EXPERT INSIGHT

CH# 10 and .NET 6

Modern Cross-Platform
Development

Build apps, websites, and services
with ASP.NET Core 6, Blazor, and EF Core 6
using Visual Studio 2022 and Visual Studio Code

Sixth Edition

Mark J. Price PCICI('I')

C# 10 and .NET 6 — Modern

Cross-Platform Development
Sixth Edition

Build apps, websites, and services with ASP.NET Core 6,
Blazor, and EF Core 6 using Visual Studio 2022 and
Visual Studio Code

Mark J. Price

Packt>

BIRMINGHAM —MUMBAI

C# 10 and .NET 6 — Modern Cross-Platform Development

Sixth Edition
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Producer: Suman Sen

Acquisition Editor - Peer Reviews: Saby Dsilva
Project Editor: Amit Ramadas

Content Development Editor: Bhavesh Amin
Copy Editor: Safis Editing

Technical Editor: Aniket Shetty

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Presentation Designer: Pranit Padwal

First published: March 2016
Second edition: March 2017

Third edition: November 2017
Fourth edition: October 2019

Fifth edition: November 2020

Sixth edition: November 2021
Production reference: 1021121
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham
B3 2PB, UK.

ISBN 978-1-80107-736-1

www.packt.com

www.packt.com

Contributors

About the author

Mark J. Price is a Microsoft Specialist: Programming in C# and Architecting Microsoft Azure
Solutions, with over 20 years' experience.

Microsoft Microsoft

CERTIFIED Specialist

Solutions Developer

Programming in C#

App Builder

Since 1993, he has passed more than 80 Microsoft programming exams and specializes in
preparing others to pass them. Between 2001 and 2003, Mark was employed to write official
courseware for Microsoft in Redmond, USA. His team wrote the first training courses for C#
while it was still an early alpha version. While with Microsoft, he taught "train-the-trainer"
classes to get other MCTs up to speed on C# and .NET. Currently, Mark creates and delivers
training courses for Optimizely's Digital Experience Platform (DXP). Mark holds a BSc. Hons.
Degree in computer science.

About the reviewers

Damir Arh has many years of experience with software development and maintenance;

from complex enterprise software projects to modern consumer-oriented mobile applications.
Although he has worked with a wide spectrum of different languages, his favorite language
remains C#. In his drive toward better development processes, he is a proponent of test-driven
development, continuous integration, and continuous deployment. He shares his knowledge by
speaking at local user groups and conferences, blogging, and writing articles. He has received
the prestigious Microsoft MVP award for developer technologies 10 times in a row. In his spare
time, he's always on the move: hiking, geocaching, running, and rock climbing.

Geovanny Alzate Sandoval is a system engineer from Medellin, Colombia, and enjoys
everything related to software development, new technologies, design patterns, and software
architecture. He has 14+ years of experience working as a developer, technical leader, and
software architect mostly with Microsoft technologies. He loves contributing to OSS, he has
made contributions to Asp.Net Core SignalR, Polly, and Apollo Server to mention a few. He's
also the co-author of Simmy, an OSS library for chaos engineering for .NET based on Polly.
He's also a DDD lover and a cloud enthusiast. In addition, he's a .Net Foundation member
and a co-organizer of MDE.NET community, which is a community for .NET developers in
Medellin/ Colombia. In recent years, he has been focused on building distributed and reliable
systems using distributed architectures and cloud technologies. Last but not least, he strongly
believes in teamwork, as he says: "I wouldn't be here if I wouldn't have learned that much from
all the talented people I've worked with."

Geovanny currently works for Curbit, which is a US startup based in California, as Director of
Engineering.

Table of Contents

Preface XXV

Chapter 1: Hello, C#! Welcome, .NET!
Setting up your development environment

Choosing the appropriate tool and application type for learning
Pros and cons of the .NET Interactive Notebooks extension
Using Visual Studio Code for cross-platform development
Using GitHub Codespaces for development in the cloud
Using Visual Studio for Mac for general development
Using Visual Studio for Windows for general development
What | used

Deploying cross-platform
Downloading and installing Visual Studio 2022 for Windows

Microsoft Visual Studio for Windows keyboard shortcuts

Downloading and installing Visual Studio Code
Installing other extensions
Understanding Microsoft Visual Studio Code versions
Microsoft Visual Studio Code keyboard shortcuts

Understanding .NET
Understanding .NET Framework
Understanding the Mono, Xamarin, and Unity projects
Understanding .NET Core
Understanding the journey to one .NET

Understanding .NET support
Understanding .NET Runtime and .NET SDK versions
Removing old versions of .NET

What is different about modern .NET?
Windows development
Web development
Database development

Themes of modern .NET
Understanding .NET Standard
.NET platforms and tools used by the book editions
Understanding intermediate language
Comparing .NET technologies

Building console apps using Visual Studio 2022
Managing multiple projects using Visual Studio 2022
Writing code using Visual Studio 2022
Compiling and running code using Visual Studio

[v]

| \NO J S L i N S S i W i G G G G G QL GRS G g
OO NNODOGOT oA, PN 2200000 NNOODOOODORAERALOWWN|=

Table of Contents

Understanding the compiler-generated folders and files 21
Writing top-level programs 21
Adding a second project using Visual Studio 2022 22

Implicitly imported namespaces 22

Building console apps using Visual Studio Code 24
Managing multiple projects using Visual Studio Code 24
Writing code using Visual Studio Code 24
Compiling and running code using the dotnet CLI 27
Adding a second project using Visual Studio Code 27
Managing multiple files using Visual Studio Code 29

Exploring code using .NET Interactive Notebooks 29
Creating a notebook 30
Writing and running code in a notebook 31
Saving a notebook 32
Adding Markdown and special commands to a notebook 32
Executing code in multiple cells 33
Using .NET Interactive Notebooks for the code in this book 34

Reviewing the folders and files for projects 34
Understanding the common folders and files 35
Understanding the solution code on GitHub 36

Making good use of the GitHub repository for this book 36
Raising issues with the book 36
Giving me feedback 37
Downloading solution code from the GitHub repository 37
Using Git with Visual Studio Code and the command line 38

Cloning the book solution code repository 38

Looking for help 39
Reading Microsoft documentation 39
Getting help for the dotnet tool 39
Getting definitions of types and their members 40
Looking for answers on Stack Overflow 42
Searching for answers using Google 43
Subscribing to the official .NET blog 43
Watching Scott Hanselman's videos 43

Practicing and exploring 43
Exercise 1.1 — Test your knowledge 43
Exercise 1.2 — Practice C# anywhere 44
Exercise 1.3 — Explore topics 44

Summary 45

Chapter 2: Speaking C# 47

Introducing the C# language 47
Understanding language versions and features 47

C#1.0 48

C#20 48

C#3.0 48

[vi]

Table of Contents

C#4.0 48
C#5.0 49
C#6.0 49
C#7.0 49
C#71 49
C#7.2 50
C#7.3 50
C#38 50
C#9 50
C#10 50
Understanding C# standards 51
Discovering your C# compiler versions 51
How to output the SDK version 52
Enabling a specific language version compiler 52
Understanding C# grammar and vocabulary 53
Showing the compiler version 53
Understanding C# grammar 55
Statements 55
Comments 55
Blocks 56
Examples of statements and blocks 56
Understanding C# vocabulary 57
Comparing programming languages to human languages 57
Changing the color scheme for C# syntax 57
Help for writing correct code 58
Importing namespaces 59
Implicitly and globally importing namespaces 59
Verbs are methods 62
Nouns are types, variables, fields, and properties 62
Revealing the extent of the C# vocabulary 63
Working with variables 65
Naming things and assigning values 66
Literal values 66
Storing text 66
Understanding verbatim strings 67
Storing numbers 68
Storing whole numbers 68
Exploring whole numbers 69
Storing real numbers 70
Writing code to explore number sizes 70
Comparing double and decimal types 71
Storing Booleans 73
Storing any type of object 73
Storing dynamic types 74
Declaring local variables 76
Specifying the type of a local variable 76
Inferring the type of a local variable 76

Using target-typed new to instantiate objects 78

[vii]

Table of Contents

Getting and setting the default values for types 78
Storing multiple values in an array 79
Exploring more about console applications 80
Displaying output to the user 81
Formatting using numbered positional arguments 81
Formatting using interpolated strings 82
Understanding format strings 82
Getting text input from the user 84
Simplifying the usage of the console 84
Getting key input from the user 85
Passing arguments to a console app 86
Setting options with arguments 88
Handling platforms that do not support an API 90
Practicing and exploring 91
Exercise 2.1 — Test your knowledge 91
Exercise 2.2 — Test your knowledge of number types 92
Exercise 2.3 — Practice number sizes and ranges 92
Exercise 2.4 — Explore topics 93
Summary 93
Chapter 3: Controlling Flow, Converting Types, and Handling Exceptions 95
Operating on variables 95
Exploring unary operators 96
Exploring binary arithmetic operators 97
Assignment operators 98
Exploring logical operators 98
Exploring conditional logical operators 100
Exploring bitwise and binary shift operators 101
Miscellaneous operators 103
Understanding selection statements 103
Branching with the if statement 104
Why you should always use braces with if statements 105
Pattern matching with the if statement 105
Branching with the switch statement 106
Pattern matching with the switch statement 108
Simplifying switch statements with switch expressions 109
Understanding iteration statements 110
Looping with the while statement 110
Looping with the do statement 111
Looping with the for statement 112
Looping with the foreach statement 112
Understanding how foreach works internally 113
Casting and converting between types 113
Casting numbers implicitly and explicitly 114
Converting with the System.Convert type 115
Rounding numbers 116

[viii]

Table of Contents

Understanding the default rounding rules

116

Taking control of rounding rules 117
Converting from any type to a string 117
Converting from a binary object to a string 118
Parsing from strings to numbers or dates and times 119
Errors using Parse 120
Avoiding exceptions using the TryParse method 120
Handling exceptions 121
Wrapping error-prone code in a try block 121
Catching all exceptions 123
Catching specific exceptions 123
Catching with filters 125
Checking for overflow 125
Throwing overflow exceptions with the checked statement 125
Disabling compiler overflow checks with the unchecked statement 127
Practicing and exploring 128
Exercise 3.1 — Test your knowledge 128
Exercise 3.2 — Explore loops and overflow 129
Exercise 3.3 — Practice loops and operators 129
Exercise 3.4 — Practice exception handling 130
Exercise 3.5 — Test your knowledge of operators 130
Exercise 3.6 — Explore topics 130
Summary 130
Chapter 4: Writing, Debugging, and Testing Functions 131
Writing functions 131
Times table example 132
Writing a times table function 132
Writing a function that returns a value 134
Converting numbers from cardinal to ordinal 136
Calculating factorials with recursion 137
Documenting functions with XML comments 140
Using lambdas in function implementations 141
Debugging during development 144
Creating code with a deliberate bug 144
Setting a breakpoint and start debugging 145
Using Visual Studio 2022 145
Using Visual Studio Code 146
Navigating with the debugging toolbar 148
Debugging windows 149
Stepping through code 150
Customizing breakpoints 151
Logging during development and runtime 153
Understanding logging options 153
Instrumenting with Debug and Trace 154
Writing to the default trace listener 154
Configuring trace listeners 155

[ix]

Table of Contents

Switching trace levels 157
Adding packages to a project in Visual Studio Code 157
Adding packages to a project in Visual Studio 2022 158
Reviewing project packages 158

Unit testing 162

Understanding types of testing 162

Creating a class library that needs testing 162

Writing unit tests 164
Running unit tests using Visual Studio Code 165
Running unit tests using Visual Studio 166
Fix the bug 166

Throwing and catching exceptions in functions 167

Understanding usage errors and execution errors 167

Commonly thrown exceptions in functions 167

Understanding the call stack 168

Where to catch exceptions 171

Rethrowing exceptions 171

Implementing the tester-doer pattern 173
Problems with the tester-doer pattern 173

Practicing and exploring 174

Exercise 4.1 — Test your knowledge 174

Exercise 4.2 — Practice writing functions with debugging and unit testing 174

Exercise 4.3 — Explore topics 175

Summary 175
Chapter 5: Building Your Own Types with Object-Oriented Programming 177
Talking about OOP 177
Building class libraries 178

Creating a class library 178

Defining a class in a namespace 179
Simplifying namespace declarations 180

Understanding members 181

Instantiating a class 181
Referencing an assembly 182

Importing a namespace to use a type 182

Understanding objects 183
Inheriting from System.Object 184

Storing data within fields 184

Defining fields 184

Understanding access modifiers 185

Setting and outputting field values 186

Storing a value using an enum type 187

Storing multiple values using an enum type 188

Storing multiple values using collections 189

Understanding generic collections 190

Making a field static 191

Making a field constant 192

[x]

Table of Contents

Making a field read-only 193
Initializing fields with constructors 194
Defining multiple constructors 195
Writing and calling methods 195
Returning values from methods 195
Combining multiple returned values using tuples 196
Language support for tuples 197
Naming the fields of a tuple 198
Inferring tuple names 198
Deconstructing tuples 198
Deconstructing types 199
Defining and passing parameters to methods 200
Overloading methods 201
Passing optional and named parameters 201
Naming parameter values when calling methods 203
Controlling how parameters are passed 203
Simplified out parameters 204
Understanding ref returns 205
Splitting classes using partial 205
Controlling access with properties and indexers 206
Defining read-only properties 206
Defining settable properties 207
Requiring properties to be set during instantiation 209
Defining indexers 209
Pattern matching with objects 210
Creating and referencing a .NET 6 class library 210
Defining flight passengers 211
Enhancements to pattern matching in C# 9 or later 212
Working with records 213
Init-only properties 213
Understanding records 214
Positional data members in records 215
Simplifying data members in records 215
Practicing and exploring 216
Exercise 5.1 — Test your knowledge 217
Exercise 5.2 — Explore topics 217
Summary 217
Chapter 6: Implementing Interfaces and Inheriting Classes 219
Setting up a class library and console application 220
More about methods 221
Implementing functionality using methods 221
Implementing functionality using operators 223
Implementing functionality using local functions 224
Raising and handling events 225
Calling methods using delegates 226
Defining and handling delegates 227

[xi]

Table of Contents

Defining and handling events
Making types safely reusable with generics
Working with non-generic types
Working with generic types
Implementing interfaces
Common interfaces
Comparing objects when sorting
Comparing objects using a separate class
Implicit and explicit interface implementations
Defining interfaces with default implementations
Managing memory with reference and value types
Defining reference and value types
How reference and value types are stored in memory
Equality of types
Defining struct types
Working with record struct types
Releasing unmanaged resources
Ensuring that Dispose is called
Working with null values
Making a value type nullable
Understanding nullable reference types
Enabling nullable and non-nullable reference types
Declaring non-nullable variables and parameters

Checking for null
Checking for null in method parameters

Inheriting from classes
Extending classes to add functionality
Hiding members
Overriding members
Inheriting from abstract classes
Preventing inheritance and overriding
Understanding polymorphism
Casting within inheritance hierarchies
Implicit casting
Explicit casting
Avoiding casting exceptions
Inheriting and extending .NET types
Inheriting exceptions
Extending types when you can't inherit
Using static methods to reuse functionality
Using extension methods to reuse functionality
Using an analyzer to write better code
Suppressing warnings
Fixing the code
Understanding common StyleCop recommendations

229
230
230
231
232
232
233
235
236
237
239
239
240
241
242
243
244
246
246
246
247
248
248

250
251

252
252
253
254
255
256
257
259
259
259
260
261
261
263

263

264
265
267

268

270

[xii]

Table of Contents

Practicing and exploring 271
Exercise 6.1 — Test your knowledge 271
Exercise 6.2 — Practice creating an inheritance hierarchy 271
Exercise 6.3 — Explore topics 272

Summary 272

Chapter 7: Packaging and Distributing .NET Types 273

The road to .NET 6 273
.NET Core 1.0 274
.NET Core 1.1 274
.NET Core 2.0 275
.NET Core 2.1 275
.NET Core 2.2 275
.NET Core 3.0 275
.NET Core 3.1 276
.NET 5.0 276
.NET 6.0 276
Improving performance from .NET Core 2.0 to .NET 5 277
Checking your .NET SDKs for updates 277

Understanding .NET components 277
Understanding assemblies, NuGet packages, and namespaces 278

What is a namespace? 278

Understanding dependent assemblies 278
Understanding the Microsoft .NET project SDKs 278
Understanding namespaces and types in assemblies 279
Understanding NuGet packages 280
Understanding frameworks 280
Importing a namespace to use a type 281
Relating C# keywords to .NET types 281

Mapping C# aliases to .NET types 282

Revealing the location of a type 283
Sharing code with legacy platforms using .NET Standard 284
Understanding defaults for class libraries with different SDKs 284
Creating a .NET Standard 2.0 class library 285
Controlling the .NET SDK 286

Publishing your code for deployment 287
Creating a console application to publish 288
Understanding dotnet commands 289

Creating new projects 289
Getting information about .NET and its environment 290
Managing projects 291
Publishing a self-contained app 292
Publishing a single-file app 293
Reducing the size of apps using app trimming 295

Enabling assembly-level trimming 295

Enabling type-level and member-level trimming 295

[xiii]

Table of Contents

Decompiling .NET assemblies 296
Decompiling using the ILSpy extension for Visual Studio 2022 296
Decompiling using the ILSpy extension for Visual Studio Code 297
No, you cannot technically prevent decompilation 301

Packaging your libraries for NuGet distribution 302
Referencing a NuGet package 302

Fixing dependencies 303
Packaging a library for NuGet 304
Publishing a package to a public NuGet feed 306
Publishing a package to a private NuGet feed 307
Exploring NuGet packages with a tool 307
Testing your class library package 308

Porting from .NET Framework to modern .NET 309
Could you port? 309
Should you port? 310
Differences between .NET Framework and modern .NET 311
Understanding the .NET Portability Analyzer 311
Understanding the .NET Upgrade Assistant 311
Using non-.NET Standard libraries 312

Working with preview features 313
Requiring preview features 314
Enabling preview features 314
Generic mathematics 315

Practicing and exploring 315
Exercise 7.1 — Test your knowledge 316
Exercise 7.2 — Explore topics 316
Exercise 7.3 — Explore PowerShell 316

Summary 316

Chapter 8: Working with Common .NET Types 317

Working with numbers 318
Working with big integers 318
Working with complex numbers 319
Understanding quaternions 320

Working with text 320
Getting the length of a string 320
Getting the characters of a string 321
Splitting a string 321
Getting part of a string 322
Checking a string for content 323
Joining, formatting, and other string members 323
Building strings efficiently 324

Working with dates and times 325
Specifying date and time values 325
Globalization with dates and times 327

[xiv]

Table of Contents

Working with only a date or a time 329
Pattern matching with regular expressions 330
Checking for digits entered as text 330
Regular expression performance improvements 331
Understanding the syntax of a regular expression 332
Examples of regular expressions 332
Splitting a complex comma-separated string 333
Storing multiple objects in collections 334
Common features of all collections 335
Improving performance by ensuring the capacity of a collection 336
Understanding collection choices 337
Lists 337
Dictionaries 338
Stacks 339
Queues 339
Sets 340
Collection methods summary 340
Working with lists 340
Working with dictionaries 342
Working with queues 344
Sorting collections 346
More specialized collections 347
Working with a compact array of bit values 347
Working with efficient lists 347
Using immutable collections 347
Good practice with collections 348
Working with spans, indexes, and ranges 349
Using memory efficiently using spans 349
Identifying positions with the Index type 349
Identifying ranges with the Range type 350
Using indexes, ranges, and spans 350
Working with network resources 351
Working with URIs, DNS, and IP addresses 352
Pinging a server 353
Working with reflection and attributes 354
Versioning of assemblies 355
Reading assembly metadata 355
Creating custom attributes 358
Doing more with reflection 360
Working with images 360
Internationalizing your code 362
Detecting and changing the current culture 363
Practicing and exploring 365
Exercise 8.1 — Test your knowledge 365
Exercise 8.2 — Practice regular expressions 366

Exercise 8.3 — Practice writing extension methods 366

[xv]

Table of Contents

Exercise 8.4 — Explore topics 366
Summary 367
Chapter 9: Working with Files, Streams, and Serialization 369
Managing the filesystem 369
Handling cross-platform environments and filesystems 369
Managing drives 371
Managing directories 372
Managing files 374
Managing paths 375
Getting file information 376
Controlling how you work with files 377
Reading and writing with streams 378
Understanding abstract and concrete streams 378
Understanding storage streams 379
Understanding function streams 379
Understanding stream helpers 379
Writing to text streams 380
Writing to XML streams 381
Disposing of file resources 383
Simplifying disposal by using the using statement 385
Compressing streams 386
Compressing with the Brotli algorithm 388
Encoding and decoding text 390
Encoding strings as byte arrays 391
Encoding and decoding text in files 393
Serializing object graphs 394
Serializing as XML 394
Generating compact XML 397
Deserializing XML files 398
Serializing with JSON 399
High-performance JSON processing 400
Controlling JSON processing 401
New JSON extension methods for working with HTTP responses 404
Migrating from Newtonsoft to new JSON 404
Practicing and exploring 405
Exercise 9.1 — Test your knowledge 405
Exercise 9.2 — Practice serializing as XML 405
Exercise 9.3 — Explore topics 406
Summary 406
Chapter 10: Working with Data Using Entity Framework Core 407
Understanding modern databases 407
Understanding legacy Entity Framework 408
Using the legacy Entity Framework 6.3 or later 408
Understanding Entity Framework Core 408

[xvi]

Table of Contents

Creating a console app for working with EF Core 409
Using a sample relational database 409
Using Microsoft SQL Server for Windows 410
Downloading and installing SQL Server 411
Creating the Northwind sample database for SQL Server 412
Managing the Northwind sample database with Server Explorer 413
Using SQLite 414
Setting up SQLite for macOS 414
Setting up SQLite for Windows 414
Setting up SQLite for other OSes 414
Creating the Northwind sample database for SQLite 415
Managing the Northwind sample database with SQLiteStudio 415
Setting up EF Core 417
Choosing an EF Core database provider 417
Connecting to a database 417
Defining the Northwind database context class 418
Defining EF Core models 420
Using EF Core conventions to define the model 421
Using EF Core annotation attributes to define the model 421
Using the EF Core Fluent API to define the model 423
Understanding data seeding with the Fluent API 423
Building an EF Core model for the Northwind tables 423
Defining the Category and Product entity classes 424
Adding tables to the Northwind database context class 426
Setting up the dotnet-ef tool 427
Scaffolding models using an existing database 428
Configuring preconvention models 432
Querying EF Core models 433
Filtering included entities 435
Unicode characters in the Windows console 436
Filtering and sorting products 437
Getting the generated SQL 438
Logging EF Core using a custom logging provider 439
Filtering logs by provider-specific values 442
Logging with query tags 443
Pattern matching with Like 444
Defining global filters 445
Loading patterns with EF Core 446
Eager loading entities 446
Enabling lazy loading 447
Explicit loading entities 448
Manipulating data with EF Core 450
Inserting entities 450
Updating entities 452
Deleting entities 453

