the request is being processed but has

not completed. Commonly used in response to a POST, PUT, PATCH, or DELETE
request that triggers a background process that takes a long time to complete.

NoContentResult Returns a 204 status code and an empty response body. Commonly used in
response to a PUT, PATCH, or DELETE request when the response does not need
to contain the affected resource.

BadRequest Returns a 400 status code and an optional message string with more details.
NotFound Returns a 404 status code and an automatically populated ProblemDetails

body (requires a compatibility version of 2.2 or later).

Good Practice: Decorate action methods with the [ProducesResponseType]
attribute to indicate all the known types and HTTP status codes that the client
should expect in a response. This information can then be publicly exposed
to document how a client should interact with your web service. Think of it
as part of your formal documentation. Later in this chapter, you will learn
how you can install a code analyzer to give you warnings when you do not
decorate your action methods like this.

Chapter 16

[683]

Configuring the customer repository and Web API
controller
Now you will configure the repository so that it can be called from within a Web API
controller.

You will register a scoped dependency service implementation for the repository when the
web service starts up and then use constructor parameter injection to get it in a new Web API
controller for working with customers.

To show an example of differentiating between MVC and Web API controllers using routes, we
will use the common /api URL prefix convention for the customers controller:

1. Open Program.cs and import the Northwind.WebApi.Repositories namespace.
2. Add a statement before the call to the Build method, which will register the

CustomerRepository for use at runtime as a scoped dependency, as shown highlighted
in the following code:

builder.Services.AddScoped<ICustomerRepository, CustomerRepository>();

var app = builder.Build();

3. In the Controllers folder, add a new class named CustomersController.cs.
4. In the CustomersController class file, add statements to define a Web API controller

class to work with customers, as shown in the following code:

using Microsoft.AspNetCore.Mvc; // [Route], [ApiController],
ControllerBase
using Packt.Shared; // Customer
using Northwind.WebApi.Repositories; // ICustomerRepository

namespace Northwind.WebApi.Controllers;

// base address: api/customers
[Route("api/[controller]")]
[ApiController]
public class CustomersController : ControllerBase
{

Good Practice: Our repository uses a database context that is registered as
a scoped dependency. You can only use scoped dependencies inside other
scoped dependencies, so we cannot register the repository as a singleton. You
can read more about this at the following link: https://docs.microsoft.
com/en-us/dotnet/core/extensions/dependency-injection#scoped

https://docs.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#scoped
https://docs.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#scoped

Building and Consuming Web Services

[684]

 private readonly ICustomerRepository repo;

 // constructor injects repository registered in Startup
 public CustomersController(ICustomerRepository repo)
 {
 this.repo = repo;
 }

 // GET: api/customers
 // GET: api/customers/?country=[country]
 // this will always return a list of customers (but it might be empty)
 [HttpGet]
 [ProducesResponseType(200, Type = typeof(IEnumerable<Customer>))]
 public async Task<IEnumerable<Customer>> GetCustomers(string? country)
 {
 if (string.IsNullOrWhiteSpace(country))
 {
 return await repo.RetrieveAllAsync();
 }
 else
 {
 return (await repo.RetrieveAllAsync())
 .Where(customer => customer.Country == country);
 }
 }

 // GET: api/customers/[id]
 [HttpGet("{id}", Name = nameof(GetCustomer))] // named route
 [ProducesResponseType(200, Type = typeof(Customer))]
 [ProducesResponseType(404)]
 public async Task<IActionResult> GetCustomer(string id)
 {
 Customer? c = await repo.RetrieveAsync(id);
 if (c == null)
 {
 return NotFound(); // 404 Resource not found
 }
 return Ok(c); // 200 OK with customer in body
 }

 // POST: api/customers
 // BODY: Customer (JSON, XML)
 [HttpPost]
 [ProducesResponseType(201, Type = typeof(Customer))]
 [ProducesResponseType(400)]
 public async Task<IActionResult> Create([FromBody] Customer c)
 {
 if (c == null)

Chapter 16

[685]

 {
 return BadRequest(); // 400 Bad request
 }

 Customer? addedCustomer = await repo.CreateAsync(c);

 if (addedCustomer == null)
 {
 return BadRequest("Repository failed to create customer.");
 }
 else
 {
 return CreatedAtRoute(// 201 Created
 routeName: nameof(GetCustomer),
 routeValues: new { id = addedCustomer.CustomerId.ToLower() },
 value: addedCustomer);
 }
 }

 // PUT: api/customers/[id]
 // BODY: Customer (JSON, XML)
 [HttpPut("{id}")]
 [ProducesResponseType(204)]
 [ProducesResponseType(400)]
 [ProducesResponseType(404)]
 public async Task<IActionResult> Update(
 string id, [FromBody] Customer c)
 {
 id = id.ToUpper();
 c.CustomerId = c.CustomerId.ToUpper();

 if (c == null || c.CustomerId != id)
 {
 return BadRequest(); // 400 Bad request
 }

 Customer? existing = await repo.RetrieveAsync(id);
 if (existing == null)
 {
 return NotFound(); // 404 Resource not found
 }

 await repo.UpdateAsync(id, c);

 return new NoContentResult(); // 204 No content
 }

 // DELETE: api/customers/[id]

Building and Consuming Web Services

[686]

 [HttpDelete("{id}")]
 [ProducesResponseType(204)]
 [ProducesResponseType(400)]
 [ProducesResponseType(404)]
 public async Task<IActionResult> Delete(string id)
 {
 Customer? existing = await repo.RetrieveAsync(id);
 if (existing == null)
 {
 return NotFound(); // 404 Resource not found
 }

 bool? deleted = await repo.DeleteAsync(id);

 if (deleted.HasValue && deleted.Value) // short circuit AND
 {
 return new NoContentResult(); // 204 No content
 }
 else
 {
 return BadRequest(// 400 Bad request
 $"Customer {id} was found but failed to delete.");
 }
 }
}

While reviewing this Web API controller class, note the following:

• The Controller class registers a route that starts with api/ and includes the name of the
controller, that is, api/customers.

• The constructor uses dependency injection to get the registered repository for working
with customers.

• There are five action methods to perform CRUD operations on customers—two GET
methods (for all customers or one customer), POST (create), PUT (update), and DELETE.

• The GetCustomers method can have a string parameter passed with a country name. If
it is missing, all customers are returned. If it is present, it is used to filter customers by
country.

• The GetCustomer method has a route explicitly named GetCustomer so that it can be
used to generate a URL after inserting a new customer.

• The Create and Update methods both decorate the customer parameter with [FromBody]
to tell the model binder to populate it with values from the body of the POST request.

• The Create method returns a response that uses the GetCustomer route so that the client
knows how to get the newly created resource in the future. We are matching up two
methods to create and then get a customer.

Chapter 16

[687]

• The Create and Update methods do not need to check the model state of the customer
passed in the body of the HTTP request and return a 400 Bad Request containing
details of the model validation errors if it is not valid because the controller is
decorated with [ApiController], which does this for you.

When an HTTP request is received by the service, then it will create an instance of the
Controller class, call the appropriate action method, return the response in the format
preferred by the client, and release the resources used by the controller, including the
repository and its data context.

Specifying problem details
A feature added in ASP.NET Core 2.1 and later is an implementation of a web standard for
specifying problem details.

In Web API controllers decorated with [ApiController] in a project with ASP.NET Core 2.2 or
later compatibility enabled, action methods that return IActionResult and return a client error
status code, that is, 4xx, will automatically include a serialized instance of the ProblemDetails
class in the response body.

If you want to take control, then you can create a ProblemDetails instance yourself and include
additional information.

Let's simulate a bad request that needs custom data returned to the client:

1. At the top of the implementation of the Delete method, add statements to check if the
id matches the literal string value "bad", and if so, then return a custom problem details
object, as shown in the following code:

// take control of problem details
if (id == "bad")
{
 ProblemDetails problemDetails = new()
 {
 Status = StatusCodes.Status400BadRequest,
 Type = "https://localhost:5001/customers/failed-to-delete",
 Title = $"Customer ID {id} found but failed to delete.",
 Detail = "More details like Company Name, Country and so on.",
 Instance = HttpContext.Request.Path
 };
 return BadRequest(problemDetails); // 400 Bad Request
}

2. You will test this functionality later.

Building and Consuming Web Services

[688]

Controlling XML serialization
In Program.cs, we added the XmlSerializer so that our Web API service can return XML as
well as JSON if the client requests that.

However, the XmlSerializer cannot serialize interfaces, and our entity classes use
ICollection<T> to define related child entities. This causes a warning at runtime, for example,
for the Customer class and its Orders property, as shown in the following output:

warn: Microsoft.AspNetCore.Mvc.Formatters.XmlSerializerOutputFormatter[1]
An error occurred while trying to create an XmlSerializer for the type 'Packt.
Shared.Customer'.
System.InvalidOperationException: There was an error reflecting type 'Packt.
Shared.Customer'.
---> System.InvalidOperationException: Cannot serialize member 'Packt.
Shared.Customer.Orders' of type 'System.Collections.Generic.ICollection`1[[Packt.
Shared.Order, Northwind.Common.EntityModels, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null]]', see inner exception for more details.

We can prevent this warning by excluding the Orders property when serializing a Customer to
XML:

1. In the Northwind.Common.EntityModels.Sqlite and the Northwind.Common.
EntityModels.SqlServer projects, open Customers.cs.

2. Import the System.Xml.Serialization namespace so that we can use the [XmlIgnore]
attribute.

3. Decorate the Orders property with an attribute to ignore it when serializing, as shown
highlighted in the following code:

[InverseProperty(nameof(Order.Customer))]
[XmlIgnore]
public virtual ICollection<Order> Orders { get; set; }

4. In the Northwind.Common.EntityModels.SqlServer project, decorate the
CustomerCustomerDemos property with [XmlIgnore] too.

Documenting and testing web services
You can easily test a web service by making HTTP GET requests using a browser. To test other
HTTP methods, we need a more advanced tool.

Testing GET requests using a browser
You will use Chrome to test the three implementations of a GET request – for all customers, for
customers in a specified country, and for a single customer using their unique customer ID:

Chapter 16

[689]

1. Start the Northwind.WebApi web service.
2. Start Chrome.
3. Navigate to https://localhost:5001/api/customers and note the JSON document

returned, containing all 91 customers in the Northwind database (unsorted), as shown
in Figure 16.3:

Figure 16.3: Customers from the Northwind database as a JSON document

4. Navigate to https://localhost:5001/api/customers/?country=Germany and note the
JSON document returned, containing only the customers in Germany, as shown in
Figure 16.4:

Figure 16.4: A list of customers from Germany as a JSON document

5. Navigate to https://localhost:5001/api/customers/alfki and note the JSON
document returned containing only the customer named Alfreds Futterkiste, as shown
in Figure 16.5:

Figure 16.5: Specific customer information as a JSON document

Unlike with country names, we do not need to worry about casing for the customer id value
because inside the controller class, we normalized the string value to uppercase in code.

If you get an empty array returned, then make sure you have entered
the country name using the correct casing because the database query
is case-sensitive. For example, compare the results of uk and UK.

Building and Consuming Web Services

[690]

But how can we test the other HTTP methods, such as POST, PUT, and DELETE? And how can we
document our web service so it's easy for anyone to understand how to interact with it?

To solve the first problem, we can install a Visual Studio Code extension named REST
Client. To solve the second, we can use Swagger, the world's most popular technology for
documenting and testing HTTP APIs. But first, let's see what is possible with the Visual Studio
Code extension.

Testing HTTP requests with the REST Client
extension
REST Client is an extension that allows you to send any type of HTTP request and view the
response in Visual Studio Code. Even if you prefer to use Visual Studio as your code editor, it is
useful to install Visual Studio Code to use an extension like REST Client.

Making GET requests using REST Client
We will start by creating a file for testing GET requests:

1. If you have not already installed REST Client by Huachao Mao (humao.rest-client),
then install it in Visual Studio Code now.

2. In your preferred code editor, start the Northwind.WebApi project web service.
3. In Visual Studio Code, in the PracticalApps folder, create a RestClientTests folder,

and then open the folder.
4. In the RestClientTests folder, create a file named get-customers.http, and modify

its contents to contain an HTTP GET request to retrieve all customers, as shown in the
following code:

GET https://localhost:5001/api/customers/ HTTP/1.1

5. In Visual Studio Code, navigate to View | Command Palette, enter rest client, select
the command Rest Client: Send Request, and press Enter, as shown in Figure 16.6:

There are many tools for testing Web APIs, for example, Postman. Although
Postman is popular, I prefer REST Client because it does not hide what
is actually happening. I feel Postman is too GUI-y. But I encourage you to
explore different tools and find the ones that fit your style. You can learn more
about Postman at the following link: https://www.postman.com/

https://www.postman.com/

Chapter 16

[691]

Figure 16.6: Sending an HTTP GET request using REST Client

6. Note the Response is shown in a new tabbed window pane vertically and that you can
rearrange the open tabs to a horizontal layout by dragging and dropping tabs.

7. Enter more GET requests, each separated by three hash symbols, to test getting
customers in various countries and getting a single customer using their ID, as shown
in the following code:

###
GET https://localhost:5001/api/customers/?country=Germany HTTP/1.1
###
GET https://localhost:5001/api/customers/?country=USA HTTP/1.1
Accept: application/xml
###
GET https://localhost:5001/api/customers/ALFKI HTTP/1.1
###
GET https://localhost:5001/api/customers/abcxy HTTP/1.1

8. Click the Send Request link above each request to send it; for example, the GET that has
a request header to request customers in the USA as XML instead of JSON, as shown in
Figure 16.7:

Figure 16.7: Sending a request for XML and getting a response using REST Client

Building and Consuming Web Services

[692]

Making other requests using REST Client
Next, we will create a file for testing other requests like POST:

1. In the RestClientTests folder, create a file named create-customer.http and modify its
contents to define a POST request to create a new customer, noting that REST Client will
provide IntelliSense while you type common HTTP requests, as shown in the following
code:

POST https://localhost:5001/api/customers/ HTTP/1.1
Content-Type: application/json
Content-Length: 301

{
 "customerID": "ABCXY",
 "companyName": "ABC Corp",
 "contactName": "John Smith",
 "contactTitle": "Sir",
 "address": "Main Street",
 "city": "New York",
 "region": "NY",
 "postalCode": "90210",
 "country": "USA",
 "phone": "(123) 555-1234",
 "fax": null,
 "orders": null
}

2. Due to different line endings in different operating systems, the value for the Content-
Length header will be different on Windows and macOS or Linux. If the value is wrong,
then the request will fail. To discover the correct content length, select the body of
the request and then look in the status bar for the number of characters, as shown in
Figure 16.8:

Figure 16.8: Checking the correct content length

Chapter 16

[693]

3. Send the request and note the response is 201 Created. Also note the location (that is, the
URL) of the newly created customer is https://localhost:5001/api/Customers/abcxy,
and includes the newly created customer in the response body, as shown in Figure 16.9:

Figure 16.9: Adding a new customer

I will leave you an optional challenge to create REST Client files that test updating a customer
(using PUT) and deleting a customer (using DELETE). Try them on customers that do exist as well
as customers that do not. Solutions are in the GitHub repository for this book.

Now that we've seen a quick and easy way to test our service, which also happens to be a great
way to learn HTTP, what about external developers? We want it to be as easy as possible for
them to learn and then call our service. For that purpose, we will use Swagger.

Understanding Swagger
The most important part of Swagger is the OpenAPI Specification, which defines a REST-style
contract for your API, detailing all its resources and operations in a human- and machine-
readable format for easy development, discovery, and integration.

Developers can use the OpenAPI Specification for a Web API to automatically generate
strongly-typed client-side code in their preferred language or library.

For us, another useful feature is Swagger UI, because it automatically generates documentation
for your API with built-in visual testing capabilities.

Let's review how Swagger is enabled for our web service using the Swashbuckle package:

1. If the web service is running, shut down the web server.
2. Open Northwind.WebApi.csproj and note the package reference for

Swashbuckle.AspNetCore, as shown in the following markup:
<ItemGroup>
 <PackageReference Include="Swashbuckle.AspNetCore" Version="6.1.5" />
</ItemGroup>

Building and Consuming Web Services

[694]

3. Update the version of the Swashbuckle.AspNetCore package to the latest, for example, at
the time of writing in September 2021, it is 6.2.1.

4. In Program.cs, note the import for Microsoft's OpenAPI models namespace, as shown
in the following code:

using Microsoft.OpenApi.Models;

5. Import Swashbuckle's SwaggerUI namespace, as shown in the following code:
using Swashbuckle.AspNetCore.SwaggerUI; // SubmitMethod

6. About halfway down Program.cs, note the statement to add Swagger support including
documentation for the Northwind service, indicating that this is the first version of your
service, and change the title, as shown highlighted in the following code:

builder.Services.AddSwaggerGen(c =>
 {
 c.SwaggerDoc("v1", new()
 { Title = "Northwind Service API", Version = "v1" });
 });

7. In the section that configures the HTTP request pipeline, note the statements to use
Swagger and Swagger UI when in development mode, and define an endpoint for the
OpenAPI specification JSON document.

8. Add code to explicitly list the HTTP methods that we want to support in our web
service and change the endpoint name, as shown highlighted in the following code:

var app = builder.Build();

// Configure the HTTP request pipeline.
if (builder.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI(c =>
 {
 c.SwaggerEndpoint("/swagger/v1/swagger.json",
 "Northwind Service API Version 1");

 c.SupportedSubmitMethods(new[] {
 SubmitMethod.Get, SubmitMethod.Post,
 SubmitMethod.Put, SubmitMethod.Delete });
 });
}

Testing requests with Swagger UI
You are now ready to test an HTTP request using Swagger:

1. Start the Northwind.WebApi web service.

Chapter 16

[695]

2. In Chrome, navigate to https://localhost:5001/swagger/ and note that both the
Customers and WeatherForecast Web API controllers have been discovered and
documented, as well as Schemas used by the API.

3. Click GET /api/Customers/{id} to expand that endpoint and note the required
parameter for the id of a customer, as shown in Figure 16.10:

Figure 16.10: Checking the parameters for a GET request in Swagger

4. Click Try it out, enter an id of ALFKI, and then click the wide blue Execute button, as
shown in Figure 16.11:

Figure 16.11: Inputting a customer id before clicking the Execute button

Building and Consuming Web Services

[696]

5. Scroll down and note the Request URL, Server response with Code, and Details
including Response body and Response headers, as shown in Figure 16.12:

Figure 16.12: Information on ALFKI in a successful Swagger request

6. Scroll back up to the top of the page, click POST /api/Customers to expand that section,
and then click Try it out.

7. Click inside the Request body box, and modify the JSON to define a new customer, as
shown in the following JSON:

{
 "customerID": "SUPER",
 "companyName": "Super Company",
 "contactName": "Rasmus Ibensen",
 "contactTitle": "Sales Leader",
 "address": "Rotterslef 23",
 "city": "Billund",
 "region": null,

Chapter 16

[697]

 "postalCode": "4371",
 "country": "Denmark",
 "phone": "31 21 43 21",
 "fax": "31 21 43 22"
}

8. Click Execute, and note the Request URL, Server response with Code, and Details
including Response body and Response headers, noting that a response code of 201
means the customer was successfully created, as shown in Figure 16.13:

Figure 16.13: Successfully adding a new customer

Building and Consuming Web Services

[698]

9. Scroll back up to the top of the page, click GET /api/Customers, click Try it out, enter
Denmark for the country parameter, and click Execute, to confirm that the new customer
was added to the database, as shown in Figure 16.14:

Figure 16.14: Successfully getting customers in Denmark including the newly added customer

10. Click DELETE /api/Customers/{id}, click Try it out, enter super for the id, click Execute,
and note that the Server response Code is 204, indicating that it was successfully
deleted, as shown in Figure 16.15:

Chapter 16

[699]

Figure 16.15: Successfully deleting a customer

11. Click Execute again, and note that the Server response Code is 404, indicating that the
customer does not exist anymore, and the Response body contains a problem details
JSON document, as shown in Figure 16.16:

Figure 16.16: The deleted customer does not exist anymore

Building and Consuming Web Services

[700]

12. Enter bad for the id, click Execute again, and note that the Server response Code is
400, indicating that the customer did exist but failed to be deleted (in this case, because
the web service is simulating this error), and the Response body contains a custom
problem details JSON document, as shown in Figure 16.17:

Figure 16.17: The customer did exist but failed to be deleted

13. Use the GET methods to confirm that the new customer has been deleted from the
database (there were originally only two customers in Denmark).

14. Close Chrome and shut down the web server.

Enabling HTTP logging
HTTP logging is an optional middleware component that logs information about HTTP
requests and HTTP responses including the following:

• Information about the HTTP request
• Headers
• Body
• Information about the HTTP response

I will leave testing updates to an existing customer by using PUT to the
reader.

Chapter 16

[701]

This is valuable in web services for auditing and debugging scenarios but beware because it can
negatively impact performance. You might also log personally identifiable information (PII)
which can cause compliance issues in some jurisdictions.

Let's see HTTP logging in action:

1. In Program.cs, import the namespace for working with HTTP logging, as shown in the
following code:

using Microsoft.AspNetCore.HttpLogging; // HttpLoggingFields

2. In the services configuration section, add a statement to configure HTTP logging, as
shown in the following code:

builder.Services.AddHttpLogging(options =>
{
 options.LoggingFields = HttpLoggingFields.All;
 options.RequestBodyLogLimit = 4096; // default is 32k
 options.ResponseBodyLogLimit = 4096; // default is 32k
});

3. In the HTTP pipeline configuration section, add a statement to add HTTP logging
before the call to use routing, as shown in the following code:

app.UseHttpLogging();

4. Start the Northwind.WebApi web service.
5. Start Chrome.
6. Navigate to https://localhost:5001/api/customers.
7. In a command prompt or terminal, note the request and response have been logged, as

shown in the following output:
info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[1]
 Request:
 Protocol: HTTP/1.1
 Method: GET
 Scheme: https
 PathBase:
 Path: /api/customers
 QueryString:
 Connection: keep-alive
 Accept: */*
 Accept-Encoding: gzip, deflate, br
 Host: localhost:5001

info: Microsoft.AspNetCore.HttpLogging.HttpLoggingMiddleware[2]
 Response:

Building and Consuming Web Services

[702]

 StatusCode: 200
 Content-Type: application/json; charset=utf-8
 ...
 Transfer-Encoding: chunked

8. Close Chrome and shut down the web server.

You are now ready to build applications that consume your web service.

