EXPERT INSIGHT

CH# 10 and .NET 6

Modern Cross-Platform
Development

Build apps, websites, and services
with ASP.NET Core 6, Blazor, and EF Core 6
using Visual Studio 2022 and Visual Studio Code

Sixth Edition

Mark J. Price PCICI('I')

C# 10 and .NET 6 — Modern

Cross-Platform Development
Sixth Edition

Build apps, websites, and services with ASP.NET Core 6,
Blazor, and EF Core 6 using Visual Studio 2022 and
Visual Studio Code

Mark J. Price

Packt>

BIRMINGHAM —MUMBAI

C# 10 and .NET 6 — Modern Cross-Platform Development

Sixth Edition
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Producer: Suman Sen

Acquisition Editor - Peer Reviews: Saby Dsilva
Project Editor: Amit Ramadas

Content Development Editor: Bhavesh Amin
Copy Editor: Safis Editing

Technical Editor: Aniket Shetty

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Presentation Designer: Pranit Padwal

First published: March 2016
Second edition: March 2017

Third edition: November 2017
Fourth edition: October 2019

Fifth edition: November 2020

Sixth edition: November 2021
Production reference: 1021121
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham
B3 2PB, UK.

ISBN 978-1-80107-736-1

www.packt.com

www.packt.com

Contributors

About the author

Mark J. Price is a Microsoft Specialist: Programming in C# and Architecting Microsoft Azure
Solutions, with over 20 years' experience.

Microsoft Microsoft

CERTIFIED Specialist

Solutions Developer

Programming in C#

App Builder

Since 1993, he has passed more than 80 Microsoft programming exams and specializes in
preparing others to pass them. Between 2001 and 2003, Mark was employed to write official
courseware for Microsoft in Redmond, USA. His team wrote the first training courses for C#
while it was still an early alpha version. While with Microsoft, he taught "train-the-trainer"
classes to get other MCTs up to speed on C# and .NET. Currently, Mark creates and delivers
training courses for Optimizely's Digital Experience Platform (DXP). Mark holds a BSc. Hons.
Degree in computer science.

About the reviewers

Damir Arh has many years of experience with software development and maintenance;

from complex enterprise software projects to modern consumer-oriented mobile applications.
Although he has worked with a wide spectrum of different languages, his favorite language
remains C#. In his drive toward better development processes, he is a proponent of test-driven
development, continuous integration, and continuous deployment. He shares his knowledge by
speaking at local user groups and conferences, blogging, and writing articles. He has received
the prestigious Microsoft MVP award for developer technologies 10 times in a row. In his spare
time, he's always on the move: hiking, geocaching, running, and rock climbing.

Geovanny Alzate Sandoval is a system engineer from Medellin, Colombia, and enjoys
everything related to software development, new technologies, design patterns, and software
architecture. He has 14+ years of experience working as a developer, technical leader, and
software architect mostly with Microsoft technologies. He loves contributing to OSS, he has
made contributions to Asp.Net Core SignalR, Polly, and Apollo Server to mention a few. He's
also the co-author of Simmy, an OSS library for chaos engineering for .NET based on Polly.
He's also a DDD lover and a cloud enthusiast. In addition, he's a .Net Foundation member
and a co-organizer of MDE.NET community, which is a community for .NET developers in
Medellin/ Colombia. In recent years, he has been focused on building distributed and reliable
systems using distributed architectures and cloud technologies. Last but not least, he strongly
believes in teamwork, as he says: "I wouldn't be here if I wouldn't have learned that much from
all the talented people I've worked with."

Geovanny currently works for Curbit, which is a US startup based in California, as Director of
Engineering.