Pooling database contexts 454

[xvii]

Table of Contents

Working with transactions 454
Controlling transactions using isolation levels 455
Defining an explicit transaction 455

Code First EF Core models 456
Understanding migrations 463

Practicing and exploring 464
Exercise 10.1 — Test your knowledge 464
Exercise 10.2 — Practice exporting data using different serialization formats 464
Exercise 10.3 — Explore topics 464
Exercise 10.4 — Explore NoSQL databases 465

Summary 465

Chapter 11: Querying and Manipulating Data Using LINQ 467

Writing LINQ expressions 467
What makes LINQ? 467
Building LINQ expressions with the Enumerable class 468

Understanding deferred execution 470
Filtering entities with Where 471
Targeting a named method 473
Simplifying the code by removing the explicit delegate instantiation 474
Targeting a lambda expression 474
Sorting entities 475

Sorting by a single property using OrderBy 475

Sorting by a subsequent property using ThenBy 475
Declaring a query using var or a specified type 476
Filtering by type 476
Working with sets and bags using LINQ 478

Using LINQ with EF Core 480
Building an EF Core model 480
Filtering and sorting sequences 483
Projecting sequences into new types 485
Joining and grouping sequences 486

Joining sequences 487

Group-joining sequences 488
Aggregating sequences 490

Sweetening LINQ syntax with syntactic sugar 491

Using multiple threads with parallel LINQ 492
Creating an app that benefits from multiple threads 492

Using Windows 494

Using macOS 494

For all operating systems 494

Creating your own LINQ extension methods 495

Trying the chainable extension method 498

Trying the mode and median methods 498

Working with LINQ to XML 499
Generating XML using LINQ to XML 499

Reading XML using LINQ to XML 500

[xviii]

Table of Contents

Practicing and exploring 501
Exercise 11.1 — Test your knowledge 501
Exercise 11.2 — Practice querying with LINQ 502
Exercise 11.3 — Explore topics 503

Summary 503

Chapter 12: Improving Performance and Scalability Using Multitasking 505

Understanding processes, threads, and tasks 505

Monitoring performance and resource usage 506
Evaluating the efficiency of types 506
Monitoring performance and memory using diagnostics 507

Useful members of the Stopwatch and Process types 508
Implementing a Recorder class 508
Measuring the efficiency of processing strings 510
Monitoring performance and memory using Benchmark.NET 512

Running tasks asynchronously 516
Running multiple actions synchronously 516
Running multiple actions asynchronously using tasks 518

Starting tasks 518
Waiting for tasks 519
Using wait methods with tasks 519
Continuing with another task 520
Nested and child tasks 522
Wrapping tasks around other objects 523

Synchronizing access to shared resources 524
Accessing a resource from multiple threads 525
Applying a mutually exclusive lock to a conch 526

Understanding the lock statement 527
Avoiding deadlocks 528
Synchronizing events 529
Making CPU operations atomic 530
Applying other types of synchronization 531

Understanding async and await 532
Improving responsiveness for console apps 532
Improving responsiveness for GUI apps 533
Improving scalability for web applications and web services 537
Common types that support multitasking 537
Using await in catch blocks 537
Working with async streams 538

Practicing and exploring 539
Exercise 12.1 — Test your knowledge 539
Exercise 12.2 — Explore topics 539

Summary 539

Chapter 13: Introducing Practical Applications of C# and .NET 541

Understanding app models for C# and .NET 541

Building websites using ASP.NET Core 542

[xix]

Table of Contents

Building websites using a content management system 542
Building web applications using SPA frameworks 543
Building web and other services 544
Building mobile and desktop apps 545
Alternatives to .NET MAUI 545
Understanding Uno Platform 545
Understanding Avalonia 546
New features in ASP.NET Core 546
ASP.NET Core 1.0 546
ASP.NET Core 1.1 546
ASP.NET Core 2.0 546
ASP.NET Core 2.1 547
ASP.NET Core 2.2 547
ASP.NET Core 3.0 548
ASP.NET Core 3.1 548
Blazor WebAssembly 3.2 548
ASP.NET Core 5.0 548
ASP.NET Core 6.0 548
Building Windows-only desktop apps 549
Understanding legacy Windows application platforms 549
Understanding modern .NET support for legacy Windows platforms 550
Structuring projects 550
Structuring projects in a solution or workspace 551
Using other project templates 552
Installing additional template packs 552
Building an entity data model for the Northwind database 553
Creating a class library for entity models using SQLite 554
Improving the class-to-table mapping 555
Creating a class library for a Northwind database context 559
Creating a class library for entity models using SQL Server 562
Practicing and exploring 565
Exercise 13.1 — Test your knowledge 565
Exercise 13.2 — Explore topics 565
Summary 565
Chapter 14: Building Websites Using ASP.NET Core Razor Pages 567
Understanding web development 567
Understanding HTTP 567
Understanding the components of a URL 568
Assigning port numbers for projects in this book 569
Using Google Chrome to make HTTP requests 569
Understanding client-side web development technologies 572
Understanding ASP.NET Core 572
Classic ASP.NET versus modern ASP.NET Core 573
Creating an empty ASP.NET Core project 574
Testing and securing the website 576
Enabling stronger security and redirect to a secure connection 579

[xx]

Table of Contents

Controlling the hosting environment 580
Separating configuration for services and pipeline 582
Enabling a website to serve static content 584
Creating a folder for static files and a web page 584
Enabling static and default files 585
Exploring ASP.NET Core Razor Pages 586
Enabling Razor Pages 586
Adding code to a Razor Page 587
Using shared layouts with Razor Pages 588
Using code-behind files with Razor Pages 591
Using Entity Framework Core with ASP.NET Core 593
Configure Entity Framework Core as a service 593
Manipulating data using Razor Pages 596
Enabling a model to insert entities 596
Defining a form to insert a new supplier 597
Injecting a dependency service into a Razor Page 597
Using Razor class libraries 598
Creating a Razor class library 598
Disabling compact folders for Visual Studio Code 599
Implementing the employees feature using EF Core 600
Implementing a partial view to show a single employee 602
Using and testing a Razor class library 603
Configuring services and the HTTP request pipeline 604
Understanding endpoint routing 604
Configuring endpoint routing 605
Reviewing the endpoint routing configuration in our project 605
Registering services in the ConfigureServices method 606
Setting up the HTTP request pipeline in the Configure method 608
Summarizing key middleware extension methods 609
Visualizing the HTTP pipeline 610
Implementing an anonymous inline delegate as middleware 610
Practicing and exploring 612
Exercise 14.1 — Test your knowledge 612
Exercise 14.2 — Practice building a data-driven web page 613
Exercise 14.3 — Practice building web pages for console apps 613
Exercise 14.4 — Explore topics 613
Summary 613
Chapter 15: Building Websites Using the Model-View-Controller Pattern 615
Setting up an ASP.NET Core MVC website 615
Creating an ASP.NET Core MVC website 616
Creating the authentication database for SQL Server LocalDB 617
Exploring the default ASP.NET Core MVC website 618
Understanding visitor registration 619
Reviewing an MVC website project structure 620
Reviewing the ASP.NET Core Identity database 622

[xxi]

Table of Contents

Exploring an ASP.NET Core MVC website 622
Understanding ASP.NET Core MVC initialization 622
Understanding the default MVC route 625
Understanding controllers and actions 626

Understanding the ControllerBase class 626
Understanding the Controller class 627
Understanding the responsibilities of a controller 628
Understanding the view search path convention 629
Understanding logging 630
Understanding filters 631
Using a filter to secure an action method 631
Enabling role management and creating a role programmatically 632
Using a filter to cache a response 635
Using a filter to define a custom route 636
Understanding entity and view models 637
Understanding views 640

Customizing an ASP.NET Core MVC website 643
Defining a custom style 643
Setting up the category images 643
Understanding Razor syntax 643
Defining a typed view 644
Reviewing the customized home page 647
Passing parameters using a route value 648
Understanding model binders in more detail 650

Disambiguating action methods 652
Passing a route parameter 654
Passing a form parameter 654
Validating the model 654
Understanding view helper methods 657

Querying a database and using display templates 659

Improving scalability using asynchronous tasks 662
Making controller action methods asynchronous 662

Practicing and exploring 663
Exercise 15.1 — Test your knowledge 663
Exercise 15.2 — Practice implementing MVC by implementing a
category detail page 664
Exercise 15.3 — Practice improving scalability by understanding
and implementing async action methods 664
Exercise 15.4 — Practice unit testing MVC controllers 665
Exercise 15.5 — Explore topics 665

Summary 665

Chapter 16: Building and Consuming Web Services 667

Building web services using ASP.NET Core Web API 667

Understanding web service acronyms 667
Understanding Windows Communication Foundation (WCF) 668
An alternative to WCF 668

Understanding HTTP requests and responses for Web APls 669

[xxii]

Table of Contents

Creating an ASP.NET Core Web API project 671
Reviewing the web service's functionality 674
Creating a web service for the Northwind database 675
Creating data repositories for entities 677
Implementing a Web API controller 681
Understanding action method return types 681
Configuring the customer repository and Web API controller 683
Specifying problem details 687
Controlling XML serialization 688
Documenting and testing web services 688
Testing GET requests using a browser 688
Testing HTTP requests with the REST Client extension 690
Making GET requests using REST Client 690
Making other requests using REST Client 692
Understanding Swagger 693
Testing requests with Swagger Ul 694
Enabling HTTP logging 700
Consuming web services using HTTP clients 702
Understanding HttpClient 702
Configuring HTTP clients using HttpClientFactory 702
Getting customers as JSON in the controller 703
Enabling Cross-Origin Resource Sharing 705
Implementing advanced features for web services 707
Implementing a Health Check API 708
Implementing Open API analyzers and conventions 709
Implementing transient fault handling 709
Adding security HTTP headers 710
Building web services using minimal APls 711
Building a weather service using minimal APls 712
Testing the minimal weather service 714
Adding weather forecasts to the Northwind website home page 714
Practicing and exploring 716
Exercise 16.1 — Test your knowledge 716
Exercise 16.2 — Practice creating and deleting customers with HttpClient 717
Exercise 16.3 — Explore topics 717
Summary 717
Chapter 17: Building User Interfaces Using Blazor 719
Understanding Blazor 719
JavaScript and friends 720
Silverlight — C# and .NET using a plugin 720
WebAssembly — a target for Blazor 720
Understanding Blazor hosting models 720
Understanding Blazor components 721
What is the difference between Blazor and Razor? 722

[xxiii]

Table of Contents

Comparing Blazor project templates 723
Reviewing the Blazor Server project template 723
Understanding CSS and JavaScript isolation 729
Understanding Blazor routing to page components 729
How to define a routable page component 729
How to navigate Blazor routes 729
How to pass route parameters 730
Understanding base component classes 730
How to use the navigation link component with routes 732
Running the Blazor Server project template 732
Reviewing the Blazor WebAssembly project template 733
Building components using Blazor Server 737
Defining and testing a simple component 737
Making the component a routable page component 738
Getting entities into a component 739
Abstracting a service for a Blazor component 742
Defining forms using the EditForm component 745
Building and using a customer form component 746
Testing the customer form component 749
Building components using Blazor WebAssembly 750
Configuring the server for Blazor WebAssembly 751
Configuring the client for Blazor WebAssembly 754
Testing the Blazor WebAssembly components and service 757
Improving Blazor WebAssembly apps 758
Enabling Blazor WebAssembly AOT 759
Exploring Progressive Web App support 760
Implementing offline support for PWAs 762
Understanding the browser compatibility analyzer for Blazor WebAssembly 762
Sharing Blazor components in a class library 763
Interop with JavaScript 765
Libraries of Blazor components 767
Practicing and exploring 767
Exercise 17.1 — Test your knowledge 768
Exercise 17.2 — Practice by creating a times table component 768
Exercise 17.3 — Practice by creating a country navigation item 768
Exercise 17.4 — Explore topics 769
Summary 769
Epilogue 771
Next steps on your C# and .NET learning journey 771
Polishing your skills with design guidelines 771
Books to take your learning further 772
.NET MAUI delayed 773
Next edition coming November 2022 773
Good luck! 773
Index 775

I xxiv 1
[xxiv]

Preface

There are programming books that are thousands of pages long that aim to be comprehensive
references for the C# language, .NET libraries, app models like websites, services, and desktop,
and mobile apps.

This book is different. It is concise and aims to be a brisk, fun read packed with practical hands-
on walkthroughs of each subject. The breadth of the overarching narrative comes at the cost of
some depth, but you will find many signposts to explore further if you wish.

This book is simultaneously a step-by-step guide to learning modern C# proven practices using
cross-platform .NET and a brief introduction to the main types of practical applications that can
be built with them. This book is best for beginners to C# and .NET, or programmers who have
worked with C# in the past but feel left behind by the changes in the past few years.

If you already have experience with older versions of the C# language, then in the first section
of Chapter 2, Speaking C#, you can review tables of the new language features and jump straight
to them.

If you already have experience with older versions of the .NET libraries, then in the first section
of Chapter 7, Packaging and Distributing .NET Types, you can review tables of the new library
features and jump straight to them.

I will point out the cool corners and gotchas of C# and .NET, so you can impress colleagues
and get productive fast. Rather than slowing down and boring some readers by explaining
every little thing, I will assume that you are smart enough to Google an explanation for topics
that are related but not necessary to include in a beginner-to-intermediate guide that has
limited space in the printed book.

Where to find the code solutions

You can download solutions for the step-by-step guided tasks and exercises from the GitHub
repository at the following link: https://github.com/markjprice/csl1@dotneté.

If you don't know how, then I provide instructions on how to do this at the end of Chapter 1,
Hello, C#! Welcome, .NET!.

[xxv]

https://github.com/markjprice/cs10dotnet6

Preface

What this book covers

Chapter 1, Hello, C#! Welcome, .NET!, is about setting up your development environment and
using either Visual Studio or Visual Studio Code to create the simplest application possible
with C# and .NET. For simplified console apps, you will see the use of the top-level program
feature introduced in C# 9. For learning how to write simple language constructs and library
features, you will see the use of .NET Interactive Notebooks. You will also learn about some
good places to look for help and ways to contact me to get help with an issue or give me
feedback to improve the book and future editions through its GitHub repository.

Chapter 2, Speaking C#, introduces the versions of C# and has tables showing which versions
introduced new features. I explain the grammar and vocabulary that you will use every day
to write the source code for your applications. In particular, you will learn how to declare and
work with variables of different types.

Chapter 3, Controlling Flow, Converting Types, and Handling Exceptions, covers using operators to
perform simple actions on variables, including comparisons, writing code that makes decisions,
pattern matching in C# 7 to C# 10, repeating a block of statements, and converting between
types. It also covers writing code defensively to handle exceptions when they inevitably occur.

Chapter 4, Writing, Debugging, and Testing Functions, is about following the Don't Repeat
Yourself (DRY) principle by writing reusable functions using both imperative and functional
implementation styles. You will also learn how to use debugging tools to track down and
remove bugs, monitoring your code while it executes to diagnose problems, and rigorously
testing your code to remove bugs and ensure stability and reliability before it gets deployed
into production.

Chapter 5, Building Your Own Types with Object-Oriented Programming, discusses all the different
categories of members that a type can have, including fields to store data and methods

to perform actions. You will use object-oriented programming (OOP) concepts, such as
aggregation and encapsulation. You will learn about language features such as tuple syntax
support and out variables, default literals, and inferred tuple names, as well as how to define
and work with immutable types using the record keyword, init-only properties, and with
expressions introduced in C# 9.

Chapter 6, Implementing Interfaces and Inheriting Classes, explains deriving new types from
existing ones using OOP. You will learn how to define operators and local functions, delegates
and events, how to implement interfaces about base and derived classes, how to override

a member of a type, how to use polymorphism, how to create extension methods, how to

cast between classes in an inheritance hierarchy, and about the big change in C# 8 with the
introduction of nullable reference types.

Chapter 7, Packaging and Distributing .NET Types, introduces the versions of .NET and has tables
showing which versions introduced new library features, and then presents .NET types that
are compliant with .NET Standard and how they relate to C#. You will learn how to write

and compile code on any of the supported operating systems: Windows, macOS, and Linux
variants. You will learn how to package, deploy, and distribute your own apps and libraries.

[xxvi]

Preface

Chapter 8, Working with Common .NET Types, discusses the types that allow your code to
perform common practical tasks, such as manipulating numbers and text, dates and times,
storing items in collections, working with the network and manipulating images, and
implementing internationalization.

Chapter 9, Working with Files, Streams, and Serialization, covers interacting with the filesystem,
reading and writing to files and streams, text encoding, and serialization formats like JSON and
XML, including the improved functionality and performance of the System.Text.Json classes.

Chapter 10, Working with Data Using Entity Framework Core, explains reading and writing to
relational databases, such as Microsoft SQL Server and SQLite, using the object-relational
mapping (ORM) technology named Entity Framework Core (EF Core). You will learn how to
define entity models that map to existing tables in a database, as well as how to define Code
First models that can create the tables and database at runtime.

Chapter 11, Querying and Manipulating Data Using LINQ, teaches you about Language
INtegrated Queries (LINQs) —language extensions that add the ability to work with sequences
of items and filter, sort, and project them into different outputs. You will learn about the special
capabilities of Parallel LINQ (PLINQ) and LINQ to XML.

Chapter 12, Improving Performance and Scalability Using Multitasking, discusses allowing multiple
actions to occur at the same time to improve performance, scalability, and user productivity.
You will learn about the async Main feature and how to use types in the System.Diagnostics
namespace to monitor your code to measure performance and efficiency.

Chapter 13, Introducing Practical Applications of C# and .NET, introduces you to the types of
cross-platform applications that can be built using C# and .NET. You will also build an EF
Core model to represent the Northwind database that will be used throughout the rest of the
chapters in the book.

Chapter 14, Building Websites Using ASP.NET Core Razor Pages, is about learning the basics of
building websites with a modern HTTP architecture on the server side using ASP.NET Core.
You will learn how to implement the ASP.NET Core feature known as Razor Pages, which
simplifies creating dynamic web pages for small websites, and about building the HTTP
request and response pipeline.

Chapter 15, Building Websites Using the Model-View-Controller Pattern, is about learning how
to build large, complex websites in a way that is easy to unit test and manage with teams
of programmers using ASP.NET Core MVC. You will learn about startup configuration,
authentication, routes, models, views, and controllers.

Chapter 16, Building and Consuming Web Services, explains building backend REST architecture
web services using the ASP.NET Core Web API and how to properly consume them using
factory-instantiated HTTP clients.

Chapter 17, Building User Interfaces Using Blazor, introduces how to build web user interface
components using Blazor that can be executed either on the server side or inside the client-side
web browser. You will see the differences between Blazor Server and Blazor WebAssembly and
how to build components that are easier to switch between the two hosting models.

[xxvii]

Preface

Three bonus online chapters complete this bumper edition. You can read the following chapters
and the appendix at https://static.packt-cdn.com/downloads/9781801077361_Bonus_
Content.pdf:

Chapter 18, Building and Consuming Specialized Services, introduces you to building services using
gRPC, implementing real-time communications between server and client using SignalR,
exposing an EF Core model using OData, and hosting functions in the cloud that respond to
triggers using Azure Functions.

Chapter 19, Building Mobile and Desktop Apps Using .NET MAUI, introduces you to building
cross-platform mobile and desktop apps for Android, iOS, macOS, and Windows. You will
learn the basics of XAML, which can be used to define the user interface for a graphical app.

Chapter 20, Protecting Your Data and Applications, is about protecting your data from being
viewed by malicious users using encryption, and from being manipulated or corrupted using
hashing and signing. You will also learn about authentication and authorization to protect
applications from unauthorized users.

Appendix, Answers to the Test Your Knowledge Questions, has the answers to the test questions
at the end of each chapter.

What you need for this book

You can develop and deploy C# and .NET apps using Visual Studio Code on many platforms,
including Windows, macOS, and many varieties of Linux.

An operating system that supports Visual Studio Code and an internet connection is all you
need to complete all but one chapter.

If you prefer to use Visual Studio for Windows or macOS, or a third-party tool like JetBrains
Rider, then you can.

You will need macOS to build the iOS app in Chapter 19, Building Mobile and Desktop Apps
Using .NET MAUI, because you must have macOS and Xcode to compile iOS apps.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots and diagrams used
in this book. The color images will help you better understand the changes in the output.

You can download this file from https://static.packt-cdn.com/downloads/9781801077361
ColorImages.pdf.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

[xxviii}

https://static.packt-cdn.com/downloads/9781801077361_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801077361_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801077361_Bonus_Content.pdf
https://static.packt-cdn.com/downloads/9781801077361_Bonus_Content.pdf

Preface

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLSs, user input, and Twitter handles. For example; "The
Controllers, Models, and Views folders contain ASP.NET Core classes and the .cshtml files for
execution on the server."

A block of code is set as follows:

names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are highlighted:

names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

Any command-line input or output is written as follows:

dotnet new console

Bold: Indicates a new term, an important word, or words that you see on the screen, for
example, in menus or dialog boxes. For example: "Clicking on the Next button moves you to
the next screen."

\/V Important notes and links to external sources of further reading

appear in a box like this.

|
\@l Good Practice: Recommendations for how to program like an expert
2N appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title
in the subject of your message and email us at customercare@packtpub.com.

[xxix]

customercare@packtpub.com

Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report
this to us. Please visit, www. packtpub.com/support/errata, selecting your book, clicking on the
Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name. Please
contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share your thoughts

Once you've read C# 10 and .NET 6 - Modern Cross-Platform Development, Sixth Edition, we'd love
to hear your thoughts! Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

[xxx]

www.packtpub.com/support/errata
copyright@packt.com
authors.packtpub.com
authors.packtpub.com
https://packt.link/r/1801077363

01

Hello, C#! Welcome, .NET!

In this first chapter, the goals are setting up your development environment, understanding
the similarities and differences between modern .NET, .NET Core, .NET Framework, Mono,
Xamarin, and .NET Standard, creating the simplest application possible with C# 10 and .NET 6
using various code editors, and then discovering good places to look for help.