Consuming web services using HTTP clients
Now that we have built and tested our Northwind service, we will learn how to call it from any
.NET app using the HttpClient class and its factory.

Understanding HttpClient
The easiest way to consume a web service is to use the HttpClient class. However, many
people use it wrongly because it implements IDisposable and Microsoft's own documentation
shows poor usage of it. See the book links in the GitHub repository for articles with more
discussion of this.

Usually, when a type implements IDisposable, you should create it inside a using statement
to ensure that it is disposed of as soon as possible. HttpClient is different because it is shared,
reentrant, and partially thread-safe.

The problem has to do with how the underlying network sockets have to be managed. The
bottom line is that you should use a single instance of it for each HTTP endpoint that you
consume during the life of your application. This will allow each HttpClient instance to
have defaults set that are appropriate for the endpoint it works with, while managing the
underlying network sockets efficiently.

Configuring HTTP clients using HttpClientFactory
Microsoft is aware of the issue, and in ASP.NET Core 2.1 they introduced HttpClientFactory to
encourage best practice; that is the technique we will use.

In the following example, we will use the Northwind MVC website as a client to the Northwind
Web API service. Since both need to be hosted on a web server simultaneously, we first need to
configure them to use different port numbers, as shown in the following list:

• The Northwind Web API service will listen on port 5002 using HTTPS.
• The Northwind MVC website will continue to listen on port 5000 using HTTP and port

5001 using HTTPS.

Chapter 16

[703]

Let's configure those ports:

1. In the Northwind.WebApi project, in Program.cs, add an extension method call to
UseUrls to specify port 5002 for HTTPS, as shown highlighted in the following code:

var builder = WebApplication.CreateBuilder(args);

builder.WebHost.UseUrls("https://localhost:5002/");

2. In the Northwind.Mvc project, open Program.cs and import the namespace for working
with HTTP client factory, as shown in the following code:

using System.Net.Http.Headers; // MediaTypeWithQualityHeaderValue

3. Add a statement to enable HttpClientFactory with a named client to make calls to the
Northwind Web API service using HTTPS on port 5002 and request JSON as the default
response format, as shown in the following code:

builder.Services.AddHttpClient(name: "Northwind.WebApi",
 configureClient: options =>
 {
 options.BaseAddress = new Uri("https://localhost:5002/");
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 "application/json", 1.0));
 });

Getting customers as JSON in the controller
We can now create an MVC controller action method that uses the factory to create an
HTTP client, makes a GET request for customers, and deserializes the JSON response using
convenience extension methods introduced with .NET 5 in the System.Net.Http.Json assembly
and namespace:

1. Open Controllers/HomeController.cs and declare a field to store the HTTP client
factory, as shown in the following code:

private readonly IHttpClientFactory clientFactory;

2. Set the field in the constructor, as shown highlighted in the following code:
public HomeController(
 ILogger<HomeController> logger,
 NorthwindContext injectedContext,
 IHttpClientFactory httpClientFactory)
{
 _logger = logger;
 db = injectedContext;
 clientFactory = httpClientFactory;
}

Building and Consuming Web Services

[704]

3. Create a new action method for calling the Northwind Web API service, fetching all
customers, and passing them to a view, as shown in the following code:

public async Task<IActionResult> Customers(string country)
{
 string uri;

 if (string.IsNullOrEmpty(country))
 {
 ViewData["Title"] = "All Customers Worldwide";
 uri = "api/customers/";
 }
 else
 {
 ViewData["Title"] = $"Customers in {country}";
 uri = $"api/customers/?country={country}";
 }

 HttpClient client = clientFactory.CreateClient(
 name: "Northwind.WebApi");

 HttpRequestMessage request = new(
 method: HttpMethod.Get, requestUri: uri);

 HttpResponseMessage response = await client.SendAsync(request);

 IEnumerable<Customer>? model = await response.Content
 .ReadFromJsonAsync<IEnumerable<Customer>>();

 return View(model);
}

4. In the Views/Home folder, create a Razor file named Customers.cshtml.
5. Modify the Razor file to render the customers, as shown in the following markup:

@using Packt.Shared
@model IEnumerable<Customer>
<h2>@ViewData["Title"]</h2>
<table class="table">
 <thead>
 <tr>
 <th>Company Name</th>
 <th>Contact Name</th>
 <th>Address</th>
 <th>Phone</th>
 </tr>
 </thead>

Chapter 16

[705]

 <tbody>
 @if (Model is not null)
 {
 @foreach (Customer c in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => c.CompanyName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => c.ContactName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => c.Address)
 @Html.DisplayFor(modelItem => c.City)
 @Html.DisplayFor(modelItem => c.Region)
 @Html.DisplayFor(modelItem => c.Country)
 @Html.DisplayFor(modelItem => c.PostalCode)
 </td>
 <td>
 @Html.DisplayFor(modelItem => c.Phone)
 </td>
 </tr>
 }
 }
 </tbody>
</table>

6. In Views/Home/Index.cshtml, add a form after rendering the visitor count to allow
visitors to enter a country and see the customers, as shown in the following markup:

<h3>Query customers from a service</h3>
<form asp-action="Customers" method="get">
 <input name="country" placeholder="Enter a country" />
 <input type="submit" />
</form>

Enabling Cross-Origin Resource Sharing
Cross-Origin Resource Sharing (CORS) is an HTTP-header-based standard for protecting
web resources when the client and server are on different domains (origins). It allows a server
to indicate which origins (defined by a combination of domain, scheme, or port) other than its
own it will permit the loading of resources from.

Since our web service is hosted on port 5002 and our MVC website is hosted on ports 5000 and
5001, they are considered different origins and so resources cannot be shared.

Building and Consuming Web Services

[706]

It would be useful to enable CORS on the server and configure our web service to only allow
requests that originate from the MVC website:

1. In the Northwind.WebApi project, open Program.cs.
2. Add a statement in the services configuration section to add support for CORS, as

shown in the following code:
builder.Services.AddCors();

3. Add a statement in the HTTP pipeline configuration section, before calling
UseEndpoints, to use CORS and allow GET, POST, PUT, and DELETE requests from any
website like Northwind MVC that has an origin of https://localhost:5001, as shown
in the following code:

app.UseCors(configurePolicy: options =>
{
 options.WithMethods("GET", "POST", "PUT", "DELETE");
 options.WithOrigins(
 "https://localhost:5001" // allow requests from the MVC client
);
});

4. Start the Northwind.WebApi project and confirm that the web service is listening only on
port 5002, as shown in the following output:

info: Microsoft.Hosting.Lifetime[14]
 Now listening on: https://localhost:5002

5. Start the Northwind.Mvc project and confirm that the website is listening on ports 5000
and 5002, as shown in the following output:

info: Microsoft.Hosting.Lifetime[14]
 Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://localhost:5000

6. Start Chrome.
7. In the customer form, enter a country like Germany, UK, or USA, click Submit, and note

the list of customers, as shown in Figure 16.18:

Chapter 16

[707]

Figure 16.18: Customers in the UK

8. Click the Back button in your browser, clear the country textbox, click Submit, and
note the worldwide list of customers.

9. In a command prompt or terminal, note the HttpClient writes each HTTP request that
it makes and HTTP response that it receives, as shown in the following output:

info: System.Net.Http.HttpClient.Northwind.WebApi.ClientHandler[100]
 Sending HTTP request GET https://localhost:5002/api/
customers/?country=UK
info: System.Net.Http.HttpClient.Northwind.WebApi.ClientHandler[101]
 Received HTTP response headers after 931.864ms - 200

10. Close Chrome and shut down the web server.

You have successfully built a web service and called it from an MVC website.

Implementing advanced features for web
services
Now that you have seen the fundamentals of building a web service and then calling it from a
client, let's look at some more advanced features.

Building and Consuming Web Services

[708]

Implementing a Health Check API
There are many paid services that perform site availability tests that are basic pings, some with
more advanced analysis of the HTTP response.

ASP.NET Core 2.2 and later makes it easy to implement more detailed website health checks.
For example, your website might be live, but is it ready? Can it retrieve data from its database?

Let's add basic health check capabilities to our web service:

1. In the Northwind.WebApi project, add a project reference to enable Entity Framework
Core database health checks, as shown in the following markup:

<PackageReference Include=
 "Microsoft.Extensions.Diagnostics.HealthChecks.EntityFrameworkCore"
 Version="6.0.0" />

2. Build the project.
3. In Program.cs, at the bottom of the services configuration section, add a

statement to add health checks, including to the Northwind database context, as shown
in the following code:

builder.Services.AddHealthChecks()
 .AddDbContextCheck<NorthwindContext>();

4. In the HTTP pipeline configuration section, before the call to MapControllers, add a
statement to use basic health checks, as shown in the following code:

app.UseHealthChecks(path: "/howdoyoufeel");

5. Start the web service.
6. Start Chrome.
7. Navigate to https://localhost:5002/howdoyoufeel and note that the web

service responds with a plain text response: Healthy.
8. At the command prompt or terminal, note the SQL statement that was executed

to test the health of the database, as shown in the following output:
Level: Debug, Event Id: 20100, State: Executing DbCommand [Parameters=[],
CommandType='Text', CommandTimeout='30']
SELECT 1

9. Close Chrome and shut down the web server.

By default, the database context check calls EF Core's
CanConnectAsync method. You can customize what operation is run
by calling the AddDbContextCheck method.

Chapter 16

[709]

Implementing Open API analyzers and conventions
In this chapter, you learned how to enable Swagger to document a web service by manually
decorating a controller class with attributes.

In ASP.NET Core 2.2 or later, there are API analyzers that reflect over controller classes that
have been annotated with the [ApiController] attribute to document it automatically. The
analyzer assumes some API conventions.

To use it, your project must enable the OpenAPI Analyzers, as shown highlighted in the
following markup:

<PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <IncludeOpenAPIAnalyzers>true</IncludeOpenAPIAnalyzers>
</PropertyGroup>

After installing, controllers that have not been properly decorated should have warnings
(green squiggles) and warnings when you compile the source code. For example, the
WeatherForecastController class.

Automatic code fixes can then add the appropriate [Produces] and [ProducesResponseType]
attributes, although this only currently works in Visual Studio. In Visual Studio Code, you will
see warnings about where the analyzer thinks you should add attributes, but you must add
them yourself.

Implementing transient fault handling
When a client app or website calls a web service, it could be from across the other side of the
world. Network problems between the client and the server could cause issues that are nothing
to do with your implementation code. If a client makes a call and it fails, the app should not just
give up. If it tries again, the issue may now have been resolved. We need a way to handle these
temporary faults.

To handle these transient faults, Microsoft recommends that you use the third-party library
Polly to implement automatic retries with exponential backoff. You define a policy, and the
library handles everything else.

Good Practice: You can read more about how Polly can make your web
services more reliable at the following link: https://docs.microsoft.com/
en-us/dotnet/architecture/microservices/implement-resilient-
applications/implement-http-call-retries-exponential-backoff-
polly

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/implement-http-call-retries-exponential-backoff-polly
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/implement-http-call-retries-exponential-backoff-polly
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/implement-http-call-retries-exponential-backoff-polly
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/implement-http-call-retries-exponential-backoff-polly

Building and Consuming Web Services

[710]

Adding security HTTP headers
ASP.NET Core has built-in support for common security HTTP headers like HSTS. But there
are many more HTTP headers that you should consider implementing.

The easiest way to add these headers is using a middleware class:

1. In the Northwind.WebApi project/folder, create a file named
SecurityHeadersMiddleware.cs and modify its statements, as shown in the following
code:

using Microsoft.Extensions.Primitives; // StringValues

public class SecurityHeaders
{
 private readonly RequestDelegate next;

 public SecurityHeaders(RequestDelegate next)
 {
 this.next = next;
 }

 public Task Invoke(HttpContext context)
 {
 // add any HTTP response headers you want here
 context.Response.Headers.Add(
 "super-secure", new StringValues("enable"));

 return next(context);
 }
}

2. In Program.cs, in the HTTP pipeline configuration section, add a statement to
register the middleware before the call to UseEndpoints, as shown in the following code:

app.UseMiddleware<SecurityHeaders>();

3. Start the web service.
4. Start Chrome.
5. Show Developer tools and its Network tab to record requests and responses.
6. Navigate to https://localhost:5002/weatherforecast.
7. Note the custom HTTP response header that we added named super-secure, as shown

in Figure 16.19:

Chapter 16

[711]

Figure 16.19: Adding a custom HTTP header named super-secure

Building web services using minimal APIs
For .NET 6, Microsoft put a lot of effort into adding new features to the C# 10 language and
simplifying the ASP.NET Core libraries to enable the creation of web services using minimal
APIs.

You might remember the weather forecast service that is provided in the Web API project
template. It shows the use of a controller class to return a five-day weather forecast using faked
data. We will now recreate that weather service using minimal APIs.

First, the weather service has a class to represent a single weather forecast. We will need to use
this class in multiple projects, so let's create a class library for that:

1. Use your preferred code editor to add a new project, as defined in the following list:
1. Project template: Class Library / classlib
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.Common

2. Rename Class1.cs to WeatherForecast.cs.
3. Modify WeatherForecast.cs, as shown in the following code:

namespace Northwind.Common
{
 public class WeatherForecast
 {
 public static readonly string[] Summaries = new[]
 {

Building and Consuming Web Services

[712]

 "Freezing", "Bracing", "Chilly", "Cool", "Mild",
 "Warm", "Balmy", "Hot", "Sweltering", "Scorching"
 };

 public DateTime Date { get; set; }

 public int TemperatureC { get; set; }

 public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);

 public string? Summary { get; set; }
 }
}

Building a weather service using minimal APIs
Now let's recreate that weather service using minimal APIs. It will listen on port 5003 and have
CORS support enabled so that requests can only come from the MVC website and only GET
requests are allowed:

1. Use your preferred code editor to add a new project, as defined in the following list:
1. Project template: ASP.NET Core Empty / web
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Minimal.WebApi
4. Other Visual Studio options: Authentication Type: None, Configure for

HTTPS: selected, Enable Docker: cleared, Enable OpenAPI support: selected.

2. In Visual Studio Code, select Minimal.WebApi as the active OmniSharp project.
3. In the Minimal.WebApi project, add a project reference to the Northwind.Common

project, as shown in the following markup:
<ItemGroup>
 <ProjectReference Include="..\Northwind.Common\Northwind.Common.csproj"
/>
</ItemGroup>

4. Build the Minimal.WebApi project.
5. Modify Program.cs, as shown highlighted in the following code:

using Northwind.Common; // WeatherForecast

var builder = WebApplication.CreateBuilder(args);

builder.WebHost.UseUrls("https://localhost:5003");

Chapter 16

[713]

builder.Services.AddCors();

var app = builder.Build();

// only allow the MVC client and only GET requests
app.UseCors(configurePolicy: options =>
{
 options.WithMethods("GET");
 options.WithOrigins("https://localhost:5001");
});

app.MapGet("/api/weather", () =>
{
 return Enumerable.Range(1, 5).Select(index =>
 new WeatherForecast
 {
 Date = DateTime.Now.AddDays(index),
 TemperatureC = Random.Shared.Next(-20, 55),
 Summary = WeatherForecast.Summaries[
 Random.Shared.Next(WeatherForecast.Summaries.Length)]
 })
 .ToArray();
});

app.Run();

6. In Properties, modify launchSettings.json to configure the Minimal.WebApi
profile to launch the browser using port 5003 in the URL, as shown highlighted in the
following markup:

"profiles": {
 "Minimal.WebApi": {
 "commandName": "Project",
 "dotnetRunMessages": "true",
 "launchBrowser": true,
 "applicationUrl": "https://localhost:5003/api/weather",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }

Good Practice: For simple web services, avoid creating a controller
class, and instead use minimal APIs to put all the configuration and
implementation in one place, Program.cs.

Building and Consuming Web Services

[714]

Testing the minimal weather service
Before creating a client to the service, let's test that it returns forecasts as JSON:

1. Start the web service project.
2. If you are not using Visual Studio 2022, start Chrome and navigate to https://

localhost:5003/api/weather.
3. Note the Web API service should return a JSON document with five random

weather forecast objects in an array.
4. Close Chrome and shut down the web server.

Adding weather forecasts to the Northwind website
home page
Finally, let's add an HTTP client to the Northwind website so that it can call the weather service
and show forecasts on the home page:

1. In the Northwind.Mvc project, add a project reference to Northwind.Common, as shown
highlighted in the following markup:

<ItemGroup>
 <!-- change Sqlite to SqlServer if you prefer -->
 <ProjectReference Include="..\Northwind.Common.DataContext.Sqlite\
Northwind.Common.DataContext.Sqlite.csproj" />
 <ProjectReference Include="..\Northwind.Common\Northwind.Common.csproj"
/>
</ItemGroup>

2. In Program.cs, add a statement to configure an HTTP client to call the minimal
service on port 5003, as shown in the following code:

builder.Services.AddHttpClient(name: "Minimal.WebApi",
 configureClient: options =>
 {
 options.BaseAddress = new Uri("https://localhost:5003/");
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 "application/json", 1.0));
 });

3. In HomeController.cs, import the Northwind.Common namespace, and in the
Index method, add statements to get and use an HTTP client to call the weather service
to get forecasts and store them in ViewData, as shown in the following code:

try
{
 HttpClient client = clientFactory.CreateClient(

Chapter 16

[715]

 name: "Minimal.WebApi");

 HttpRequestMessage request = new(
 method: HttpMethod.Get, requestUri: "api/weather");

 HttpResponseMessage response = await client.SendAsync(request);

 ViewData["weather"] = await response.Content
 .ReadFromJsonAsync<WeatherForecast[]>();
}
catch (Exception ex)
{
 _logger.LogWarning($"The Minimal.WebApi service is not responding.
Exception: {ex.Message}");
 ViewData["weather"] = Enumerable.Empty<WeatherForecast>().ToArray();
}

4. In Views/Home, in Index.cshtml, import the Northwind.Common namespace and
then in the top code block get the weather forecasts from the ViewData dictionary, as
shown in the following markup:

@{
 ViewData["Title"] = "Home Page";
 string currentItem = "";
 WeatherForecast[]? weather = ViewData["weather"] as WeatherForecast[];
}

5. In the first <div>, after rendering the current time, add markup to enumerate the
weather forecasts unless there aren't any, and render them in a table, as shown in the
following markup:

<p>
 <h4>Five-Day Weather Forecast</h4>
 @if ((weather is null) || (!weather.Any()))
 {
 <p>No weather forecasts found.</p>
 }
 else
 {
 <table class="table table-info">
 <tr>
 @foreach (WeatherForecast w in weather)
 {
 <td>@w.Date.ToString("ddd d MMM") will be @w.Summary</td>
 }
 </tr>
 </table>
 }
</p>

Building and Consuming Web Services

[716]

6. Start the Minimal.WebApi service.
7. Start the Northwind.Mvc website.
8. Navigate to https://localhost:5001/, and note the weather forecast, as shown in

Figure 16.20:

Figure 16.20: A five-day weather forecast on the home page of the Northwind website

9. View the command prompt or terminal for the MVC website and note the info
messages that indicate a request was sent to the minimal API web service api/weather
endpoint in about 83ms, as shown in the following output:

info: System.Net.Http.HttpClient.Minimal.WebApi.LogicalHandler[100]
 Start processing HTTP request GET https://localhost:5003/api/weather
info: System.Net.Http.HttpClient.Minimal.WebApi.ClientHandler[100]
 Sending HTTP request GET https://localhost:5003/api/weather
info: System.Net.Http.HttpClient.Minimal.WebApi.ClientHandler[101]
 Received HTTP response headers after 76.8963ms - 200
info: System.Net.Http.HttpClient.Minimal.WebApi.LogicalHandler[101]
 End processing HTTP request after 82.9515ms – 200

10. Stop the Minimal.WebApi service, refresh the browser, and note that after a few
seconds the MVC website home page appears without weather forecasts.

11. Close Chrome and shut down the web server.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore this chapter's topics with deeper research.

Exercise 16.1 – Test your knowledge
Answer the following questions:

1. Which class should you inherit from to create a controller class for an ASP.NET Core
Web API service?

2. If you decorate your controller class with the [ApiController] attribute to get default
behavior like automatic 400 responses for invalid models, what else must you do?

3. What must you do to specify which controller action method will be executed in
response to an HTTP request?

Chapter 16

[717]

4. What must you do to specify what responses should be expected when calling an action
method?

5. List three methods that can be called to return responses with different status
codes.

6. List four ways that you can test a web service.
7. Why should you not wrap your use of HttpClient in a using statement to

dispose of it when you are finished even though it implements the IDisposable
interface, and what should you use instead?

8. What does the acronym CORS stand for and why is it important to enable it in a
web service?

9. How can you enable clients to detect if your web service is healthy with ASP.
NET Core 2.2 and later?

10. What benefits does endpoint routing provide?

Exercise 16.2 – Practice creating and deleting
customers with HttpClient
Extend the Northwind.Mvc website project to have pages where a visitor can fill in a form to
create a new customer, or search for a customer and then delete them. The MVC controller
should make calls to the Northwind web service to create and delete customers.

Exercise 16.3 – Explore topics
Use the links on the following page to learn more detail about the topics covered in this
chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-16---
building-and-consuming-web-services

Summary
In this chapter, you learned how to build an ASP.NET Core Web API service that can be called
by any app on any platform that can make an HTTP request and process an HTTP response.

You also learned how to test and document web service APIs with Swagger, as well as how to
consume services efficiently.

In the next chapter, you will learn to build user interfaces using Blazor, Microsoft's cool new
component technology that enables developers to build client-side, single-page applications
(SPAs) for websites using C# instead of JavaScript, hybrid apps for desktop, and potentially
mobile apps.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-16---building-and-consuming-web-services
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-16---building-and-consuming-web-services

[719]

17
Building User Interfaces

Using Blazor
This chapter is about using Blazor to build user interfaces. I will describe the different flavors of
Blazor and their pros and cons.

You will learn how to build Blazor components that can execute their code on the web server
or in the web browser. When hosted with Blazor Server, it uses SignalR to communicate
needed updates to the user interface in the browser. When hosted with Blazor WebAssembly,
the components execute their code in the client and must make HTTP calls to interact with the
server.

In this chapter, we will cover the following topics:

• Understanding Blazor
• Comparing Blazor project templates
• Building components using Blazor Server
• Abstracting a service for a Blazor component
• Building components using Blazor WebAssembly
• Improving Blazor WebAssembly apps

Understanding Blazor
Blazor lets you build shared components and interactive web user interfaces using C# instead
of JavaScript. In April 2019, Microsoft announced that Blazor "is no longer experimental and
we are committing to ship it as a supported web UI framework, including support for running
client side in the browser on WebAssembly." Blazor is supported on all modern browsers.