Table of Contents

Preface XXV

Chapter 1: Hello, C#! Welcome, .NET!
Setting up your development environment

Choosing the appropriate tool and application type for learning
Pros and cons of the .NET Interactive Notebooks extension
Using Visual Studio Code for cross-platform development
Using GitHub Codespaces for development in the cloud
Using Visual Studio for Mac for general development
Using Visual Studio for Windows for general development
What | used

Deploying cross-platform
Downloading and installing Visual Studio 2022 for Windows

Microsoft Visual Studio for Windows keyboard shortcuts

Downloading and installing Visual Studio Code
Installing other extensions
Understanding Microsoft Visual Studio Code versions
Microsoft Visual Studio Code keyboard shortcuts

Understanding .NET
Understanding .NET Framework
Understanding the Mono, Xamarin, and Unity projects
Understanding .NET Core
Understanding the journey to one .NET

Understanding .NET support
Understanding .NET Runtime and .NET SDK versions
Removing old versions of .NET

What is different about modern .NET?
Windows development
Web development
Database development

Themes of modern .NET
Understanding .NET Standard
.NET platforms and tools used by the book editions
Understanding intermediate language
Comparing .NET technologies

Building console apps using Visual Studio 2022
Managing multiple projects using Visual Studio 2022
Writing code using Visual Studio 2022
Compiling and running code using Visual Studio

[v]

| \NO J S L i N S S i W i G G G G G QL GRS G g
OO NNODOGOT oA, PN 2200000 NNOODOOODORAERALOWWN|=

Table of Contents

Understanding the compiler-generated folders and files 21
Writing top-level programs 21
Adding a second project using Visual Studio 2022 22

Implicitly imported namespaces 22

Building console apps using Visual Studio Code 24
Managing multiple projects using Visual Studio Code 24
Writing code using Visual Studio Code 24
Compiling and running code using the dotnet CLI 27
Adding a second project using Visual Studio Code 27
Managing multiple files using Visual Studio Code 29

Exploring code using .NET Interactive Notebooks 29
Creating a notebook 30
Writing and running code in a notebook 31
Saving a notebook 32
Adding Markdown and special commands to a notebook 32
Executing code in multiple cells 33
Using .NET Interactive Notebooks for the code in this book 34

Reviewing the folders and files for projects 34
Understanding the common folders and files 35
Understanding the solution code on GitHub 36

Making good use of the GitHub repository for this book 36
Raising issues with the book 36
Giving me feedback 37
Downloading solution code from the GitHub repository 37
Using Git with Visual Studio Code and the command line 38

Cloning the book solution code repository 38

Looking for help 39
Reading Microsoft documentation 39
Getting help for the dotnet tool 39
Getting definitions of types and their members 40
Looking for answers on Stack Overflow 42
Searching for answers using Google 43
Subscribing to the official .NET blog 43
Watching Scott Hanselman's videos 43

Practicing and exploring 43
Exercise 1.1 — Test your knowledge 43
Exercise 1.2 — Practice C# anywhere 44
Exercise 1.3 — Explore topics 44

Summary 45

Chapter 2: Speaking C# 47

Introducing the C# language 47
Understanding language versions and features 47

C#1.0 48

C#20 48

C#3.0 48

[vi]

Table of Contents

C#4.0 48
C#5.0 49
C#6.0 49
C#7.0 49
C#71 49
C#7.2 50
C#7.3 50
C#38 50
C#9 50
C#10 50
Understanding C# standards 51
Discovering your C# compiler versions 51
How to output the SDK version 52
Enabling a specific language version compiler 52
Understanding C# grammar and vocabulary 53
Showing the compiler version 53
Understanding C# grammar 55
Statements 55
Comments 55
Blocks 56
Examples of statements and blocks 56
Understanding C# vocabulary 57
Comparing programming languages to human languages 57
Changing the color scheme for C# syntax 57
Help for writing correct code 58
Importing namespaces 59
Implicitly and globally importing namespaces 59
Verbs are methods 62
Nouns are types, variables, fields, and properties 62
Revealing the extent of the C# vocabulary 63
Working with variables 65
Naming things and assigning values 66
Literal values 66
Storing text 66
Understanding verbatim strings 67
Storing numbers 68
Storing whole numbers 68
Exploring whole numbers 69
Storing real numbers 70
Writing code to explore number sizes 70
Comparing double and decimal types 71
Storing Booleans 73
Storing any type of object 73
Storing dynamic types 74
Declaring local variables 76
Specifying the type of a local variable 76
Inferring the type of a local variable 76