The GitHub repository for this book has solutions using full application projects for all code
tasks and notebooks when possible:

https://github.com/markjprice/csl@dotnet6

Simply press the . (dot) key or change . com to .dev in the link above to change the GitHub
repository into a live editor using Visual Studio Code for the Web, as shown in Figure 1.1:

€% Program.cs - csldotnets [GitH. X |-+ ._ _1:_,2'—"‘ - -
3 O (5] httpsy//github.dev/markiprice/cs 10dotnets % 7= @& CNoH-,mr-ng @ .-
EXPLORER =s B [Preview] \markiprice\cs 10dotnetB\README.md
~ CSTODOTNETS (GITHUBI
> hssets Repository for the Packt Publishing book
> docs
C# 10 and .NET 6 - Modern Cross-Platform Development, Sixth
Edition
C Program.cs X ==
scode ¥ Chapterd » ToplevelProgram > € Pragram.cs
1 // See https://aka.ms/new-console-template for more information -
2
® ToplevelProgram.csproj 3 Console.Writeline("Helle from a Tep Level E'r‘ogr‘am!l"];
4 Console.Writeline{Environment . 05Version.VersionString);
> OUTLINE
> TIMELINE
¥ GitHub' §P main O @odo Ln'3,Col51 Spaces:4 UTF-8 with8OM CRIF €8 € Leyetts & 0Q

Figure 1.1: Visual Studio Code for the Web live editing the book's GitHub repository

[11]

https://github.com/markjprice/cs10dotnet6

Hello, C#! Welcome, .NET!

This is great to run alongside your chosen code editor as you work through the book's coding
tasks. You can compare your code to the solution code and easily copy and paste parts if
needed.

Throughout this book, I use the term modern .NET to refer to .NET 6 and its predecessors like
.NET 5 that come from .NET Core. I use the term legacy .NET to refer to .NET Framework,
Mono, Xamarin, and .NET Standard. Modern .NET is a unification of those legacy platforms
and standards.

After this first chapter, the book can be divided into three parts: first, the grammar and
vocabulary of the C# language; second, the types available in .NET for building app features;
and third, examples of common cross-platform apps you can build using C# and .NET.

Most people learn complex topics best by imitation and repetition rather than reading a
detailed explanation of the theory; therefore, I will not overload you with detailed explanations
of every step throughout this book. The idea is to get you to write some code and see it run.

You don't need to know all the nitty-gritty details immediately. That will be something that
comes with time as you build your own apps and go beyond what any book can teach you.

In the words of Samuel Johnson, author of the English dictionary in 1755, I have committed "a
few wild blunders, and risible absurdities, from which no work of such multiplicity is free." I
take sole responsibility for these and hope you appreciate the challenge of my attempt to lash
the wind by writing this book about rapidly evolving technologies like C# and .NET, and the
apps that you can build with them.

This first chapter covers the following topics:

* Setting up your development environment

* Understanding .NET

* Building console apps using Visual Studio 2022

* Building console apps using Visual Studio Code

* Exploring code using .NET Interactive Notebooks

* Reviewing the folders and files for projects

* Making good use of the GitHub repository for this book
* Looking for help

Setting up your development environment

Before you start programming, you'll need a code editor for C#. Microsoft has a family of code
editors and Integrated Development Environments (IDEs), which include:

e Visual Studio 2022 for Windows
e Visual Studio 2022 for Mac

[2]

Chapter 01

¢ Visual Studio Code for Windows, Mac, or Linux
* GitHub Codespaces

Third parties have created their own C# code editors, for example, JetBrains Rider.

Choosing the appropriate tool and application type

for learning
What is the best tool and application type for learning C# and .NET?

When learning, the best tool is one that helps you write code and configuration but does not
hide what is really happening. IDEs provide graphical user interfaces that are friendly to use,
but what are they doing for you underneath? A more basic code editor that is closer to the
action while providing help to write your code is better while you are learning,.

Having said that, you can make the argument that the best tool is the one you are already
familiar with or that you or your team will use as your daily development tool. For that reason,
I want you to be free to choose any C# code editor or IDE to complete the coding tasks in this
book, including Visual Studio Code, Visual Studio for Windows, Visual Studio for Mac, or even
JetBrains Rider.

In the third edition of this book, I gave detailed step-by-step instructions for both Visual Studio
for Windows and Visual Studio Code for all coding tasks. Unfortunately, that got messy and
confusing quickly. In this sixth edition, I give detailed step-by-step instructions for how to
create multiple projects in both Visual Studio 2022 for Windows and Visual Studio Code only
in Chapter 1. After that, I give names of projects and general instructions that work with all tools
so you can use whichever tool you prefer.

The best application type for learning the C# language constructs and many of the .NET
libraries is one that does not distract with unnecessary application code. For example, there is
no need to create an entire Windows desktop application or a website just to learn how to write
a switch statement.

For that reason, I believe the best method for learning the C# and .NET topics in Chapters 1 to
12 is to build console applications. Then, in Chapter 13 to 19 onward, you will build websites,
services, and graphical desktop and mobile apps.

Pros and cons of the .NET Interactive Notebooks
extension

Another benefit of Visual Studio Code is the .NET Interactive Notebooks extension. This
extension provides an easy and safe place to write simple code snippets. It enables you to create
a single notebook file that mixes "cells" of Markdown (richly formatted text) and code using C#
and other related languages, such as PowerShell, F#, and SQL (for databases).

[3]

Hello, C#! Welcome, .NET!

However, NET Interactive Notebooks does have some limitations:

* They cannot read input from the user, for example, you cannot use ReadLine or ReadKey.
* They cannot have arguments passed to them.
* They do not allow you to define your own namespaces.

* They do not have any debugging tools (but these are coming in the future).

Using Visual Studio Code for cross-platform development

The most modern and lightweight code editor to choose from, and the only one from Microsoft
that is cross-platform, is Microsoft Visual Studio Code. It can run on all common operating
systems, including Windows, macOS, and many varieties of Linux, including Red Hat
Enterprise Linux (RHEL) and Ubuntu.

Visual Studio Code is a good choice for modern cross-platform development because it has an
extensive and growing set of extensions to support many languages beyond C#.

Being cross-platform and lightweight, it can be installed on all platforms that your apps will be
deployed to for quick bug fixes and so on. Choosing Visual Studio Code means a developer can
use a cross-platform code editor to develop cross-platform apps.

Visual Studio Code has strong support for web development, although it currently has weak
support for mobile and desktop development.

Visual Studio Code is supported on ARM processors so that you can develop on Apple Silicon
computers and Raspberry Pi.

Visual Studio Code is by far the most popular integrated development environment, with over
70% of professional developers selecting it in the Stack Overflow 2021 survey.

Using GitHub Codespaces for development in the cloud

GitHub Codespaces is a fully configured development environment based on Visual Studio
Code that can be spun up in an environment hosted in the cloud and accessed through any web
browser. It supports Git repos, extensions, and a built-in command-line interface so you can
edit, run, and test from any device.

Using Visual Studio for Mac for general development

Microsoft Visual Studio 2022 for Mac can create most types of applications, including console
apps, websites, web services, desktop, and mobile apps.

To compile apps for Apple operating systems like iOS to run on devices like the iPhone and
iPad, you must have Xcode, which only runs on macOS.

[4]

Chapter 01

Using Visual Studio for Windows for general development

Microsoft Visual Studio 2022 for Windows can create most types of applications, including
console apps, websites, web services, desktop, and mobile apps. Although you can use Visual
Studio 2022 for Windows with its Xamarin extensions to write a cross-platform mobile app, you
still need macOS and Xcode to compile it.

It only runs on Windows, version 7 SP1 or later. You must run it on Windows 10 or Windows
11 to create Universal Windows Platform (UWP) apps that are installed from the Microsoft
Store and run in a sandbox to protect your computer.

What | used

To write and test the code for this book, I used the following hardware:

* HP Spectre (Intel) laptop
* Apple Silicon Mac mini (M1) desktop
* Raspberry Pi 400 (ARM v8) desktop

And I used the following software:

* Visual Studio Code on:
* macOS on an Apple Silicon Mac mini (M1) desktop
* Windows 10 on an HP Spectre (Intel) laptop
* Ubuntu 64 on a Raspberry Pi 400

* Visual Studio 2022 for Windows on:
* Windows 10 on an HP Spectre (Intel) laptop

* Visual Studio 2022 for Mac on:
* macOS on an Apple Silicon Mac mini (M1) desktop

I hope that you have access to a variety of hardware and software too, because seeing the
differences in platforms deepens your understanding of development challenges, although any
one of the above combinations is enough to learn the fundamentals of C# and .NET and how to
build practical apps and websites.

More Information: You can learn how to write code with C# and .NET using
‘ , a Raspberry Pi 400 with Ubuntu Desktop 64-bit by reading an extra article
\p/ that I wrote at the following link: https://github.com/markjprice/

cs9dotnet5-extras/blob/main/raspberry-pi-ubuntu64/README .md.

[5]

https://github.com/markjprice/cs9dotnet5-extras/blob/main/raspberry-pi-ubuntu64/README.md
https://github.com/markjprice/cs9dotnet5-extras/blob/main/raspberry-pi-ubuntu64/README.md

Hello, C#! Welcome, .NET!

Deploying cross-platform

Your choice of code editor and operating system for development does not limit where your
code gets deployed.

.NET 6 supports the following platforms for deployment:

* Windows: Windows 7 SP1, or later. Windows 10 version 1607, or later, including
Windows 11. Windows Server 2012 R2 SP1, or later. Nano Server version 1809, or later.

* Mac: macOS Mojave (version 10.14), or later.

* Linux: Alpine Linux 3.13, or later. CentOS 7, or later. Debian 10, or later. Fedora 32,
or later. openSUSE 15, or later. Red Hat Enterprise Linux (RHEL) 7, or later. SUSE
Enterprise Linux 12 SP2, or later. Ubuntu 16.04, 18.04, 20.04, or later.

e Android: API 21, or later.
e i0S: 10, or later.
Windows ARM64 support in .NET 5 and later means you can develop on, and deploy to,

Windows ARM devices like Microsoft Surface Pro X. But developing on an Apple M1 Mac
using Parallels and a Windows 10 ARM virtual machine is apparently twice as fast!

Downloading and installing Visual Studio 2022 for

Windows

Many professional Microsoft developers use Visual Studio 2022 for Windows in their day-to-
day development work. Even if you choose to use Visual Studio Code to complete the coding
tasks in this book, you might want to familiarize yourself with Visual Studio 2022 for Windows
too.

If you do not have a Windows computer, then you can skip this section and continue to the
next section where you will download and install Visual Studio Code on macOS or Linux.

Since October 2014, Microsoft has made a professional quality edition of Visual Studio for
Windows available to students, open source contributors, and individuals for free. It is called
Community Edition. Any of the editions are suitable for this book. If you have not already
installed it, let's do so now:

1. Download Microsoft Visual Studio 2022 version 17.0 or later for Windows from the
following link: https://visualstudio.microsoft.com/downloads/.

Start the installer.
On the Workloads tab, select the following:
e ASP.NET and web development
* Azure development
* .NET desktop development
* Desktop development with C++

[6]

https://visualstudio.microsoft.com/downloads/

Chapter 01

* Universal Windows Platform development
* Mobile development with .NET

4. On the Individual components tab, in the Code tools section, select the following:
* Class Designer
e Git for Windows

* PreEmptive Protection - Dotfuscator

Click Install and wait for the installer to acquire the selected software and install it.
When the installation is complete, click Launch.

The first time that you run Visual Studio, you will be prompted to sign in. If you have a
Microsoft account, you can use that account. If you don't, then register for a new one at
the following link: https://signup.live.com/.

8. The first time that you run Visual Studio, you will be prompted to configure your
environment. For Development Settings, choose Visual C#. For the color theme, I
chose Blue, but you can choose whatever tickles your fancy.

9. If you want to customize your keyboard shortcuts, navigate to Tools | Options..., and
then select the Keyboard section.

Microsoft Visual Studio for Windows keyboard shortcuts

In this book, I will avoid showing keyboard shortcuts since they are often customized. Where
they are consistent across code editors and commonly used, I will try to show them. If you
want to identify and customize your keyboard shortcuts, then you can, as shown at the
following link: https://docs.microsoft.com/en-us/visualstudio/ide/identifying-and-
customizing-keyboard-shortcuts-in-visual-studio.

Downloading and installing Visual Studio Code

Visual Studio Code has rapidly improved over the past couple of years and has pleasantly
surprised Microsoft with its popularity. If you are brave and like to live on the bleeding edge,
then there is an Insiders edition, which is a daily build of the next version.

Even if you plan to only use Visual Studio 2022 for Windows for development, I recommend
that you download and install Visual Studio Code and try the coding tasks in this chapter using
it, and then decide if you want to stick with just using Visual Studio 2022 for the rest of the
book.

Let's now download and install Visual Studio Code, the .NET SDK, and the C# and .NET
Interactive Notebooks extensions:

1. Download and install either the Stable build or the Insiders edition of Visual Studio
Code from the following link: https://code.visualstudio.com/.

[71]

https://signup.live.com/
https://docs.microsoft.com/en-us/visualstudio/ide/identifying-and-customizing-keyboard-shortcuts-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/identifying-and-customizing-keyboard-shortcuts-in-visual-studio
https://code.visualstudio.com/

Hello, C#! Welcome, .NET!

\Q/\/

More Information: If you need more help installing Visual Studio
Code, you can read the official setup guide at the following link:
https://code.visualstudio.com/docs/setup/setup-overview.

2. Download and install the .NET SDKs for versions 3.1, 5.0, and 6.0 from the following
link: https://www.microsoft.com/net/download.

&

To fully learn how to control NET SDKs, we need multiple versions
installed. .NET Core 3.1, .NET 5.0, and .NET 6.0 are the three currently
supported versions. You can safely install multiple ones side by side.
You will learn how to target the one you want throughout this book.

3. Toinstall the C# extension, you must first launch the Visual Studio Code application.

In Visual Studio Code, click the Extensions icon or navigate to View | Extensions.

5. C# is one of the most popular extensions available, so you should see it at the top of the
list, or you can enter C# in the search box.

Click Install and wait for supporting packages to download and install.

Enter .NET Interactive in the search box to find the .NET Interactive Notebooks

extension.

8. C(lick Install and wait for it to install.

Installing other extensions

In later chapters of this book, you will use more extensions. If you want to install them now, all
the extensions that we will use are shown in the following table:

Extension name and identifier

Description

C# for Visual Studio Code (powered by
OmniSharp)

ms-dotnettools.csharp

C# editing support, including syntax highlighting,
IntelliSense, Go to Definition, Find All References,
debugging support for .NET, and support for csproj
projects on Windows, macOS, and Linux.

NET Interactive Notebooks

ms-dotnettools.dotnet-interactive-
vscode

This extension adds support for using .NET Interactive
in a Visual Studio Code notebook. It has a dependency
on the Jupyter extension (ms-toolsai.jupyter).

MSBuild project tools

tinytoy.msbuild-project-tools

Provides IntelliSense for MSBuild project files,
including autocomplete for <PackageReference>
elements.

REST Client

humao.rest-client

Send an HTTP request and view the response directly
in Visual Studio Code.

[8]

https://www.microsoft.com/net/download
https://code.visualstudio.com/docs/setup/setup-overview

Chapter 01

ILSpy .NET Decompiler Decompile MSIL assemblies - support for modern
NET, .NET Framework, .NET Core, and .NET
icsharpcode.ilspy-vscode Standard.
Create, debug, manage, and deploy serverless
Azure Functions for Visual Studio Code apps directly from VS Code. It has dependencies
on Azure Account (ms-vscode.azure-account)
ms-azuretools.vscode-azurefunctions and Azure Resources (ms-azuretools.vscode-

azureresourcegroups) extensions.

GitHub Repositories Browse, search, edit, and commit to any remote GitHub

github.remotehub repository directly from within Visual Studio Code.

SQL Server (mssql) for Visual Studio Code For developing Microsoft SQL Server, Azure SQL
Database, and SQL Data Warehouse everywhere with

ms-mssqgl.mssql a rich set of functionalities.

Protobuf 3 support for Visual Studio Code Syntax highlighting, syntax validation, code snippets,
code completion, code formatting, brace matching, and

zxh4@4.vscode-proto3 line and block commenting.

Understanding Microsoft Visual Studio Code versions

Microsoft releases a new feature version of Visual Studio Code (almost) every month and bug
fix versions more frequently. For example:

* Version 1.59, August 2021 feature release
* Version 1.59.1, August 2021 bug fix release

The version used in this book is 1.59, but the version of Microsoft Visual Studio Code is less
important than the version of the C# for Visual Studio Code extension that you installed.

While the C# extension is not required, it provides IntelliSense as you type, code navigation,
and debugging features, so it's something that's very handy to install and keep updated to
support the latest C# language features.

Microsoft Visual Studio Code keyboard shortcuts

In this book, I will avoid showing keyboard shortcuts used for tasks like creating a new file
since they are often different on different operating systems. The situations where I will
show keyboard shortcuts are when you need to repeatedly press the key, for example, while
debugging. These are also more likely to be consistent across operating systems.

If you want to customize your keyboard shortcuts for Visual Studio Code, then you can, as
shown at the following link: https://code.visualstudio.com/docs/getstarted/keybindings.

I recommend that you download a PDF of keyboard shortcuts for your operating system from
the following list:

e Windows: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.
pdf

[o]

https://code.visualstudio.com/docs/getstarted/keybindings
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf

Hello, C#! Welcome, .NET!

* macOS: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf

e Linux: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf

Understanding .NET

NET 6, .NET Core, .NET Framework, and Xamarin are related and overlapping platforms for
developers used to build applications and services. In this section, I'm going to introduce you
to each of these .NET concepts.

Understanding .NET Framework

NET Framework is a development platform that includes a Common Language Runtime
(CLR), which manages the execution of code, and a Base Class Library (BCL), which provides
a rich library of classes to build applications from.

Microsoft originally designed .NET Framework to have the possibility of being cross-platform,
but Microsoft put their implementation effort into making it work best with Windows.

Since .NET Framework 4.5.2, it has been an official component of the Windows operating
system. Components have the same support as their parent products, so 4.5.2 and later follow
the life cycle policy of the Windows OS on which it is installed. NET Framework is installed
on over one billion computers, so it must change as little as possible. Even bug fixes can cause
problems, so it is updated infrequently.

For .NET Framework 4.0 or later, all of the apps on a computer written for NET Framework
share the same version of the CLR and libraries stored in the Global Assembly Cache (GAC),
which can lead to issues if some of them need a specific version for compatibility.

I
\@’ Good Practice: Practically speaking, .NET Framework is Windows-only and a

legacy platform. Do not create new apps using it.

Understanding the Mono, Xamarin, and Unity
projects

Third parties developed a .NET Framework implementation named the Mono project. Mono is
cross-platform, but it fell well behind the official implementation of .NET Framework.

Mono has found a niche as the foundation of the Xamarin mobile platform as well as cross-
platform game development platforms like Unity.

[10]

https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf

Chapter 01

Microsoft purchased Xamarin in 2016 and now gives away what used to be an expensive
Xamarin extension for free with Visual Studio. Microsoft renamed the Xamarin Studio
development tool, which could only create mobile apps, to Visual Studio for Mac and gave

it the ability to create other types of projects like console apps and web services. With Visual
Studio 2022 for Mac, Microsoft has replaced parts of the Xamarin Studio editor with parts from
Visual Studio 2022 for Windows to provide closer parity of experience and performance. Visual
Studio 2022 for Mac was also rewritten to be a truly native macOS Ul app to improve reliability
and work with macOS's built-in assistive technologies.

Understanding .NET Core

Today, we live in a truly cross-platform world where modern mobile and cloud development
have made Windows, as an operating system, much less important. Because of that, Microsoft
has been working on an effort to decouple .NET from its close ties with Windows. While
rewriting .NET Framework to be truly cross-platform, they've taken the opportunity to refactor
and remove major parts that are no longer considered core.

This new product was branded .NET Core and includes a cross-platform implementation of the
CLR known as CoreCLR and a streamlined BCL known as CoreFX.

Scott Hunter, Microsoft Partner Director Program Manager for .NET, has said that "Forty
percent of our .NET Core customers are brand-new developers to the platform, which is what
we want with .NET Core. We want to bring new people in."

.NET Core is fast-moving, and because it can be deployed side by side with an app, it can
change frequently, knowing those changes will not affect other .NET Core apps on the same
machine. Most improvements that Microsoft makes to .NET Core and modern .NET cannot be
easily added to .NET Framework.

Understanding the journey to one .NET

At the Microsoft Build developer conference in May 2020, the .NET team announced that their
plans for the unification of .NET had been delayed. They said that .NET 5 would be released on
November 10, 2020, and it would unify all the various .NET platforms except mobile. It would
not be until .NET 6 in November 2021 that mobile will also be supported by the unified .NET
platform.

.NET Core has been renamed .NET and the major version number has skipped the number
four to avoid confusion with .NET Framework 4.x. Microsoft plans on annual major version
releases every November, rather like Apple does major version number releases of iOS every
September.

[11]

Hello, C#! Welcome, .NET!

The following table shows when the key versions of modern .NET were released, when future
releases are planned, and which version is used by the various editions of this book:

Version Released Edition Published
.NET Core RC1 November 2015 First March 2016
.NET Core 1.0 June 2016

.NET Core 1.1 November 2016

.NET Core 1.0.4 and .NET Core 1.1.1 March 2017 Second March 2017
.NET Core 2.0 August 2017

DET Core ;‘;raiwp in Windows 10Fall | 5ctober 2017 Third November 2017
NET Core 2.1 (LTS) May 2018

.NET Core 2.2 (Current) December 2018

.NET Core 3.0 (Current) September 2019 Fourth October 2019
.NET Core 3.1 (LTS) December 2019

Blazor WebAssembly 3.2 (Current) May 2020

.NET 5.0 (Current) November 2020 Fifth November 2020
.NET 6.0 (LTS) November 2021 Sixth November 2021
NET 7.0 (Current) November 2022 Seventh November 2022
.NET 8.0 (LTS) November 2023 Eighth November 2023

.NET Core 3.1 included Blazor Server for building web components. Microsoft had

also planned to include Blazor WebAssembly in that release, but it was delayed. Blazor
WebAssembly was later released as an optional add-on for .NET Core 3.1. I include it in the
table above because it was versioned as 3.2 to exclude it from the LTS of .NET Core 3.1.

Understanding .NET support

.NET versions are either Long Term Support (LTS) or Current, as described in the

following list:

* LTS releases are stable and require fewer updates over their lifetime. These are a good
choice for applications that you do not intend to update frequently. LTS releases will
be supported for 3 years after general availability, or 1 year after the next LTS release

ships, whichever is longer.

* Current releases include features that may change based on feedback. These are a good
choice for applications that you are actively developing because they provide access
to the latest improvements. After a 6-month maintenance period, or 18 months after
general availability, the previous minor version will no longer be supported.

[12]

Chapter 01

Both receive critical fixes throughout their lifetime for security and reliability. You must stay up
to date with the latest patches to get support. For example, if a system is running 1.0 and 1.0.1
has been released, 1.0.1 will need to be installed to get support.