Building User Interfaces Using Blazor

[720]

JavaScript and friends
Traditionally, any code that needs to execute in a web browser is written using the JavaScript
programming language or a higher-level technology that transpiles (transforms or compiles)
into JavaScript. This is because all browsers have supported JavaScript for about two decades,
so it has become the lowest common denominator for implementing business logic on the
client side.

JavaScript does have some issues, however. Although it has superficial similarities to C-style
languages like C# and Java, it is actually very different once you dig beneath the surface. It is a
dynamically typed pseudo-functional language that uses prototypes instead of class inheritance
for object reuse. It might look human, but you will get a surprise when it's revealed to actually
be a Skrull.

Wouldn't it be great if we could use the same language and libraries in a web browser as we do
on the server side?

Silverlight – C# and .NET using a plugin
Microsoft made a previous attempt at achieving this goal with a technology named Silverlight.
When Silverlight 2.0 was released in 2008, a C# and .NET developer could use their skills to
build libraries and visual components that were executed in the web browser by the Silverlight
plugin.

By 2011 and Silverlight 5.0, Apple's success with the iPhone and Steve Jobs' hatred of browser
plugins like Flash eventually led to Microsoft abandoning Silverlight since, like Flash,
Silverlight is banned from iPhones and iPads.

WebAssembly – a target for Blazor
A recent development in browsers has given Microsoft the opportunity to make another
attempt. In 2017, the WebAssembly Consensus was completed, and all major browsers now
support it: Chromium (Chrome, Edge, Opera, Brave), Firefox, and WebKit (Safari). Blazor is not
supported by Microsoft's Internet Explorer because it is a legacy web browser.

WebAssembly (Wasm) is a binary instruction format for a virtual machine that provides a way
to run code written in multiple languages on the web at near-native speed. Wasm is designed
as a portable target for the compilation of high-level languages like C#.

Understanding Blazor hosting models
Blazor is a single programming or app model with multiple hosting models:

• Blazor Server runs on the server side, so the C# code that you write has full access to all
resources that your business logic might need without needing to authenticate. It then
uses SignalR to communicate user interface updates to the client side.

Chapter 17

[721]

• The server must keep a live SignalR connection to each client and track the current state
of every client, so Blazor Server does not scale well if you need to support lots of clients.
It first shipped as part of ASP.NET Core 3.0 in September 2019 and is included with
.NET 5.0 and later.

• Blazor WebAssembly runs on the client side, so the C# code that you write only has
access to resources in the browser and it must make HTTP calls (that might require
authentication) before it can access resources on the server. It first shipped as an
extension to ASP.NET Core 3.1 in May 2020 and was versioned 3.2 because it is a
Current release and therefore not covered by ASP.NET Core 3.1's Long Term Support.
The Blazor WebAssembly 3.2 version used the Mono runtime and Mono libraries; .NET
5 and later versions use the Mono runtime and the .NET 5 libraries. "Blazor WebAssembly
runs on a .NET IL interpreter without any JIT so it's not going to win any speed competitions.
We have made some significant speed improvements though in .NET 5, and we expect to
improve things further for .NET 6."—Daniel Roth

• .NET MAUI Blazor App, aka Blazor Hybrid, runs in the .NET process, renders its web
UI to a web view control using a local interop channel, and is hosted in a .NET MAUI
app. It is conceptually like Electron apps that use Node.js. We will see this hosting
model in online chapter, Chapter 19, Building Mobile and Desktop Apps Using .NET MAUI.

This multi-host model means that, with careful planning, a developer can write Blazor
components once, and then run them on the web server side, web client side, or within a
desktop app.

Although Blazor Server is supported on Internet Explorer 11, Blazor WebAssembly is not.

Blazor WebAssembly has optional support for Progressive Web Apps (PWAs), meaning a
website visitor can use a browser menu to add the app to their desktop and run the app offline.

Understanding Blazor components
It is important to understand that Blazor is used to create user interface components.
Components define how to render the user interface, react to user events, and can be composed
and nested, and compiled into a NuGet Razor class library for packaging and distribution.

For example, you might create a component named Rating.razor, as shown in the following
markup:

<div>
@for (int i = 0; i < Maximum; i++)
{
 if (i < Value)
 {

 }
 else
 {

Building User Interfaces Using Blazor

[722]

 }
}
</div>

@code {
 [Parameter]
 public byte Maximum { get; set; }

 [Parameter]
 public byte Value { get; set; }
}

You could then use the component on a web page, as shown in the following markup:

<h1>Review</h1>
<Rating id="rating" Maximum="5" Value="3" />
<textarea id="comment" />

There are many built-in Blazor components, including ones to set elements like <title> in the
<head> section of a web page, and plenty of third parties who will sell you components for
common purposes.

In the future, Blazor might not be limited to only creating user interface components using web
technologies. Microsoft has an experimental technology known as Blazor Mobile Bindings that
allows developers to use Blazor to build mobile user interface components. Instead of using
HTML and CSS to build a web user interface, it uses XAML and .NET MAUI to build a cross-
platform graphical user interface.

What is the difference between Blazor and Razor?
You might wonder why Blazor components use .razor as their file extension. Razor is a
template markup syntax that allows the mixing of HTML and C#. Older technologies that
support Razor syntax use the .cshtml file extension to indicate the mix of C# and HTML.

Razor syntax is used for:

• ASP.NET Core MVC views and partial views that use the .cshtml file extension. The
business logic is separated into a controller class that treats the view as a template to
push the view model to, which then outputs it to a web page.

• Razor Pages that use the .cshtml file extension. The business logic can be embedded or
separated into a file that uses the .cshtml.cs file extension. The output is a web page.

Instead of a single file with both markup and an @code block, the code can be
stored in a separate code-behind file named Rating.razor.cs. The class in
this file must be partial and have the same name as the component.

Chapter 17

[723]

• Blazor components that use the .razor file extension. The output is not a web page,
although layouts can be used to wrap a component so it outputs as a web page, and the
@page directive can be used to assign a route that defines the URL path to retrieve the
component as a page.

Comparing Blazor project templates
One way to understand the choice between the Blazor Server and Blazor WebAssembly hosting
models is to review the differences in their default project templates.

Reviewing the Blazor Server project template
Let us look at the default template for a Blazor Server project. Mostly you will see that it is the
same as an ASP.NET Core Razor Pages template, with a few key additions:

1. Use your preferred code editor to add a new project, as defined in the following list:
1. Project template: Blazor Server App / blazorserver
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.BlazorServer
4. Other Visual Studio options: Authentication Type: None; Configure for

HTTPS: selected; Enable Docker: cleared

2. In Visual Studio Code, select Northwind.BlazorServer as the active OmniSharp project.
3. Build the Northwind.BlazorServer project.
4. In the Northwind.BlazorServer project/folder, open Northwind.BlazorServer.csproj

and note that it is identical to an ASP.NET Core project that uses the Web SDK and
targets .NET 6.0.

5. Open Program.cs, and note it is almost identical to an ASP.NET Core project.
Differences include the section that configures services, with its call to the
AddServerSideBlazor method, as shown highlighted in the following code:

 builder.Services.AddRazorPages();
 builder.Services.AddServerSideBlazor();
 builder.Services.AddSingleton<WeatherForecastService>();

6. Also note the section for configuring the HTTP pipeline, which adds the calls to the
MapBlazorHub and MapFallbackToPage methods that configure the ASP.NET Core app to
accept incoming SignalR connections for Blazor components, while other requests fall
back to a Razor Page named _Host.cshtml, as shown highlighted in the following code:

app.UseRouting();

app.MapBlazorHub();
app.MapFallbackToPage("/_Host");

app.Run();

Building User Interfaces Using Blazor

[724]

7. In the Pages folder, open _Host.cshtml and note that it sets a shared layout named
_Layout and renders a Blazor component of type App that is prerendered on the server,
as shown in the following markup:

@page "/"
@namespace Northwind.BlazorServer.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@{
 Layout = "_Layout";
}

<component type="typeof(App)" render-mode="ServerPrerendered" />

8. In the Pages folder, open the shared layout file named _Layout.cshtml, as shown in the
following markup:

@using Microsoft.AspNetCore.Components.Web
@namespace Northwind.BlazorServer.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport"
 content="width=device-width, initial-scale=1.0" />
 <base href="~/" />
 <link rel="stylesheet" href="css/bootstrap/bootstrap.min.css" />
 <link href="css/site.css" rel="stylesheet" />
 <link href="Northwind.BlazorServer.styles.css" rel="stylesheet" />
 <component type="typeof(HeadOutlet)" render-mode="ServerPrerendered" />
</head>
<body>
 @RenderBody()

 <div id="blazor-error-ui">
 <environment include="Staging,Production">
 An error has occurred. This application may no longer respond until
reloaded.
 </environment>
 <environment include="Development">
 An unhandled exception has occurred. See browser dev tools for
details.
 </environment>
 Reload
 🗙🗙
 </div>

Chapter 17

[725]

 <script src="_framework/blazor.server.js"></script>
</body>
</html>

While reviewing the preceding markup, note the following:
• <div id="blazor-error-ui"> for showing Blazor errors that will appear as a

yellow bar at the bottom of the web page when an error occurs
• The script block for blazor.server.js manages the SignalR connection back to

the server

9. In the Northwind.BlazorServer folder, open App.razor and note that it defines a Router
for all components found in the current assembly, as shown in the following code:

<Router AppAssembly="@typeof(App).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)" />
 <FocusOnNavigate RouteData="@routeData" Selector="h1" />
 </Found>
 <NotFound>
 <PageTitle>Not found</PageTitle>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
</Router>

While reviewing the preceding markup, note the following:
• If a matching route is found, then RouteView is executed that sets the default

layout for the component to MainLayout and passes any route data parameters
to the component.

• If a matching route is not found, then LayoutView is executed that renders the
internal markup (in this case, a simple paragraph element with a message
telling the visitor there is nothing at this address) inside MainLayout.

10. In the Shared folder, open MainLayout.razor and note that it defines <div> for a sidebar
containing a navigation menu that is implemented by the NavMenu.razor component file
in this project, and an HTML5 element such as <main> and <article> for the content, as
shown in the following code:

@inherits LayoutComponentBase

<PageTitle>Northwind.BlazorServer</PageTitle>

<div class="page">
 <div class="sidebar">

Building User Interfaces Using Blazor

[726]

 <NavMenu />
 </div>

 <main>
 <div class="top-row px-4">
 <a href="https://docs.microsoft.com/aspnet/"
 target="_blank">About
 </div>
 <article class="content px-4">
 @Body
 </article>
 </main>
</div>

11. In the Shared folder, open MainLayout.razor.css and note that it contains isolated CSS
styles for the component.

12. In the Shared folder, open NavMenu.razor and note that it has three menu items for
Home, Counter, and Fetch data. These are created by using a Microsoft-provided
Blazor component named NavLink, as shown in the following markup:

<div class="top-row ps-3 navbar navbar-dark">
 <div class="container-fluid">
 Northwind.BlazorServer
 <button title="Navigation menu" class="navbar-toggler"
 @onclick="ToggleNavMenu">

 </button>
 </div>
</div>

<div class="@NavMenuCssClass" @onclick="ToggleNavMenu">
 <nav class="flex-column">
 <div class="nav-item px-3">
 <NavLink class="nav-link" href="" Match="NavLinkMatch.All">
 Home
 </NavLink>
 </div>
 <div class="nav-item px-3">
 <NavLink class="nav-link" href="counter">
 Counter
 </NavLink>
 </div>
 <div class="nav-item px-3">
 <NavLink class="nav-link" href="fetchdata">
 Fetch
data
 </NavLink>

Chapter 17

[727]

 </div>
 </nav>
</div>

@code {
 private bool collapseNavMenu = true;

 private string? NavMenuCssClass => collapseNavMenu ? "collapse" : null;

 private void ToggleNavMenu()
 {
 collapseNavMenu = !collapseNavMenu;
 }
}

13. In the Pages folder, open FetchData.razor and note that it defines a component that
fetches weather forecasts from an injected dependency weather service and then
renders them in a table, as shown in the following code:

@page "/fetchdata"

<PageTitle>Weather forecast</PageTitle>

@using Northwind.BlazorServer.Data
@inject WeatherForecastService ForecastService

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from a service.</p>

@if (forecasts == null)
{
 <p>Loading...</p>
}
else
{
 <table class="table">
 <thead>
 <tr>
 <th>Date</th>
 <th>Temp. (C)</th>
 <th>Temp. (F)</th>
 <th>Summary</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var forecast in forecasts)

Building User Interfaces Using Blazor

[728]

 {
 <tr>
 <td>@forecast.Date.ToShortDateString()</td>
 <td>@forecast.TemperatureC</td>
 <td>@forecast.TemperatureF</td>
 <td>@forecast.Summary</td>
 </tr>
 }
 </tbody>
 </table>
}

@code {
 private WeatherForecast[]? forecasts;

 protected override async Task OnInitializedAsync()
 {
 forecasts = await ForecastService.GetForecastAsync(DateTime.Now);
 }
}

14. In the Data folder, open WeatherForecastService.cs and note that it is not a Web API
controller class; it is just an ordinary class that returns random weather data, as shown
in the following code:

namespace Northwind.BlazorServer.Data
{
 public class WeatherForecastService
 {
 private static readonly string[] Summaries = new[]
 {
 "Freezing", "Bracing", "Chilly", "Cool", "Mild", "Warm",
 "Balmy", "Hot", "Sweltering", "Scorching"
 };

 public Task<WeatherForecast[]> GetForecastAsync(DateTime startDate)
 {
 return Task.FromResult(Enumerable.Range(1, 5)
 .Select(index => new WeatherForecast
 {
 Date = startDate.AddDays(index),
 TemperatureC = Random.Shared.Next(-20, 55),
 Summary = Summaries[Random.Shared.Next(Summaries.Length)]
 }).ToArray());
 }
 }
}

Chapter 17

[729]

Understanding CSS and JavaScript isolation
Blazor components often need to provide their own CSS to apply styling or JavaScript for
activities that cannot be performed purely in C#, like access to browser APIs. To ensure this
does not conflict with site-level CSS and JavaScript, Blazor supports CSS and JavaScript
isolation. If you have a component named Index.razor, simply create a CSS file named
Index.razor.css. The styles defined within this file will override any other styles in the project.

Understanding Blazor routing to page components
The Router component that we saw in the App.razor file enables routing to components. The
markup for creating an instance of a component looks like an HTML tag where the name of the
tag is the component type. Components can be embedded on a web page using an element, for
example, <Rating Stars="5" />, or can be routed to like a Razor Page or MVC controller.

How to define a routable page component
To create a routable page component, add the @page directive to the top of a component's
.razor file, as shown in the following markup:

@page "customers"

The preceding code is the equivalent of an MVC controller decorated with the [Route]
attribute, as shown in the following code:

[Route("customers")]
public class CustomersController
{

The Router component scans the assembly specifically in its AppAssembly parameter for
components decorated with the [Route] attribute and registers their URL paths.

Any single-page component can have multiple @page directives to register multiple routes.

At runtime, the page component is merged with any specific layout that you have specified,
just like an MVC view or Razor Page would be. By default, the Blazor Server project template
defines MainLayout.razor as the layout for page components.

How to navigate Blazor routes
Microsoft provides a dependency service named NavigationManager that understands Blazor
routing and the NavLink component.

Good Practice: By convention, put routable page components in the Pages
folder.

Building User Interfaces Using Blazor

[730]

The NavigateTo method is used to go to the specified URL.

How to pass route parameters
Blazor routes can include case-insensitive named parameters, and your code can most easily
access the passed values by binding the parameter to a property in the code block using the
[Parameter] attribute, as shown in the following markup:

@page "/customers/{country}"

<div>Country parameter as the value: @Country</div>

@code {
 [Parameter]
 public string Country { get; set; }
}

The recommended way to handle a parameter that should have a default value when it
is missing is to suffix the parameter with ? and use the null coalescing operator in the
OnParametersSet method, as shown in the following markup:

@page "/customers/{country?}"

<div>Country parameter as the value: @Country</div>

@code {
 [Parameter]
 public string Country { get; set; }

 protected override void OnParametersSet()
 {
 // if the automatically set property is null
 // set its value to USA
 Country = Country ?? "USA";
 }
}

Understanding base component classes
The OnParametersSet method is defined by the base class that components inherit from by
default named ComponentBase, as shown in the following code:

using Microsoft.AspNetCore.Components;

public abstract class ComponentBase : IComponent, IHandleAfterRender,
IHandleEvent
{

Chapter 17

[731]

 // members not shown
}

ComponentBase has some useful methods that you can call and override, as shown in the
following table:

Method(s) Description

InvokeAsync Call this method to execute a function on the associated renderer's
synchronization context.

OnAfterRender,
OnAfterRenderAsync

Override these methods to invoke code after each time the component has
been rendered.

OnInitialized,
OnInitializedAsync

Override these methods to invoke code after the component has received
its initial parameters from its parent in the render tree.

OnParametersSet,
OnParametersSetAsync

Override these methods to invoke code after the component has received
parameters and the values have been assigned to properties.

ShouldRender Override this method to indicate if the component should render.

StateHasChanged Call this method to cause the component to re-render.

Blazor components can have shared layouts in a similar way to MVC views and Razor Pages.

Create a .razor component file, but make it explicitly inherit from LayoutComponentBase, as
shown in the following markup:

@inherits LayoutComponentBase

<div>
 ...
 @Body
 ...
</div>

The base class has a property named Body that you can render in the markup at the correct
place within the layout.

Set a default layout for components in the App.razor file and its Router component. To
explicitly set a layout for a component, use the @layout directive, as shown in the following
markup:

@page "/customers"
@layout AlternativeLayout

<div>
 ...
</div>

Building User Interfaces Using Blazor

[732]

How to use the navigation link component with routes
In HTML, you use the <a> element to define navigation links, as shown in the following
markup:

Customers

In Blazor, use the <NavLink> component, as shown in the following markup:

<NavLink href="/customers">Customers</NavLink>

The NavLink component is better than an anchor element because it automatically sets its class
to active if its href is a match on the current location URL. If your CSS uses a different class
name, then you can set the class name in the NavLink.ActiveClass property.

By default, in the matching algorithm, the href is a path prefix, so if NavLink has an href of
/customers, as shown in the preceding code example, then it would match all the following
paths and set them all to have the active class style:

/customers
/customers/USA
/customers/Germany/Berlin

To ensure that the matching algorithm only performs matches on all of the paths, set the Match
parameter to NavLinkMatch.All, as shown in the following code:

<NavLink href="/customers" Match="NavLinkMatch.All">Customers</NavLink>

If you set other attributes such as target, they are passed through to the underlying <a>
element that is generated.

Running the Blazor Server project template
Now that we have reviewed the project template and the important parts that are specific to
Blazor Server, we can start the website and review its behavior:

1. In the Properties folder, open launchSettings.json.
2. Modify the applicationUrl to use port 5000 for HTTP and port 5001 for HTTPS, as shown

highlighted in the following markup:
"profiles": {
 "Northwind.BlazorServer": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "https://localhost:5001;http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },

Chapter 17

[733]

3. Start the website.
4. Start Chrome.
5. Navigate to https://localhost:5001/.
6. In the left navigation menu, click Fetch data, as shown in Figure 17.1:

Figure 17.1: Fetching weather data into a Blazor Server app

7. In the browser address bar, change the route to /apples and note the missing message,
as shown in Figure 17.2:

Figure 17.2: The missing component message

8. Close Chrome and shut down the web server.

Reviewing the Blazor WebAssembly project
template
Now we will create a Blazor WebAssembly project. I will not show code in the book if the code
is the same as in a Blazor Server project:

1. Use your preferred code editor to add a new project to the PracticalApps solution or
workspace, as defined in the following list:

1. Project template: Blazor WebAssembly App / blazorwasm
2. Switches: --pwa --hosted
3. Workspace/solution file and folder: PracticalApps

Building User Interfaces Using Blazor

[734]

4. Project file and folder: Northwind.BlazorWasm
5. Authentication Type: None
6. Configure for HTTPS: checked
7. ASP.NET Core hosted: checked
8. Progressive Web Application: checked

While reviewing the generated folders and files, note that three projects are generated,
as described in the following list:

• Northwind.BlazorWasm.Client is the Blazor WebAssembly project in the
Northwind.BlazorWasm\Client folder.

• Northwind.BlazorWasm.Server is an ASP.NET Core project website in the
Northwind.BlazorWasm\Server folder for hosting the weather service that has
the same implementation for returning random weather forecasts as before, but
is implemented as a proper Web API controller class. The project file has project
references to Shared and Client, and a package reference to support Blazor
WebAssembly on the server side.

• Northwind.BlazorWasm.Shared is a class library in the Northwind.BlazorWasm\
Shared folder that contains models for the weather service.