Using target-typed new to instantiate objects 78

[vii]

Table of Contents

Getting and setting the default values for types 78
Storing multiple values in an array 79
Exploring more about console applications 80
Displaying output to the user 81
Formatting using numbered positional arguments 81
Formatting using interpolated strings 82
Understanding format strings 82
Getting text input from the user 84
Simplifying the usage of the console 84
Getting key input from the user 85
Passing arguments to a console app 86
Setting options with arguments 88
Handling platforms that do not support an API 90
Practicing and exploring 91
Exercise 2.1 — Test your knowledge 91
Exercise 2.2 — Test your knowledge of number types 92
Exercise 2.3 — Practice number sizes and ranges 92
Exercise 2.4 — Explore topics 93
Summary 93
Chapter 3: Controlling Flow, Converting Types, and Handling Exceptions 95
Operating on variables 95
Exploring unary operators 96
Exploring binary arithmetic operators 97
Assignment operators 98
Exploring logical operators 98
Exploring conditional logical operators 100
Exploring bitwise and binary shift operators 101
Miscellaneous operators 103
Understanding selection statements 103
Branching with the if statement 104
Why you should always use braces with if statements 105
Pattern matching with the if statement 105
Branching with the switch statement 106
Pattern matching with the switch statement 108
Simplifying switch statements with switch expressions 109
Understanding iteration statements 110
Looping with the while statement 110
Looping with the do statement 111
Looping with the for statement 112
Looping with the foreach statement 112
Understanding how foreach works internally 113
Casting and converting between types 113
Casting numbers implicitly and explicitly 114
Converting with the System.Convert type 115
Rounding numbers 116

[viii]

Table of Contents

Understanding the default rounding rules

116

Taking control of rounding rules 117
Converting from any type to a string 117
Converting from a binary object to a string 118
Parsing from strings to numbers or dates and times 119
Errors using Parse 120
Avoiding exceptions using the TryParse method 120
Handling exceptions 121
Wrapping error-prone code in a try block 121
Catching all exceptions 123
Catching specific exceptions 123
Catching with filters 125
Checking for overflow 125
Throwing overflow exceptions with the checked statement 125
Disabling compiler overflow checks with the unchecked statement 127
Practicing and exploring 128
Exercise 3.1 — Test your knowledge 128
Exercise 3.2 — Explore loops and overflow 129
Exercise 3.3 — Practice loops and operators 129
Exercise 3.4 — Practice exception handling 130
Exercise 3.5 — Test your knowledge of operators 130
Exercise 3.6 — Explore topics 130
Summary 130
Chapter 4: Writing, Debugging, and Testing Functions 131
Writing functions 131
Times table example 132
Writing a times table function 132
Writing a function that returns a value 134
Converting numbers from cardinal to ordinal 136
Calculating factorials with recursion 137
Documenting functions with XML comments 140
Using lambdas in function implementations 141
Debugging during development 144
Creating code with a deliberate bug 144
Setting a breakpoint and start debugging 145
Using Visual Studio 2022 145
Using Visual Studio Code 146
Navigating with the debugging toolbar 148
Debugging windows 149
Stepping through code 150
Customizing breakpoints 151
Logging during development and runtime 153
Understanding logging options 153
Instrumenting with Debug and Trace 154
Writing to the default trace listener 154
Configuring trace listeners 155

[ix]

Table of Contents

Switching trace levels 157
Adding packages to a project in Visual Studio Code 157
Adding packages to a project in Visual Studio 2022 158
Reviewing project packages 158