To better understand your choices of Current and LTS releases, it is helpful to see it visually,
with 3-year-long black bars for LTS releases, and variable-length gray bars for Current releases
that end with cross-hatching for the 6 months after a new major or minor release that they
retain support for, as shown in Figure 1.2:

Version

-NET Core 2.1
NET Core 3.0
MET Core 3.1

MET 5.0
MET 6.0
MNET 7.0
MET &0
JNET 9.0
NET 10.0

Blazor WebaAssembly 3.2 Current

Support *
LTS
Current
LTS

Current
LTS
Current
LTS
Current
LTS

2019 2020 021 2022 2023 2024 2025 2026

Figure 1.2: Support for various versions

For example, if you had created a project using .NET Core 3.0, then when Microsoft released
.NET Core 3.1 in December 2019, you had to upgrade your project to .NET Core 3.1 by March
2020. (Before .NET 5, the maintenance period for Current releases was only three months.)

If you need long-term support from Microsoft, then choose .NET 6.0 today and stick with it
until .NET 8.0, even once Microsoft releases NET 7.0. This is because .NET 7.0 will be a current
release and it will therefore lose support before .NET 6.0 does. Just remember that even with
LTS releases you must upgrade to bug fix releases like 6.0.1.

All versions of .NET Core and modern .NET have reached their end of life except those shown
in the following list:

e .NET 5.0 will reach end of life in May 2022.

e NET Core 3.1 will reach end of life on December 3, 2022.
e NET 6.0 will reach end of life in November 2024.

Understanding .NET Runtime and .NET SDK versions

.NET Runtime versioning follows semantic versioning, that is, a major increment indicates

breaking changes, minor increments indicate new features, and patch increments indicate bug
fixes.

.NET SDK versioning does not follow semantic versioning. The major and minor version
numbers are tied to the runtime version it is matched with. The patch number follows a
convention that indicates the major and minor versions of the SDK.

[13]

Hello, C#! Welcome, .NET!

You can see an example of this in the following table:

Change Runtime SDK

Initial release 6.0.0 6.0.100
SDK bug fix 6.0.0 6.0.101
Runtime and SDK bug fix 6.0.1 6.0.102
SDK new feature 6.0.1 6.0.200

Removing old versions of .NET

NET Runtime updates are compatible with a major version such as 6.x, and updated releases
of the NET SDK maintain the ability to build applications that target previous versions of the
runtime, which enables the safe removal of older versions.

You can see which SDKs and runtimes are currently installed using the following commands:

* dotnet --list-sdks

® dotnet --list-runtimes

On Windows, use the App & features section to remove .NET SDKs. On macOS or Windows,
use the dotnet-core-uninstall tool. This tool is not installed by default.

For example, while writing the fourth edition, I used the following command every month:

dotnet-core-uninstall remove --all-previews-but-latest --sdk

What is different about modern .NET?

Modern .NET is modularized compared to the legacy .NET Framework, which is monolithic.
It is open source and Microsoft makes decisions about improvements and changes in the open.
Microsoft has put particular effort into improving the performance of modern .NET.

It is smaller than the last version of .NET Framework due to the removal of legacy and non-
cross-platform technologies. For example, workloads such as Windows Forms and Windows
Presentation Foundation (WPF) can be used to build graphical user interface (GUI)
applications, but they are tightly bound to the Windows ecosystem, so they are not included
with .NET on macOS and Linux.

Windows development

One of the features of modern .NET is support for running old Windows Forms and WPF
applications using the Windows Desktop Pack that is included with the Windows version of
.NET Core 3.1 or later, which is why it is bigger than the SDKs for macOS and Linux. You can
make some small changes to your legacy Windows app if necessary, and then rebuild it for
.NET 6 to take advantage of new features and performance improvements.

[14]

Chapter 01

Web development

ASP.NET Web Forms and Windows Communication Foundation (WCF) are old web
application and service technologies that fewer developers are choosing to use for new
development projects today, so they have also been removed from modern .NET. Instead,
developers prefer to use ASP.NET MVC, ASP.NET Web API, SignalR, and gRPC. These
technologies have been refactored and combined into a platform that runs on modern .NET,
named ASP.NET Core. You'll learn about the technologies in Chapter 14, Building Websites
Using ASP.NET Core Razor Pages, Chapter 15, Building Websites Using the Model-View-Controller
Pattern, Chapter 16, Building and Consuming Web Services, and Chapter 18, Building and Consuming
Specialized Services.

More Information: Some .NET Framework developers are upset that ASP.NET
Web Forms, WCF, and Windows Workflow (WF) are missing from modern
.NET and would like Microsoft to change their minds. There are open source

‘ , projects to enable WCF and WF to migrate to modern .NET. You can read

\p/ more at the following link: https://devblogs.microsoft.com/dotnet/
supporting-the-community-with-wf-and-wcf-oss-projects/. Thereis
an open source project for Blazor Web Forms components at the following
link: https://github.com/FritzAndFriends/BlazorWebFormsComponents.

Database development

Entity Framework (EF) 6 is an object-relational mapping technology that is designed to work
with data that is stored in relational databases such as Oracle and Microsoft SQL Server. It has
gained baggage over the years, so the cross-platform API has been slimmed down, has been
given support for non-relational databases like Microsoft Azure Cosmos DB, and has been
renamed Entity Framework Core. You will learn about it in Chapter 10, Working with Data Using
Entity Framework Core.

If you have existing apps that use the old EF, then version 6.3 is supported on .NET Core 3.0 or
later.

Themes of modern .NET

Microsoft has created a website using Blazor that shows the major themes of modern .NET:
https://themesof.net/.

Understanding .NET Standard

The situation with .NET in 2019 was that there were three forked .NET platforms controlled by
Microsoft, as shown in the following list:

* .NET Core: For cross-platform and new apps
* .NET Framework: For legacy apps

* Xamarin: For mobile apps

[15]

https://themesof.net/
https://devblogs.microsoft.com/dotnet/supporting-the-community-with-wf-and-wcf-oss-projects/
https://devblogs.microsoft.com/dotnet/supporting-the-community-with-wf-and-wcf-oss-projects/
https://github.com/FritzAndFriends/BlazorWebFormsComponents

Hello, C#! Welcome, .NET!

Each had strengths and weaknesses because they were all designed for different scenarios. This
led to the problem that a developer had to learn three platforms, each with annoying quirks
and limitations.

Because of that, Microsoft defined .NET Standard - a specification for a set of APIs that all .NET
platforms could implement to indicate what level of compatibility they have. For example,
basic support is indicated by a platform being compliant with .NET Standard 1.4.

With .NET Standard 2.0 and later, Microsoft made all three platforms converge on a modern
minimum standard, which made it much easier for developers to share code between any
flavor of NET.

For .NET Core 2.0 and later, this added most of the missing APIs that developers need to
port old code written for .NET Framework to the cross-platform .NET Core. However, some
APIs are implemented but throw an exception to indicate to a developer that they should not
actually be used! This is usually due to differences in the operating system on which you run
.NET. You'll learn how to handle these exceptions in Chapter 2, Speaking C#.

It is important to understand that .NET Standard is just a standard. You are not able to install
NET Standard in the same way that you cannot install HTML5. To use HTML5, you must
install a web browser that implements the HTMLS5 standard.

To use .NET Standard, you must install a .NET platform that implements the .NET Standard
specification. The last .NET Standard, version 2.1, is implemented by .NET Core 3.0, Mono,
and Xamarin. Some features of C# 8.0 require .NET Standard 2.1. INET Standard 2.1 is not
implemented by .NET Framework 4.8, so we should treat NET Framework as legacy.

With the release of .NET 6 in November 2021, the need for .INET Standard has reduced
significantly because there is now a single .NET for all platforms, including mobile. .NET 6 has
a single BCL and two CLRs: CoreCLR is optimized for server or desktop scenarios like websites
and Windows desktop apps, and the Mono runtime is optimized for mobile and web browser
apps that have limited resources.

Even now, apps and websites created for .NET Framework will need to be supported, so it is
important to understand that you can create .NET Standard 2.0 class libraries that are backward
compatible with legacy .NET platforms.

.NET platforms and tools used by the book editions

For the first edition of this book, which was written in March 2016, I focused on .NET Core
functionality but used .NET Framework when important or useful features had not yet been
implemented in .NET Core because that was before the final release of .NET Core 1.0. Visual
Studio 2015 was used for most examples, with Visual Studio Code shown only briefly.

The second edition was (almost) completely purged of all .NET Framework code examples so
that readers were able to focus on .NET Core examples that truly run cross-platform.

[16]

Chapter 01

The third edition completed the switch. It was rewritten so that all of the code was pure .NET
Core. But giving step-by-step instructions for both Visual Studio Code and Visual Studio 2017
for all tasks added complexity.

The fourth edition continued the trend by only showing coding examples using Visual Studio
Code for all but the last two chapters. In Chapter 20, Building Windows Desktop Apps, it used
Visual Studio running on Windows 10, and in Chapter 21, Building Cross-Platform Mobile Apps,
it used Visual Studio for Mac.

In the fifth edition, Chapter 20, Building Windows Desktop Apps, was moved to Appendix B to
make space for a new Chapter 20, Building Web User Interfaces Using Blazor. Blazor projects can
be created using Visual Studio Code.

In this sixth edition, Chapter 19, Building Mobile and Desktop Apps Using .NET MAUI, was
updated to show how mobile and desktop cross-platform apps can be created using Visual
Studio 2022 and .NET MAUI (Multi-platform App UI).

By the seventh edition and the release of .NET 7, Visual Studio Code will have an extension
to support NET MAUI. At that point, readers will be able to use Visual Studio Code for all
examples in the book.

Understanding intermediate language

The C# compiler (named Roslyn) used by the dotnet CLI tool converts your C# source code
into intermediate language (IL) code and stores the IL in an assembly (a DLL or EXE file). IL
code statements are like assembly language instructions, which are executed by .NET's virtual
machine, known as CoreCLR.

At runtime, CoreCLR loads the IL code from the assembly, the just-in-time (JIT) compiler
compiles it into native CPU instructions, and then it is executed by the CPU on your machine.

The benefit of this two-step compilation process is that Microsoft can create CLRs for Linux
and macOS, as well as for Windows. The same IL code runs everywhere because of the second
compilation step, which generates code for the native operating system and CPU instruction set.

Regardless of which language the source code is written in, for example, C#, Visual Basic, or
F#, all .NET applications use IL code for their instructions stored in an assembly. Microsoft and
others provide disassembler tools that can open an assembly and reveal this IL code, such as
the ILSpy .NET Decompiler extension.

Comparing .NET technologies

We can summarize and compare .NET technologies today, as shown in the following table:

Technology Description Host operating systems

A modern feature set, full C# 8, 9, and 10 support, used
Modern .NET to port existing apps or create new desktop, mobile,
and web apps and services

Windows, macOS,
Linux, Android, iOS

[171]

Hello, C#! Welcome, .NET!

NET Framework A legacy feature set, hn.rutefi C#.S :.;upport,.no C# 9or Windows only
10 support, used to maintain existing applications only
Xamarin Mobile and desktop apps only Android, iOS, macOS

Building console apps using Visual Studio
2022

The goal of this section is to showcase how to build a console app using Visual Studio 2022 for
Windows.

If you do not have a Windows computer or you want to use Visual Studio Code, then you can
skip this section since the code will be the same, just the tooling experience is different.

Managing multiple projects using Visual Studio 2022

Visual Studio 2022 has a concept named a solution that allows you to open and manage
multiple projects simultaneously. We will use a solution to manage the two projects that you
will create in this chapter.

Writing code using Visual Studio 2022

Let's get started writing code!

1. Start Visual Studio 2022.
2. In the Start window, click Create a new project.

3. In the Create a new project dialog, enter console in the Search for templates box, and
select Console Application, making sure that you have chosen the C# project template
rather than another language, such as F# or Visual Basic, as shown in Figure 1.3:

- O x,

Create a new project [mE

Clear all

Becent Project tem plates All languages - All platforms - All project types

Alist of your recently accessed templates will be i I - I NET—
displayed here. i E Console Application
4 project for creating a command-line application that can run on .NET Core on
Windows, Linux and macOS

Linu

H R Wiesdows Console
ﬁ“ Console Applic
A project for creating a command line application that can run on JNET Core on
Windaows, Linux and macO5

Visual Base Limvu maclls Windows Consale

Figure 1.3: Selecting the Console Application project template

[18]

Chapter 01

4. Click Next.

5. In the Configure your new project dialog, enter Hel1loCS for the project name, enter C:\
Code for the location, and enter Chaptere1 for the solution name, as shown in Figure 1.4:

Configure your new project

Console Application ¥ Linx meS Windows Console

Project name

HelloCs J
Location
ChCode '] [e ‘

Solution name @
Chapter1]

___| Place solution and project in the same directory

Figure 1.4: Configuring names and locations for your new project

6. Click Next.

We are deliberately going to use the older project template for NET

\/V 5.0 to see what a full console application looks like. In the next section,

you will create a console application using .NET 6.0 and see what has
changed.

7. In the Additional information dialog, in the Target Framework drop-down list, note
the choices of Current and long-term support versions of .NET, and then select .NET 5.0
(Current) and click Create.

8. In Solution Explorer, double-click to open the file named Program. cs, and note that
Solution Explorer shows the HelloCS project, as shown in Figure 1.5:

O fle Edit Visw Gt Project Buid Dsbug Test Ansiyze TJools Eglensions Window Help | Search (Cuiedl Pl thapteron - o x
: PrEA® & Uveshore BV m

= | [Debug_~| [any cPu -} P riellocs = B

-1 % HelloCS Program -1 ZaMaintstang]] args

1 hsing System;

“namespace HelloCS [solution ‘Chapterd1” (1 of 1 project)
{ M 4 [F HolloCs
iElass Program b &8 Dependencios
B CE Programcs
static veid Main(stringl] args) B

{
Consola. WriteLine("Helle World!");

J WRbED oD aen s

CRIF

lml Chl

SPC

a

A Sefect Repository &

Figure 1.5: Editing Program.cs in Visual Studio 2022

[19]

Hello, C#! Welcome, .NET!

9. InProgram.cs, modify line 9 so that the text that is being written to the console says
Hello, Ci#!

Compiling and running code using Visual Studio

The next task is to compile and run the code.

1. In Visual Studio, navigate to Debug | Start Without Debugging.

2. The output in the console window will show the result of running your application, as
shown in Figure 1.6:

€] File Edit Wiew Git Project Build Debug Test Analyze Tools Extensions Window Help Search (CuisO P

£

B2 BP9 | Debug - Ay - PHelocs - | @ i 2w A i [Live Share

Solution Explorer
Fo T .
~{ "% HelloCS Program | Fa Mainistring() args i ARl o5 8F ;B

using System;
il eh Solution Explorer (Cirl+

namespace HelloCs = Selution 'Chapter01” [1of 1 project)
¢ 4 [Hellocs
= class Program P & Dependencies
{ b Programics
static vold Main(string[] args)
{ Solution Explorer [
Conzole.Writeline("Hella, Cal");

B Miscrosoft Visual Studio Debug Console

Error List.—

Figure 1.6: Running the console app on Windows

3. Press any key to close the console window and return to Visual Studio.

Select the HelloCS project and then, in the Solution Explorer toolbar, toggle on the
Show All Files button, and note that the compiler-generated bin and obj folders are
visible, as shown in Figure 1.7

of fie Edt View Git Project Buld Debug Test Analyze Tools Extensions Window Halp P chaptert = o %
Bl -SRI R o = & = | Debug - AnyCPU R S - n e = & Live Share &7
h Al Solution Explorer w B
= | ®aMainistringl] args) e &l ors 8 ,;.E
— L]

using System;
£~

=] - | Shew Al Files |
-Inamespace HelloCS B3 sotution “Chapter01” {1 of 1 projec
{ 4 [HelloCs

tlass Program b & Dependencies

{ b F imports
7 static vola Main(string] args) Bl bin
8 { b L obj
a Console.Writeline{"Hella, C#1"); b € Program.es

¥
b
¥

LRIF

S Solution Explore: [(E0

L hia

2

Error List .

2,

L This item does not suppert previewing 1+ Add to Source Control =

Figure 1.7: Showing the compiler-generated folders and files

[20]

Chapter 01

Understanding the compiler-generated folders and files

Two compiler-generated folders were created, named obj and bin. You do not need to look
inside these folders or understand their files yet. Just be aware that the compiler needs to create
temporary folders and files to do its work. You could delete these folders and their files, and
they can be recreated later. Developers often do this to "clean" a project. Visual Studio even has
a command on the Build menu named Clean Solution that deletes some of these temporary
files for you. The equivalent command with Visual Studio Code is dotnet clean.

* The obj folder contains one compiled object file for each source code file. These objects
haven't been linked together into a final executable yet.

* The bin folder contains the binary executable for the application or class library. We will
look at this in more detail in Chapter 7, Packaging and Distributing .NET Types.

Writing top-level programs

You might be thinking that was a lot of code just to output Hello, C#!.

Although the boilerplate code is written for you by the project template, is there a simpler way?
Well, in C# 9 or later, there is, and it is known as top-level programs.

Let's compare the console app created by the project template, as shown in the following code:

using System;

namespace HelloCS

{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Hello World!");
}
}
}

To the new top-level program minimum console app, as shown in the following code:
using System;
Console.WriteLine("Hello World!™");

That is a lot simpler, right? If you had to start with a blank file and write all the statements
yourself, this is better. But how does it work?

During compilation, all the boilerplate code to define a namespace, the Program class, and its
Main method, is generated and wrapped around the statements you write.

[21]

Hello, C#! Welcome, .NET!

Key points to remember about top-level programs include the following list:

* Any using statements still must to go at the top of the file.
* There can be only one file like this in a project.
The using System; statement at the top of the file imports the System namespace. This enables

the Console.WriteLine statement to work. You will learn more about namespaces in the next
chapter.

Adding a second project using Visual Studio 2022

Let's add a second project to our solution to explore top-level programs:

In Visual Studio, navigate to File | Add | New Project.

2. Inthe Add a new project dialog, in Recent project templates, select Console
Application [C#] and then click Next.

3. In the Configure your new project dialog, for the Project name, enter TopLevelProgram,
leave the location as C:\Code\Chapterel, and then click Next.

4. In the Additional information dialog, select NET 6.0 (Long-term support), and then
click Create.

5. In Solution Explorer, in the TopLevelProgram project, double-click Program.cs to open
it.
6. InProgram.cs, note the code consists of only a comment and a single statement because

it uses the top-level program feature introduced in C# 9, as shown in the following
code:

Console.WriteLine("Hello, World!");

But when I introduced the concept of top-level programs earlier, we needed a using System;
statement. Why don't we need that here?

Implicitly imported namespaces

The trick is that we do still need to import the System namespace, but it is now done for us
using a feature introduced in C# 10. Let's see how:

1. In Solution Explorer, select the TopLevelProgram project and toggle on the Show All
Files button, and note that the compiler-generated bin and obj folders are visible.

2. Expand the obj folder, expand the Debug folder, expand the net6.0 folder, and open the
file named TopLevelProgram.GlobalUsings.g.cs.

3. Note that this file is automatically created by the compiler for projects that target .NET
6, and that it uses a feature introduced in C# 10 called global imports that imports
some commonly used namespaces like System for use in all code files, as shown in the
following code:

[22]

Chapter 01

global using global: :System;

global using global::System.Collections.Generic;
global using global::System.IO;

global using global::System.Ling;

global using global::System.Net.Http;

global using global::System.Threading;

global using global::System.Threading.Tasks;

I will explain more about this feature in the next chapter. For now,
‘ , just note that a significant change between .NET 5 and .NET 6 is that
\p/ many of the project templates, like the one for console applications,
use new language features to hide what is really happening.

In the TopLevelProgram project, in Program.cs, modify the statement to output a
different message and the version of the operating system, as shown in the following
code:
Console.WriteLine("Hello from a Top Level Program!");
Console.WriteLine(Environment.OSVersion.VersionString);

In Solution Explorer, right-click the Chapter01 solution, select Set Startup Projects...,
set Current selection, and then click OK.

In Solution Explorer, click the TopLevelProgram project (or any file or folder within it),
and note that Visual Studio indicates that TopLevelProgram is now the startup project
by making the project name bold.

Navigate to Debug | Start Without Debugging to run the TopLevelProgram project,
and note the result, as shown in Figure 1.8:

' File Edit MView Git Project Build Debug Test Analyze Tools Extensions Window Help | Search{CuleQ) P

= || Debug =} Any CPU | |ToplevelProgram =| P ToplevelProgam = :‘ ; L5 Live Share Q m

Programecs: & X ToplevelProgram ciprey T ¥ = B ERRERR N - Box
O 2] TopLevelProgram o ‘r -l g -2 ﬁf_i é‘r:
1 f/ See https://aka.ms/new-console-template for more information - B = = S ¥
Console . WriteLine("Hello from a Tep Level Program!"): [3 solution "Chapter01’ (2 of 2 prajects}
Console. Writeline(Environment . DSVersion.VersionString); b B Hellocs

4[4 TopleveiProgram
b & Dependencies
b 3N imports

bin

a

Figure 1.8: Running a top-level program in a Visual Studio solution with two projects on Windows

[23]

Hello, C#! Welcome, .NET!

Building console apps using Visual Studio
Code

The goal of this section is to showcase how to build a console app using Visual Studio Code.

If you never want to try Visual Studio Code or .NET Interactive Notebooks, then please feel
free to skip this section and the next, and then continue with the Reviewing the folders and files for
projects section.

Both the instructions and screenshots in this section are for Windows, but the same actions will
work with Visual Studio Code on the macOS and Linux variants.

The main differences will be native command-line actions such as deleting a file: both the
command and the path are likely to be different on Windows or macOS and Linux. Luckily,
the dotnet command-line tool will be identical on all platforms.

Managing multiple projects using Visual Studio
Code

Visual Studio Code has a concept named a workspace that allows you to open and manage
multiple projects simultaneously. We will use a workspace to manage the two projects that you
will create in this chapter.

Writing code using Visual Studio Code

Let's get started writing code!

Start Visual Studio Code.
Make sure that you do not have any open files, folders, or workspaces.

Navigate to File | Save Workspace As....

Ll

In the dialog box, navigate to your user folder on macOS (mine is named markjprice),
your Documents folder on Windows, or any directory or drive in which you want to
save your projects.

5. Click the New Folder button and name the folder Code. (If you completed the section
for Visual Studio 2022, then this folder will already exist.)

In the Code folder, create a new folder named Chaptere@1-vscode.

In the Chapterel-vscode folder, save the workspace as Chapterel.code-workspace.
8. Navigate to File | Add Folder to Workspace... or click the Add Folder button.

[24]

Chapter 01

9.

In the Chaptere1-vscode folder, create a new folder named HelloCs.

10. Select the HellocCs folder and click the Add button.

11.

12.

13.

14.

Navigate to View | Terminal.

We are deliberately going to use the older project template for NET

\/‘/ 5.0 to see what a full console application looks like. In the next section,

you will create a console application using .NET 6.0 and see what has
changed.