The folder structure is simplified, as shown in Figure 17.3:

Figure 17.3: The folder structure for the Blazor WebAssembly project template

2. In the Client folder, open Northwind.BlazorWasm.Client.csproj and note that it uses
the Blazor WebAssembly SDK and references two WebAssembly packages and the
Shared project, as well as the service worker required for PWA support, as shown in the
following markup:

There are two ways to deploy a Blazor WebAssembly app. You could
deploy just the Client project by placing its published files in any
static hosting web server. It could be configured to call the weather
service that you created in Chapter 16, Building and Consuming Web
Services, or you can deploy the Server project, which references
the Client app and hosts both the weather service and the Blazor
WebAssembly app. The app is placed in the server website wwwroot
folder along with any other static assets. You can read more about
these choices at the following link: https://docs.microsoft.com/
en-us/aspnet/core/blazor/host-and-deploy/webassembly

https://docs.microsoft.com/en-us/aspnet/core/blazor/host-and-deploy/webassembly
https://docs.microsoft.com/en-us/aspnet/core/blazor/host-and-deploy/webassembly

Chapter 17

[735]

<Project Sdk="Microsoft.NET.Sdk.BlazorWebAssembly">

 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <ServiceWorkerAssetsManifest>service-worker-assets.js
 </ServiceWorkerAssetsManifest>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include=
 "Microsoft.AspNetCore.Components.WebAssembly"
 Version="6.0.0" />
 <PackageReference Include=
 "Microsoft.AspNetCore.Components.WebAssembly.DevServer"
 Version="6.0.0" PrivateAssets="all" />
 </ItemGroup>

 <ItemGroup>
 <ProjectReference Include=
 "..\Shared\Northwind.BlazorWasm.Shared.csproj" />
 </ItemGroup>

 <ItemGroup>
 <ServiceWorker Include="wwwroot\service-worker.js"
 PublishedContent="wwwroot\service-worker.published.js" />
 </ItemGroup>

</Project>

3. In the Client folder, open Program.cs and note that the host builder is for WebAssembly
instead of server-side ASP.NET Core, and that it registers a dependency service
for making HTTP requests, which is an extremely common requirement for Blazor
WebAssembly apps, as shown in the following code:

using Microsoft.AspNetCore.Components.Web;
using Microsoft.AspNetCore.Components.WebAssembly.Hosting;
using Northwind.BlazorWasm.Client;

var builder = WebAssemblyHostBuilder.CreateDefault(args);
builder.RootComponents.Add<App>("#app");
builder.RootComponents.Add<HeadOutlet>("head::after");

builder.Services.AddScoped(sp => new HttpClient
 { BaseAddress = new Uri(builder.HostEnvironment.BaseAddress) });

await builder.Build().RunAsync();

Building User Interfaces Using Blazor

[736]

4. In the wwwroot folder, open index.html and note the manifest.json and service-
worker.js files supporting offline work, and the blazor.webassembly.js script that
downloads all the NuGet packages for Blazor WebAssembly, as shown in the following
markup:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0,
maximum-scale=1.0, user-scalable=no" />
 <title>Northwind.BlazorWasm</title>
 <base href="/" />
 <link href="css/bootstrap/bootstrap.min.css" rel="stylesheet" />
 <link href="css/app.css" rel="stylesheet" />
 <link href="Northwind.BlazorWasm.Client.styles.css" rel="stylesheet" />
 <link href="manifest.json" rel="manifest" />
 <link rel="apple-touch-icon" sizes="512x512" href="icon-512.png" />
 <link rel="apple-touch-icon" sizes="192x192" href="icon-192.png" />
</head>

<body>
 <div id="app">Loading...</div>

 <div id="blazor-error-ui">
 An unhandled error has occurred.
 Reload
 🗙🗙
 </div>
 <script src="_framework/blazor.webassembly.js"></script>
 <script>navigator.serviceWorker.register('service-worker.js');</script>
</body>

</html>

5. Note that the following .razor files are identical to those in a Blazor Server project:
• App.razor

• Shared\MainLayout.razor

• Shared\NavMenu.razor

• Shared\SurveyPrompt.razor

• Pages\Counter.razor

• Pages\Index.razor

Chapter 17

[737]

6. In the Pages folder, open FetchData.razor and note that the markup is like Blazor
Server except for the injected dependency service for making HTTP requests, as shown
highlighted in the following partial markup:

@page "/fetchdata"
@using Northwind.BlazorWasm.Shared
@inject HttpClient Http

<h1>Weather forecast</h1>

...

@code {
 private WeatherForecast[]? forecasts;

 protected override async Task OnInitializedAsync()
 {
 forecasts = await
 Http.GetFromJsonAsync<WeatherForecast[]>("WeatherForecast");
 }
}

7. Start the Northwind.BlazorWasm.Server project.
8. Note that the app has the same functionality as before. The Blazor component code is

executing inside the browser instead of on the server. The weather service is running on
the web server.

9. Close Chrome and shut down the web server.

Building components using Blazor Server
In this section, we will build a component to list, create, and edit customers in the Northwind
database. We will build it first for Blazor Server naively, and then refactor it to work with both
Blazor Server and Blazor WebAssembly.

Defining and testing a simple component
We will add the new component to the existing Blazor Server project:

1. In the Northwind.BlazorServer project (not the Northwind.BlazorWasm.Server project),
in the Pages folder, add a new file named Customers.razor. In Visual Studio, the project
item is named Razor Component.

Good Practice: Component filenames must start with an uppercase
letter, or you will have compile errors!

Building User Interfaces Using Blazor

[738]

2. Add statements to output a heading for the Customers component and define a code
block that defines a property to store the name of a country, as shown in the following
markup:

<h3>Customers@(string.IsNullOrWhiteSpace(Country) ? " Worldwide" : " in "
+ Country)</h3>

@code {
 [Parameter]
 public string? Country { get; set; }
}

3. In the Pages folder, in the Index.razor component, add statements to the bottom of the
file to instantiate the Customers component twice, once passing Germany as the country
parameter, and once without setting the country, as shown in the following markup:

<Customers Country="Germany" />
<Customers />

4. Start the Northwind.BlazorServer website project.
5. Start Chrome.
6. Navigate to https://localhost:5001/ and note the Customers components, as shown in

Figure 17.4:

Figure 17.4: The Customers component with the Country parameter set to Germany and not set

7. Close Chrome and shut down the web server.

Making the component a routable page component
It is simple to turn this component into a routable page component with a route parameter for
the country:

1. In the Pages folder, in the Customers.razor component, add a statement at the top of
the file to register /customers as its route with an optional country route parameter, as
shown in the following markup:

Chapter 17

[739]

@page "/customers/{country?}"

2. In the Shared folder, open NavMenu.razor and add two list item elements for our
routable page component to show customers worldwide and in Germany that both use
an icon of people, as shown in the following markup:

<div class="nav-item px-3">
 <NavLink class="nav-link" href="customers" Match="NavLinkMatch.All">

 Customers Worldwide
 </NavLink>
</div>
<div class="nav-item px-3">
 <NavLink class="nav-link" href="customers/Germany">

 Customers in Germany
 </NavLink>
</div>

3. Start the website project.
4. Start Chrome.
5. Navigate to https://localhost:5001/.
6. In the left navigation menu, click Customers in Germany, and note that the country

name is correctly passed to the page component and that the component uses the same
shared layout as the other page components, like Index.razor.

7. Close Chrome and shut down the web server.

Getting entities into a component
Now that you have seen the minimum implementation of a component, we can add some
useful functionality to it. In this case, we will use the Northwind database context to fetch
customers from the database:

1. In Northwind.BlazorServer.csproj, add a reference to the Northwind database context
project for either SQL Server or SQLite, as shown in the following markup:

<ItemGroup>
 <!-- change Sqlite to SqlServer if you prefer -->
 <ProjectReference Include="..\Northwind.Common.DataContext.Sqlite
\Northwind.Common.DataContext.Sqlite.csproj" />
</ItemGroup>

We used an icon of people for the customers menu item. You can see
the other available icons at the following link: https://iconify.
design/icon-sets/oi/

https://iconify.design/icon-sets/oi/
https://iconify.design/icon-sets/oi/

Building User Interfaces Using Blazor

[740]

2. Build the Northwind.BlazorServer project.
3. In Program.cs, import the namespace for working with the Northwind database

context, as shown in the following code:
using Packt.Shared; // AddNorthwindContext extension method

4. In the section that configures services, add a statement to register the Northwind
database context in the dependency services collection, as shown in the following code:

builder.Services.AddNorthwindContext();

5. Open _Imports.razor and import namespaces for working with the Northwind
entities so that Blazor components that we build do not need to import the namespaces
individually, as shown in the following markup:

@using Packt.Shared @* Northwind entities *@

6. In the Pages folder, in Customers.razor, add statements to inject the Northwind
database context and then use it to output a table of all customers, as shown in the
following code:

@using Microsoft.EntityFrameworkCore @* ToListAsync extension method *@
@page "/customers/{country?}"
@inject NorthwindContext db

<h3>Customers @(string.IsNullOrWhiteSpace(Country)
 ? "Worldwide" : "in " + Country)</h3>

@if (customers == null)
{
<p>Loading...</p>
}
else
{
<table class="table">
 <thead>
 <tr>
 <th>Id</th>
 <th>Company Name</th>
 <th>Address</th>
 <th>Phone</th>
 <th></th>
 </tr>

The _Imports.razor file only applies to .razor files. If you use code-
behind .cs files to implement component code, then they must have
namespaces imported separately or use global usings to implicitly
import the namespace.

Chapter 17

[741]

 </thead>
 <tbody>
 @foreach (Customer c in customers)
 {
 <tr>
 <td>@c.CustomerId</td>
 <td>@c.CompanyName</td>
 <td>
 @c.Address

 @c.City

 @c.PostalCode

 @c.Country
 </td>
 <td>@c.Phone</td>
 <td>

 <i class="oi oi-pencil"></i>
 <a class="btn btn-danger"
 href="deletecustomer/@c.CustomerId">
 <i class="oi oi-trash"></i>
 </td>
 </tr>
 }
 </tbody>
</table>
}

@code {
 [Parameter]
 public string? Country { get; set; }

 private IEnumerable<Customer>? customers;

 protected override async Task OnParametersSetAsync()
 {
 if (string.IsNullOrWhiteSpace(Country))
 {
 customers = await db.Customers.ToListAsync();
 }
 else
 {
 customers = await db.Customers
 .Where(c => c.Country == Country).ToListAsync();
 }
 }
}

Building User Interfaces Using Blazor

[742]

7. Start the Northwind.BlazorServer project website.
8. Start Chrome.
9. Navigate to https://localhost:5001/.
10. In the left navigation menu, click Customers Worldwide, and note that the table

of customers loads from the database and renders in the web page, as shown in
Figure 17.5:

Figure 17.5: The list of customers worldwide

11. In the left navigation menu, click Customers in Germany, and note that the table of
customers is filtered to only show German customers.

12. In the browser address bar, change Germany to UK, and note that the table of customers is
filtered to only show UK customers.

13. In the left navigation menu, click Home, and note that the customers component also
works correctly when used as an embedded component on a page.

14. Click any of the edit or delete buttons and note that they return a message saying
Sorry, there's nothing at this address. because we have not yet implemented that
functionality.

15. Close the browser.
16. Shut down the web server.

Abstracting a service for a Blazor component
Currently, the Blazor component directly calls the Northwind database context to fetch the
customers. This works fine in Blazor Server since the component executes on the server. But
this component would not work when hosted in Blazor WebAssembly.

Chapter 17

[743]

We will now create a local dependency service to enable better reuse of the components:

1. In the Northwind.BlazorServer project, in the Data folder, add a new file named
INorthwindService.cs. (The Visual Studio project item template is named Interface.)

2. Modify its contents to define a contract for a local service that abstracts CRUD
operations, as shown in the following code:

namespace Packt.Shared;

public interface INorthwindService
{
 Task<List<Customer>> GetCustomersAsync();
 Task<List<Customer>> GetCustomersAsync(string country);
 Task<Customer?> GetCustomerAsync(string id);
 Task<Customer> CreateCustomerAsync(Customer c);
 Task<Customer> UpdateCustomerAsync(Customer c);
 Task DeleteCustomerAsync(string id);
}

3. In the Data folder, add a new file named NorthwindService.cs and modify its contents
to implement the INorthwindService interface by using the Northwind database
context, as shown in the following code:

using Microsoft.EntityFrameworkCore;

namespace Packt.Shared;

public class NorthwindService : INorthwindService
{
 private readonly NorthwindContext db;

 public NorthwindService(NorthwindContext db)
 {
 this.db = db;
 }

 public Task<List<Customer>> GetCustomersAsync()
 {
 return db.Customers.ToListAsync();
 }

 public Task<List<Customer>> GetCustomersAsync(string country)
 {
 return db.Customers.Where(c => c.Country == country).ToListAsync();
 }

Building User Interfaces Using Blazor

[744]

 public Task<Customer?> GetCustomerAsync(string id)
 {
 return db.Customers.FirstOrDefaultAsync
 (c => c.CustomerId == id);
 }

 public Task<Customer> CreateCustomerAsync(Customer c)
 {
 db.Customers.Add(c);
 db.SaveChangesAsync();
 return Task.FromResult(c);
 }

 public Task<Customer> UpdateCustomerAsync(Customer c)
 {
 db.Entry(c).State = EntityState.Modified;
 db.SaveChangesAsync();
 return Task.FromResult(c);
 }

 public Task DeleteCustomerAsync(string id)
 {
 Customer? customer = db.Customers.FirstOrDefaultAsync
 (c => c.CustomerId == id).Result;

 if (customer == null)
 {
 return Task.CompletedTask;
 }
 else
 {
 db.Customers.Remove(customer);
 return db.SaveChangesAsync();
 }
 }
}

4. In Program.cs, in the section that configures services, add a statement to register
NorthwindService as a transient service that implements the INorthwindService
interface, as shown in the following code:

builder.Services.AddTransient<INorthwindService, NorthwindService>();

5. In the Pages folder, open Customers.razor and replace the directive to inject the
Northwind database context with a directive to inject the registered Northwind service,
as shown in the following code:

@inject INorthwindService service

Chapter 17

[745]

6. Modify the OnParametersSetAsync method to call the service, as shown highlighted in
the following code:

protected override async Task OnParametersSetAsync()
{
 if (string.IsNullOrWhiteSpace(Country))
 {
 customers = await service.GetCustomersAsync();
 }
 else
 {
 customers = await service.GetCustomersAsync(Country);
 }
}

7. Start the Northwind.BlazorServer website project and confirm that it retains the same
functionality as before.

Defining forms using the EditForm component
Microsoft provides ready-made components for building forms. We will use them to provide,
create, and edit functionality for customers.

Microsoft provides the EditForm component and several form elements such as InputText to
make it easier to use forms with Blazor.

EditForm can have a model set to bind it to an object with properties and event handlers for
custom validation, as well as recognizing standard Microsoft validation attributes on the model
class, as shown in the following code:

<EditForm Model="@customer" OnSubmit="ExtraValidation">
 <DataAnnotationsValidator />
 <ValidationSummary />
 <InputText id="name" @bind-Value="customer.CompanyName" />
 <button type="submit">Submit</button>
</EditForm>

@code {
 private Customer customer = new();

 private void ExtraValidation()
 {
 // perform any extra validation
 }
}

As an alternative to a ValidationSummary component, you can use the ValidationMessage
component to show a message next to an individual form element.

Building User Interfaces Using Blazor

[746]

Building and using a customer form component
Now we can create a shared component to create or edit a customer:

1. In the Shared folder, create a new file named CustomerDetail.razor. (The Visual Studio
project item template is named Razor Component.) This component will be reused on
multiple page components.

2. Modify its contents to define a form to edit the properties of a customer, as shown in
the following code:

<EditForm Model="@Customer" OnValidSubmit="@OnValidSubmit">
 <DataAnnotationsValidator />
 <div class="form-group">
 <div>
 <label>Customer Id</label>
 <div>
 <InputText @bind-Value="@Customer.CustomerId" />
 <ValidationMessage For="@(() => Customer.CustomerId)" />
 </div>
 </div>
 </div>
 <div class="form-group ">
 <div>
 <label>Company Name</label>
 <div>
 <InputText @bind-Value="@Customer.CompanyName" />
 <ValidationMessage For="@(() => Customer.CompanyName)" />
 </div>
 </div>
 </div>
 <div class="form-group ">
 <div>
 <label>Address</label>
 <div>
 <InputText @bind-Value="@Customer.Address" />
 <ValidationMessage For="@(() => Customer.Address)" />
 </div>
 </div>
 </div>
 <div class="form-group ">
 <div>
 <label>Country</label>
 <div>
 <InputText @bind-Value="@Customer.Country" />
 <ValidationMessage For="@(() => Customer.Country)" />

Chapter 17

[747]

 </div>
 </div>
 </div>
 <button type="submit" class="btn btn-@ButtonStyle">
 @ButtonText
 </button>
</EditForm>

@code {
 [Parameter]
 public Customer Customer { get; set; } = null!;

 [Parameter]
 public string ButtonText { get; set; } = "Save Changes";

 [Parameter]
 public string ButtonStyle { get; set; } = "info";

 [Parameter]
 public EventCallback OnValidSubmit { get; set; }
}

3. In the Pages folder, create a new file named CreateCustomer.razor. This will be a
routable page component.

4. Modify its contents to use the customer detail component to create a new customer, as
shown in the following code:

@page "/createcustomer"
@inject INorthwindService service
@inject NavigationManager navigation

<h3>Create Customer</h3>
<CustomerDetail ButtonText="Create Customer"
 Customer="@customer"
 OnValidSubmit="@Create" />

@code {
 private Customer customer = new();

 private async Task Create()
 {
 await service.CreateCustomerAsync(customer);
 navigation.NavigateTo("customers");
 }
}

Building User Interfaces Using Blazor

[748]

5. In the Pages folder, open the file named Customers.razor and after the <h3> element,
add a <div> element with a button to navigate to the createcustomer page component,
as shown in the following markup:

<div class="form-group">

 <i class="oi oi-plus"></i> Create New
</div>

6. In the Pages folder, create a new file named EditCustomer.razor and modify its
contents to use the customer detail component to edit and save changes to an existing
customer, as shown in the following code:

@page "/editcustomer/{customerid}"
@inject INorthwindService service
@inject NavigationManager navigation

<h3>Edit Customer</h3>
<CustomerDetail ButtonText="Update"
 Customer="@customer"
 OnValidSubmit="@Update" />

@code {
 [Parameter]
 public string CustomerId { get; set; }

 private Customer? customer = new();

 protected async override Task OnParametersSetAsync()
 {
 customer = await service.GetCustomerAsync(CustomerId);
 }

 private async Task Update()
 {
 if (customer is not null)
 {
 await service.UpdateCustomerAsync(customer);
 }
 navigation.NavigateTo("customers");
 }
}

7. In the Pages folder, create a new file named DeleteCustomer.razor and modify its
contents to use the customer detail component to show the customer that is about to be
deleted, as shown in the following code:

@page "/deletecustomer/{customerid}"
@inject INorthwindService service

Chapter 17

[749]

@inject NavigationManager navigation

<h3>Delete Customer</h3>
<div class="alert alert-danger">
 Warning! This action cannot be undone!
</div>
<CustomerDetail ButtonText="Delete Customer"
 ButtonStyle="danger"
 Customer="@customer"
 OnValidSubmit="@Delete" />

@code {
 [Parameter]
 public string CustomerId { get; set; }

 private Customer? customer = new();

 protected async override Task OnParametersSetAsync()
 {
 customer = await service.GetCustomerAsync(CustomerId);
 }

 private async Task Delete()
 {
 if (customer is not null)
 {
 await service.DeleteCustomerAsync(CustomerId);
 }
 navigation.NavigateTo("customers");
 }
}

Testing the customer form component
Now we can test the customer form component and how to use it to create, edit, and delete
customers:

1. Start the Northwind.BlazorServer website project.
2. Start Chrome.
3. Navigate to https://localhost:5001/.
4. Navigate to Customers Worldwide and click the + Create New button.

Building User Interfaces Using Blazor

[750]

5. Enter an invalid Customer Id like ABCDEF, leave the textbox, and note the validation
message, as shown in Figure 17.6:

Figure 17.6: Creating a new customer and entering an invalid customer ID

6. Change the Customer Id to ABCDE, enter values for the other textboxes, and click the
Create Customer button.

7. When the list of customers appears, scroll down to the bottom of the page to see the
new customer.

8. On the ABCDE customer row, click the Edit icon button, change the address, click the
Update button, and note that the customer record has been updated.

9. On the ABCDE customer row, click the Delete icon button, note the warning, click the
Delete Customer button, and note that the customer record has been deleted.

10. Close Chrome and shut down the web server.

Building components using Blazor
WebAssembly
Now we will reuse the same functionality in the Blazor WebAssembly project so that you can
clearly see the key differences.

Since we abstracted the local dependency service in the INorthwindService interface, we will be
able to reuse all the components and that interface, as well as the entity model classes. The only
part that will need to be rewritten is the implementation of the NorthwindService class. Instead
of directly calling the NorthwindContext class, it will call a customer Web API controller on the
server side, as shown in Figure 17.7:

Chapter 17

[751]

Figure 17.7: Comparing implementations using Blazor Server and Blazor WebAssembly

Configuring the server for Blazor WebAssembly
First, we need a web service that the client app can call to get and manage customers. If you
completed Chapter 16, Building and Consuming Web Services, then you have a customer service in
the Northwind.WebApi service project that you could use. However, to keep this chapter more
self-contained, let's build a customer Web API controller in the Northwind.BlazorWasm.Server
project:

Warning! Unlike previous projects, relative path references for shared projects
like the entity models and the database are two levels up, for example,
"..\..".