Unit testing 162

Understanding types of testing 162

Creating a class library that needs testing 162

Writing unit tests 164
Running unit tests using Visual Studio Code 165
Running unit tests using Visual Studio 166
Fix the bug 166

Throwing and catching exceptions in functions 167

Understanding usage errors and execution errors 167

Commonly thrown exceptions in functions 167

Understanding the call stack 168

Where to catch exceptions 171

Rethrowing exceptions 171

Implementing the tester-doer pattern 173
Problems with the tester-doer pattern 173

Practicing and exploring 174

Exercise 4.1 — Test your knowledge 174

Exercise 4.2 — Practice writing functions with debugging and unit testing 174

Exercise 4.3 — Explore topics 175

Summary 175
Chapter 5: Building Your Own Types with Object-Oriented Programming 177
Talking about OOP 177
Building class libraries 178

Creating a class library 178

Defining a class in a namespace 179
Simplifying namespace declarations 180

Understanding members 181

Instantiating a class 181
Referencing an assembly 182

Importing a namespace to use a type 182

Understanding objects 183
Inheriting from System.Object 184

Storing data within fields 184

Defining fields 184

Understanding access modifiers 185

Setting and outputting field values 186

Storing a value using an enum type 187

Storing multiple values using an enum type 188

Storing multiple values using collections 189

Understanding generic collections 190

Making a field static 191

Making a field constant 192

[x]

Table of Contents

Making a field read-only 193
Initializing fields with constructors 194
Defining multiple constructors 195
Writing and calling methods 195
Returning values from methods 195
Combining multiple returned values using tuples 196
Language support for tuples 197
Naming the fields of a tuple 198
Inferring tuple names 198
Deconstructing tuples 198
Deconstructing types 199
Defining and passing parameters to methods 200
Overloading methods 201
Passing optional and named parameters 201
Naming parameter values when calling methods 203
Controlling how parameters are passed 203
Simplified out parameters 204
Understanding ref returns 205
Splitting classes using partial 205
Controlling access with properties and indexers 206
Defining read-only properties 206
Defining settable properties 207
Requiring properties to be set during instantiation 209
Defining indexers 209
Pattern matching with objects 210
Creating and referencing a .NET 6 class library 210
Defining flight passengers 211
Enhancements to pattern matching in C# 9 or later 212
Working with records 213
Init-only properties 213
Understanding records 214
Positional data members in records 215
Simplifying data members in records 215
Practicing and exploring 216
Exercise 5.1 — Test your knowledge 217
Exercise 5.2 — Explore topics 217
Summary 217
Chapter 6: Implementing Interfaces and Inheriting Classes 219
Setting up a class library and console application 220
More about methods 221
Implementing functionality using methods 221
Implementing functionality using operators 223
Implementing functionality using local functions 224
Raising and handling events 225
Calling methods using delegates 226
Defining and handling delegates 227

[xi]

Table of Contents

Defining and handling events
Making types safely reusable with generics
Working with non-generic types
Working with generic types
Implementing interfaces
Common interfaces
Comparing objects when sorting
Comparing objects using a separate class
Implicit and explicit interface implementations
Defining interfaces with default implementations
Managing memory with reference and value types
Defining reference and value types
How reference and value types are stored in memory
Equality of types
Defining struct types
Working with record struct types
Releasing unmanaged resources
Ensuring that Dispose is called
Working with null values
Making a value type nullable
Understanding nullable reference types
Enabling nullable and non-nullable reference types
Declaring non-nullable variables and parameters

Checking for null
Checking for null in method parameters

Inheriting from classes
Extending classes to add functionality
Hiding members
Overriding members
Inheriting from abstract classes
Preventing inheritance and overriding
Understanding polymorphism
Casting within inheritance hierarchies
Implicit casting
Explicit casting
Avoiding casting exceptions
Inheriting and extending .NET types
Inheriting exceptions
Extending types when you can't inherit
Using static methods to reuse functionality
Using extension methods to reuse functionality
Using an analyzer to write better code
Suppressing warnings
Fixing the code
Understanding common StyleCop recommendations