In TERMINAL, make sure that you are in the HelloCS folder, and then use the dotnet
command-line tool to create a new console app that targets .NET 5.0, as shown in the
following command:

dotnet new console -f net5.0

You will see that the dotnet command-line tool creates a new Console Application
project for you in the current folder, and the EXPLORER window shows the two files
created, HelloCS. csproj and Program.cs, and the obj folder, as shown in Figure 1.9:

®) Fite Edit ‘Selection View Go Run Terminal Help Chapterd (Warkspace]) - Visual Studio Code - (o K

CHAPTERD1 (woRksPace) [7 U0 &

TERMINAL

Ps CihCode\Chapterdl-vscode\HelloCss dot new console -f nets.@
The template "Console Application” was created successfully.

Pracessing post-creation actions...

Running "dotnet restore’ on C:\Code\Chapter@l-vscode\HelloCS\HelloCS.csprof. ..
Ts to restore...

\Chapter8l-vscode\HelloCS\HelloCS.csproj (in 75 ms).

> DUTLINE 1apterdl-vscote\Hellocss []

3 ILSPY DECOMPILED MEMBERS
¥ @oA0 @ ElHeloCSespro) fo R

Figure 1.9: The EXPLORER window will show that two files and a folder have been created

In EXPLORER, click on the file named Program. cs to open it in the editor window. The
first time that you do this, Visual Studio Code may have to download and install C#
dependencies like OmniSharp, NET Core Debugger, and Razor Language Server, if it
did not do this when you installed the C# extension or if they need updating. Visual
Studio Code will show progress in the Output window and eventually the message
Finished, as shown in the following output:

Installing C# dependencies...
Platform: win32, x86_64

Downloading package 'OmniSharp for Windows (.NET 4.6 / x64)' (36150

[25]

Hello, C#! Welcome, .NET!

Validating download...
Integrity Check succeeded.
Installing package 'OmniSharp for Windows (.NET 4.6 / x64)'

Downloading package '.NET Core Debugger (Windows / x64)' (45048

Validating download...
Integrity Check succeeded.
Installing package '.NET Core Debugger (Windows / x64)'

Downloading package 'Razor Language Server (Windows / x64)' (52344
Installing package 'Razor Language Server (Windows / x64)'

Finished

The preceding output is from Visual Studio Code on Windows.

\/V When run on macOS or Linux, the output will look slightly different,

but the equivalent components for your operating system will be
downloaded and installed.

15. Folders named obj and bin will have been created and when you see a notification
saying that required assets are missing, click Yes, as shown in Figure 1.10:

o] File Edit Selection View Go Run Termina! Help Program cs - Chapter0 (Workspace) - Vicual Studio Code - & ¥
@ EXPLORER C Programigs %
“ OPEN EDITORS HelloCs > € Progr
X € Progrom.cs 1 using System;

« CHAPTERO1 (WORKSPACE)
namespace HelloCs

4 {

v HelioCs

VELIGELLIE UL
Integrity Check succeeded.
Installing package ".NET Core Debugger (Windows / x54)°

Downloading package 'Razor Language Seo o
Done! y
Installing package "Razor Language Ser

Finished

2 OUTLINE
> ILSPY DECOMPILED MEMBERS

¥ @os0 @ FHelocs in1,Col1 Spaces:d UTF-BwithBOM CRIF €& f5

Figure 1.10: Warning message to add required build and debug assets

16. If the notification disappears before you can interact with it, then you can click the bell
icon in the far-right corner of the status bar to show it again.

[26]

Chapter 01

17. After a few seconds, another folder named .vscode will be created with some files that
are used by Visual Studio Code to provide features like IntelliSense during debugging,
which you will learn more about in Chapter 4, Writing, Debugging, and Testing Functions.

18. In Program.cs, modify line 9 so that the text that is being written to the console says

Hello, Ci#!
L Good Practice: Navigate to File | Auto Save. This toggle will save the
/@ annoyance of remembering to save before rebuilding your application
g each time.

Compiling and running code using the dotnet CLI

The next task is to compile and run the code:

1. Navigate to View | Terminal and enter the following command:

2. The output in the TERMINAL window will show the result of running your
application, as shown in Figure 1.11:

o] File Edit Selection View 'Go Run Terminal Help Programics - Chapter (Workspace] - Visua! Studio Code = (m] *
@ C© Programi.cs %
“* OPEN EDITORS alfal’s C Progr
X € Programes 1 using System;

' CHAPTERDT (WORKSPACE)
| namespace Hellols
< HelioCs:

4 f

> wicode
class Propram

> obj 6 { :
= HelloCs.caproj
© Programecs 7 static void Mainfstring[] args)

8 {

9 Console. WriteLine("Hello, C#!");

s

TERMINAL Tk £S s 1: cmd

C:\Codeh\Chapterdl -vscode\HelloCS>dotnet run
Helle, CH!
> OUTLINE

» ILSPY DECOMPILED MEMBERS C:yCodehChapteral -vscode'Hell ocs:l
¥ @oA0 @ BFlHelocs Lnd, Col2 Spacessd UTE-BwithBOM CRIF C&2 & 0

Figure 1.11: The output of running your first console application

Adding a second project using Visual Studio Code

Let's add a second project to our workspace to explore top-level programs:

1. In Visual Studio Code, navigate to File | Add Folder to Workspace....

[27]

Hello, C#! Welcome, .NET!

2.

In the Chaptero1-vscode folder, use the New Folder button to create a new folder
named TopLevelProgram, select it, and click Add.

Navigate to Terminal | New Terminal, and in the drop-down list that appears, select
TopLevelProgram. Alternatively, in EXPLORER, right-click the TopLevelProgram folder
and then select Open in Integrated Terminal.

In TERMINAL, confirm that you are in the TopLevelProgram folder, and then enter the
command to create a new console application, as shown in the following command:

dotnet new console

Good Practice: When using workspaces, be careful when entering
L commands in TERMINAL. Be sure that you are in the correct folder
‘@‘ before entering potentially destructive commands! That is why I got

4 N\
£ you to create a new terminal for TopLevelProgram before issuing the

command to create a new console app.

Navigate to View | Command Palette.

Enter omni, and then, in the drop-down list that appears, select OmniSharp: Select
Project.

In the drop-down list of two projects, select the TopLevelProgram project, and when
prompted, click Yes to add required assets to debug.

Good Practice: To enable debugging and other useful features, like
L code formatting and Go to Definition, you must tell OmniSharp which
- /@\' project you are actively working on in Visual Studio Code. You can

g quickly toggle active projects by clicking the project/folder to the
right of the flame icon on the left side of the status bar.

In EXPLORER, in the TopLevelProgram folder, select Program. cs, and then change the
existing statement to output a different message and also output the operating system
version string, as shown in the following code:

Console.WriteLine("Hello from a Top Level Program!");
Console.WriteLine(Environment.OSVersion.VersionString);

In TERMINAL, enter the command to run a program, as shown in the following
command:

[28]

Chapter 01

10. Note the output in the TERMINAL window, as shown in Figure 1.12:

») File Edit Selection Vew Go Run Jerminal Help Program.cs - Chepler0t (Workspace] - Visual Studio Code - B b8

“ CHAPTEROT (WORKSPACE) oplevelProgram ¥ € P

Console.Write
4 Console.Write

ina{"Helle from a Tap Level Pregram!|");
ine{Envircnment.08Version.VersionString);

TERMINAL EBLIG CONSOL T

B Top Level Pragram!
2 QUTLINE Micros ndows NT 18.¢.19843.8
> ILSPY DECOMPILED MEMBERS Ps C: ey Chapteral \'f.-:0:13'~_T0:‘Lc-\'f.".'b|‘-:|gr‘er.1-.- l

¥ ®oAo & B Toplevefrogram.csprof Lnd,Col 56 Spaces:d UTF-BwithBOM CRLF cf & 0

Figure 1.12: Running a top-level program in a Visual Studio Code workspace with two projects on Windows

If you were to run the program on macOS Big Sur, the environment operating system would be
different, as shown in the following output:

Hello from a Top Level Program!
Unix 11.2.3

Managing multiple files using Visual Studio Code

If you have multiple files that you want to work with at the same time, then you can put them
side by side as you edit them:

In EXPLORER, expand the two projects.
Open both Program. cs files from the two projects.

Click, hold, and drag the edit window tab for one of your open files to arrange them so
that you can see both files at the same time.

Exploring code using .NET Interactive
Notebooks

NET Interactive Notebooks makes writing code even easier than top-level programs.
It requires Visual Studio Code, so if you did not install it earlier, please install it now.

[29]

Hello, C#! Welcome, .NET!

Creating a notebook

First, we need to create a notebook:

In Visual Studio Code, close any open workspaces or folders.
Navigate to View | Command Palette.

Type .net inter, and then select .NET Interactive: Create new blank notebook,
as shown in Figure 1.13:

4 Eife Edit Selection Miew Go Run Jeérminal Help Welcame - Visuai Studic Code - =] *

NET Interactive: Create new blank notebook

More..

¥ QUTLINE

3 ILSPY DECOMPILED MEMBERS Show welorme p

Figure 1.13: Creating a new blank .NET notebook

4. When prompted to select the file extension, choose Create as '.dib’'.

.dib is an experimental file format defined by Microsoft to avoid
confusion and compatibility issues with the .ipynb format used by
Python interactive notebooks. The file extension was historically only

, for Jupyter notebooks that can contain an interactive (I) mix of data,

\/;p; Python code (PY), and output in a notebook file (NB). With .NET

Interactive Notebooks, the concept has expanded to allow a mix of
C#, F#, SQL, HTML, JavaScript, Markdown, and other languages.
.dib is polyglot, meaning it supports mixed languages. Conversion
between the .dib and .ipynb file formats is supported.

Select C# for the default language for code cells in the notebook.

If a newer version of .NET Interactive is available, you might have to wait for it to
uninstall the older version and install the newer one. Navigate to View | Output

and select .NET Interactive : diagnostics in the drop-down list. Please be patient. It
can take a few minutes for the notebook to appear because it has to start up a hosting
environment for .NET. If nothing happens after a few minutes, then close Visual Studio
Code and restart it.

[30]

Chapter 01

7. Once the NET Interactive Notebooks extension is downloaded and installed, the
OUTPUT window diagnostics will show that a Kernel process has started (your process
and port number will be different from the output below), as shown in the following
output, which has been edited to save space:

Extension started for VS Code Stable.

Kernel process 12516 Port 59565 is using tunnel uri http://
localhost:59565/

Writing and running code in a notebook

Next, we can write code in the notebook cells:

1. The first cell should already be set to C# (.NET Interactive), but if it is set to anything
else, then click the language selector in the bottom-right corner of the code cell and then
select C# (.NET Interactive) as the language mode for that cell, and note your other
choices of language for a code cell, as shown in Figure 1.14:

) File Edit Selection View Go ERun Terminal Help = Untitted-1.dib - Visusl Studio Code - o *
il
Q
=+ NO FOLDER OPENED C# [NET Interactive) [dotnet-interactive.csharp) - Current Language B NET Interactive
You have net yet opened a fol > b B - B
C# [NET Interactive
You can clone a repositary

apen 2 répository or pull

QUTPLIT FRMINAL WSO JMET Interactive : diagm =85 Sl

insaailed.mr_},ﬂ is added to the manifest file
c:\Usersimarkj\appData\Roami

dotnet- interactive-vscodey . ¢ MOTFICATIONS -
Kernel for "*DOTNET-INTERACT
Kernel process 9828 Port 57:
Kernel for 'untitled:Untitle
» OUTLINE Kernel process 19124 Port 57 Installing WNET Interactive version T.0:235707
7 ILSPY DECOMPILED MEMBERS

MNET Interactive installation complete,

Call tof T F

Figure 1.14: Changing the language for a code cell in a .NET Interactive notebook

2. Inside the C# (.NET Interactive) code cell, enter a statement to output a message to the
console, and note that you do not need to end the statement with a semicolon, as you
normally would in a full application, as shown in the following code:

Console.WriteLine("Hello, .NET Interactive!")

[31]

Hello, C#! Welcome, .NET!

3. Click the Execute Cell button to the left of the code cell and note the output that
appears in the gray box under the code cell, as shown in Figure 1.15:

M File Edit Selection View Go FRun Terminal Help » Untitled-1.dib - Visual Studic Code = m} X
Untitled-1.dic @ 18T

+ Code 4 Markdown [® Fun Al S5 Clear Outputs = Bl NET Interactive

v Console.Writeline{"Hello, .NET Interactive!”)
Execute Cell (Ctrl +Ait+Enter) |

Figure 1.15: Running code in a notebook and seeing the output below

Saving a notebook

Like any other file, we should save the notebook before continuing further:

1. Navigate to File | Save As....
2. Change to the Chaptere1-vscode folder and save the notebook as Chaptere1.dib.
3. Close the Chapterei.dib editor tab.

Adding Markdown and special commands to a
notebook

We can mix and match cells containing Markdown and code with special commands:

Navigate to File | Open File..., and select the Chaptere1.dib file.
If you are prompted with Do you trust the authors of these files?, click Open.

Hover your mouse above the code block and click + Markup to add a Markdown cell.

Ll

Type a heading level 1, as shown in the following Markdown:

Chapter 1 - Hello, C#! Welcome, .NET!
Mixing *rich* **text** and code is cool!

5. Click the tick in the top-right corner of the cell to stop editing the cell and view the
processed Markdown.

rearrange them.

\/‘/ If your cells are in the wrong order, then you can drag and drop to

[32]

Chapter 01

Hover between the Markdown cell and the code cell and click + Code.

Type a special command to output version information about .NET Interactive, as
shown in the following code:

#!about

8. Click the Execute Cell button and note the output, as shown in Figure 1.16:

o] File Edit Selection Miew Go Run Terminal Help Chapter@1.dib - Visual Studio Code - O b4
Chapterdl dib X M -«

: Code af code Chapter0l.dib » MeChapter 1 - Hello, C#! Welcome, .NET #labout
+ Code + Markdown [Run All =% Clear Outputs == B NET Interactive

Chapter 1 - Hello, C#! Welcome, .NET!

Mixing rich text and code is cool!

>» Dy 8 - W
ke #!about
01 NET | tl

.NET Interactive

© 2020 Microsoft Corporation

Version: 1.0.235701+3881a95164de75fca84f5f1102713606b7878044

Build date: 2021-07-31T09:15:30.19671052

https://github.com/dotnet/interactive

T+ Code T Markdewn
Console.WriteLine("Hello, .NET Interactive!")

0.1s C# (NET Interactive;

Hello, .NET Interactivel

Cell20f3 & 0

Figure 1.16: Mixing Markdown, code, and special commands in a .NET Interactive notebook

Executing code in multiple cells

When you have multiple code cells in a notebook, you must execute the preceding code cells
before their context becomes available in subsequent code cells:

1. At the bottom of the notebook, add a new code cell, and then type a statement to
declare a variable and assign an integer value, as shown in the following code:

int number = 8;

2. At the bottom of the notebook, add a new code cell, and then type a statement to output
the number variable, as shown in the following code:

Console.WriteLine(number);

[33]

Hello, C#! Welcome, .NET!

3. Note the second code cell does not know about the number variable because it was
defined and assigned in another code cell, aka context, as shown in Figure 1.17:

] Fil= Edit Selection Miew Go Bun Jerminal Help Chapterd1.dib - Visual Studic Code = =] *
Chapterdldib =

3 M Chapte

|I||
fia

4+ Code < Markdowr [Run al

int number = 8;

8 1= L == 3 -
b Console.Writel i"'-(ﬂ}i’!‘},’f_ﬁ);l §‘
| t vEEnteE b seut CE (NET interactive)

% @1A0 cellsofs & 0

Figure 1.17: The number variable does not exist in the current cell or context

4. In the first cell, click the Execute Cell button to declare and assign a value to the
variable, and then in the second cell, click the Execute Cell button to output the number
variable, and note that this works. (Alternatively, in the first cell, you can click the
Execute Cell and Below button.)

Good Practice: If you have related code split between two cells,
: remember to execute the preceding cell before executing the
\@l subsequent cell. At the top of the notebook, there are the following
- buttons - Clear Outputs and Run All These are very handy because
- you can click one and then the other to ensure that all code cells are
executed properly, as long as they are in the correct order.

Using .NET Interactive Notebooks for the code in
this book

Throughout the rest of the chapters, I will not give explicit instructions to use notebooks, but
the GitHub repository for the book has solution notebooks when appropriate. I expect many
readers will want to run my pre-created notebooks for language and library features covered
in Chapters 2 to 12, which they want to see in action and learn about without having to write a
complete application, even if it is just a console app:

https://github.com/markjprice/csl@dotnet6/tree/main/notebooks

Reviewing the folders and files for projects

In this chapter, you created two projects named HelloCS and TopLevelProgram.

[34]

https://github.com/markjprice/cs10dotnet6/tree/main/notebooks

Chapter 01

Visual Studio Code uses a workspace file to manage multiple projects. Visual Studio 2022 uses
a solution file to manage multiple projects. You also created a .NET Interactive notebook.

The result is a folder structure and files that will be repeated in subsequent chapters, although
with more than just two projects, as shown in Figure 1.18:

& Code & Chapterel-vscode
l& Chapterol Chapterel.dib
Chapter@l.sln Chapter@l.code-workspace
B)
& HelloCs f& HelloCs

HelloCS.csproj HelloCS. csproj
Program.cs Program.cs

f& TopLevelProgram & TopLevelProgram

TopLevelProgram.csproj TopLevelProgram.csproj

Program.cs Program.cs
L J

Figure 1.18: Folder structure and files for the two projects in this chapter

Understanding the common folders and files

Although .code-workspace and .sln files are different, the project folders and files such as
HelloCS and TopLevelProgram are identical for Visual Studio 2022 and Visual Studio Code. This
means that you can mix and match between both code editors if you like:

* In Visual Studio 2022, with a solution open, navigate to File | Add Existing Project...
to add a project file created by another tool.

* In Visual Studio Code, with a workspace open, navigate to File | Add Folder to
Workspace... to add a project folder created by another tool.

Good Practice: Although the source code, like the .csproj and
. cs files, is identical, the bin and obj folders that are automatically
| generated by the compiler could have mismatched file versions
\@’ that give errors. If you want to open the same project in both Visual
- Studio 2022 and Visual Studio Code, delete the temporary bin and
- obj folders before opening the project in the other code editor. This is
why I asked you to create a different folder for the Visual Studio Code
solutions in this chapter.

[35]

Hello, C#! Welcome, .NET!

Understanding the solution code on GitHub

The solution code in the GitHub repository for this book includes separate folders for Visual
Studio Code, Visual Studio 2022, and .NET Interactive notebook files, as shown in the following
list:

* Visual Studio 2022 solutions: https://github.com/markjprice/csl@dotnet6/tree/main/
vs4win

* Visual Studio Code solutions: https://github.com/markjprice/csl@dotnet6/tree/
main/vscode

* NET Interactive Notebook solutions: https://github.com/markjprice/cs1@dotnet6/
tree/main/notebooks

Good Practice: If you need to, return to this chapter to remind
yourself how to create and manage multiple projects in the code
L editor of your choice. The GitHub repository has step-by-step
‘,@\‘ instructions for four code editors (Visual Studio 2022 for Windows,
Z Visual Studio Code, Visual Studio 2022 for Mac, and JetBrains
Rider), along with additional screenshots: https://github.com/

markjprice/csl@dotnet6/blob/main/docs/code-editors/.

Making good use of the GitHub repository for
this book

Git is a commonly used source code management system. GitHub is a company, website, and
desktop application that makes it easier to manage Git. Microsoft purchased GitHub in 2018, so
it will continue to get closer integration with Microsoft tools.

I created a GitHub repository for this book, and I use it for the following;:

* To store the solution code for the book that can be maintained after the print
publication date.

* To provide extra materials that extend the book, like errata fixes, small improvements,
lists of useful links, and longer articles that cannot fit in the printed book.

* To provide a place for readers to get in touch with me if they have issues with the book.

Raising issues with the book

If you get stuck following any of the instructions in this book, or if you spot a mistake in the
text or the code in the solutions, please raise an issue in the GitHub repository:

[36]

https://github.com/markjprice/cs10dotnet6/tree/main/vs4win
https://github.com/markjprice/cs10dotnet6/tree/main/vs4win
https://github.com/markjprice/cs10dotnet6/tree/main/vscode
https://github.com/markjprice/cs10dotnet6/tree/main/vscode
https://github.com/markjprice/cs10dotnet6/tree/main/notebooks
https://github.com/markjprice/cs10dotnet6/tree/main/notebooks
https://github.com/markjprice/cs10dotnet6/blob/main/docs/code-editors/
https://github.com/markjprice/cs10dotnet6/blob/main/docs/code-editors/

Chapter 01

1. Use your favorite browser to navigate to the following link: https://github.com/
markjprice/csl@dotnet6/issues.

Click New Issue.
Enter as much detail as possible that will help me to diagnose the issue. For example:

1. Your operating system, for example, Windows 11 64-bit, or macOS Big Sur
version 11.2.3.

Your hardware, for example, Intel, Apple Silicon, or ARM CPU.

Your code editor, for example, Visual Studio 2022, Visual Studio Code, or
something else, including the version number.

As much of your code and configuration that you feel is relevant and necessary.
Description of expected behavior and the behavior experienced.
Screenshots (if possible).

Writing this book is a side hustle for me. I have a full-time job, so I mostly work on the book

at weekends. This means that I cannot always respond immediately to issues. But I want all

my readers to be successful with my book, so if I can help you (and others) without too much
trouble, then I will gladly do so.

Giving me feedback

If you'd like to give me more general feedback about the book, then the GitHub repository
README .md page has links to some surveys. You can provide the feedback anonymously, or if
you would like a response from me, then you can supply an email address. I will only use this
email address to answer your feedback.

I'love to hear from my readers about what they like about my book, as well as suggestions for
improvements and how they are working with C# and .NET, so don't be shy. Please get in
touch!

Thank you in advance for your thoughtful and constructive feedback.

Downloading solution code from the GitHub
repository

I use GitHub to store solutions to all the hands-on, step-by-step coding examples throughout
chapters and the practical exercises that are featured at the end of each chapter. You will find
the repository at the following link: https://github.com/markjprice/cs1@dotnets6.

[37]

https://github.com/markjprice/cs10dotnet6/issues
https://github.com/markjprice/cs10dotnet6/issues
https://github.com/markjprice/cs10dotnet6

Hello, C#! Welcome, .NET!

If you just want to download all the solution files without using Git, click the green Code
button and then select Download ZIP, as shown in Figure 1.19:

B markjprice [cs10dotnet6

<> Code (1) Issues 1"l Pull requests) Actions] Projects 7 Security |~ Insights

¥ main ~ ¥ 1branch © 0 tags Go to file m

e
9 markjprice Initial commit Bl Clone @

HTTPS GitHub CLI

Assals iR Commk https://github.con/markiprice/csied (7]
Chapter01 nitial commit Use Git or checkout with SYN using the web URL
Chapter02 Initial commit

[¥1 Open with GitHub Desktop
Chapter03 nitial commit
Chapter04 nitial commit [3) Download ZIP
Chapter05 Initial commit 13 minutes ago

Figure 1.19: Downloading the repository as a ZIP file

I recommend that you add the preceding link to your favorite bookmarks because I also use the
GitHub repository for this book for publishing errata (corrections) and other useful links.