Building User Interfaces Using Blazor

[752]

1. In the Server project/folder, open Northwind.BlazorWasm.Server.csproj and add
statements to reference the Northwind database context project for either SQL Server or
SQLite, as shown in the following markup:

<ItemGroup>
 <!-- change Sqlite to SqlServer if you prefer -->
 <ProjectReference Include="..\..\Northwind.Common.DataContext.Sqlite
\Northwind.Common.DataContext.Sqlite.csproj" />
</ItemGroup>

2. Build the Northwind.BlazorWasm.Server project.
3. In the Server project/folder, open Program.cs and add a statement to import the

namespace for working with the Northwind database context, as shown in the
following code:

using Packt.Shared;

4. In the section that configures services, add a statement to register the Northwind
database context for either SQL Server or SQLite, as shown in the following code:

// if using SQL Server
builder.Services.AddNorthwindContext();

// if using SQLite
builder.Services.AddNorthwindContext(
 relativePath: Path.Combine("..", ".."));

5. In the Server project, in the Controllers folder, create a file named
CustomersController.cs and add statements to define a Web API controller class with
similar CRUD methods as before, as shown in the following code:

using Microsoft.AspNetCore.Mvc; // [ApiController], [Route]
using Microsoft.EntityFrameworkCore; // ToListAsync, FirstOrDefaultAsync
using Packt.Shared; // NorthwindContext, Customer

namespace Northwind.BlazorWasm.Server.Controllers;

[ApiController]
[Route("api/[controller]")]
public class CustomersController : ControllerBase
{
 private readonly NorthwindContext db;

 public CustomersController(NorthwindContext db)
 {
 this.db = db;
 }

 [HttpGet]

Chapter 17

[753]

 public async Task<List<Customer>> GetCustomersAsync()
 {
 return await db.Customers.ToListAsync();
 }

 [HttpGet("in/{country}")] // different path to disambiguate
 public async Task<List<Customer>> GetCustomersAsync(string country)
 {
 return await db.Customers
 .Where(c => c.Country == country).ToListAsync();
 }

 [HttpGet("{id}")]
 public async Task<Customer?> GetCustomerAsync(string id)
 {
 return await db.Customers
 .FirstOrDefaultAsync(c => c.CustomerId == id);
 }

 [HttpPost]
 public async Task<Customer?> CreateCustomerAsync
 (Customer customerToAdd)
 {
 Customer? existing = await db.Customers.FirstOrDefaultAsync
 (c => c.CustomerId == customerToAdd.CustomerId);

 if (existing == null)
 {
 db.Customers.Add(customerToAdd);
 int affected = await db.SaveChangesAsync();
 if (affected == 1)
 {
 return customerToAdd;
 }
 }
 return existing;
 }

 [HttpPut]
 public async Task<Customer?> UpdateCustomerAsync(Customer c)
 {
 db.Entry(c).State = EntityState.Modified;
 int affected = await db.SaveChangesAsync();
 if (affected == 1)
 {
 return c;

Building User Interfaces Using Blazor

[754]

 }
 return null;
 }

 [HttpDelete("{id}")]
 public async Task<int> DeleteCustomerAsync(string id)
 {
 Customer? c = await db.Customers.FirstOrDefaultAsync
 (c => c.CustomerId == id);

 if (c != null)
 {
 db.Customers.Remove(c);
 int affected = await db.SaveChangesAsync();
 return affected;
 }
 return 0;
 }
}

Configuring the client for Blazor WebAssembly
Second, we can reuse the components from the Blazor Server project. Since the components will
be identical, we can copy them and only need to make changes to the local implementation of
the abstracted Northwind service:

1. In the Client project, open Northwind.BlazorWasm.Client.csproj and add statements
to reference the Northwind entity models library project (not the database context
project) for either SQL Server or SQLite, as shown in the following markup:

<ItemGroup>
 <!-- change Sqlite to SqlServer if you prefer -->
 <ProjectReference Include="..\..\Northwind.Common.EntityModels.Sqlite\
Northwind.Common.EntityModels.Sqlite.csproj" />
</ItemGroup>

2. Build the Northwind.BlazorWasm.Client project.
3. In the Client project, open _Imports.razor and import the Packt.Shared namespace to

make the Northwind entity model types available in all Blazor components, as shown
in the following code:

@using Packt.Shared

4. In the Client project, in the Shared folder, open NavMenu.razor and add a NavLink
element for customers worldwide and in France, as shown in the following markup:

<div class="nav-item px-3">
 <NavLink class="nav-link" href="customers" Match="NavLinkMatch.All">

Chapter 17

[755]

 Customers Worldwide
 </NavLink>
</div>
<div class="nav-item px-3">
 <NavLink class="nav-link" href="customers/France">

 Customers in France
 </NavLink>
</div>

5. Copy the CustomerDetail.razor component from the Northwind.BlazorServer project's
Shared folder to the Northwind.BlazorWasm Client project's Shared folder.

6. Copy the following routable page components from the Northwind.BlazorServer
project's Pages folder to the Northwind.BlazorWasm Client project's Pages folder:

• CreateCustomer.razor

• Customers.razor

• DeleteCustomer.razor

• EditCustomer.razor

7. In the Client project, create a Data folder.
8. Copy the INorthwindService.cs file from the Northwind.BlazorServer project's Data

folder into the Client project's Data folder.
9. In the Data folder, add a new file named NorthwindService.cs.
10. Modify its contents to implement the INorthwindService interface by using an

HttpClient to call the customers Web API service, as shown in the following code:
using System.Net.Http.Json; // GetFromJsonAsync, ReadFromJsonAsync
using Packt.Shared; // Customer

namespace Northwind.BlazorWasm.Client.Data
{
 public class NorthwindService : INorthwindService
 {
 private readonly HttpClient http;

 public NorthwindService(HttpClient http)
 {
 this.http = http;
 }

 public Task<List<Customer>> GetCustomersAsync()
 {
 return http.GetFromJsonAsync
 <List<Customer>>("api/customers");

Building User Interfaces Using Blazor

[756]

 }

 public Task<List<Customer>> GetCustomersAsync(string country)
 {
 return http.GetFromJsonAsync
 <List<Customer>>($"api/customers/in/{country}");
 }

 public Task<Customer> GetCustomerAsync(string id)
 {
 return http.GetFromJsonAsync
 <Customer>($"api/customers/{id}");
 }

 public async Task<Customer>
 CreateCustomerAsync (Customer c)
 {
 HttpResponseMessage response = await
 http.PostAsJsonAsync("api/customers", c);

 return await response.Content
 .ReadFromJsonAsync<Customer>();
 }

 public async Task<Customer> UpdateCustomerAsync(Customer c)
 {
 HttpResponseMessage response = await
 http.PutAsJsonAsync("api/customers", c);

 return await response.Content
 .ReadFromJsonAsync<Customer>();
 }

 public async Task DeleteCustomerAsync(string id)
 {
 HttpResponseMessage response = await
 http.DeleteAsync($"api/customers/{id}");
 }
 }
}

11. In Program.cs, import the Packt.Shared and Northwind.BlazorWasm.Client.Data
namespaces.

Chapter 17

[757]

12. In the section for configuring services, add a statement to register the Northwind
dependency service, as shown in the following code:

builder.Services.AddTransient<INorthwindService, NorthwindService>();

Testing the Blazor WebAssembly components and
service
Now we can start the Blazor WebAssembly server hosting project to test if the components
work with the abstracted Northwind service that calls the customers Web API service:

1. In the Server project/folder, start the Northwind.BlazorWasm.Server website project.
2. Start Chrome, show Developer Tools, and select the Network tab.
3. Navigate to https://localhost:5001/. Your port number will be different since it is

randomly assigned. View the console output to discover what it is.
4. Select the Console tab and note that Blazor WebAssembly has loaded .NET assemblies

into the browser cache and that they take about 10 MB of space, as shown in Figure 17.8:

Figure 17.8: Blazor WebAssembly loading .NET assemblies into the browser cache

5. Select the Network tab.

Building User Interfaces Using Blazor

[758]

6. In the left navigation menu, click Customers Worldwide and note the HTTP GET
request with the JSON response containing all customers, as shown in Figure 17.9:

Figure 17.9: The HTTP GET request with the JSON response containing all customers

7. Click the + Create New button, complete the form to add a new customer as before, and
note the HTTP POST request made, as shown in Figure 17.10:

Figure 17.10: The HTTP POST request for creating a new customer

8. Repeat the steps as before to edit and then delete the newly created customer.
9. Close Chrome and shut down the web server.

Improving Blazor WebAssembly apps
There are common ways to improve Blazor WebAssembly apps. We'll look at some of the most
popular ones now.

Chapter 17

[759]

Enabling Blazor WebAssembly AOT
By default, the .NET runtime used by Blazor WebAssembly is doing IL interpretation using an
interpreter written in WebAssembly. Unlike other .NET apps, it does not use a just-in-time (JIT)
compiler, so the performance of CPU-intensive workloads is lower than you might hope for.

In .NET 6, Microsoft has added support for ahead-of-time (AOT) compilation, but you must
explicitly opt-in because although it can dramatically improve runtime performance, AOT
compilation can take several minutes on small projects like the ones in this book and potentially
much longer for larger projects. The size of the compiled app is also larger than without AOT—
typically twice the size. The decision to use AOT is therefore based on a balance of increased
compile and browser download times, with potentially much faster runtimes.

AOT was the top requested feature in a Microsoft survey, and the lack of AOT was cited as a
primary reason why some developers had not yet adopted .NET for developing single-page
applications (SPAs).

Let's install the additional required workload for Blazor AOT named .NET WebAssembly
build tools and then enable AOT for our Blazor WebAssembly project:

1. In the command prompt or terminal with admin rights, install the Blazor AOT
workload, as shown in the following command:

dotnet workload install wasm-tools

2. Note the messages, as shown in the following partial output:
...
Installing pack Microsoft.NET.Runtime.MonoAOTCompiler.Task version
6.0.0...
Installing pack Microsoft.NETCore.App.Runtime.AOT.Cross.browser-wasm
version 6.0.0...
Successfully installed workload(s) wasm-tools.

3. Modify the Northwind.BlazorWasm.Client project file to enable AOT, as shown
highlighted in the following markup:

<PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <ServiceWorkerAssetsManifest>service-worker-assets.js
 </ServiceWorkerAssetsManifest>
 <RunAOTCompilation>true</RunAOTCompilation>
</PropertyGroup>

4. Publish the Northwind.BlazorWasm.Client project, as shown in the following command:
dotnet publish -c Release

Building User Interfaces Using Blazor

[760]

5. Note that 75 assemblies have AOT applied, as shown in the following partial output:

 Northwind.BlazorWasm.Client -> C:\Code\PracticalApps\Northwind.
BlazorWasm\Client\bin\Release\net6.0\Northwind.BlazorWasm.Client.dll
 Northwind.BlazorWasm.Client (Blazor output) -> C:\Code\PracticalApps\
Northwind.BlazorWasm\Client\bin\Release\net6.0\wwwroot
 Optimizing assemblies for size, which may change the behavior of the
app. Be sure to test after publishing. See: https://aka.ms/dotnet-illink
 AOT'ing 75 assemblies
 [1/75] Microsoft.Extensions.Caching.Abstractions.dll -> Microsoft.
Extensions.Caching.Abstractions.dll.bc
 ...
 [75/75] Microsoft.EntityFrameworkCore.Sqlite.dll -> Microsoft.
EntityFrameworkCore.Sqlite.dll.bc
 Compiling native assets with emcc. This may take a while ...
 ...
 Linking with emcc. This may take a while ...
 ...
 Optimizing dotnet.wasm ...
 Compressing Blazor WebAssembly publish artifacts. This may take a
while...

6. Wait for the process to finish. The process can take around 20 minutes even on a
modern multi-core CPU.

7. Navigate to the Northwind.BlazorWasm\Client\bin\release\net6.0\publish folder and
note the increased size of the download from 10 MB to 112 MB.

Without AOT, the downloaded Blazor WebAssembly app took about 10 MB of space. With
AOT, it took about 112 MB. This increase in size will affect a website visitor's experience.

The use of AOT is a balance between slower initial download and faster potential execution.
Depending on the specifics of your app, AOT might not be worth it.

Exploring Progressive Web App support
Progressive Web App (PWA) support in Blazor WebAssembly projects means that the web app
gains the following benefits:

• It acts as a normal web page until the visitor explicitly decides to progress to a full app
experience.

• After the app is installed, launch it from the OS's start menu or desktop.
• It visually appears in its own app window instead of a browser tab.
• It works offline.
• It automatically updates.

Chapter 17

[761]

Let us see PWA support in action:

1. Start the Northwind.BlazorWasm.Server web host project.
2. Navigate to https://localhost:5001/ or whatever your port number is.
3. In Chrome, in the address bar on the right, click the icon with the tooltip Install

Northwind.BlazorWasm, as shown in Figure 17.11:

Figure 17.11: Installing Northwind.BlazorWasm as an app

4. Click the Install button.
5. Close Chrome. You might also need to close the app if it runs automatically.
6. Launch the Northwind.BlazorWasm app from your Windows Start menu or macOS

Launchpad and note that it has a full app experience.
7. On the right of the title bar, click the three dots menu and note that you can uninstall

the app, but do not do so yet.
8. Navigate to Developer Tools. On Windows, press F12 or Ctrl + Shift + I. On macOS,

press Cmd + Shift + I.
9. Select the Network tab and then, in the Throttling dropdown, select the Offline preset.
10. In the left navigation menu, click Home and then click Customers Worldwide, and

note the failure to load any customers and the error message at the bottom of the app
window, as shown in Figure 17.12:

Figure 17.12: Failure to load any customers when the network is offline

Building User Interfaces Using Blazor

[762]

11. In Developer Tools, set Throttling back to Disabled: No throttling.
12. Click the Reload link in the yellow error bar at the bottom of the app and note that

functionality returns.
13. You could now uninstall the PWA app or just close it.

Implementing offline support for PWAs
We could improve the experience by caching HTTP GET responses from the Web API service
locally, storing new, modified, or deleted customers locally, and then synchronizing with the
server later by making the stored HTTP requests once network connectivity is restored. But that
takes a lot of effort to implement well, so it is beyond the scope of this book.

Understanding the browser compatibility analyzer
for Blazor WebAssembly
With .NET 6, Microsoft has unified the .NET library for all workloads. However, although in
theory, this means that a Blazor WebAssembly app has full access to all .NET APIs, in practice,
it runs inside a browser sandbox so there are limitations. If you call an unsupported API, this
will throw a PlatformNotSupportedException.

To be forewarned about unsupported APIs, you can add a platform compatibility analyzer that
will warn you when your code uses APIs that are not supported by browsers.

Blazor WebAssembly App and Razor Class Library project templates automatically enable
browser compatibility checks.

To manually activate browser compatibility checks, for example, in a Class Library project, add
an entry to the project file, as shown in the following markup:

<ItemGroup>
 <SupportedPlatform Include="browser" />
</ItemGroup>

Microsoft decorates unsupported APIs, as shown in the following code:

[UnsupportedOSPlatform("browser")]
public void DoSomethingOutsideTheBrowserSandbox()
{
 ...
}

Good Practice: If you create libraries that should not be used in Blazor
WebAssembly apps, then you should decorate your APIs in the same way.

Chapter 17

[763]

Sharing Blazor components in a class library
We currently have components duplicated in a Blazor Server project and a Blazor
WebAssembly project. It would be better to have them defined once in a class library project
and reference them from the two other Blazor projects.

Let's create a new Razor class library:

1. Use your preferred code editor to add a new project, as defined in the following list:
1. Project template: Razor Class Library / razorclasslib
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.Blazor.Customers
4. Support pages and views: checked

2. In the Northwind.Blazor.Customers project, add a project reference to the Northwind.
Common.EntityModels.Sqlite or SqlServer project.

3. In the Northwind.Blazor.Customers project, add an entry to check browser
compatibility, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk.Razor">

 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <AddRazorSupportForMvc>true</AddRazorSupportForMvc>
 </PropertyGroup>

 <ItemGroup>
 <FrameworkReference Include="Microsoft.AspNetCore.App" />
 </ItemGroup>

 <ItemGroup>
 <ProjectReference Include="..\Northwind.Common.EntityModels.Sqlite
\Northwind.Common.EntityModels.Sqlite.csproj" />
 </ItemGroup>

 <ItemGroup>
 <SupportedPlatform Include="browser" />
 </ItemGroup>

</Project>

4. In the Northwind.BlazorServer project, add a project reference to the Northwind.
Blazor.Customers project.

5. Build the Northwind.BlazorServer project.

Building User Interfaces Using Blazor

[764]

6. In the Northwind.Blazor.Customers project, delete the Areas folder and all its contents.
7. Copy the _Imports.razor file from the root of the Northwind.BlazorServer project to

the root of the Northwind.Blazor.Customers project.
8. In _Imports.razor, delete the two imports for the Northwind.BlazorServer namespace

and add a statement to import the namespace that will contain our shared Blazor
components, as shown in the following code:

@using Northwind.Blazor.Customers.Shared

9. Create three folders named Data, Pages, and Shared.
10. Move INorthwindService.cs from the Northwind.BlazorServer project's Data folder to

the Northwind.Blazor.Customers project's Data folder.
11. Move all the components from the Northwind.BlazorServer project's Shared folder to

the Northwind.Blazor.Customers project's Shared folder.
12. Move the CreateCustomer.razor, Customers.razor, EditCustomer.razor, and

DeleteCustomer.razor components from the Northwind.BlazorServer project's Pages
folder to the Northwind.Blazor.Customers project's Pages folder.

13. In the Northwind.BlazorServer project, in _Imports.razor, remove the using statement
for Northwind.BlazorServer.Shared and add statements to import the page and shared
components in the class library, as shown in the following code:

@using Northwind.Blazor.Customers.Pages
@using Northwind.Blazor.Customers.Shared

14. In the Northwind.BlazorServer project, in App.razor, add a parameter to tell the
Router component to scan the additional assembly to set up the routes for the page
components in the class library, as shown highlighted in the following code:

<Router AppAssembly="@typeof(App).Assembly"
 AdditionalAssemblies="new[] { typeof(Customers).Assembly }">

15. Start the Northwind.BlazorServer project and note that it has the same behavior as
before.

We will leave the other page components because they have
dependencies on the weather service that has not been properly
refactored.

Good Practice: It does not matter which class you specify as long as
it is in the external assembly. I chose Customers since it is the most
important and obvious component class.

Chapter 17

[765]

Interop with JavaScript
By default, Blazor components do not have access to browser capabilities like local storage,
geolocation, and media capture, or any JavaScript libraries like React or Vue. If you need to
interact with them, you can use JavaScript Interop.

Let's see an example that uses the browser window's alert box and local storage that can persist
up to 5 MB of data per visitor indefinitely:

1. In the Northwind.BlazorServer project, in the wwwroot folder, add a folder named
scripts.

2. In the scripts folder, add a file named interop.js.
3. Modify its contents, as shown in the following code:

function messageBox(message) {
 window.alert(message);
}

function setColorInStorage() {
 if (typeof (Storage) !== "undefined") {
 localStorage.setItem("color",
 document.getElementById("colorBox").value);
 }
}

function getColorFromStorage() {
 if (typeof (Storage) !== "undefined") {
 document.getElementById("colorBox").value =
 localStorage.getItem("color");
 }
}

4. In the Pages folder, in _Layout.cshtml, after the script element that adds Blazor Server
support, add a script element that references the JavaScript file that you just created, as
shown in the following code:

<script src="scripts/interop.js"></script>

Good Practice: You can now reuse the Blazor components in other
Blazor Server projects. However, you cannot use that class library in
Blazor WebAssembly projects because it has a dependency on the full
ASP.NET Core workload. Creating Blazor component libraries that
work with both hosting models is beyond the scope of this book.

Building User Interfaces Using Blazor

[766]

5. In the Pages folder, in Index.razor, delete the two Customers component instances and
then add a button and a code block that uses the Blazor JavaScript runtime dependency
service to call a JavaScript function, as shown in the following code:

<button type="button" class="btn btn-info" @onclick="AlertBrowser">
 Poke the browser</button>

<hr />

<input id="colorBox" />

<button type="button" class="btn btn-info" @onclick="SetColor">
 Set Color</button>

<button type="button" class="btn btn-info" @onclick="GetColor">
 Get Color</button>

@code {
 [Inject]
 public IJSRuntime JSRuntime { get; set; } = null!;

 public async Task AlertBrowser()
 {
 await JSRuntime.InvokeVoidAsync(
 "messageBox", "Blazor poking the browser");
 }

public async Task SetColor()
 {
 await JSRuntime.InvokeVoidAsync("setColorInStorage");
 }

 public async Task GetColor()
 {
 await JSRuntime.InvokeVoidAsync("getColorFromStorage");
 }
}

6. Start the Northwind.BlazorServer project.
7. Start Chrome and navigate to https://localhost:5001/.
8. On the home page, in the textbox, enter red and then click the Set Color button.

Chapter 17

[767]

9. Show Developer Tools, select the Application tab, expand Local Storage, select
https://localhost:5001, and note the key-value pair color-red, as shown in Figure
17.13:

Figure 17.13: Storing a color in browser local storage using JavaScript Interop

10. Close Chrome and shut down the web server.
11. Start the Northwind.BlazorServer project.
12. Start Chrome and navigate to https://localhost:5001/.
13. On the home page, click the Get Color button and note that the value red is shown in

the textbox, retrieved from local storage between visitor sessions.
14. Close Chrome and shut down the web server.

Libraries of Blazor components
There are many libraries of Blazor components. Paid component libraries are from companies
like Telerik, DevExpress, and Syncfusion. Open source Blazor component libraries include the
following:

• Radzen Blazor Components: https://blazor.radzen.com/
• Awesome Open Source Blazor Projects: https://awesomeopensource.com/projects/

blazor

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore this chapter's topics with deeper research.

https://blazor.radzen.com/
https://awesomeopensource.com/projects/blazor
https://awesomeopensource.com/projects/blazor

Building User Interfaces Using Blazor

[768]

Exercise 17.1 – Test your knowledge
Answer the following questions:

1. What are the two primary hosting models for Blazor, and how are they different?
2. In a Blazor Server website project, compared to an ASP.NET Core MVC website project,

what extra configuration is required in the Startup class?
3. One of the benefits of Blazor is being able to implement client-side components using

C# and .NET instead of JavaScript. Does a Blazor component need any JavaScript?
4. In a Blazor project, what does the App.razor file do?
5. What is a benefit of using the <NavLink> component?
6. How can you pass a value into a component?
7. What is a benefit of using the <EditForm> component?
8. How can you execute some statements when parameters are set?
9. How can you execute some statements when a component appears?
10. What are two key differences in the Program class between a Blazor Server and Blazor

WebAssembly project?

Exercise 17.2 – Practice by creating a times table
component
Create a component that renders a times table based on a parameter named Number and then
test your component in two ways.

First, by adding an instance of your component to the Index.razor file, as shown in the
following markup:

<timestable Number="6" />

Second, by entering a path in the browser address bar, as shown in the following link:

https://localhost:5001/timestable/6

Exercise 17.3 – Practice by creating a country
navigation item
Add an action method to the CustomersController class to return a list of country names.

In the shared NavMenu component, call the customer's web service to get the list of country
names and loop through them, creating a menu item for each country.

Chapter 17

[769]

Exercise 17.4 – Explore topics
Use the links on the following page to learn more detail about the topics covered in this
chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-17---
building-user-interfaces-using-blazor

Summary
In this chapter, you learned how to build Blazor components hosted for both Server and
WebAssembly. You saw some of the key differences between the two hosting models, like how
data should be managed using dependency services.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-17---building-user-interfaces-using-blazor
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-17---building-user-interfaces-using-blazor

[771]

Epilogue
I wanted this book to be different from the others on the market. I hope that you found it to be
a brisk, fun read, packed with practical hands-on walkthroughs for each topic.

This epilogue contains the following short sections:

• Next steps on your C# and .NET learning journey
• .NET MAUI delayed
• Next edition coming November 2022
• Good luck!

Next steps on your C# and .NET learning
journey
For topics that you wanted to learn more about than I had space to include in this book, I hope
that the notes, good practice tips, and links in the GitHub repository pointed you in the right
direction:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md

Polishing your skills with design guidelines
Now that you have learned the fundamentals of developing using C# and .NET, you are ready
to improve the quality of your code by learning more detailed design guidelines.

Back in the early .NET Framework era, Microsoft published a book of good practices in all
areas of .NET development. Those recommendations are still very much applicable to modern
.NET development.

The following topics are covered:

• Naming Guidelines
• Type Design Guidelines
• Member Design Guidelines
• Designing for Extensibility
• Design Guidelines for Exceptions
• Usage Guidelines
• Common Design Patterns

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md

Epilogue

[772]

To make the guidance as easy to follow as possible, the recommendations are simply labeled
with the terms Do, Consider, Avoid, and Do not.