229
230
230
231
232
232
233
235
236
237
239
239
240
241
242
243
244
246
246
246
247
248
248

250
251

252
252
253
254
255
256
257
259
259
259
260
261
261
263

263

264
265
267

268

270

[xii]

Table of Contents

Practicing and exploring 271
Exercise 6.1 — Test your knowledge 271
Exercise 6.2 — Practice creating an inheritance hierarchy 271
Exercise 6.3 — Explore topics 272

Summary 272

Chapter 7: Packaging and Distributing .NET Types 273

The road to .NET 6 273
.NET Core 1.0 274
.NET Core 1.1 274
.NET Core 2.0 275
.NET Core 2.1 275
.NET Core 2.2 275
.NET Core 3.0 275
.NET Core 3.1 276
.NET 5.0 276
.NET 6.0 276
Improving performance from .NET Core 2.0 to .NET 5 277
Checking your .NET SDKs for updates 277

Understanding .NET components 277
Understanding assemblies, NuGet packages, and namespaces 278

What is a namespace? 278

Understanding dependent assemblies 278
Understanding the Microsoft .NET project SDKs 278
Understanding namespaces and types in assemblies 279
Understanding NuGet packages 280
Understanding frameworks 280
Importing a namespace to use a type 281
Relating C# keywords to .NET types 281

Mapping C# aliases to .NET types 282

Revealing the location of a type 283
Sharing code with legacy platforms using .NET Standard 284
Understanding defaults for class libraries with different SDKs 284
Creating a .NET Standard 2.0 class library 285
Controlling the .NET SDK 286

Publishing your code for deployment 287
Creating a console application to publish 288
Understanding dotnet commands 289

Creating new projects 289
Getting information about .NET and its environment 290
Managing projects 291
Publishing a self-contained app 292
Publishing a single-file app 293
Reducing the size of apps using app trimming 295

Enabling assembly-level trimming 295

Enabling type-level and member-level trimming 295

[xiii]

Table of Contents

Decompiling .NET assemblies 296
Decompiling using the ILSpy extension for Visual Studio 2022 296
Decompiling using the ILSpy extension for Visual Studio Code 297
No, you cannot technically prevent decompilation 301

Packaging your libraries for NuGet distribution 302
Referencing a NuGet package 302

Fixing dependencies 303
Packaging a library for NuGet 304
Publishing a package to a public NuGet feed 306
Publishing a package to a private NuGet feed 307
Exploring NuGet packages with a tool 307
Testing your class library package 308

Porting from .NET Framework to modern .NET 309
Could you port? 309
Should you port? 310
Differences between .NET Framework and modern .NET 311
Understanding the .NET Portability Analyzer 311
Understanding the .NET Upgrade Assistant 311
Using non-.NET Standard libraries 312

Working with preview features 313
Requiring preview features 314
Enabling preview features 314
Generic mathematics 315

Practicing and exploring 315
Exercise 7.1 — Test your knowledge 316
Exercise 7.2 — Explore topics 316
Exercise 7.3 — Explore PowerShell 316

Summary 316

Chapter 8: Working with Common .NET Types 317

Working with numbers 318
Working with big integers 318
Working with complex numbers 319
Understanding quaternions 320

Working with text 320
Getting the length of a string 320
Getting the characters of a string 321
Splitting a string 321
Getting part of a string 322
Checking a string for content 323
Joining, formatting, and other string members 323
Building strings efficiently 324

Working with dates and times 325
Specifying date and time values 325
Globalization with dates and times 327

[xiv]