Using Git with Visual Studio Code and the
command line

Visual Studio Code has support for Git, but it will use your operating system's Git installation,
so you must install Git 2.0 or later first before you get these features.

You can install Git from the following link: https://git-scm.com/download.

If you like to use a GUI, you can download GitHub Desktop from the following link: https://
desktop.github.com.

Cloning the book solution code repository

Let's clone the book solution code repository. In the steps that follow, you will use the Visual
Studio Code terminal, but you could enter the commands at any command prompt or terminal
window:

1. Create a folder named Repos-vscode in your user or Documents folder, or wherever you
want to store your Git repositories.
In Visual Studio Code, open the Repos-vscode folder.

Navigate to View | Terminal, and enter the following command:

git clone https://github.com/markjprice/csl@dotnet6.git

[38]

https://git-scm.com/download
https://desktop.github.com
https://desktop.github.com

Chapter 01

4. Note that cloning all the solutions for all of the chapters will take a minute or so, as
shown in Figure 1.20:

ﬂ Fite' Edit Selection WView Go Ron Terminal Help Repos-vicode - Visunt Stedio Code

EXPLORER

 OPEN EDITORS
* REPOS-VSCODE

ERMINAL TPUT DESUG CONSOLE 1 ¢md - =

Microsoft Windows [Version 18.8.19842.858]
{c) 2020 Microsoft Corporation. All rights reserved.

C:\Repos-vscoderpit clone https://github.com/markjprice/csiddotnete. git
Cloning into ' otnets' ...
remote: E objects: 536, done.

remote: Compressing objects: 10e% (!
remote: Total 536 (delta 182), reused 421 (delta 181), pack-reused @ eceiving objects: 91% (488/
Receiving cbjects: 188X (535/336), 16.93 MiB | 1.79 MiB/s, done.

ing deltas: 67% (122/182)

Resolving deltas: 18@% (182/182), done.

> OUTUINE

> TIMELINE
> ILSPY DECOMPILED MEMBERS €:\Repas-vscodes]

Pmain O Bodo

Figure 1.20: Cloning the book solution code using Visual Studio Code

Looking for help

This section is all about how to find quality information about programming on the web.

Reading Microsoft documentation

The definitive resource for getting help with Microsoft developer tools and platforms is
Microsoft Docs, and you can find it at the following link: https://docs.microsoft.com/.

Getting help for the dotnet tool

At the command line, you can ask the dotnet tool for help with its commands:

1. To open the official documentation in a browser window for the dotnet new command,
enter the following at the command line or in the Visual Studio Code terminal:

dotnet help new

2. To get help output at the command line, use the -h or --help flag, as shown in
the following command:

dotnet new console -h

3. You will see the following partial output:

Console Application (C#)
Author: Microsoft

Description: A project for creating a command-line application that can
run on .NET Core on Windows, Linux and macOS

[39]

https://docs.microsoft.com/

Hello, C#! Welcome, .NET!

Options:
-f|--framework. The target framework
net6.0
net5.0
netcoreapp3.1.
netcoreapp3.0.
Default: net6.0

--langVersion
Optional

Sets langVersion in the

for the project.
- Target net6.0
- Target net5.0
- Target netcoreapp3.1
- Target netcoreapp3.0

created project file text -

Getting definitions of types and their members

One of the most useful features of a code editor is Go To Definition. It is available in Visual
Studio Code and Visual Studio 2022. It will show what the public definition of the type or
member looks like by reading the metadata in the compiled assembly.

Some tools, such as ILSpy .NET Decompiler, will even reverse-engineer from the metadata and

IL code back into C# for you.

Let's see how to use the Go To Definition feature:

1. In Visual Studio 2022 or Visual Studio Code, open the solution/workspace named

Chapterol.

2. Inthe HelloCS project, in Program. cs, in Main, enter the following statement to declare

an integer variable named z:

int z;

3. (lick inside int and then right-click and choose Go To Definition.

In the code window that appears, you can see how the int data type is defined, as

shown in Figure 1.21:

off rie Edt View Git Project
Hig- B8 "l

= | Debug = AnyCPU = P HelloCs =

I (%] Systemn Runtime =i Systemint3z

-inamespace System
i
public readonly struct '.'ml.‘!:i : IComparable, IComparab
{
public const TntiZ MaxValue = 2147433547;
.. public const Inti} Minvalue = -2147483648;

it L] »

Error List =

(J Ready

Build Debug Test Analyze Tools Extensions Window
W B L [] :

l1a2¢Int3d», IConvertible, IFquatable

Help Search (Crisq) R Chapteri - a W

|85 Live Share 40

Int32 {from metadata] B T X GRS PE R SR

bk @dl o-5 8B

|
ey loken=bB2E5f 111 1d50aa : 1
searcn Solubon Exf or (CRni+)

37 Sohition “Chapterd* (2 of 2 projects)
4 [HelloCs
b &8 Dependencies
b HY impents
b L3 bin
b [cb
B €* Programes
4 [ToplevelProgram

b 5 Dependencies

- € Programics

CRIF

Ir:15 Ch3l Col34 SPC

4 Add to Source Control » &

Figure 1.21: The int data type metadata

[40]

Chapter 01

You can see that int:
* Is defined using the struct keyword
* Isin the System.Runtime assembly
* Isin the System namespace
* Isnamed Int32
* Is therefore an alias for the System.Int32 type
* Implements interfaces such as IComparable
* Has constant values for its maximum and minimum values

e Has methods such as Parse

Good Practice: When you try to use Go To Definition in Visual
| Studio Code, you will sometimes see an error saying No definition
\@l found. This is because the C# extension does not know about the
current project. To fix this issue, navigate to View | Command
Palette, enter omni, select OmniSharp: Select Project, and then select
the project that you want to work with.

Right now, the Go To Definition feature is not that useful to you because you do not
yet know what all of this information means.

By the end of the first part of this book, which consists of Chapters 2 to 6, and which
teaches you about C#, you will know enough for this feature to become very handy.

In the code editor window, scroll down to find the Parse method with a single string
parameter on line 106, and the comments that document it on lines 86 to 105, as shown
in Figure 1.22:

Dq File Edit View Git Project Bulld Debug Test Analyze Tools Extensions Windsw Help Search (Cuied) T Chapter0l = 0} X
-0 Bt WY - <] pebug - AnycRU - B Hellocs = | BB i TR n e Ik TS |2 LveShare

[NE RPN IS Bl ~ & Sojution Explorer -

N -ti‘ Systeminti2 —|EI MaxValue - o RAB m-5 gi@ }.'..i
86 = M = 3
87 /1 Summary: Search Selution Explarer (Ctrls 2.
88 2 Converts the string reprosentation of a number to its 32-bit signed integer eguiva 1 solutien 'ChapterD1’ (2 of 2 projects)
& H 4 [Hellocs
%8 /I Paraseters: P & Dependencies
a1 P b B Imports
a3 i & string containing a number to convert. b tin
93 i b Ciobj

// Returns: b

: . C* Program.cs
4 A 32-bit signed integer equivalent to the number contained in s,

4 [ToplevelProgram
B ' Dependencies

/{ Exceptions:

97 £ Py
28 M T:System. ArgumentNullException: -l

99 £ 5 is null.

lae ’i

1al Fr T:System. FormatException:

182 M s is not in the correct format.

183 M

184 £ T18ystem. OverflowException:

185 I s represents a number less than System,Int32.MinValue or greater than System.Int32
186 public static [nt32 Parse{string s); hd

& No issues found F 4 » Im15 Ch31 Cob34 SPC CRIF

+

Add to Sotrce Control = M

Figure 1.22: The comments for the Parse method with a string parameter

[41]

Hello, C#! Welcome, .NET!

In the comments, you will see that Microsoft has documented the following;:

A summary that describes the method.
Parameters like the string value that can be passed to the method.
The return value of the method, including its data type.

Three exceptions that might occur if you call this method, including
ArgumentNullException, FormatException, and OverflowException. Now, we know that
we could choose to wrap a call to this method in a try statement and which exceptions

to catch.

Hopefully, you are getting impatient to learn what all this means!

Be patient for a little longer. You are almost at the end of this chapter, and in the next chapter,
you will dive into the details of the C# language. But first, let's see where else you can look for

help.

Looking for answers on Stack Overflow

Stack Overflow is the most popular third-party website for getting answers to difficult
programming questions. It's so popular that search engines such as DuckDuckGo have a

special way to write a query to search the site:

1. Start your favorite web browser.
2. Navigate to DuckDuckGo. com, enter the following query, and note the search results,

which are also shown in Figure 1.23:

Iso securestring

Q
= ctackoverflow Producis Customers Use cases securestring [T Sign up
_'.-."r
Home Search Results Advanced Search Tips B Microsoft Azute
UBLIC
Reaulls for securestring . .
© Stack Overfiow | Build and develop apps with
Togs securesiring Search Azure, Free until you say
otherwise.
Usars s
ks 500 results _Rr}le\fance | Newest | More ~ Try Azure Free 5 ' =
i Whas e 179 Q: When would | need a SecureString in NET? . _— H
), First 10 Free verea I'm trying to grok the purpose of NET's SecureString. From MSDN: An instance
of the Syslern. Strng class is both immutable and, when no longer needed,
cannol be prog for ... from puter memaory. A
SecureString object is similar to a String object in that it has a lext value,
However, the valug of a § String object is encrypted, can be
modified .
) R T asked Sep 26 '08 by Richard Tessian
Margan yborsasurify

Figure 1.23: Stack Overflow search results for securestring

[42]

DuckDuckGo.com

Chapter 01

Searching for answers using Google

You can search Google with advanced search options to increase the likelihood of finding what
you need:

1. Navigate to Google.

2. Search for information about garbage collection using a simple Google query, and
note that you will probably see a lot of ads for garbage collection services in your local
area before you see the Wikipedia definition of garbage collection in computer science.

3. Improve the search by restricting it to a useful site such as Stack Overflow, and
by removing languages that we might not care about, such as C++, Rust, and Python, or
by adding C# and .NET explicitly, as shown in the following search query:

garbage collection site:stackoverflow.com +C# -Java

Subscribing to the official .NET blog

To keep up to date with .NET, an excellent blog to subscribe to is the official .NET Blog, written
by the .NET engineering teams, and you can find it at the following link: https://devblogs.
microsoft.com/dotnet/.

Watching Scott Hanselman's videos

Scott Hanselman from Microsoft has an excellent YouTube channel about computer stuff they
didn't teach you: http://computerstufftheydidntteachyou.com/.

I recommend it to everyone working with computers.

Practicing and exploring

Let's now test your knowledge and understanding by trying to answer some questions, getting
some hands-on practice, and going into the topics covered throughout this chapter in greater
detail.

Exercise 1.1 — Test your knowledge

Try to answer the following questions, remembering that although most answers can be found
in this chapter, you should do some online research or code writing to answer others:

1. Is Visual Studio 2022 better than Visual Studio Code?
2. Is .NET 6 better than .NET Framework?

[43]

https://devblogs.microsoft.com/dotnet/
https://devblogs.microsoft.com/dotnet/
http://computerstufftheydidntteachyou.com/

Hello, C#! Welcome, .NET!

What is .NET Standard and why is it still important?

Why can a programmer use different languages, for example, C# and F#, to write
applications that run on .NET?

5. What is the name of the entry point method of a .NET console application and how
should it be declared?

What is a top-level program and how do you access any command-line arguments?
What do you type at the prompt to build and execute C# source code?

What are some benefits of using .NET Interactive Notebooks to write C# code?

0 *® N

Where would you look for help for a C# keyword?

10. Where would you look for solutions to common programming problems?

to download from a link in the README on the GitHub repository:
https://github.com/markjprice/csledotnets.

D’ Appendix, Answers to the Test Your Knowledge Questions, is available
\”/

Exercise 1.2 — Practice C# anywhere

You don't need Visual Studio Code or even Visual Studio 2022 for Windows or Mac to write
C#. You can go to .NET Fiddle - https://dotnetfiddle.net/ - and start coding online.

Exercise 1.3 — Explore topics

A book is a curated experience. I have tried to find the right balance of topics to include in the
printed book. Other content that I have written can be found in the GitHub repository for this
book.

I believe that this book covers all the fundamental knowledge and skills a C# and .NET
developer should have or be aware of. Some longer examples are best included as links to
Microsoft documentation or third-party article authors.

Use the links on the following page to learn more details about the topics covered in this
chapter:

https://github.com/markjprice/csl@dotnet6/blob/main/book-1inks.md#chapter-1---hello-
c-welcome-net

[44]

https://dotnetfiddle.net/
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-1---hello-c-welcome-net
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-1---hello-c-welcome-net
https://github.com/markjprice/cs10dotnet6

Chapter 01

Summary

In this chapter, we:

* Set up your development environment.

¢ Discussed the similarities and differences between modern .NET, .NET Core, NET
Framework, Xamarin, and .NET Standard.

* Used Visual Studio Code with the NET SDK and Visual Studio 2022 for Windows to
create some simple console applications.

* Used .NET Interactive Notebooks to execute snippets of code for learning.
* Learned how to download the solution code for this book from a GitHub repository.

* And, most importantly, learned how to find help.

In the next chapter, you will learn how to "speak" C#.

[45]

02

Speaking C#

This chapter is all about the basics of the C# programming language. Over the course of

this chapter, you'll learn how to write statements using the grammar of C#, as well as being
introduced to some of the common vocabulary that you will use every day. In addition to this,
by the end of the chapter, you'll feel confident in knowing how to temporarily store and work
with information in your computer's memory.

This chapter covers the following topics:

* Introducing the C# language
* Understanding C# grammar and vocabulary
* Working with variables

* Exploring more about console applications

Introducing the C# language

This part of the book is about the C# language — the grammar and vocabulary that you will use
every day to write the source code for your applications.

Programming languages have many similarities to human languages, except that in
programming languages, you can make up your own words, just like Dr. Seuss!

In a book written by Dr. Seuss in 1950, If I Ran the Zoo, he states this:

"And then, just to show them, I'll sail to Ka-Troo And Bring Back an It-Kutch, a Preep, and a
Proo, A Nerkle, a Nerd, and a Seersucker, too!"

Understanding language versions and features

This part of the book covers the C# programming language and is written primarily for
beginners, so it covers the fundamental topics that all developers need to know, from declaring
variables to storing data to how to define your own custom data types.

[47]

Speaking C#

This book covers features of the C# language from version 1.0 up to the latest version 10.0.

If you already have some familiarity with older versions of C# and are excited to find out
about the new features in the most recent versions of C#, I have made it easier for you to jump
around by listing language versions and their important new features below, along with the
chapter number and topic title where you can learn about them.

C#1.0

C# 1.0 was released in 2002 and included all the important features of a statically typed object-
oriented modern language, as you will see throughout Chapters 2 to 6.

C# 2.0

C# 2.0 was released in 2005 and focused on enabling strong data typing using generics, to
improve code performance and reduce type errors, including the topics listed in the following
table:

Feature Chapter | Topic
Nullable value types 6 Making a value type nullable
Generics 6 Making types more reusable with generics

C# 3.0

C# 3.0 was released in 2007 and focused on enabling declarative coding with Language
INtegrated Queries (LINQ) and related features like anonymous types and lambda
expressions, including the topics listed in the following table:

Feature Chapter | Topic

Implicitly typed local variables | 2 Inferring the type of a local variable

All topics in Chapter 11, Querying and Manipulating Data

LINQ 1 Using LINQ

C#4.0

C# 4.0 was released in 2010 and focused on improving interoperability with dynamic languages
like F# and Python, including the topics listed in the following table:

Feature Chapter | Topic
Dynamic types 2 Storing dynamic types
Named/optional arguments 5 Optional parameters and named arguments

[48]

Chapter 02

C#5.0

C# 5.0 was released in 2012 and focused on simplifying asynchronous operation support
by automatically implementing complex state machines while writing what looks like
synchronous statements, including the topics listed in the following table:

Feature Chapter Topic

Simplified asynchronous tasks 12 Understanding async and await

C#6.0

C# 6.0 was released in 2015 and focused on minor refinements to the language, including the
topics listed in the following table:

Feature Chapter Topic

static imports 2 Simplifying the usage of the console
Interpolated strings 2 Displaying output to the user
Expression bodied members 5 Defining read-only properties

C#7.0

C# 7.0 was released in March 2017 and focused on adding functional language features like
tuples and pattern matching, as well as minor refinements to the language, including the topics
listed in the following table:

Feature Chapter Topic

Binary literals and digit separators |2 Storing whole numbers

Pattern matching Pattern matching with the if statement

3

out variables 5
Tuples 5
6

Local functions

Controlling how parameters are passed

Combining multiple values with tuples

Defining local functions

C#7.1

C# 7.1 was released in August 2017 and focused on minor refinements to the language,
including the topics listed in the following table:

Feature Chapter Topic

Default literal expressions 5 Setting fields with default literal

Inferred tuple element names 5 Inferring tuple names

async Main 12 Improving responsiveness for console apps

[49]

Speaking C#

C#T7.2

C# 7.2 was released in November 2017 and focused on minor refinements to the language,
including the topics listed in the following table:

Feature Chapter Topic

Leading underscores in numeric literals | 2 Storing whole numbers

Non-trailing named arguments Optional parameters and named arguments

5
private protected access modifier 5 Understanding access modifiers
5

You can test == and ! = with tuple types Comparing tuples

C#7.3

C# 7.3 was released in May 2018 and focused on performance-oriented safe code that improves
ref variables, pointers, and stackalloc. These are advanced and rarely needed for most
developers, so they are not covered in this book.

C#8

C# 8 was released in September 2019 and focused on a major change to the language related to
null handling, including the topics listed in the following table:

Feature Chapter | Topic

Nullable reference types 6 Making a reference type nullable

Switch expressions 3 Simplifying switch statements with switch expressions
Default interface methods 6 Understanding default interface methods

C#9

C# 9 was released in November 2020 and focused on record types, refinements to pattern
matching, and minimal-code console apps, including the topics listed in the following table:

Feature Chapter | Topic

Minimal-code console apps 1 Top-level programs

Target-typed new 2 Using target-typed new to instantiate objects
Enhanced pattern matching |5 Pattern matching with objects

Records 5 Working with records

C#10

C# 10 was released in November 2021 and focused on features that minimize the amount of
code needed in common scenarios, including the topics listed in the following table:

[50]

Chapter 02

Feature Chapter Topic

Global namespace imports Importing namespaces

Constant string literals Formatting using interpolated strings

File-scoped namespaces Simplifying namespace declarations

Required properties Requiring properties to be set during instantiation

Record structs Working with record struct types

N[N |G NN

Null parameter checks Checking for null in method parameters

Understanding C# standards

Over the years, Microsoft has submitted a few versions of C# to standards bodies, as shown in
the following table:

C# version ECMA standard ISO/IEC standard

1.0 ECMA-334:2003 ISO/IEC 23270:2003
2.0 ECMA-334:2006 ISO/IEC 23270:2006
5.0 ECMA-334:2017 ISO/IEC 23270:2018

The standard for C# 6 is still a draft and work on adding C# 7 features is progressing. Microsoft
made C# open source in 2014.

There are currently three public GitHub repositories for making the work on C# and related
technologies as open as possible, as shown in the following table:

Description Link

C# language design https://github.com/dotnet/csharplang
Compiler implementation https://github.com/dotnet/roslyn

Standard to describe the language https://github.com/dotnet/csharpstandard

Discovering your C# compiler versions

NET language compilers for C# and Visual Basic, also known as Roslyn, along with a separate
compiler for F#, are distributed as part of the NET SDK. To use a specific version of C#, you
must have at least that version of the NET SDK installed, as shown in the following table:

.NET SDK Roslyn compiler Default C# language
1.0.4 2.0-22 7.0

114 23-24 7.1

212 26-27 7.2

2.1.200 2.8-2.10 7.3

3.0 3.0-34 8.0

5.0 3.8 9.0

6.0 3.9-3.10 10.0

[51]

https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn
https://github.com/dotnet/csharpstandard

Speaking C#

When you create class libraries then you can choose to target .NET Standard as well as versions
of modern .NET. They have default C# language versions, as shown in the following table:

NET Standard C#
2.0 7.3
21 8.0

How to output the SDK version

Let's see what .NET SDK and C# language compiler versions you have available:

On macOS, start Terminal. On Windows, start Command Prompt.

To determine which version of the NET SDK you have available, enter the following
command:

dotnet --version

3. Note the version at the time of writing is 6.0.100, indicating that it is the initial version
of the SDK without any bug fixes or new features yet, as shown in the following output:

6.0.100

Enabling a specific language version compiler

Developer tools like Visual Studio and the dotnet command-line interface assume that you
want to use the latest major version of a C# language compiler by default. Before C# 8.0 was
released, C# 7.0 was the latest major version and was used by default. To use the improvements
in a C# point release like 7.1, 7.2, or 7.3, you had to add a <LangVersion> configuration element
to the project file, as shown in the following markup:

<LangVersion>7.3</LangVersion>

After the release of C# 10.0 with .NET 6.0, if Microsoft releases a C# 10.1 compiler and you
want to use its new language features then you will have to add a configuration element to
your project file, as shown in the following markup:

<LangVersion>10.1</LangVersion>

Potential values for the <LangVersion> are shown in the following table:

LangVersion Description
7,71,72,73
Entering a specific version number will use that compiler if it has been installed.
8,9,10
. Uses the highest major number, for example, 7.0 in August 2019, 8.0 in October
latestmajor

2019, 9.0 in November 2020, 10.0 in November 2021.

[52]

Chapter 02

latest Uses the highest major and highest minor number, for example, 7.2 in 2017, 7.3 in
2018, 8 in 2019, perhaps 10.1 in early 2022.
review Uses the highest available preview version, for example, 10.0 in July 2021 with
pre .NET 6.0 Preview 6 installed.

After creating a new project, you can edit the .csproj file and add the <LangVersion> element,
as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net6.0</TargetFramework>
<LangVersion>preview</LangVersion>
</PropertyGroup>

</Project>

Your projects must target net6.0 to use the full features of C# 10.

| Good Practice: If you are using Visual Studio Code and you have not done
\@’ so already, install the Visual Studio Code extension named MSBuild project
NUR tools. This will give you IntelliSense while editing . csproj files, including

- making it easy to add the <LangVersion> element with appropriate values.

Understanding C# grammar and vocabulary

To learn simple C# language features, you can use .NET Interactive Notebooks, which remove
the need to create an application of any kind.