Microsoft has made excerpts of the book available at the following link:

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/

I strongly recommend that you review all the guidelines and apply them to your code.

Books to take your learning further
If you are looking for other books from my publisher that cover related subjects, there are many
to choose from. I recommend Harrison Ferrone's Learning C# by Developing Games with Unity
2021 as a fun complement to my book for learning C#.

And there are many books that take C# and .NET further, as shown in Figure 18.1:

Figure 18.1: Packt books to take your C# and .NET learning further

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/

Epilogue

[773]

.NET MAUI delayed
Microsoft planned to release .NET MAUI with .NET 6. But the team realized in September 2021
that they would not be able to meet that target. They need another six months to make sure it
meets quality and performance expectations. You can read the official announcement about the
.NET MAUI delay at the following link:

https://devblogs.microsoft.com/dotnet/update-on-dotnet-maui/

I expect that .NET MAUI will have a production release at the Microsoft Build conference
in May 2022. Before then, the team will release monthly previews. Although I cannot make
promises, I hope to post updates to the .NET MAUI chapter using those previews on the
GitHub repository for this book, or at least an update using the final GA release.

Next edition coming November 2022
I have already started work on the seventh edition, which we plan to publish with the release
of .NET 7.0 in November 2022. While I do not expect major new features at the level of Blazor
or .NET MAUI, I do expect .NET 7.0 to make worthwhile improvements to all aspects of .NET.

If you have suggestions for topics that you would like to see covered or expanded upon, or you
spot mistakes that need fixing in the text or code, then please let me know the details via the
GitHub repository for this book, found at the following link:

https://github.com/markjprice/cs10dotnet6

Good luck!
I wish you the best of luck with all your C# and .NET projects!

https://devblogs.microsoft.com/dotnet/update-on-dotnet-maui/
https://github.com/markjprice/cs10dotnet6

Epilogue

[774]

Share your thoughts
Now you've finished C# 10 and .NET 6 - Modern Cross-Platform Development, Sixth Edition, we'd
love to hear your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or leave a review
on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1801077363
https://packt.link/r/1801077363

[775]

Index
Symbols
.NET

app models 541
old versions, removing 14
operating system 290
versions 12

.NET 6 273, 274
supporting, platforms for deployment 6

.NET 6 class library
creating 210
referencing 210

.NET assemblies
decompilation, preventing 301, 302
decompiling 296
decompiling, with ILSpy extension for

Visual Studio 2022 296
decompiling, with ILSpy extension for Visual Studio

Code 297-301
.NET blog

reference link 43
subscribing to 43

.NET CLI
project, managing 291

.NET components
about 277
Base Class Libraries (BCL or CoreFX) 277
Common Language Runtime (CoreCLR) 277
language compilers 277

.NET Core 11

.NET Core 1.0 274

.NET Core 1.1 274

.NET Core 2.0 275
performance, improving to .NET 5 277

.NET Core 2.1 275

.NET Core 2.2 275

.NET Core 3.0 275

.NET Core 3.1 276

.NET Core 3.1 SDK
reference link 287

.NET Core 5.0 276

.NET Core 6.0 276

.NET Framework 10
porting, to modern .NET 309
versus modern .NET 311

.NET Framework versions
.NET 5 274
.NET 6 274
.NET Core 1.x 274
.NET Core 2.x 274
.NET Core 3.x 274

.NET Interactive Notebooks
code, exploring with 29
code, running 31
code, writing 31
creating 30
Markdown, adding to 32
multiple code cells, executing 33, 34
saving 32
special commands, adding to 32
using, for code 34

.NET Interactive Notebooks extension
advantages 3
disadvantages 4

.NET learning
application type, selecting 3
tool, selecting 3

.NET Multi-platform App User Interfaces
(MAUI) 545

.NET platforms
book editions 16, 17

.NET plugin
using 720

.NET Portability Analyzer 311

.NET Runtime version 13

.NET SDK
controlling 286, 287
download link 8
update, checking 277

[776]

.NET SDK version 13
output 52

.NET Standard 15, 16
used, for sharing code with legacy platforms 284

.NET Standard 2.0 class library
creating 285

.NET support 13

.NET technologies
comparing 17

.NET tools
book editions 16, 17

.NET types
C# aliases, mapping to 282
C# keywords, relating 281, 282
extending 261
inheriting 261
location, revealing 283

.NET Upgrade Assistant 311

.NET version 12

.NET WebAssembly build tools 759

A
abstract classes

inheriting from 255
abstract stream 378
access control

with indexers 206
with properties 206

access modifier 180
action 626
action method return types 681
Active Server Pages (ASP) 572
advanced features

implementing, for web services 707
ahead-of-time (AOT) 759
analyzer

using, to write code 265-267
anonymous inline delegate

implementing, as middleware 610-612
API conventions

implementing 709
application type

selecting, for learning C# and .NET 3
app models

for C# 541
for .NET 541

app size
reducing, with app trimming 295

app trimming
assembly-level trimming, enabling 295

member-level trimming, enabling 295
type-level trimming, enabling 295
used, for reducing app size 295

ASP.NET Core 573
about 572
Entity Framework Core, using 593
features 546
providing, technologies for building websites 542
services and pipeline, configuring 582-584
used, for building websites 542
website, enabling to serve static content 584

ASP.NET Core 1.0 546
ASP.NET Core 1.1 546
ASP.NET Core 2.0 546
ASP.NET Core 2.1 547
ASP.NET Core 2.2 547
ASP.NET Core 3.0 548
ASP.NET Core 3.1 548
ASP.NET Core 5.0 548
ASP.NET Core 6.0 548
ASP.NET Core Identity 547
ASP.NET Core Identity database

reviewing 622
ASP.NET Core MVC 542

category images, setting up 643
creating 616
customized home page, reviewing 647, 648
customizing 643
custom style, defining 643
exploring 618, 622
initializing 622, 624
model binders 651, 652
model, validating 654-657
parameters, passing with route value 648-650
Razor syntax 643, 644
route 625
setting up 615
typed view, defining 644, 647
view helper methods 657, 658

ASP.NET Core project
creating 574, 575
secure connection, redirecting 579, 580
stricter security, enabling 579, 580
website, securing 576, 578
website, testing 576, 578

ASP.NET Core Razor Pages 542
code, adding 587, 588
code-behind files, using 591, 592
enabling 586, 587
exploring 586

[777]

form, defining to insert supplier model 597
shared layouts, using 588-591
supplier model, enabling to insert entities 596
used, for manipulating data 596

ASP.NET Core Web API 544
project, creating 671-673
used, for building web services 667

ASP.NET MVC 573
ASP.NET SignalR 573
ASP.NET Web API 573
ASP.NET Web Forms 572
assembly 17, 278

namespace 279
types 279
versioning 355

AssemblyBuilder Class
reference link 360

assembly metadata
reading 355, 357

assembly parts
embedded resources 354
IL code 354
metadata and manifest 354
type metadata 354

assembly unloadability in .NET Core
reference link 360

assignment operator 98
asynchronous tasks

used, for improving scalability 662
async keyword 532

responsiveness for console apps, improving 532
responsiveness for GUI apps, improving 533-537
scalability for web applications, improving 537
scalability for web services, improving 537

async streams
working with 538, 539

attributes
working with 354

authentication database
creating, for SQL Server LocalDB 617

auto-sorting collections 347
Avalonia 546
await keyword 532

multitasking 537
responsiveness for console apps, improving 532
responsiveness for GUI apps, improving 533-536
scalability for web applications, improving 537
scalability for web services, improving 537
using, in catch blocks 537

Azure Functions 544

B
bag

about 478
working with, LINQ 478

Banker's Rounding 117
Base64 118
Base Class Library (BCL) 10, 273
Benchmark.NET

used, for monitoring performance and
memory 512-515

binary arithmetic operators
exploring 97, 98

binary number system 68
binary object

converting, into string 118
binary shift operators 101

exploring 101, 102
bitwise operators 101

exploring 101, 102
Blazor 542, 719

JavaScript, using 720
Silverlight 720
versus Razor 722
WebAssembly (Wasm) 720

Blazor components 721, 722
customer form component, building 746-748
customer form component, testing 749, 750
customer form component, using 746, 748
forms, defining with EditForm component 745
service, abstracting 742-744

Blazor hosting models
about 720
Blazor Server 720
Blazor WebAssembly 721
.NET MAUI Blazor App 721

Blazor Hybrid 721
Blazor Mobile Bindings 722
Blazor project templates

comparing 723
Blazor routing, to page components 729

base component classes 730, 731
Blazor routes, navigating 729
navigation link component, using with routes 732
routable page component, defining 729
route parameters, passing 730

Blazor Server 542
Blazor Server components

building 737
defining 738

[778]

entities, obtaining 739-742
routable page component 738, 739
testing 737, 738

Blazor Server project template
reviewing 723-728
running 732, 733

Blazor WebAssembly 542
Blazor WebAssembly 3.2 548
Blazor WebAssembly apps

AOT, enabling 759, 760
Blazor component libraries 767
Blazor components, sharing in class

library 763, 764
browser compatibility analyzer 762
improving 758
JavaScript Interop, using 765-767

Blazor WebAssembly component
building 750
client, configuring 754, 757
server, configuring 751, 752
service, testing 757, 758

Blazor WebAssembly project template
reviewing 733-737

block
about 56
example 56

book solution code repository
cloning 38, 39

braces
using, with if statements 105

breakpoints
customizing 151-153

Brotli algorithm
compressing with 388-390

browser
used, for testing GET requests 688, 689

byte arrays
strings, encoding 391-393

C
C#

app models 541
C# 1.0 48
C# 2.0 48
C# 3.0 48
C# 4.0 48
C# 5.0 49
C# 6.0 49
C# 7.0 49

C# 7.1 49
C# 7.2 50
C# 7.3 50
C# 8 50
C# 9 50

pattern matching, enhancement 213
C# 10 50
C# aliases

mapping, to .NET types 282
call stack 168-170
cardinal numbers 136
casting 113
casting exception

avoiding 260, 261
C# code

writing 58
C# compiler versions

discovering 51, 52
C# grammar 53, 55
checked statement 125

used, for throwing overflow exceptions 125, 127
child task 522, 523
C# keywords

relating, to .NET types 281, 282
C# language 47
C# language, versions and features 47

C# 1.0 48
C# 2.0 48
C# 3.0 48
C# 4.0 48
C# 5.0 49
C# 6.0 49
C# 7.0 49
C# 7.1 49
C# 7.2 50
C# 7.3 50
C# 8 50
C# 9 50
C# 10 50

class
assembly, referencing 182
defining, in namespace 179
extending, to add functionality 252
inheriting 252
instantiating 181
splitting, with partial keyword 205

classic ASP.NET
versus modern ASP.NET Core 573

class library
building 178

[779]

creating 178, 179
creating, for entity models with SQLite 554, 555
creating, for entity models

with SQL Server 562-565
creating, for Northwind database context 559-562
defaults, with SDKs 284
setting up 220, 221

class library package
testing 308, 309

class-to-table mapping
improving 555-559

C# learning
application type, selecting 3
tool, selecting 3

client-side web development technologies 572
code

internationalizing 362
code by delete

simplifying, with explicit delegate instantiation 474
code for deployment

publishing 287
code performance

monitoring 506
collections

features 335, 336
for special situations 347
good practice with 348, 349
methods summary 340
multiple objects, storing 334
options 337
performance, improving by ensuring capacity 336
sorting 346

color scheme
modifying, for C# syntax 57

command-line
Git, using with 38

command-line interface (CLI) 289
comment 55
Common Language Runtime (CLR) 10
Community Edition 6
compact array of bit values

working with 347
compact XML

generating 397, 398
compiler-generated display class 360
compiler overflow checks

disabling, with unchecked statement 127, 128
compiler version

displaying 53, 54

complex comma-separated string
splitting 333

complex numbers 319
working with 319

conch
lock, applying to 526, 527

concrete stream 378
conditional logical operators 100

exploring 100, 101
Configure method

HTTP request pipeline, setting up 608
ConfigureServices method

services, registering 606-608
connection string 417
console app

creating, for working with EF Core 409
console application

arguments, passing 86-88
building, with Visual Studio 2022 18
building, with Visual Studio Code 24
creating, to publish 288
exploring 80
key input, obtaining from user 85
options, setting with arguments 88-90
platforms, handling 90, 91
setting up 220, 221
text input, obtaining from user 84
usage 84
user output, displaying 81

content management system (CMS) 542
used, for building websites 542, 543

continuation task
defining 520, 521

controller 626
responsibilities 628

controller action methods asynchronous
creating 662, 663

ControllerBase class 626
Controller class 627, 628
CoreCLR 11, 17
CoreFX 11
C# plugin

using 720
CPU operations

atomic creation 530, 531
Cross-Origin Resource Sharing (CORS) 582

enabling 705, 706
cross-platform console app

publishing 292, 293

[780]

cross-platform development
Visual Studio Code, using for 4

CSS isolation 729
C# standards 51
C# syntax

used, for modifying color scheme 57
culture 362
CultureInfo type

using, in System.Globalization namespace 363-365
custom attributes

creating 358, 359
customer repository

configuring 683, 686
customers

obtaining, as JSON in controller 703-705
C# vocabulary 53, 57, 63-65

D
database

querying 659-661
Data Definition Language (DDL) 421
data repositories

creating, for entities 677
data seeding

with Fluent API 423
data storing, within field

about 184
access modifiers 185
field, defining 184, 185
field values, outputting 186
field values, setting 186
multiple value, storing with enum type 188, 189
value, storing with enum type 187, 188

data, with EF Core
database contexts, pooling 454
entities, deleting 453, 454
entities, inserting 450-452
entities, updating 452, 453
manipulating 450

date
working with 329

DateOnly 329
dates and times

globalization with 327, 328
types 325
values, specifying 325-327
working with 325

deadlocks
avoiding 528, 529

Debug
instrumenting with 154

debugging
breakpoints, customizing 151-153
code, creating with deliberate bug 144, 145
issues, at development time 144
stepping, through code 150, 151
windows 149

debugging toolbar
navigating with 148, 149

decimal number system 68
default trace listener

writing 154
deferred execution 348, 470, 471
delegates 226

defining 227-229
handling 227-229
used, for calling methods 226, 227

deliberate bug
code, creating with 144, 145

dependency injection (DI) 624
dependent assemblies 278
deserialization 394
desktop apps

building 545
destructor 244
development environment

setting up 2
dictionaries 338, 339

working with 342, 343
display templates

using 659-661
Dispose method

ensuring 246
DNS

working with 352, 353
Don't Repeat Yourself (DRY) 131
do statement

looping with 111
Dotfuscator tool 301
dotnet CLI

used, for compiling code 27
used, for running code 27

dotnet commands
about 289
project, creating 289

dotnet tool
help, obtaining for 39

double-opt-in (DOI) 619

[781]

doubly linked list
working with 347

dynamic link library (.dll) 278

E
EF Core

LINQ, using 480
EF Core model

annotation attributes, using 421-423
building 480-483
building, for Northwind tables 423
Category entity classes, defining 424, 425
conventions, using 421
defining 420
defining, as Code First 456-462
dotnet-ef tool, setting up 427, 428
filtered include entities 435, 436
Fluent API, using 423
global filters, defining 445
logging, with custom logging provider 439, 441
pattern matching, with Like method 444, 445
preconvention model, configuring 432, 433
Product entity classes, defining 424, 425
products, filtering 437, 438
products, sorting 437, 438
querying 433, 434
scaffolding, with existing database 428-432
SQL statements, generating 438, 439
tables, adding to Northwind database

context class 426, 427
endpoint routing

about 604
configuration, reviewing 605, 606
configuring 605

entities
filtering, with where method 471, 472
sorting 475
sorting, by single property with OrderBy 475
sorting, by subsequent property with ThenBy 475

entity data models
building, for Northwind database 553
class library creating, with SQLite 554, 555
class library creating, with SQL Server 562-565

Entity Framework 6 (EF6) 408
Entity Framework Core (EF Core) 408

configuring, as service 593, 594
database, connecting 417, 418
database provider, selecting 417

dependency service, injecting into ASP.NET Core
Razor Pages 597

setting up 417
using, with ASP.NET Core 593
working with, console app 409

Entity Framework Core (EF Core), approaches
code first 409
database first 409

Entity Framework (EF) 408
Entity Framework (EF) 6 15
entity models 637-639
enumerable class

used, for building LINQ expressions 468, 470
equality type 241, 242
error-prone code

wrapping, in try block 121, 123
events

defining 229
handling 225, 229
raising 225
synchronizing 529

exception
catch, deciding 171
catching 123
catching, in functions 167
handling 121
inheriting 261, 262
rethrowing 171, 172
throwing, in functions 167, 168

executable (.exe) 278
execution errors 167
explicit casting 113, 259
explicit delegate instantiation

code by delete, simplifying 474
explicit transaction

defining 455, 456
expression-bodied function members 142
eXtensible Application Markup Language

(XAML) 550
eXtensible Markup Language (XML) 394
extension methods 263

using, to reuse functionality 264, 265

F
Fibonacci sequence 142
field, categories

constant 181
event 181

[782]

read-only 181
fields 62, 63
file resources

disposal, simplifying by using statement 385
disposing 383, 384

files
reviewing, for project 35
text, decoding 393
text, encoding 393

filesystem
cross-platform environments, handling 369-371
cross-platform filesystems, handling 369-371
directories, managing 372, 373
drives, managing 371, 372
file information, obtaining 376, 377
files, controlling 377
files, managing 374, 375
managing 369
paths, managing 375, 376

filtered include entities 435
filtering by type 476, 477
filters 631

catching with 125
role management, enabling 632-635
role programmatically, creating 632-635
using, to cache response 635, 636
using, to define custom route 636
using, to secure action method 631, 632

first-in, first-out (FIFO) 339
flight passengers

defining 211, 212
Fluent API

data seeding 423
using 423

folders
reviewing, for project 35

foreach statement 113
looping with 112

for statement
looping with 112

framework 280
Framework-dependent deployment (FDD) 287
Framework-dependent executables (FDE) 287
function

creating, to convert number from cardinal to
ordinal 136, 137

exception, catching 167
exception, throwing 167, 168
factorials, calculating with recursion 137-140

value return 134, 135
writing 131

functionality
implementing, with local function 224
implementing, with methods 221-223
implementing, with operators 223, 224

functional languages
attributes 141

function implementations
lambdas, using 141-143

function pointers 226
function stream 379

G
General Availability (GA) 314, 668
General Data Protection Regulation (GDPR) 547
generic parameters 231
generics 74, 190, 230

used, for creating types reusable 230
generic types

working with 231, 232
GET requests

creating, with REST Client 690, 691
testing, with browser 688, 689

Git
installation link 38
using, with command-line 38
using, with Visual Studio Code 38

GitHub Codespaces
using, for development in cloud 4

GitHub repository 36
creating, for best usage 36
feedback, providing 37
issues, raising with book 36, 37
solution code, downloading from 37, 38

Global Assembly Cache (GAC) 10
global imports 22
globalization 362
Google

used, for searching answers 43
Google Chrome

using, to create HTTP requests 569-572
Go To Definition feature

using 40-42
graphical user interface (GUI) 14, 532
GraphQL 544
GroupJoin method 487
gRPC 544, 668

[783]

H
hardware

used, for writing and testing code 5
headless CMS 543
Health Check API

implementing 708
heap memory 239
hosting environment

controlling 580, 581
HttpClient 702
HttpClientFactory

used, for configuring HTTP clients 702
HTTP clients

configuring, with HttpClientFactory 702
used, for consuming web services 702

HTTP logging
enabling 700-702

HTTP pipeline
visualizing 610

HTTP request pipeline
configuring 604
setting up, in Configure method 608

HTTP requests
creating, with Google Chrome 569-572
for Web APIs 669, 670
testing, with REST Client extension 690
testing, with Swagger UI 695-700

HTTP responses
for Web APIs 669, 670
used, for working JSON extension methods 404

HTTP Strict Transport Security (HSTS) 579
Humanizer third-party library 430
human language

versus programming language 57
Hypertext Transfer Protocol (HTTP) 567, 568

I
if statement

branching with 104
images

working with 361, 362
ImageSharp 361
immutable collections

using 347, 348
implicit casting 113, 259
implicit transaction 454
indexers

access control 206

defining 209, 210
indexes

using 350, 351
index type

used, for identifying positions 349, 350
inheritance

overriding 256, 257
preventing 257

inheritance hierarchies
casting exception, avoiding 260, 261
casting within 259
explicit casting 259
implicit casting 259

inner function 225
Institute of Electrical and Electronics Engineers

(IEEE) 70
Integrated Development Environments (IDEs) 2
interfaces

about 232
defining, with default implementation 237, 238
explicit implementation 236
implementing 232
implicit implementation 236
objects, comparing 233, 234
objects, comparing with separate class 235, 236

intermediate language (IL) 17, 277
internationalization of code 362
International Organization for Standardization

(ISO) 362
Internet Information Services (IIS) 573
Internet of Things (IoT) 275
interpolated string 67, 82
invocation operator 103
IP addresses

working with 352, 353
iteration statements 110

exploring 110

J
JavaScript isolation 729
JavaScript Object Notation (JSON) 394, 676

Newtonsoft, migrating to 404
serializing with 399, 400

join method 486
JSON extension methods

working, with HTTP responses 404
JSON processing

controlling 401-404
high-performance 400, 401

[784]

just-in-time (JIT) compiler 17

K
key 338
keyboard shortcuts, for Visual Studio Code

reference link 9
key middleware extension methods

summarizing 609

L
lambda expression 474

targeting 474
lambdas

using, in function implementations 141-143
Language INtegrated Query (LINQ) 48, 467, 468

bag, working with 478, 479
sequences, aggregating 490, 491
sequences, filtering 483-485
sequences, grouping 486
sequences, group-joining 488, 489
sequences, joining 486, 487
sequences, projecting into types 485, 486
sequences, sorting 483-485
set, working with 478, 479
using, with EF Core 480

language version compiler
enabling 52, 53

last-in, first-out (LIFO) 339
lazy loading 348
legacy Entity Framework 408
legacy Entity Framework 6.3

using 408
legacy .NET 2
legacy platforms

code sharing, with .NET Standard 284
legacy Windows application platforms 549, 550

modern .NET support for 550
link trim mode 295
LINQ expressions

building, with enumerable class 468, 470
writing 467

LINQ extension method
chainable extension method, trying 498
creating 495-497
median method, trying 498, 499
mode method, trying 498, 499

LINQ query comprehension syntax 491

LINQ syntax
with syntactic sugar 491, 492

LINQ to XML 499
used, for generating XML 499
used, for reading XML 500, 501
working with 499

lists 337
working with 340-342

literal string 67
loading patterns, with EF Core 446

eager loading entities 446
explicit loading entities 448, 449
lazy loading, enabling 447

local function 224
used, for implementing functionality 224

localization 362
local variables

declaring 76
target-typed new, using to instantiate object 78
type, inferring 76, 77
type, specifying 76

lock statement 527
logging 630

default trace listener, writing 154
during, development 153
during, runtime 153
instrumenting, with Debug 154
instrumenting, with Trace 154
options 153
trace listeners, configuring 155, 156
trace switch 157

logging, trace switch
packages, adding to project in Visual

Studio 2022 158
packages, adding to project in Visual

Studio Code 157
project packages, reviewing 158-161

logical operators
exploring 98, 100

logs
filtering, by provider-specific values 442

Long Term Support (LTS) 12, 276, 547

M
Mac

Microsoft Visual Studio 2022, using for 4
macOS

SQLite, setting up 414

[785]

Markdown
adding, to .NET Interactive notebooks 32

member access operator 103
members

defining 181
field 181
hiding 253, 254
methods 181
overriding 254, 255

memory
managing, with reference type 239
managing, with value type 239

MethodBase.Invoke method
reference link 360

method, categories
constructor 181
indexer 181
operator 181
property 181

method overloading 201
methods 62

about 195, 221
calling 195
callings, with delegates 226, 227
parameters, defining 200
parameters, passing 200
used, for implementing functionality 221-223
values, returning 195
writing 195

method signature 201
microservice 544
Microsoft documentation

reading 39
URL 39

Microsoft .NET project SDKs 278
Microsoft SQL Server

downloading 411
installing 411
Northwind database, creating 412
using, for Windows 410

Microsoft Visual Studio
for Windows keyboard shortcuts 7

Microsoft Visual Studio 2022
download link 6
using, for Mac 4
using, for Windows 5

migrations 463
minimal APIs

used, for building weather service 712, 713
used, for building web services 711

minimal weather service
testing 714

mobile apps
building 545

model binders
about 650-652
action methods, disambiguating 652, 653
form parameter, passing 654
parameters 650
route parameter, passing 654

model binding 649
Model-View-Controller (MVC) 542, 615
Model-View-Update (MVU) 545
modern ASP.NET Core

versus classic ASP.NET 573
modern databases 407
modern .NET 2, 14

benefits 310
database development 15
.NET Framework, porting to 309
porting 309
themes 15
versus .NET Framework 311
web development 15
Windows development 14

modern .NET themes
reference link 15

Mono project 10, 11
MSBuild project tools 53
MS Test 162
multiple actions asynchronously

running, with task 518
multiple actions synchronously

running 516, 517
multiple constructor

defining 195
multiple returned values

combining, with tuple 196
multiple threads

app, creating 492, 493
for operating systems 494, 495
using, with parallel LINQ (PLINQ) 492
with macOS 494
with Windows 494

multiple value, storing with collection
about 189, 190
field constant, creating 192
field, initializing with constructor 194
field read-only, creating 193, 194
field static, creating 191, 192

[786]

generic collections 190
multiset 478
multi-targeting

reference link 286
MVC model 637
MVC website project structure

reviewing 620, 621

N
named method

targeting 473
named parameter

passing 201, 202
namespace 278

class, defining 180
globally, importing 59, 61
implicitly, importing 59, 61
importing 59
importing, to type 182, 183
importing, to use types 281
in assemblies 279

namespace declaration
simplifying 180

nanoservice 544
native-sized integers 283
nested function 225
nested task 522, 523
NetTopologySuite (NTS) library 275
network resources

DNS, working with 352
IP addresses, working with 352
server, pinging 353, 354
URIs, working with 352
working with 351

Newtonsoft
migrating, to JSON 404

non-generic types
working with 230, 231

non-.NET Standard libraries
using 312, 313

non-nullable parameter
declaring 248-250

non-nullable reference type
enabling 248

non-nullable variable
declaring 248-250

non-null reference types 142
non-polymorphic inheritance 257

Northwind database 409
context class, defining 418, 419, 420
creating, for Microsoft SQL Server 412
creating, for SQLite 415
entity data model, building 553
managing, with Server Explorer 413
managing, with SQLiteStudio 415, 416
web service, creating for 675, 677

Northwind database context
class library, creating 559-562
class table, adding to 426, 427

Northwind tables
used, for building EF Core models 423

Northwind website home page
weather forecasts, adding to 714-716

NoSQL database 407
NuGet distribution libraries

packaging 302
NuGet library

package, publishing to private NuGet feed 307
package, publishing to public NuGet feed 306
packaging 304-306

NuGet package 278, 280
benefits 280
fix dependencies 303
referencing 302

NuGet Package Explorer
about 307
exploring 307, 308

null
checking 250, 251
checking, in method parameter 251

nullable reference type 247, 248
enabling 248

nullable value type
calling 246

null values
working with 246

numbers
big integers, working with 318, 319
complex numbers, working with 319
quaternions 320
working with 318

numbers explicitly
casting 114, 115

numbers implicitly
casting 114, 115

[787]

O
object graphs

serializing 394
object-oriented programming (OOP) 177
object-relational mapping (ORM) 408
objects

defining 183
inheriting, from System.Object 184

OData 544
OmniSharp debugger

setting up 144
OOP concept

abstraction 178
aggregation 178
composition 178
encapsulation 178
inheritance 178
polymorphism 178

Open API analyzers
implementing 709

OpenAPI Specification 693
operands 95
operators 95

used, for implementing functionality 223, 224
optional parameter

passing 201, 202
ordered collections 337
ordinal numbers 136
overflow exceptions

throwing, with checked statement 125, 126

P
parallel LINQ (PLINQ)

multiple threads, using 492
parameters

defining, to methods 200
passing, to methods 200-204
simplifying 204

parameter values
naming, with method calling 203

Parse
using, errors 120

partial keyword
used, for splitting classes 205

pattern
matching, with if statement 105
matching, with switch statement 108, 109

pattern matching 142
enhancement, in C# 9 212
with objects 210

performance and memory
monitoring, with Benchmark.NET 512-515
monitoring, with diagnostics 507

personally identifiable information (PII) 701
polymorphic inheritance 257
polymorphism

preventing 257, 258
Portable Class Libraries (PCLs) 284
port numbers

assigning, for projects 569
positional data members

simplifying, in records language 215, 216
postfix operator 97
Postman 690
preemptive multitasking 505
prefix operator 97
preview features

enabling 314, 315
generic mathematics 315
requirement 314
working with 313

problem details
specifying 687

process 505, 506
process string

measuring 510, 511
Process type 508
program debug database file 294
program errors 167
programming language

versus human language 57
Progressive Web App (PWA) 721, 760

exploring 760-762
offline support, implementing 762

projection 480
Project Reunion 550
projects

structuring 550
structuring, in solution/workspace 551

project templates
using 552

properties 63
access control 206
requirement 209

[788]

Q
quaternions 320
query

declaring, with specified type 476
declaring, with var type 476

query tags
logging with 443

queues 339
working with 344, 345, 346

R
ranges

using 350, 351
Range type

used, for identifying ranges 350
Razor 640

versus Blazor 722
Razor class libraries 542, 547
Razor class library

compact folder, disabling for Visual Studio
Code 599

creating 598
employees feature, implementing with

EF Core 600-602
partial view, implementing to single employee 602
testing 603, 604
using 598, 603, 604

read-only properties
defining 206

real numbers
code, writing to explore number sizes 70, 71
double types, versus decimal types 71-73
storing 70

Recorder class
implementing 508-510

records language
about 214, 215
init-only properties 213
positional data members 215
working with 213

record struct type
working with 243

recursion
reference link 138
used, for calculating factorials 137-140

reference type 78
defining 239
storing, in memory 240, 241

used, for managing memory 239
reflection 354

other activities 360
reflection technique 63
ref returns 205
regular expressions

complex comma-separated string, splitting 333
digits entered as text, checking 330, 331
examples 332
pattern matching 330
performance improvements 331
syntax 332

Relational Database Management System
(RDBMS) 407

remote procedure call (RPC) 668
Representational State Transfer (REST) 668
resource

accessing, from multiple threads 525, 526
resource usage

monitoring 506
REST Client 690

used, for making GET requests 690, 691
used, for making other requests 692, 693

REST Client extension
used, for testing HTTP requests 690

rounding rules 116
control, taking of 117

S
sample relational database

using 409, 410
scalability

improving, with asynchronous tasks 662
scoped dependency

reference link 683
Secure Sockets Layer (SSL) 105
security HTTP headers

adding 710
segments 625
selection statements 103
sequence 468
serialization 394
server

pinging 353, 354
Server Explorer

used, for managing Northwind database 413
serve static content

default files, enabling 585, 586
folder, creating for static files 584

[789]

folder, creating for web page 584
static files, enabling 585, 586
website, enabling to 584

services 544
configuring 604
registering, in ConfigureServices method 606-608

set 478, 340
working with, LINQ 478

settable properties
defining 207, 208

shared resources
access, synchronizing 524

short-circuiting Boolean operators 100
SignalR 544, 547
Simple Object Access Protocol (SOAP) 668
single-file app

publishing 293, 294
single-page application (SPA) 543, 676, 759
software

used, for writing and testing code 5
solution 18
solution code

downloading, from GitHub repository 37, 38
on GitHub 36

SPA frameworks
used, for building web applications 543

spans
using 350, 351
using, memory efficiently 349

special commands
adding, to .NET Interactive notebooks 32

specific exceptions
catching 123, 124

SQLite
Northwind database, creating 415
setting up, for macOS 414
setting up, for other OSes 414
setting up, for Windows 414
used, to creating class library for entity

models 554, 555
using 414

SQLiteStudio 415
used, for managing Northwind database 415, 416

SQL Server
used, for creating class library for entity

models 562-565
SQL Server LocalDB

used, for creating authentication database 617
stack memory 239

Stack Overflow
answers, obtaining for difficult programming

questions 42
stacks 339
statement 55

example 56
statically typed 190
static members 191
static methods 323

using, to reuse functionality 263, 264
Stopwatch type 508
storage stream 379
stream 378

abstract stream 378
compressing 386, 388
concrete stream 378
reading with 378
text, writing 380, 381
writing with 378
XML, writing 381, 382

stream helpers 379
string

binary object, converting into 118
building 324
characters, obtaining 321
checking, for content 323
encoding, as byte arrays 391-393
formatting 323, 324
joining 323, 324
length, obtaining 320
members 323
part, obtaining 322
splitting 321
type, converting into 117

strongly typed 190
struct type

defining 242, 243
Structured Query Language (SQL) 468
StyleCop 265
StyleCop rules

reference link 271
Swagger 690, 693, 694
Swagger UI 693

used, for testing HTTP requests 695-700
switch statement

branching with 106, 107
simplifying, with switch expressions 109, 110

synchronization types
applying 531

[790]

System.Convert type
converting 115, 116

system errors 167
System.Globalization namespace

CultureInfo type, using 363-365

T
target-typed new 78
task 505, 506

initiating 518, 519
used, for running multiple actions

asynchronously 518
waiting 519
wait method, using 519
wrapping 523, 524

tasks asynchronously
running 516

template packs
installing 552, 553

Test-Driven Development (TDD) 162
tester-doer pattern

implementing 173
issues 173

text
decoding 390
decoding, in files 393
encoding 390
encoding, in files 393
working with 320

thread 505, 506
thread-safe 524
time

working with 329
TimeOnly 329
times table

example 132
times table function

writing 132, 133
tool

selecting, for learning C# and .NET 3
top-level domain (TLD) 568
top-level programs 21
Trace

used, for instrumenting logging 154
trace switch 157
transaction

controlling, with isolation level 455
working with 454

transient fault handling
implementing 709

TryParse method
using, to avoid errors 120

tuple
about 197
deconstructing 198
fields, naming 198
language support 197
types, deconstructing 199, 200
used, for combining multiple returned values 196

tuple name inference 198
tuples 142
type 62, 63

converting, into string 117
evaluating 506
extending 263
in assemblies 279

type-safe method pointer 226
types reusable

creating, with generics 230

U
unary operators

exploring 96
unchecked statement

used, for disabling compiler overflow
checks 127, 128

Unicode 390
Unicode characters

in Windows console 436
Uniform Resource Locator (URL) 542, 568

components 568
unit testing 162

class library, creating that needs 162-164
running, with Visual Studio Code 165, 166
types 162
writing 164

Unity project 11
Universal Windows Platform (UWP) 5, 545, 550
unmanaged resources 383

releasing 244-246
Uno platform 545
upsert operation 670
URIs

working with 352, 353
usage errors 167
user agent 567
user interface components 721
user interface (UI) 533
user output

displaying 81

[791]

format strings 82, 83
interpolated strings, formatting 82
numbered positional arguments, formatting 81

V
value 338

returning, from methods 196
value type 78

defining 239
storing, in memory 240, 241
used, for managing memory 239

variables 62, 63
Boolean, storing 73
dynamic types, storing 74, 75
literal value 66
multiple values, storing in array 79, 80
naming conventions 66
numbers, storing 68
object type, storing 73, 74
operating 95, 96
real numbers, storing 70
text, storing 66
values, assigning 66
value type, obtaining 78, 79
value type, setting 78, 79
working with 65

verbatim string 67
verbs 62
view 640-642
view engines 640
view helper methods 658
view models 637-639
view search path convention 629, 630
Visual Studio

used, for running unit testing 166
Visual Studio 2022

code, compiling 20
code, running 20
code, writing with 18, 19
compiler-generated folders and files 21
console apps, building with 18
downloading, for Windows 6, 7
implicitly imported namespaces 22, 23
installing, for Windows 6, 7
multiple projects, managing with 18
packages, adding to project in 158
project, adding with 22
top-level programs, writing 21, 22
using 145, 146

Visual Studio Code
code, writing with 24-26
console apps, building with 24
downloading 7, 8
download link 7
extensions, installing 8
Git, using with 38
installing 7, 8
keyboard shortcuts 9
multiple projects, managing with 24
packages, adding to project in 157
project, adding with 27, 28
used, for running unit testing 165
using 146-148
using, for cross-platform development 4
versions 9

W
wait method

using, with task 519
warnings

code, fixing 268, 269
StyleCop recommendation 270, 271
suppressing 267, 268

weather forecasts
adding, to Northwind website home page 714-716

weather service
building, with minimal APIs 712, 713

Web API controller
configuring 683, 686
implementing 681

web applications
building, with SPA frameworks 543

WebAssembly Consensus 720
WebAssembly (Wasm) 720
web development 567
Web Forms 549
web service 668

advanced features, implementing for 707
building, with ASP.NET Core Web API 544, 667
building, with minimal APIs 711
consuming, with HTTP clients 702
creating, for Northwind database 675, 677
documenting 688
functionality, reviewing 674, 675
testing 688

web service acronyms 667, 668
websites

building, with ASP.NET Core 542

[792]

building, with content management system (CMS)
542, 543

where method
used, for filtering entities 471, 472

while statement
looping with 110

whole numbers
binary notation, using 69
exploring 69
legibility, improving with digit separators 69
storing 68, 69

Win32 API 549
Windows

Microsoft SQL Server, using 410
Microsoft Visual Studio 2022, using for 5
SQLite, setting up 414
Visual Studio 2022, downloading 6, 7
Visual Studio 2022, installing 6, 7

Windows App SDK 550
Windows Communication Foundation

(WCF) 549, 573, 668
gRPC 668

Windows console
Unicode characters 436

Windows Forms 545, 549
Windows keyboard shortcuts

Microsoft Visual Studio for 7
reference link 7

Windows-only desktop apps
technologies 549

Windows Presentation Foundation
(WPF) 14, 275, 545, 549

Windows Workflow (WF) 549
WinUI 3 550
workspace 24

X
Xamarin project 10, 11
XML

generating, with LINQ to XML 499
reading, with LINQ to XML 500, 501
serializing 394-396

XML comments
functions, documenting with 140, 141

XML file
deserializing 398, 399

XML serialization
controlling 688

xUnit.net. 162

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 01: Hello, C#! Welcome, .NET!
	Setting up your development environment
	Choosing the appropriate tool and application type for learning
	Pros and cons of the .NET Interactive Notebooks extension
	Using Visual Studio Code for cross-platform development
	Using GitHub Codespaces for development in the cloud
	Using Visual Studio for Mac for general development
	Using Visual Studio for Windows for general development
	What I used

	Deploying cross-platform
	Downloading and installing Visual Studio 2022 for Windows
	Microsoft Visual Studio for Windows keyboard shortcuts

	Downloading and installing Visual Studio Code
	Installing other extensions
	Understanding Microsoft Visual Studio Code versions
	Microsoft Visual Studio Code keyboard shortcuts

	Understanding .NET
	Understanding .NET Framework
	Understanding the Mono, Xamarin, and Unity projects
	Understanding .NET Core
	Understanding the journey to one .NET
	Understanding .NET support
	Understanding .NET Runtime and .NET SDK versions
	Removing old versions of .NET

	What is different about modern .NET?
	Windows development
	Web development
	Database development

	Themes of modern .NET
	Understanding .NET Standard
	.NET platforms and tools used by the book editions
	Understanding intermediate language
	Comparing .NET technologies

	Building console apps using Visual Studio 2022
	Managing multiple projects using Visual Studio 2022
	Writing code using Visual Studio 2022
	Compiling and running code using Visual Studio
	Understanding the compiler-generated folders and files

	Writing top-level programs
	Adding a second project using Visual Studio 2022
	Implicitly imported namespaces

	Building console apps using Visual Studio Code
	Managing multiple projects using Visual Studio Code
	Writing code using Visual Studio Code
	Compiling and running code using the dotnet CLI
	Adding a second project using Visual Studio Code
	Managing multiple files using Visual Studio Code

	Exploring code using .NET Interactive Notebooks
	Creating a notebook
	Writing and running code in a notebook
	Saving a notebook
	Adding Markdown and special commands to a notebook
	Executing code in multiple cells
	Using .NET Interactive Notebooks for the code in this book

	Reviewing the folders and files for projects
	Understanding the common folders and files
	Understanding the solution code on GitHub

	Making good use of the GitHub repository for this book
	Raising issues with the book
	Giving me feedback
	Downloading solution code from the GitHub repository
	Using Git with Visual Studio Code and the command line
	Cloning the book solution code repository

	Looking for help
	Reading Microsoft documentation
	Getting help for the dotnet tool
	Getting definitions of types and their members
	Looking for answers on Stack Overflow
	Searching for answers using Google
	Subscribing to the official .NET blog
	Watching Scott Hanselman's videos

	Practicing and exploring
	Exercise 1.1 – Test your knowledge
	Exercise 1.2 – Practice C# anywhere
	Exercise 1.3 – Explore topics

	Summary

	Chapter 02: Speaking C#
	Introducing the C# language
	Understanding language versions and features
	C# 1.0
	C# 2.0
	C# 3.0
	C# 4.0
	C# 5.0
	C# 6.0
	C# 7.0
	C# 7.1
	C# 7.2
	C# 7.3
	C# 8

	C# 9
	C# 10

	Understanding C# standards
	Discovering your C# compiler versions
	How to output the SDK version
	Enabling a specific language version compiler

	Understanding C# grammar and vocabulary
	Showing the compiler version
	Understanding C# grammar
	Statements
	Comments
	Blocks
	Examples of statements and blocks
	Understanding C# vocabulary
	Comparing programming languages to human languages
	Changing the color scheme for C# syntax
	Help for writing correct code
	Importing namespaces
	Implicitly and globally importing namespaces

	Verbs are methods
	Nouns are types, variables, fields, and properties
	Revealing the extent of the C# vocabulary

	Working with variables
	Naming things and assigning values
	Literal values
	Storing text
	Understanding verbatim strings

	Storing numbers
	Storing whole numbers
	Exploring whole numbers

	Storing real numbers
	Writing code to explore number sizes
	Comparing double and decimal types

	Storing Booleans
	Storing any type of object
	Storing dynamic types
	Declaring local variables
	Specifying the type of a local variable
	Inferring the type of a local variable
	Using target-typed new to instantiate objects

	Getting and setting the default values for types
	Storing multiple values in an array

	Exploring more about console applications
	Displaying output to the user
	Formatting using numbered positional arguments
	Formatting using interpolated strings
	Understanding format strings

	Getting text input from the user
	Simplifying the usage of the console
	Getting key input from the user
	Passing arguments to a console app
	Setting options with arguments
	Handling platforms that do not support an API

	Practicing and exploring
	Exercise 2.1 – Test your knowledge
	Exercise 2.2 – Test your knowledge of number types
	Exercise 2.3 – Practice number sizes and ranges
	Exercise 2.4 – Explore topics

	Summary

	Chapter 03: Controlling Flow, Converting Types, and Handling Exceptions
	Operating on variables
	Exploring unary operators
	Exploring binary arithmetic operators
	Assignment operators
	Exploring logical operators
	Exploring conditional logical operators
	Exploring bitwise and binary shift operators
	Miscellaneous operators

	Understanding selection statements
	Branching with the if statement
	Why you should always use braces with if statements

	Pattern matching with the if statement
	Branching with the switch statement
	Pattern matching with the switch statement
	Simplifying switch statements with switch expressions

	Understanding iteration statements
	Looping with the while statement
	Looping with the do statement
	Looping with the for statement
	Looping with the foreach statement
	Understanding how foreach works internally

	Casting and converting between types
	Casting numbers implicitly and explicitly
	Converting with the System.Convert type
	Rounding numbers
	Understanding the default rounding rules

	Taking control of rounding rules
	Converting from any type to a string
	Converting from a binary object to a string
	Parsing from strings to numbers or dates and times
	Errors using Parse
	Avoiding exceptions using the TryParse method

	Handling exceptions
	Wrapping error-prone code in a try block
	Catching all exceptions
	Catching specific exceptions
	Catching with filters

	Checking for overflow
	Throwing overflow exceptions with the checked statement
	Disabling compiler overflow checks with the unchecked statement

	Practicing and exploring
	Exercise 3.1 – Test your knowledge
	Exercise 3.2 – Explore loops and overflow
	Exercise 3.3 – Practice loops and operators
	Exercise 3.4 – Practice exception handling
	Exercise 3.5 – Test your knowledge of operators
	Exercise 3.6 – Explore topics