To learn some other C# language features, you will need to create an application. The simplest
type of application is a console application.

Let's start by looking at the basics of the grammar and vocabulary of C#. Throughout this
chapter, you will create multiple console applications, with each one showing related features
of the C# language.

Showing the compiler version

We will start by writing code that shows the compiler version:

1. If you've completed Chapter 1, Hello, C#! Welcome, .NET!, then you will already have a
Code folder. If not, then you'll need to create it.

[53]

Speaking C#

2. Use your preferred code editor to create a new console app, as defined in the following
list:

Project template: Console Application [C#] / console
Workspace/solution file and folder: Chaptere2
Project file and folder: Vocabulary

| Good Practice: If you have forgotten how, or did not complete
\@’ the previous chapter, then step-by-step instructions for creating a
workspace/solution with multiple projects are given in Chapter 1,
Hello, C#! Welcome, .NET!.

3. Open the Program.cs file, and at the top of the file, under the comment, add a statement
to show the C# version as an error, as shown in the following code:

f#terror version

4. Run the console application:
1. In Visual Studio Code, in a terminal, enter the command dotnet run.
2. In Visual Studio, navigate to Debug | Start Without Debugging. When
prompted to continue and run the last successful build, click No.

5. Note the compiler version and language version appear as a compiler error message
number €S8304, as shown in Figure 2.1:

o Chapterd? e | b4

‘;I |8 Live Share A9 m

g File Edit View Git Project Build [ebug Test Agalyre TJools Extensions Window Help

Y W

B-SBB| 0 - -|loew -l -] B voabuiay - D

i Programics. & X = & solution Explorer ol o

B 5 Vocabulary -l | s op B-oa8 “'i]
1 // See https://aka.ms/new-conscle-template for more information a
2 | #error version gl Seoch Solution Bxplorer {Culs) Pl
Consolo.Writeline("Hello, Werld!i™); R solition ‘Chapterd2’ (1 of 1 project)
u + B 4 [Vocabulary
W% @ A0 = S| W o« » In2 Ch15 SPC CRIF b #8 Dependancies
€% Programcs

Error List

ode Description

@ csioze #emor version' Vocabulary Program.cs 2
Compiter versicn:

© csa304 '400-3.21402.23 (d51d1aT3) Vacabulany Pregram.cs 2 Active
Language versson: 10.0.

Saolution Explorer

¢ Selec

1 Add to Source Control =

Figure 2.1: A compiler error that shows the C# language version

6. The error message in the Visual Studio Code PROBLEMS window or Visual Studio
Error List window says Compiler version: '4.8.0..." with language version 10.@.

7. Comment out the statement that causes the error, as shown in the following code:

// #error version

8. Note that the compiler error messages disappear.

[54]

Chapter 02

Understanding C# grammar

The grammar of C# includes statements and blocks. To document your code, you can use
comments.

L Good Practice: Comments should not be the only way that you document

‘,@\' your code. Choosing sensible names for variables and functions, writing unit

S tests, and creating actual documents are other ways to document your code.

Statements

In English, we indicate the end of a sentence with a full stop. A sentence can be composed of
multiple words and phrases, with the order of words being part of the grammar. For example,
in English, we say "the black cat."

The adjective, black, comes before the noun, cat. Whereas French grammar has a different order;
the adjective comes after the noun: "le chat noir." What's important to take away from this is
that the order matters.

C# indicates the end of a statement with a semicolon. A statement can be composed of multiple
variables and expressions. For example, in the following statement, totalPrice is a variable
and subtotal + salesTax is an expression:

var totalPrice = subtotal + salesTax;

The expression is made up of an operand named subtotal, an operator +, and another operand
named salesTax. The order of operands and operators matters.

Comments

When writing your code, you're able to add comments to explain your code using a double
slash, //. By inserting // the compiler will ignore everything after the // until the end of the
line, as shown in the following code:

var totalPrice = subtotal + salesTax;

To write a multiline comment, use /* at the beginning and */ at the end of the comment, as
shown in the following code:

[55]

Speaking C#

Good Practice: Well-designed code, including function signatures with
L well-named parameters and class encapsulation, can be somewhat self-
',@\' documenting. When you find yourself putting too many comments and
= explanations in your code, ask yourself: can I rewrite, aka refactor, this code to

make it more understandable without long comments?

Your code editor has commands to make it easier to add and remove comment characters, as
shown in the following list:

* Visual Studio 2022 for Windows: Navigate to Edit | Advanced | Comment Selection
or Uncomment Selection

* Visual Studio Code: Navigate to Edit | Toggle Line Comment or Toggle Block

Comment
: Good Practice: You comment code by adding descriptive text above
N\ 7/ .
@ or after code statements. You comment out code by adding comment
- characters before or around statements to make them inactive.
- Uncommenting means removing the comment characters.

Blocks

In English, we indicate a new paragraph by starting a new line. C# indicates a block of code
with the use of curly brackets, { }.

Blocks start with a declaration to indicate what is being defined. For example, a block can
define the start and end of many language constructs including namespaces, classes, methods,
or statements like foreach.

You will learn more about namespaces, classes, and methods later in this chapter and
subsequent chapters but to briefly introduce some of those concepts now:

* A namespace contains types like classes to group them together.

* A class contains the members of an object including methods.

* A method contains statements that implement an action that an object can take.

Examples of statements and blocks

In the project template for console apps when targeting .NET 5.0, note that examples of the
grammar of C# have been written for you by the project template. I've added some comments
to the statements and blocks, as shown in the following code:

using System;

namespace Basics

{

class Program

{

[56]

Chapter 02

static void Main(string[] args)
{
Console.WriteLine("Hello World!");
¥
}
¥

Understanding C# vocabulary

The C# vocabulary is made up of keywords, symbol characters, and types.

Some of the predefined, reserved keywords that you will see in this book include using,
namespace, class, static, int, string, double, bool, if, switch, break, while, do, for, foreach,
and, or, not, record, and init.

Some of the symbol characters that you will see include ", *, +, -, *, /, %, @ and $.

There are other contextual keywords that only have a special meaning in a specific context.

However, that still means that there are only about 100 actual C# keywords in the language.

Comparing programming languages to human

languages

The English language has more than 250,000 distinct words, so how does C# get away with
only having about 100 keywords? Moreover, why is C# so difficult to learn if it has only
0.0416% of the number of words in the English language?

One of the key differences between a human language and a programming language is that
developers need to be able to define the new "words" with new meanings. Apart from the
about 100 keywords in the C# language, this book will teach you about some of the hundreds
of thousands of "words" that other developers have defined, but you will also learn how to
define your own "words."

Programmers all over the world must learn English because most programming languages use
English words such as namespace and class. There are programming languages that use other
human languages, such as Arabic, but they are rare. If you are interested in learning more, this
YouTube video shows a demonstration of an Arabic programming language: https://youtu.
be/dk08cdwfevs.

Changing the color scheme for C# syntax

By default, Visual Studio Code and Visual Studio show C# keywords in blue to make them
easier to differentiate from other code. Both tools allow you to customize the color scheme:

1. In Visual Studio Code, navigate to Code | Preferences | Color Theme (it is on the File
menu on Windows).

[571]

https://youtu.be/dkO8cdwf6v8
https://youtu.be/dkO8cdwf6v8

Speaking C#

2.

Select a color theme. For reference, I'll use the Light+ (default light) color theme so that
the screenshots look good in a printed book.

In Visual Studio, navigate to Tools | Options.

In the Options dialog box, select Fonts and Colors, and then select the display items
that you would like to customize.

Help for writing correct code

Plain text editors such as Notepad don't help you write correct English. Likewise, Notepad
won't help you write correct C# either.

Microsoft Word can help you write English by highlighting spelling mistakes with red
squiggles, with Word saying that "icecream" should be ice-cream or ice cream, and grammatical
errors with blue squiggles, such as a sentence should have an uppercase first letter.

Similarly, Visual Studio Code's C# extension and Visual Studio help you write C# code
by highlighting spelling mistakes, such as the method name should be WriteLine with an
uppercase L, and grammatical errors, such as statements that must end with a semicolon.

The C# extension constantly watches what you type and gives you feedback by highlighting
problems with colored squiggly lines, similar to that of Microsoft Word.

Let's see it in action:

4.

In Program. cs, change the L in the WriteLine method to lowercase.
Delete the semicolon at the end of the statement.

In Visual Studio Code, navigate to View | Problems, or in Visual Studio navigate to
View | Error List, and note that a red squiggle appears under the code mistakes and
details are shown, as you can see in Figure 2.2:

O e Edt View Gt Pioject Buld Debug Tes Apalyze Tools Extensione Windew Help | Sewrch cuie0) P chapteriz - o o
: -2 EHE|9 T - Debug -!'nr_v,«r:P_u = P vocabalary * P [0S = e S Bl e T 12 Uveshars & m

-

a Solution Explorer
El 51 vocabulary
1 -/ See hitps://aka.ms/nem-console-teaplate for more infermation
2 /{ #error version

3 aI

Al b-coE &
b Cnlisk = p_}.

. aplerda 1 6f 1 preject]
4 [& Vocabulary
b #F Dependencies

C2% Program.cs

Ao e sl #e P Ini3 Ch35 SPC CRIF

Entire Sclution *| [0 2 Enou-:' 'A 0 Wiamings @ 0 Messages I_‘5| Build + IntelliSense | search Error List P~
? Code Description Project Fite Line * Suppression State

@ 51002 | expected Viocabulary Program.cs 3 Active

O o ‘Conscle’ does not contain a

- Pr .C5 Acti
definition for "Writeline' iocahulary g 3 et

Salution Explorer |8

]

4 Select Repesitory ~

Figure 2.2: The Error List window showing two compile errors

Fix the two coding errors.

[58]

Chapter 02

Importing namespaces

System is a namespace, which is like an address for a type. To refer to someone's location
exactly, you might use Oxford.HighStreet.BobSmith, which tells us to look for a person named
Bob Smith on the High Street in the city of Oxford.

System.Console.WriteLine tells the compiler to look for a method named WriteLine in a type
named Console in a namespace named System. To simplify our code, the Console Application
project template for every version of .NET before 6.0 added a statement at the top of the code
file to tell the compiler to always look in the System namespace for types that haven't been
prefixed with their namespace, as shown in the following code:

using System;

We call this importing the namespace. The effect of importing a namespace is that all available
types in that namespace will be available to your program without needing to enter the
namespace prefix and will be seen in IntelliSense while you write code.

\/;p,> .NET Interactive notebooks have most namespaces imported automatically.

Implicitly and globally importing namespaces

Traditionally, every .cs file that needs to import namespaces would have to start with using
statements to import those namespaces. Namespaces like System and System.Ling are needed
in almost all . cs files, so the first few lines of every .cs file often had at least a few using
statements, as shown in the following code:

using System;
using System.Ling;
using System.Collections.Generic;

When creating websites and services using ASP.NET Core, there are often dozens of
namespaces that each file would have to import.

C# 10 introduces some new features that simplify importing namespaces.

First, the global using statement means you only need to import a namespace in one .cs file
and it will be available throughout all . cs files. You could put global using statements in the
Program.cs file but I recommend creating a separate file for those statements named something
like GlobalUsings.cs or GlobalNamespaces.cs, as shown in the following code:

global using System;
global using System.Ling;
global using System.Collections.Generic;

[59]

Speaking C#

I
\@’ Good Practice: As developers get used to this new C# feature, I expect one

7 naming convention for this file to become the standard.

Second, any projects that target NET 6.0 and therefore use the C# 10 compiler generate a.cs
file in the obj folder to implicitly globally import some common namespaces like System. The
specific list of implicitly imported namespaces depends on which SDK you target, as shown in
the following table:

SDK Implicitly imported namespaces

System
System.Collections.Generic
System.IO
Microsoft.NET.Sdk System.Ling
System.Net.Http
System.Threading

System.Threading.Tasks

Same as Microsoft.NET.Sdk and:
System.Net.Http.Json
Microsoft.AspNetCore.Builder
Microsoft.AspNetCore.Hosting
Microsoft.AspNetCore.Http
Microsoft.NET.Sdk.Web
Microsoft.AspNetCore.Routing
Microsoft.Extensions.Configuration
Microsoft.Extensions.DependencyInjection

Microsoft.Extensions.Hosting

Microsoft.Extensions.Logging

Same as Microsoft.NET.Sdk and:
Microsoft.Extensions.Configuration
Microsoft.NET.Sdk.Worker Microsoft.Extensions.DependencyInjection

Microsoft.Extensions.Hosting

Microsoft.Extensions.Logging

[60]

Chapter 02

Let's see the current auto-generated implicit imports file:

1.

In Solution Explorer, select the Vocabulary project, toggle on the Show All Files
button, and note the compiler-generated bin and obj folders are visible.

Expand the obj folder, expand the Debug folder, expand the net6.0 folder, and open the
file named Vocabulary.GlobalUsings.g.cs.

Note this file is automatically created by the compiler for projects that target .NET 6.0,
and that it imports some commonly used namespaces including System.Threading, as
shown in the following code:

global using global: :System;

global using global::System.Collections.Generic;
global using global::System.IO;

global using global::System.Ling;

global using global::System.Net.Http;

global using global::System.Threading;

global using global::System.Threading.Tasks;

Close the Vocabulary.GlobalUsings.g.cs file.

In Solution Explorer, select the project, and then add additional entries to the project
file to control which namespaces are implicitly imported, as shown highlighted in the
following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net6.0</TargetFramework>
<Nullable>enable</Nullable>
<ImplicitUsings>enable</ImplicitUsings>
</PropertyGroup>

<ItemGroup>
<Using Remove="System.Threading" />
<Using Include="System.Numerics" />
</ItemGroup>

</Project>

Save the changes to the project file.

Expand the obj folder, expand the Debug folder, expand the net6.0 folder, and open the
file named Vocabulary.GlobalUsings.g.cs.

Note this file now imports System.Numerics instead of System.Threading, as shown
highlighted in the following code:

global using global: :System;

[61]

Speaking C#

global using global::System.Collections.Generic;
global using global::System.IO;

global using global::System.Ling;

global using global::System.Net.Http;

global using global::System.Threading.Tasks;
global using global::System.Numerics;

9. C(lose the Vocabulary.GlobalUsings.g.cs file.

You can disable the implicitly imported namespaces feature for all SDKs by removing an entry
in the project file, as shown in the following markup:

<ImplicitUsings>enable</ImplicitUsings>

Verbs are methods

In English, verbs are doing or action words, like run and jump. In C#, doing or action words
are called methods. There are hundreds of thousands of methods available to C#. In English,
verbs change how they are written based on when in time the action happens. For example,
Amir was jumping in the past, Beth jumps in the present, they jumped in the past, and Charlie will
jump in the future.

In C#, methods such as WriteLine change how they are called or executed based on the
specifics of the action. This is called overloading, which we'll cover in more detail in Chapter 5,
Building Your Own Types with Object-Oriented Programming. But for now, consider the following
example:

Console.WriteLine();
Console.WriteLine("Hello Ahmed");

Console.WriteLine("Temperature on {@:D} is {1}°C.",
DateTime.Today, 23.4);

A different analogy is that some words are spelled the same but have different meanings
depending on the context.

Nouns are types, variables, fields, and properties

In English, nouns are names that refer to things. For example, Fido is the name of a dog. The
word "dog" tells us the type of thing that Fido is, and so in order for Fido to fetch a ball, we
would use his name.

[62]

Chapter 02

In C#, their equivalents are types, variables, fields, and properties. For example:

* Animal and Car are types; they are nouns for categorizing things.
* Head and Engine might be fields or properties; nouns that belong to Animal and Car.

* Fido and Bob are variables; nouns for referring to a specific object.

There are tens of thousands of types available to C#, though have you noticed how I didn't
say, "There are tens of thousands of types in C#?" The difference is subtle but important.
The language of C# only has a few keywords for types, such as string and int, and strictly
speaking, C# doesn't define any types. Keywords such as string that look like types are
aliases, which represent types provided by the platform on which C# runs.

It's important to know that C# cannot exist alone; after all, it's a language that runs on variants
of .NET. In theory, someone could write a compiler for C# that uses a different platform, with
different underlying types. In practice, the platform for C# is NET, which provides tens of
thousands of types to C#, including System.Int32, which is the C# keyword alias int maps to,
as well as many more complex types, such as System.Xml.Ling.XDocument.

It's worth taking note that the term type is often confused with class. Have you ever played
the parlor game Twenty Questions, also known as Animal, Vegetable, or Mineral? In the game,
everything can be categorized as an animal, vegetable, or mineral. In C#, every type can be
categorized as a class, struct, enum, interface, or delegate. You will learn what these mean in
Chapter 6, Implementing Interfaces and Inheriting Classes. As examples, the C# keyword string is
a class, but int is a struct. So, it is best to use the term type to refer to both.

Revealing the extent of the C# vocabulary

We know that there are more than 100 keywords in C#, but how many types are there? Let's
write some code to find out how many types (and their methods) are available to C# in our
simple console application.

Don't worry exactly how this code works for now but know that it uses a technique called
reflection:

1. We'll start by importing the System.Reflection namespace at the top of the Program.cs
file, as shown in the following code:

using System.Reflection;

2. Delete the statement that writes Hello World! and replace it with the following code:

Assembly? assembly = Assembly.GetEntryAssembly();
if (assembly == null) return;

foreach (AssemblyName name in assembly.GetReferencedAssemblies())

{

[63]

Speaking C#

Assembly a = Assembly.Load(name);

int methodCount = 0;

foreach (TypeInfo t in a.DefinedTypes)
{

methodCount += t.GetMethods().Count();
}

Console.WritelLine(
"{0:N0} types with {1:N@} methods in {2} assembly.",
argd: a.DefinedTypes.Count(),
argl: methodCount, arg2: name.Name);

}

3. Run the code. You will see the actual number of types and methods that are available
to you in the simplest application when running on your OS. The number of types and
methods displayed will be different depending on the operating system that you are
using, as shown in the following outputs:

// Output on Windows

0 types with @ methods in System.Runtime assembly.
106 types with 1,126 methods in System.Ling assembly.
44 types with 645 methods in System.Console assembly.

// Output on macOS

0 types with @ methods in System.Runtime assembly.
103 types with 1,094 methods in System.Ling assembly.
57 types with 701 methods in System.Console assembly.

Why does the System.Runtime assembly contain zero types? This

\/V assembly is special because it contains only type-forwarders rather

than actual types. A type-forwarder represents a type that has been
implemented outside of .NET or for some other advanced reason.

4. Add statements to the top of the file after importing the namespace to declare some
variables, as shown highlighted in the following code:

using System.Reflection;

[64]

Chapter 02

System.Data.DataSet ds;
HttpClient client;

By declaring variables that use types in other assemblies, those assemblies are loaded
with our application, which allows our code to see all the types and methods in them.
The compiler will warn you that you have unused variables but that won't stop your
code from running.

5. Run the console application again and view the results, which should look similar to
the following outputs:

// Output on Windows

0 types with @ methods in System.Runtime assembly.

383 types with 6,854 methods in System.Data.Common assembly.
456 types with 4,590 methods in System.Net.Http assembly.
106 types with 1,126 methods in System.Ling assembly.

44 types with 645 methods in System.Console assembly.

// Output on macOS

0 types with @ methods in System.Runtime assembly.

376 types with 6,763 methods in System.Data.Common assembly.
522 types with 5,141 methods in System.Net.Http assembly.
103 types with 1,094 methods in System.Ling assembly.

57 types with 701 methods in System.Console assembly.

Now, you have a better sense of why learning C# is a challenge, because there are so many
types and methods to learn. Methods are only one category of a member that a type can have,
and you and other programmers are constantly defining new types and members!

Working with variables

All applications process data. Data comes in, data is processed, and then data goes out.

Data usually comes into our program from files, databases, or user input, and it can be put
temporarily into variables that will be stored in the memory of the running program. When the
program ends, the data in memory is lost. Data is usually output to files and databases, or to
the screen or a printer. When using variables, you should think about, firstly, how much space
the variable takes in the memory, and, secondly, how fast it can be processed.

We control this by picking an appropriate type. You can think of simple common types such
as int and double as being different-sized storage boxes, where a smaller box would take less
memory but may not be as fast at being processed; for example, adding 16-bit numbers might
not be processed as fast as adding 64-bit numbers on a 64-bit operating system. Some of these
boxes may be stacked close by, and some may be thrown into a big heap further away.

[65]

Speaking C#

Naming things and assigning values

There are naming conventions for things, and it is good practice to follow them, as shown in
the following table:

Naming convention Examples Used for

Camel case cost, orderDetail, dateOfBirth | Local variables, private fields
. String, Int32, Cost, Types, non-private fields, and

Title case aka Pascal case DateOfBirth, Run other members like methods

[Good Practice: Following a consistent set of naming conventions will enable

\ 7/
'@\' your code to be easily understood by other developers (and yourself in the

4 =
E future!).

The following code block shows an example of declaring a named local variable and assigning
a value to it with the = symbol. You should note that you can output the name of a variable
using a keyword introduced in C# 6.0, nameof:

double heightInMetres = 1.88;
Console.WriteLine($"The variable {nameof(heightInMetres)} has the value
{heightInMetres}.");

The message in double quotes in the preceding code wraps onto a second line because the
width of a printed page is too narrow. When entering a statement like this in your code editor,
type it all in a single line.

Literal values

When you assign to a variable, you often, but not always, assign a literal value. But what is

a literal value? A literal is a notation that represents a fixed value. Data types have different
notations for their literal values, and over the next few sections, you will see examples of using
literal notation to assign values to variables.

Storing text

For text, a single letter, such as an A, is stored as a char type.

| Good Practice: Actually, it can be more complicated than that. Egyptian
\@/ Hieroglyph A002 (U+13001) needs two System.Char values (known as
S surrogate pairs) to represent it: \uD80C and \uDCO1. Do not always assume
one char equals one letter or you could introduce weird bugs into your code.

/

[66]

Chapter 02

A char is assigned using single quotes around the literal value, or assigning the return value of
a fictitious function call, as shown in the following code:

char letter = 'A’;
char digit = '1°';
char symbol = '$';
char userChoice = GetSomeKeystroke();

For text, multiple letters, such as Bob, are stored as a string type and are assigned using double
quotes around the literal value, or assigning the return value of a function call, as shown in the
following code:

string firstName = "Bob";
string lastName = "Smith";
string phoneNumber = "(215) 555-4256";

string address = GetAddressFromDatabase(id: 563);

Understanding verbatim strings

When storing text in a string variable, you can include escape sequences, which represent
special characters like tabs and new lines using a backslash, as shown in the following code:

string fullNameWithTabSeparator = "Bob\tSmith";

But what if you are storing the path to a file on Windows, and one of the folder names starts
with a T, as shown in the following code?

string filePath = "C:\televisions\sony\bravia.txt";

The compiler will convert the \t into a tab character and you will get errors!