	Summary

	Chapter 04: Writing, Debugging, and Testing Functions
	Writing functions
	Times table example
	Writing a times table function

	Writing a function that returns a value
	Converting numbers from cardinal to ordinal
	Calculating factorials with recursion
	Documenting functions with XML comments
	Using lambdas in function implementations

	Debugging during development
	Creating code with a deliberate bug
	Setting a breakpoint and start debugging
	Using Visual Studio 2022
	Using Visual Studio Code

	Navigating with the debugging toolbar
	Debugging windows
	Stepping through code
	Customizing breakpoints

	Logging during development and runtime
	Understanding logging options
	Instrumenting with Debug and Trace
	Writing to the default trace listener

	Configuring trace listeners
	Switching trace levels
	Adding packages to a project in Visual Studio Code
	Adding packages to a project in Visual Studio 2022
	Reviewing project packages

	Unit testing
	Understanding types of testing
	Creating a class library that needs testing
	Writing unit tests
	Running unit tests using Visual Studio Code
	Running unit tests using Visual Studio
	Fix the bug

	Throwing and catching exceptions in functions
	Understanding usage errors and execution errors
	Commonly thrown exceptions in functions
	Understanding the call stack
	Where to catch exceptions
	Rethrowing exceptions
	Implementing the tester-doer pattern
	Problems with the tester-doer pattern

	Practicing and exploring
	Exercise 4.1 – Test your knowledge
	Exercise 4.2 – Practice writing functions with debugging and unit testing
	Exercise 4.3 – Explore topics

	Summary

	Chapter 05: Building Your Own Types with Object-Oriented Programming
	Talking about OOP
	Building class libraries
	Creating a class library
	Defining a class in a namespace
	Simplifying namespace declarations

	Understanding members
	Instantiating a class
	Referencing an assembly

	Importing a namespace to use a type
	Understanding objects
	Inheriting from System.Object

	Storing data within fields
	Defining fields
	Understanding access modifiers
	Setting and outputting field values
	Storing a value using an enum type
	Storing multiple values using an enum type

	Storing multiple values using collections
	Understanding generic collections
	Making a field static
	Making a field constant
	Making a field read-only
	Initializing fields with constructors
	Defining multiple constructors

	Writing and calling methods
	Returning values from methods
	Combining multiple returned values using tuples
	Language support for tuples
	Naming the fields of a tuple
	Inferring tuple names
	Deconstructing tuples
	Deconstructing types

	Defining and passing parameters to methods
	Overloading methods
	Passing optional and named parameters
	Naming parameter values when calling methods

	Controlling how parameters are passed
	Simplified out parameters

	Understanding ref returns
	Splitting classes using partial

	Controlling access with properties and indexers
	Defining read-only properties
	Defining settable properties
	Requiring properties to be set during instantiation
	Defining indexers

	Pattern matching with objects
	Creating and referencing a .NET 6 class library
	Defining flight passengers
	Enhancements to pattern matching in C# 9 or later

	Working with records
	Init-only properties
	Understanding records
	Positional data members in records
	Simplifying data members in records

	Practicing and exploring
	Exercise 5.1 – Test your knowledge
	Exercise 5.2 – Explore topics

	Summary

	Chapter 06: Implementing Interfaces and Inheriting Classes
	Setting up a class library and console application
	More about methods
	Implementing functionality using methods
	Implementing functionality using operators
	Implementing functionality using local functions

	Raising and handling events
	Calling methods using delegates
	Defining and handling delegates
	Defining and handling events

	Making types safely reusable with generics
	Working with non-generic types
	Working with generic types

	Implementing interfaces
	Common interfaces
	Comparing objects when sorting
	Comparing objects using a separate class
	Implicit and explicit interface implementations
	Defining interfaces with default implementations

	Managing memory with reference and value types
	Defining reference and value types
	How reference and value types are stored in memory
	Equality of types
	Defining struct types
	Working with record struct types
	Releasing unmanaged resources
	Ensuring that Dispose is called

	Working with null values
	Making a value type nullable
	Understanding nullable reference types
	Enabling nullable and non-nullable reference types
	Declaring non-nullable variables and parameters
	Checking for null
	Checking for null in method parameters

	Inheriting from classes
	Extending classes to add functionality
	Hiding members
	Overriding members
	Inheriting from abstract classes
	Preventing inheritance and overriding
	Understanding polymorphism

	Casting within inheritance hierarchies
	Implicit casting
	Explicit casting
	Avoiding casting exceptions

	Inheriting and extending .NET types
	Inheriting exceptions
	Extending types when you can't inherit
	Using static methods to reuse functionality
	Using extension methods to reuse functionality

	Using an analyzer to write better code
	Suppressing warnings
	Fixing the code
	Understanding common StyleCop recommendations

	Practicing and exploring
	Exercise 6.1 – Test your knowledge
	Exercise 6.2 – Practice creating an inheritance hierarchy
	Exercise 6.3 – Explore topics

	Summary

	Chapter 07: Packaging and Distributing .NET Types
	The road to .NET 6
	.NET Core 1.0
	.NET Core 1.1
	.NET Core 2.0
	.NET Core 2.1
	.NET Core 2.2
	.NET Core 3.0
	.NET Core 3.1
	.NET 5.0
	.NET 6.0
	Improving performance from .NET Core 2.0 to .NET 5
	Checking your .NET SDKs for updates

	Understanding .NET components
	Understanding assemblies, NuGet packages, and namespaces
	What is a namespace?
	Understanding dependent assemblies

	Understanding the Microsoft .NET project SDKs
	Understanding namespaces and types in assemblies
	Understanding NuGet packages
	Understanding frameworks
	Importing a namespace to use a type
	Relating C# keywords to .NET types
	Mapping C# aliases to .NET types
	Revealing the location of a type

	Sharing code with legacy platforms using .NET Standard
	Understanding defaults for class libraries with different SDKs
	Creating a .NET Standard 2.0 class library
	Controlling the .NET SDK

	Publishing your code for deployment
	Creating a console application to publish
	Understanding dotnet commands
	Creating new projects

	Getting information about .NET and its environment
	Managing projects
	Publishing a self-contained app
	Publishing a single-file app
	Reducing the size of apps using app trimming
	Enabling assembly-level trimming
	Enabling type-level and member-level trimming

	Decompiling .NET assemblies
	Decompiling using the ILSpy extension for Visual Studio 2022
	Decompiling using the ILSpy extension for Visual Studio Code
	No, you cannot technically prevent decompilation

	Packaging your libraries for NuGet distribution
	Referencing a NuGet package
	Fixing dependencies

	Packaging a library for NuGet
	Publishing a package to a public NuGet feed
	Publishing a package to a private NuGet feed

	Exploring NuGet packages with a tool
	Testing your class library package

	Porting from .NET Framework to modern .NET
	Could you port?
	Should you port?
	Differences between .NET Framework and modern .NET
	Understanding the .NET Portability Analyzer
	Understanding the .NET Upgrade Assistant
	Using non-.NET Standard libraries

	Working with preview features
	Requiring preview features
	Enabling preview features
	Generic mathematics

	Practicing and exploring
	Exercise 7.1 – Test your knowledge
	Exercise 7.2 – Explore topics
	Exercise 7.3 – Explore PowerShell

	Summary

	Chapter 08: Working with Common .NET Types
	Working with numbers
	Working with big integers
	Working with complex numbers
	Understanding quaternions

	Working with text
	Getting the length of a string
	Getting the characters of a string
	Splitting a string
	Getting part of a string
	Checking a string for content
	Joining, formatting, and other string members
	Building strings efficiently

	Working with dates and times
	Specifying date and time values
	Globalization with dates and times
	Working with only a date or a time

	Pattern matching with regular expressions
	Checking for digits entered as text
	Regular expression performance improvements
	Understanding the syntax of a regular expression
	Examples of regular expressions
	Splitting a complex comma-separated string

	Storing multiple objects in collections
	Common features of all collections
	Improving performance by ensuring the capacity of a collection
	Understanding collection choices
	Lists
	Dictionaries
	Stacks
	Queues
	Sets
	Collection methods summary

	Working with lists
	Working with dictionaries
	Working with queues
	Sorting collections
	More specialized collections
	Working with a compact array of bit values
	Working with efficient lists

	Using immutable collections
	Good practice with collections

	Working with spans, indexes, and ranges
	Using memory efficiently using spans
	Identifying positions with the Index type
	Identifying ranges with the Range type
	Using indexes, ranges, and spans

	Working with network resources
	Working with URIs, DNS, and IP addresses
	Pinging a server

	Working with reflection and attributes
	Versioning of assemblies
	Reading assembly metadata
	Creating custom attributes
	Doing more with reflection

	Working with images
	Internationalizing your code
	Detecting and changing the current culture

	Practicing and exploring
	Exercise 8.1 – Test your knowledge
	Exercise 8.2 – Practice regular expressions
	Exercise 8.3 – Practice writing extension methods
	Exercise 8.4 – Explore topics

	Chapter 09: Working with Files, Streams, and Serialization
	Managing the filesystem
	Handling cross-platform environments and filesystems
	Managing drives
	Managing directories
	Managing files
	Managing paths
	Getting file information
	Controlling how you work with files

	Reading and writing with streams
	Understanding abstract and concrete streams
	Understanding storage streams
	Understanding function streams
	Understanding stream helpers

	Writing to text streams
	Writing to XML streams
	Disposing of file resources
	Simplifying disposal by using the using statement

	Compressing streams
	Compressing with the Brotli algorithm

	Encoding and decoding text
	Encoding strings as byte arrays
	Encoding and decoding text in files

	Serializing object graphs
	Serializing as XML
	Generating compact XML
	Deserializing XML files
	Serializing with JSON
	High-performance JSON processing

	Controlling JSON processing
	New JSON extension methods for working with HTTP responses
	Migrating from Newtonsoft to new JSON

	Practicing and exploring
	Exercise 9.1 – Test your knowledge
	Exercise 9.2 – Practice serializing as XML
	Exercise 9.3 – Explore topics

	Summary

	Chapter 10: Working with Data Using Entity Framework Core
	Understanding modern databases
	Understanding legacy Entity Framework
	Using the legacy Entity Framework 6.3 or later

	Understanding Entity Framework Core
	Creating a console app for working with EF Core
	Using a sample relational database
	Using Microsoft SQL Server for Windows
	Downloading and installing SQL Server

	Creating the Northwind sample database for SQL Server
	Managing the Northwind sample database with Server Explorer
	Using SQLite
	Setting up SQLite for macOS
	Setting up SQLite for Windows
	Setting up SQLite for other OSes

	Creating the Northwind sample database for SQLite
	Managing the Northwind sample database with SQLiteStudio

	Setting up EF Core
	Choosing an EF Core database provider
	Connecting to a database
	Defining the Northwind database context class

	Defining EF Core models
	Using EF Core conventions to define the model
	Using EF Core annotation attributes to define the model
	Using the EF Core Fluent API to define the model
	Understanding data seeding with the Fluent API

	Building an EF Core model for the Northwind tables
	Defining the Category and Product entity classes

	Adding tables to the Northwind database context class
	Setting up the dotnet-ef tool
	Scaffolding models using an existing database
	Configuring preconvention models

	Querying EF Core models
	Filtering included entities
	Unicode characters in the Windows console

	Filtering and sorting products
	Getting the generated SQL
	Logging EF Core using a custom logging provider
	Filtering logs by provider-specific values
	Logging with query tags

	Pattern matching with Like
	Defining global filters

	Loading patterns with EF Core
	Eager loading entities
	Enabling lazy loading
	Explicit loading entities

	Manipulating data with EF Core
	Inserting entities
	Updating entities
	Deleting entities
	Pooling database contexts

	Working with transactions
	Controlling transactions using isolation levels
	Defining an explicit transaction

	Code First EF Core models
	Understanding migrations

	Practicing and exploring
	Exercise 10.1 – Test your knowledge
	Exercise 10.2 – Practice exporting data using different serialization formats
	Exercise 10.3 – Explore topics
	Exercise 10.4 – Explore NoSQL databases

	Summary

	Chapter 11: Querying and Manipulating Data Using LINQ
	Writing LINQ expressions
	What makes LINQ?
	Building LINQ expressions with the Enumerable class
	Understanding deferred execution

	Filtering entities with Where
	Targeting a named method
	Simplifying the code by removing the explicit delegate instantiation
	Targeting a lambda expression
	Sorting entities
	Sorting by a single property using OrderBy

	Declaring a query using var or a specified type
	Filtering by type
	Working with sets and bags using LINQ

	Using LINQ with EF Core
	Building an EF Core model
	Filtering and sorting sequences
	Projecting sequences into new types
	Joining and grouping sequences
	Joining sequences
	Group-joining sequences

	Aggregating sequences

	Sweetening LINQ syntax with syntactic sugar
	Using multiple threads with parallel LINQ
	Creating an app that benefits from multiple threads
	Using Windows
	Using macOS
	For all operating systems

	Creating your own LINQ extension methods
	Trying the chainable extension method
	Trying the mode and median methods

	Working with LINQ to XML
	Generating XML using LINQ to XML
	Reading XML using LINQ to XML

	Practicing and exploring
	Exercise 11.1 – Test your knowledge
	Exercise 11.2 – Practice querying with LINQ
	Exercise 11.3 – Explore topics

	Summary

	Chapter 12: Improving Performance and Scalability Using Multitasking
	Understanding processes, threads, and tasks
	Monitoring performance and resource usage
	Evaluating the efficiency of types
	Monitoring performance and memory using diagnostics
	Useful members of the Stopwatch and Process types
	Implementing a Recorder class

	Measuring the efficiency of processing strings
	Monitoring performance and memory using Benchmark.NET

	Running tasks asynchronously
	Running multiple actions synchronously
	Running multiple actions asynchronously using tasks
	Starting tasks

	Waiting for tasks
	Using wait methods with tasks

	Continuing with another task
	Nested and child tasks
	Wrapping tasks around other objects

	Synchronizing access to shared resources
	Accessing a resource from multiple threads
	Applying a mutually exclusive lock to a conch
	Understanding the lock statement
	Avoiding deadlocks

	Synchronizing events
	Making CPU operations atomic
	Applying other types of synchronization

	Understanding async and await
	Improving responsiveness for console apps
	Improving responsiveness for GUI apps
	Improving scalability for web applications and web services
	Common types that support multitasking
	Using await in catch blocks
	Working with async streams

	Practicing and exploring
	Exercise 12.1 – Test your knowledge
	Exercise 12.2 – Explore topics

	Summary

	Chapter 13: Introducing Practical Applications of C# and .NET
	Understanding app models for C# and .NET
	Building websites using ASP.NET Core
	Building websites using a content management system
	Building web applications using SPA frameworks

	Building web and other services
	Building mobile and desktop apps
	Alternatives to .NET MAUI
	Understanding Uno Platform
	Understanding Avalonia

	New features in ASP.NET Core
	ASP.NET Core 1.0
	ASP.NET Core 1.1
	ASP.NET Core 2.0
	ASP.NET Core 2.1
	ASP.NET Core 2.2
	ASP.NET Core 3.0
	ASP.NET Core 3.1
	Blazor WebAssembly 3.2
	ASP.NET Core 5.0
	ASP.NET Core 6.0

	Building Windows-only desktop apps
	Understanding legacy Windows application platforms
	Understanding modern .NET support for legacy Windows platforms

	Structuring projects
	Structuring projects in a solution or workspace

	Using other project templates
	Installing additional template packs

	Building an entity data model for the Northwind database
	Creating a class library for entity models using SQLite
	Improving the class-to-table mapping
	Creating a class library for a Northwind database context

	Creating a class library for entity models using SQL Server

	Practicing and exploring
	Exercise 13.1 – Test your knowledge
	Exercise 13.2 – Explore topics

	Summary

	Chapter 14: Building Websites Using ASP.NET Core Razor Pages
	Understanding web development
	Understanding HTTP
	Understanding the components of a URL
	Assigning port numbers for projects in this book

	Using Google Chrome to make HTTP requests
	Understanding client-side web development technologies

	Understanding ASP.NET Core
	Classic ASP.NET versus modern ASP.NET Core
	Creating an empty ASP.NET Core project
	Testing and securing the website
	Enabling stronger security and redirect to a secure connection

	Controlling the hosting environment
	Separating configuration for services and pipeline
	Enabling a website to serve static content
	Creating a folder for static files and a web page
	Enabling static and default files

	Exploring ASP.NET Core Razor Pages
	Enabling Razor Pages
	Adding code to a Razor Page
	Using shared layouts with Razor Pages
	Using code-behind files with Razor Pages

	Using Entity Framework Core with ASP.NET Core
	Configure Entity Framework Core as a service
	Manipulating data using Razor Pages
	Enabling a model to insert entities
	Defining a form to insert a new supplier

	Injecting a dependency service into a Razor Page

	Using Razor class libraries
	Creating a Razor class library
	Disabling compact folders for Visual Studio Code
	Implementing the employees feature using EF Core
	Implementing a partial view to show a single employee
	Using and testing a Razor class library

	Configuring services and the HTTP request pipeline
	Understanding endpoint routing
	Configuring endpoint routing

	Reviewing the endpoint routing configuration in our project
	Registering services in the ConfigureServices method
	Setting up the HTTP request pipeline in the Configure method

	Summarizing key middleware extension methods
	Visualizing the HTTP pipeline
	Implementing an anonymous inline delegate as middleware

	Practicing and exploring
	Exercise 14.1 – Test your knowledge
	Exercise 14.2 – Practice building a data-driven web page
	Exercise 14.3 – Practice building web pages for console apps
	Exercise 14.4 – Explore topics

	Summary

	Chapter 15: Building Websites Using the Model-View-Controller Pattern
	Setting up an ASP.NET Core MVC website
	Creating an ASP.NET Core MVC website
	Creating the authentication database for SQL Server LocalDB
	Exploring the default ASP.NET Core MVC website
	Understanding visitor registration

	Reviewing an MVC website project structure
	Reviewing the ASP.NET Core Identity database

	Exploring an ASP.NET Core MVC website
	Understanding ASP.NET Core MVC initialization
	Understanding the default MVC route
	Understanding controllers and actions
	Understanding the ControllerBase class
	Understanding the Controller class
	Understanding the responsibilities of a controller

	Understanding the view search path convention
	Understanding logging
	Understanding filters
	Using a filter to secure an action method
	Enabling role management and creating a role programmatically
	Using a filter to cache a response
	Using a filter to define a custom route

	Understanding entity and view models
	Understanding views

	Customizing an ASP.NET Core MVC website
	Defining a custom style
	Setting up the category images
	Understanding Razor syntax
	Defining a typed view
	Reviewing the customized home page
	Passing parameters using a route value
	Understanding model binders in more detail
	Disambiguating action methods
	Passing a route parameter
	Passing a form parameter

	Validating the model
	Understanding view helper methods

	Querying a database and using display templates
	Improving scalability using asynchronous tasks
	Making controller action methods asynchronous

	Practicing and exploring
	Exercise 15.1 – Test your knowledge
	Exercise 15.2 – Practice implementing MVC by implementing a category detail page
	Exercise 15.3 – Practice improving scalability by understanding and implementing async action methods
	Exercise 15.4 – Practice unit testing MVC controllers
	Exercise 15.5 – Explore topics

	Summary

	Chapter 16: Building and Consuming Web Services
	Building web services using ASP.NET Core Web API
	Understanding web service acronyms
	Understanding Windows Communication Foundation (WCF)
	An alternative to WCF

	Understanding HTTP requests and responses for Web APIs
	Creating an ASP.NET Core Web API project
	Reviewing the web service's functionality
	Creating a web service for the Northwind database
	Creating data repositories for entities
	Implementing a Web API controller
	Understanding action method return types

	Configuring the customer repository and Web API controller
	Specifying problem details
	Controlling XML serialization

	Documenting and testing web services
	Testing GET requests using a browser
	Testing HTTP requests with the REST Client extension
	Making GET requests using REST Client
	Making other requests using REST Client

	Understanding Swagger
	Testing requests with Swagger UI
	Enabling HTTP logging

	Consuming web services using HTTP clients
	Understanding HttpClient
	Configuring HTTP clients using HttpClientFactory
	Getting customers as JSON in the controller
	Enabling Cross-Origin Resource Sharing

	Implementing advanced features for web services
	Implementing a Health Check API
	Implementing Open API analyzers and conventions
	Implementing transient fault handling
	Adding security HTTP headers

	Building web services using minimal APIs
	Building a weather service using minimal APIs
	Testing the minimal weather service
	Adding weather forecasts to the Northwind website home page

	Practicing and exploring
	Exercise 16.1 – Test your knowledge
	Exercise 16.2 – Practice creating and deleting customers with HttpClient
	Exercise 16.3 – Explore topics

	Summary

	Chapter 17: Building User Interfaces Using Blazor
	Understanding Blazor
	JavaScript and friends
	Silverlight – C# and .NET using a plugin
	WebAssembly – a target for Blazor
	Understanding Blazor hosting models
	Understanding Blazor components
	What is the difference between Blazor and Razor?

	Comparing Blazor project templates
	Reviewing the Blazor Server project template
	Understanding CSS and JavaScript isolation

	Understanding Blazor routing to page components
	How to define a routable page component
	How to navigate Blazor routes
	How to pass route parameters
	Understanding base component classes
	How to use the navigation link component with routes

	Running the Blazor Server project template
	Reviewing the Blazor WebAssembly project template

	Building components using Blazor Server
	Defining and testing a simple component
	Making the component a routable page component
	Getting entities into a component

	Abstracting a service for a Blazor component
	Defining forms using the EditForm component
	Building and using a customer form component
	Testing the customer form component

	Building components using Blazor WebAssembly
	Configuring the server for Blazor WebAssembly
	Configuring the client for Blazor WebAssembly
	Testing the Blazor WebAssembly components and service

	Improving Blazor WebAssembly apps
	Enabling Blazor WebAssembly AOT
	Exploring Progressive Web App support
	Implementing offline support for PWAs

	Understanding the browser compatibility analyzer for Blazor WebAssembly
	Sharing Blazor components in a class library
	Interop with JavaScript
	Libraries of Blazor components

	Practicing and exploring
	Exercise 17.1 – Test your knowledge
	Exercise 17.2 – Practice by creating a times table component
	Exercise 17.3 – Practice by creating a country navigation item
	Exercise 17.4 – Explore topics

	Summary

	Epilogue
	Next steps on your C# and .NET learning journey
	Polishing your skills with design guidelines
	Books to take your learning further

	.NET MAUI delayed
	Next edition coming November 2022
	Good luck!

	Index