You must prefix with the @ symbol to use a verbatim literal string, as shown in the following
code:

string filePath = @"C:\televisions\sony\bravia.txt";
To summarize:

* Literal string: Characters enclosed in double-quote characters. They can use escape
characters like \t for tab. To represent a backslash, use two: \\.

* Verbatim string: A literal string prefixed with @ to disable escape characters so that a
backslash is a backslash. It also allows the string value to span multiple lines because
the white space characters are treated as themselves instead of instructions to the
compiler.

* Interpolated string: A literal string prefixed with $ to enable embedded formatted
variables. You will learn more about this later in this chapter.

[671]

Speaking C#

Storing numbers

Numbers are data that we want to perform an arithmetic calculation on, for example,
multiplying. A telephone number is not a number. To decide whether a variable should be
stored as a number or not, ask yourself whether you need to perform arithmetic operations

on the number or whether the number includes non-digit characters such as parentheses or
hyphens to format the number, such as (414) 555-1234. In this case, the number is a sequence of
characters, so it should be stored as a string.

Numbers can be natural numbers, such as 42, used for counting (also called whole numbers);
they can also be negative numbers, such as -42 (called integers); or, they can be real numbers,
such as 3.9 (with a fractional part), which are called single- or double-precision floating-point
numbers in computing.

Let's explore numbers:
1. Use your preferred code editor to add a new Console Application to the Chaptere2
workspace/solution named Numbers:

1. In Visual Studio Code, select Numbers as the active OmniSharp project. When
you see the pop-up warning message saying that required assets are missing,
click Yes to add them.

2. In Visual Studio, set the startup project to the current selection.

2. InProgram.cs, delete the existing code and then type statements to declare some
number variables using various data types, as shown in the following code:

uint naturalNumber = 23;

int integerNumber = -23;

float realNumber = 2.3F;

double anotherRealNumber = 2.3;

Storing whole numbers

You might know that computers store everything as bits. The value of a bit is either 0 or 1. This
is called a binary number system. Humans use a decimal number system.

The decimal number system, also known as Base 10, has 10 as its base, meaning there are ten
digits, from 0 to 9. Although it is the number base most commonly used by human civilizations,
other number base systems are popular in science, engineering, and computing. The binary
number system, also known as Base 2, has two as its base, meaning there are two digits, 0 and 1.

[68]

Chapter 02

The following table shows how computers store the decimal number 10. Take note of the bits
with the value 1 in the 8 and 2 columns; 8 + 2 = 10:

128 64 32 16 8 4 2
0 0 0 0

So, 10 in decimal is 00001010 in binary.

Improving legibility by using digit separators

Two of the improvements seen in C# 7.0 and later are the use of the underscore character _as a
digit separator, and support for binary literals.

You can insert underscores anywhere into the digits of a number literal, including decimal,
binary, or hexadecimal notation, to improve legibility.

For example, you could write the value for 1 million in decimal notation, that is, Base 10, as
1_000_000.

You can even use the 2/3 grouping common in India: 10_00_oee.

Using binary notation

To use binary notation, that is, Base 2, using only 1s and Os, start the number literal with @b. To
use hexadecimal notation, that is, Base 16, using 0 to 9 and A to F, start the number literal with ex.

Exploring whole numbers

Let's enter some code to see some examples:

1. InProgram.cs, type statements to declare some number variables using underscore
separators, as shown in the following code:

int decimalNotation = 2_000 _000;
int binaryNotation = ©b_0001 1110 1000 0100 1000 0000;
int hexadecimalNotation = Ox_©01E_8480;

Console.WriteLine($"{decimalNotation == binaryNotation}");
Console.WriteLine(
$"{decimalNotation == hexadecimalNotation}");

2. Run the code and note the result is that all three numbers are the same, as shown in the
following output:

True
True

[69]

Speaking C#

Computers can always exactly represent integers using the int type or one of its sibling types,
such as long and short.

Storing real numbers

Computers cannot always represent real, aka decimal or non-integer, numbers precisely. The
float and double types store real numbers using single- and double-precision floating points.

Most programming languages implement the IEEE Standard for Floating-Point Arithmetic.
IEEE 754 is a technical standard for floating-point arithmetic established in 1985 by the Institute
of Electrical and Electronics Engineers (IEEE).

The following table shows a simplification of how a computer represents the number 12.75 in
binary notation. Note the bits with the value 1 in the 8, 4, %2, and ¥4 columns.

8+4+ %2+ Y=12%=12.75.

128 64 32 16 8 4 2 1 . Y Ya 1/8 1/16
0 0 0 0 1 1 0 0 . 1 1 0 0

So, 12.75 in decimal is ©0001100.1100 in binary. As you can see, the number 12.75 can
be exactly represented using bits. However, some numbers can't, something that we'll be
exploring shortly.

Writing code to explore number sizes

C# has an operator named sizeof() that returns the number of bytes that a type uses in
memory. Some types have members named Minvalue and MaxValue, which return the minimum
and maximum values that can be stored in a variable of that type. We are now going to use
these features to create a console application to explore number types:

1. InProgram.cs, type statements to show the size of three number data types, as shown
in the following code:
Console.WriteLine($"int uses {sizeof(int)} bytes and can store numbers in
the range {int.MinValue:N@} to {int.MaxValue:N@}.");

Console.WriteLine($"double uses {sizeof(double)} bytes and can store
numbers in the range {double.MinValue:N@} to {double.MaxValue:NO}.");

Console.WriteLine($"decimal uses {sizeof(decimal)} bytes and can store
numbers in the range {decimal.MinValue:N@} to {decimal.MaxValue:N©}.");

The width of the printed pages in this book makes the string values (in double quotes)
wrap over multiple lines. You must type them on a single line, or you will get compile
errors.

[70]

Chapter 02

2. Run the code and view the output, as shown in Figure 2.3:

" File Edit View Git Prgject Build Debug Test Apayze Tools: Edensions Window Help

BB E® = 1% = |iDebug ~||Any CPU - | Numbers - P Himbers ~

*

Figure 2.3: Size and range information for common number data types

An int variable uses four bytes of memory and can store positive or negative numbers up

to about 2 billion. A double variable uses eight bytes of memory and can store much bigger
values! A decimal variable uses 16 bytes of memory and can store big numbers, but not as big
as a double type.

But you may be asking yourself, why might a double variable be able to store bigger numbers
than a decimal variable, yet it's only using half the space in memory? Well, let's now find out!

Comparing double and decimal types

You will now write some code to compare double and decimal values. Although it isn't hard to
follow, don't worry about understanding the syntax right now:

1. Type statements to declare two double variables, add them together and compare them
to the expected result, and write the result to the console, as shown in the following
code:

Console.WriteLine("Using doubles:");
double a = 0.1;
double b = 0.2;

if (a + b == 0.3)

{
Console.WriteLine($"{a} + {b} equals {0.3}");
}
else
{
Console.WriteLine($"{a} + {b} does NOT equal {@.3}");
}

[711]

Speaking C#

2. Run the code and view the result, as shown in the following output:

Using doubles:

0.1 + 0.2 does NOT equal 0.3

In locales that use a comma for the decimal separator the result will look slightly different, as
shown in the following output:

0,1 + 0,2 does NOT equal 0,3

The double type is not guaranteed to be accurate because some numbers like 0.1 literally
cannot be represented as floating-point values.

As a rule of thumb, you should only use double when accuracy, especially when comparing the
equality of two numbers, is not important. An example of this may be when you're measuring
a person's height and you will only compare values using greater than or less than, but never
equals.

The problem with the preceding code is illustrated by how the computer stores the number 0.1,
or multiples of it. To represent @.1 in binary, the computer stores 1 in the 1/16 column, 1 in the
1/32 column, 1 in the 1/256 column, 1 in the 1/512 column, and so on.

The number 0.1 in decimal is 0.00011001100110011... in binary, repeating forever:

1 |. |w |% |[1/8 |1/16 |1/32|1/64 |1/128 |1/256 |1/512 |1/1024 |1/2048
0 |. [0 |0 |0 1 1 0 0 1 1 0 0

Good Practice: Never compare double values using ==. During the First
N Gulf War, an American Patriot missile battery used double values in its
- ,@\' calculations. The inaccuracy caused it to fail to track and intercept an incoming
£ Iraqi Scud missile, and 28 soldiers were killed; you can read about this at

https://www.ima.umn.edu/~arnold/disasters/patriot.html.

Copy and paste the statements that you wrote before (that used the double variables).

Modify the statements to use decimal and rename the variables to c and d, as shown in
the following code:
Console.WritelLine("Using decimals:");

decimal ¢ = 0.1M;
decimal d = 0.2M;

if (c + d == 0.3M)
{

Console.WriteLine($"{c} + {d} equals {0.3M}");
¥

else

{

[72]

https://www.ima.umn.edu/~arnold/disasters/patriot.html

Chapter 02

Console.WriteLine($"{c} + {d} does NOT equal {@.3M}");
}

3. Run the code and view the result, as shown in the following output:

Using decimals:
0.1 + 0.2 equals 0.3

The decimal type is accurate because it stores the number as a large integer and shifts the
decimal point. For example, 0.1 is stored as 1, with a note to shift the decimal point one place to
the left. 12.75 is stored as 1275, with a note to shift the decimal point two places to the left.

Good Practice: Use int for whole numbers. Use double for real numbers that
L will not be compared for equality to other values; it is okay to compare double
‘,@_ values being less than or greater than, and so on. Use decimal for money,
E CAD drawings, general engineering, and wherever the accuracy of a real

number is important.

The double type has some useful special values: double.NaN represents not-a-number

(for example, the result of dividing by zero), double.Epsilon represents the smallest
positive number that can be stored in a double, and double.PositiveInfinity and double.
NegativeInfinity represent infinitely large positive and negative values.

Storing Booleans

Booleans can only contain one of the two literal values true or false, as shown in the following
code:

bool happy = true;
bool sad = false;

They are most commonly used to branch and loop. You don't need to fully understand them
yet, as they are covered more in Chapter 3, Controlling Flow, Converting Types, and Handling
Exceptions.

Storing any type of object

There is a special type named object that can store any type of data, but its flexibility comes
at the cost of messier code and possibly poor performance. Because of those two reasons, you
should avoid it whenever possible. The following steps show how to use object types if you
need to use them:

1. Use your preferred code editor to add a new Console Application to the Chaptere2
workspace/solution named Variables.

2. In Visual Studio Code, select Variables as the active OmniSharp project. When you see
the pop-up warning message saying that required assets are missing, click Yes to add
them.

[73]

Speaking C#

3.

4.

5.

6.

In Program. cs, type statements to declare and use some variables using the object type,
as shown in the following code:

object height = 1.88;

object name = "Amir";

Console.WriteLine($"{name} is {height} metres tall.");

int lengthl = name.Length;
int length2 ((string)name).Length;
Console.WriteLine($"{name} has {length2} characters.");

Run the code and note that the fourth statement cannot compile because the data type
of the name variable is not known by the compiler, as shown in Figure 2.4:

QA, Eile Edit Wiew Git Project Build [Debug Test Apslyre Tools Extensions Mindow - Help PE——— P Chapteri2

i@ B-SFBE| 9D < Debug - Any CRU = | lvariables | variables = B @ | LEL 0 waskea R m

b Program.cst 80X

T T
- “BPeson « | 62 BinthDate

object helqh‘t = 1.88; // storing a double in an object
ahJN‘t name = "Amir"; /f storing a string in an object
“onsole.Writeline($"{name} is {height} metres tall.");

int lengthl = name.Length; // gives compile error!
Length2 = (Cstr:

Console.Writeline($' 061: 'object’ does nat contain a definition for "Langth’ and no accessible extension methad ‘Length’ accepting a first argument of type ‘object’

could be found (are you missing a using directive or an assembly reference?)

In? Chl SPC CRIF

4 Add to Source Control 49 Select Repository = [}

Figure 2.4: The object type does not have a Length property

Add comment double slashes to the beginning of the statement that cannot compile to
"comment out" the statement to make it inactive.

Run the code again and note that the compiler can access the length of a string if the
programmer explicitly tells the compiler that the object variable contains a string by
prefixing with a cast expression like (string), as shown in the following output:

Amir is 1.88 metres tall.
Amir has 4 characters.

The object type has been available since the first version of C#, but C# 2.0 and later have a
better alternative called generics, which we will cover in Chapter 6, Implementing Interfaces
and Inheriting Classes, which will provide us with the flexibility we want, but without the
performance overhead.

Storing dynamic types

There is another special type named dynamic that can also store any type of data, but even
more than object, its flexibility comes at the cost of performance. The dynamic keyword was
introduced in C# 4.0. However, unlike object, the value stored in the variable can have its
members invoked without an explicit cast. Let's make use of a dynamic type:

[74]

Chapter 02

1. Add statements to declare a dynamic variable and then assign a string literal value, and
then an integer value, and then an array of integer values, as shown in the following
code:

dynamic something = "Ahmed";

2. Add a statement to output the length of the dynamic variable, as shown in the following
code:

Console.WriteLine($"Length is {something.Length}");

3. Run the code and note it works because a string value does have a Length property, as
shown in the following output:

Length is 5

Uncomment the statement that assigns an int value.

5. Run the code and note the runtime error because int does not have a Length property,
as shown in the following output:

Unhandled exception. Microsoft.CSharp.RuntimeBinder.

RuntimeBinderException: 'int' does not contain a definition for 'Length'

Uncomment the statement that assigns the array.

Run the code and note the output because an array of three int values does have a
Length property, as shown in the following output:

Length is 3

One limitation of dynamic is that code editors cannot show IntelliSense to help you write the
code. This is because the compiler cannot check what the type is during build time. Instead, the
CLR checks for the member at runtime and throws an exception if it is missing.

Exceptions are a way to indicate that something has gone wrong at runtime. You will learn
more about them and how to handle them in Chapter 3, Controlling Flow, Converting Types, and
Handling Exceptions.

[751]

Speaking C#

Declaring local variables

Local variables are declared inside methods, and they only exist during the execution of that
method, and once the method returns, the memory allocated to any local variables is released.

Strictly speaking, value types are released while reference types must wait for a garbage
collection. You will learn about the difference between value types and reference types in
Chapter 6, Implementing Interfaces and Inheriting Classes.

Specifying the type of a local variable

Let's explore local variables declared with specific types and using type inference:

1. Type statements to declare and assign values to some local variables using specific
types, as shown in the following code:
int population = 66_000_000;
double weight = 1.88;
decimal price = 4.99M;
string fruit = "Apples";
char letter = 'Z';
bool happy = true;

Depending on your code editor and color scheme, it will show green squiggles under each of
the variable names and lighten their text color to warn you that the variable is assigned but its
value is never used.

Inferring the type of a local variable

You can use the var keyword to declare local variables. The compiler will infer the type from
the value that you assign after the assignment operator, =.

A literal number without a decimal point is inferred as an int variable, that is, unless you add a
suffix, as described in the following list:

* L:infers long

* UL:infers ulong
* M:infers decimal
* D:infers double
* F:infers float

A literal number with a decimal point is inferred as double unless you add the M suffix, in
which case, it infers a decimal variable, or the F suffix, in which case, it infers a float variable.

[76]

Chapter 02

Double quotes indicate a string variable, single quotes indicate a char variable, and the true
and false values infer a bool type:

1. Modify the previous statements to use var, as shown in the following code:
var population = 66_000_000;
var weight = 1.88;
var price = 4.99M;
var fruit = "Apples";
var letter = 'Z';
var happy = true;

2. Hover your mouse over each of the var keywords and note that your code editor shows
a tooltip with information about the type that has been inferred.

3. At the top of the class file, import the namespace for working with XML to enable us to
declare some variables using types in that namespace, as shown in the following code:

using System.Xml;

Good Practice: If you are using .NET Interactive Notebooks, then
L add using statements in a separate code cell above the code cell
',@\' where you write the main code. Then click Execute Cell to ensure the
E namespaces are imported. They will then be available in subsequent
code cells.

4. Under the previous statements, add statements to create some new objects, as shown in
the following code:

var xmll = new XmlDocument();
XmlDocument xml2 = new XmlDocument();

var filel = File.CreateText("somethingl.txt");
StreamWriter file2 = File.CreateText("something2.txt");

Good Practice: Although using var is convenient, some developers
avoid using it, to make it easier for a code reader to understand the
| types in use. Personally, I use it only when the type is obvious. For
\ 7/ . . . P
@ example, in the preceding code statements, the first statement is just
NI as clear as the second in stating what the type of the xml variables are,
- but it is shorter. However, the third statement isn't clear in showing
the type of the file variable, so the fourth is better because it shows
that the type is StreamWriter. If in doubt, spell it out!

[771]

Speaking C#

Using target-typed new to instantiate objects

With C# 9, Microsoft introduced another syntax for instantiating objects known as target-typed
new. When instantiating an object, you can specify the type first and then use new without
repeating the type, as shown in the following code:

XmlDocument xml3 = new();

If you have a type with a field or property that needs to be set, then the type can be inferred, as
shown in the following code:

class Person

{
public DateTime BirthDate;

}

Person kim = new();
kim.BirthDate = new(1967, 12, 26);

L Good Practice: Use target-typed new to instantiate objects unless you must use
‘@‘ a pre-version 9 C# compiler. I have used target-typed new throughout the rest

h of this book. Please let me know if you spot any cases that I missed!

Getting and setting the default values for types

Most of the primitive types except string are value types, which means that they must have

a value. You can determine the default value of a type by using the default() operator and
passing the type as a parameter. You can assign the default value of a type by using the default
keyword.

The string type is a reference type. This means that string variables contain the memory
address of a value, not the value itself. A reference type variable can have a null value, which
is a literal that indicates that the variable does not reference anything (yet). null is the default
for all reference types.

You'll learn more about value types and reference types in Chapter 6, Implementing Interfaces and
Inheriting Classes.

Let's explore default values:

1. Add statements to show the default values of an int, bool, DateTime, and string, as
shown in the following code:

Console.WriteLine($"default(int) = {default(int)}");
Console.WriteLine($"default(bool) = {default(bool)}");
Console.WriteLine($"default(DateTime) = {default(DateTime)}");
Console.WriteLine($"default(string) = {default(string)}");

[78]

Chapter 02

2. Run the code and view the result, noting that your output for the date and time might
be formatted differently if you are not running it in the UK, and that null values output
as an empty string, as shown in the following output:
default(int) = @
default(bool) = False

default(DateTime) = 01/01/0001 00:00:00
default(string) =

3. Add statements to declare a number, assign a value, and then reset it to its default
value, as shown in the following code:

int number = 13;

Console.WriteLine($"number has been set to: {number}");

number = default;

Console.WriteLine($"number has been reset to its default: {number}");

4. Run the code and view the result, as shown in the following output:

number has been set to: 13
number has been reset to its default: ©

Storing multiple values in an array

When you need to store multiple values of the same type, you can declare an array. For
example, you may do this when you need to store four names in a string array.

The code that you will write next will allocate memory for an array for storing four string
values. It will then store string values at index positions 0 to 3 (arrays usually have a lower
bound of zero, so the index of the last item is one less than the length of the array).

Good Practice: Do not assume that all arrays count from zero. The most
L common type of array in .NET is an szArray, a single-dimension zero-indexed
',@\' array, and these use the normal [] syntax. But .NET also has mdArray, a
g multi-dimensional array, and they do not have to have a lower bound of zero.

These are rarely used but you should know they exist.

Finally, it will loop through each item in the array using a for statement, something that
we will cover in more detail in Chapter 3, Controlling Flow, Converting Types, and Handling
Exceptions.

Let's look at how to use an array:

1. Type statements to declare and use an array of string values, as shown in the following
code:

string[] names;

[79]

Speaking C#

names = new string[4];

names[@] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

for (int i = @; i < names.Length; i++)

{

Console.WriteLine(names[i]);

}

2. Run the code and note the result, as shown in the following output:

Kate
Jack

Rebecca
Tom

Arrays are always of a fixed size at the time of memory allocation, so you need to decide how
many items you want to store before instantiating them.

An alternative to defining the array in three steps as above is to use array initializer syntax, as
shown in the following code:

string[] names2 = new[] { "Kate", "Jack", "Rebecca", "Tom" };

When you use the new[] syntax to allocate memory for the array, you must have at least one
item in the curly braces so that the compiler can infer the data type.

Arrays are useful for temporarily storing multiple items, but collections are a more flexible
option when adding and removing items dynamically. You don't need to worry about
collections right now, as we will cover them in Chapter 8, Working with Common .NET Types.

Exploring more about console applications

We have already created and used basic console applications, but we're now at a stage where
we should delve into them more deeply.

Console applications are text-based and are run at the command line. They typically perform
simple tasks that need to be scripted, such as compiling a file or encrypting a section of a
configuration file.

Equally, they can also have arguments passed to them to control their behavior.

[80]

Chapter 02

An example of this would be to create a new console app using the F# language with a
specified name instead of using the name of the current folder, as shown in the following
command line:

dotnet new console -lang "F#" --name "ExploringConsole"

Displaying output to the user

The two most common tasks that a console application performs are writing and reading data.
We have already been using the WriteLine method to output, but if we didn't want a carriage
return at the end of the lines, we could have used the Write method.

Formatting using numbered positional arguments

One way of generating formatted strings is to use numbered positional arguments.

This feature is supported by methods like Write and Writeline, and for methods that do not
support the feature, the string parameter can be formatted using the Format method of string.

The first few code examples in this section will work with a .NET Interactive

\/V notebook because they are about outputting to the console. Later in this

section, you will learn about getting input via the console and sadly notebooks
do not support this.

Let's begin formatting:

1. Use your preferred code editor to add a new Console Application to the Chaptere2
workspace/solution named Formatting.

In Visual Studio Code, select Formatting as the active OmniSharp project.

In Program. cs, type statements to declare some number variables and write them to the
console, as shown in the following code:

int numberOfApples = 12;
decimal pricePerApple = 0.35M;

Console.WriteLine(
format: "{0} apples costs {1:C}",
argd: numberOfApples,
argl: pricePerApple * numberOfApples);

string formatted = string.Format(
format: "{0} apples costs {1:C}",
argd: numberOfApples,
argl: pricePerApple * numberOfApples);

[81]

Speaking C#

The WriteToFile method is a nonexistent method used to illustrate the idea.

| Good Practice: Once you become more comfortable with formatting strings,
\@’ you should stop naming the parameters, for example, stop using format:,
AR arg@:, and argl:. The preceding code uses a non-canonical style to show
- where the 0 and 1 came from while you are learning.

Formatting using interpolated strings

C# 6.0 and later have a handy feature named interpolated strings. A string prefixed with $
can use curly braces around the name of a variable or expression to output the current value of
that variable or expression at that position in the string, as the following shows:

1. Enter a statement at the bottom of the Program. cs file, as shown in the following code:

Console.WriteLine($" {numberOfApples} apples costs {pricePerApple *
numberOfApples:C}");

2. Run the code and view the result,