Table of Contents

Working with only a date or a time 329
Pattern matching with regular expressions 330
Checking for digits entered as text 330
Regular expression performance improvements 331
Understanding the syntax of a regular expression 332
Examples of regular expressions 332
Splitting a complex comma-separated string 333
Storing multiple objects in collections 334
Common features of all collections 335
Improving performance by ensuring the capacity of a collection 336
Understanding collection choices 337
Lists 337
Dictionaries 338
Stacks 339
Queues 339
Sets 340
Collection methods summary 340
Working with lists 340
Working with dictionaries 342
Working with queues 344
Sorting collections 346
More specialized collections 347
Working with a compact array of bit values 347
Working with efficient lists 347
Using immutable collections 347
Good practice with collections 348
Working with spans, indexes, and ranges 349
Using memory efficiently using spans 349
Identifying positions with the Index type 349
Identifying ranges with the Range type 350
Using indexes, ranges, and spans 350
Working with network resources 351
Working with URIs, DNS, and IP addresses 352
Pinging a server 353
Working with reflection and attributes 354
Versioning of assemblies 355
Reading assembly metadata 355
Creating custom attributes 358
Doing more with reflection 360
Working with images 360
Internationalizing your code 362
Detecting and changing the current culture 363
Practicing and exploring 365
Exercise 8.1 — Test your knowledge 365
Exercise 8.2 — Practice regular expressions 366

Exercise 8.3 — Practice writing extension methods 366

[xv]

Table of Contents

Exercise 8.4 — Explore topics 366
Summary 367
Chapter 9: Working with Files, Streams, and Serialization 369
Managing the filesystem 369
Handling cross-platform environments and filesystems 369
Managing drives 371
Managing directories 372
Managing files 374
Managing paths 375
Getting file information 376
Controlling how you work with files 377
Reading and writing with streams 378
Understanding abstract and concrete streams 378
Understanding storage streams 379
Understanding function streams 379
Understanding stream helpers 379
Writing to text streams 380
Writing to XML streams 381
Disposing of file resources 383
Simplifying disposal by using the using statement 385
Compressing streams 386
Compressing with the Brotli algorithm 388
Encoding and decoding text 390
Encoding strings as byte arrays 391
Encoding and decoding text in files 393
Serializing object graphs 394
Serializing as XML 394
Generating compact XML 397
Deserializing XML files 398
Serializing with JSON 399
High-performance JSON processing 400
Controlling JSON processing 401
New JSON extension methods for working with HTTP responses 404
Migrating from Newtonsoft to new JSON 404
Practicing and exploring 405
Exercise 9.1 — Test your knowledge 405
Exercise 9.2 — Practice serializing as XML 405
Exercise 9.3 — Explore topics 406
Summary 406
Chapter 10: Working with Data Using Entity Framework Core 407
Understanding modern databases 407
Understanding legacy Entity Framework 408
Using the legacy Entity Framework 6.3 or later 408
Understanding Entity Framework Core 408

[xvi]

Table of Contents

Creating a console app for working with EF Core 409
Using a sample relational database 409
Using Microsoft SQL Server for Windows 410
Downloading and installing SQL Server 411
Creating the Northwind sample database for SQL Server 412
Managing the Northwind sample database with Server Explorer 413
Using SQLite 414
Setting up SQLite for macOS 414
Setting up SQLite for Windows 414
Setting up SQLite for other OSes 414
Creating the Northwind sample database for SQLite 415
Managing the Northwind sample database with SQLiteStudio 415
Setting up EF Core 417
Choosing an EF Core database provider 417
Connecting to a database 417
Defining the Northwind database context class 418
Defining EF Core models 420
Using EF Core conventions to define the model 421
Using EF Core annotation attributes to define the model 421
Using the EF Core Fluent API to define the model 423
Understanding data seeding with the Fluent API 423
Building an EF Core model for the Northwind tables 423
Defining the Category and Product entity classes 424
Adding tables to the Northwind database context class 426
Setting up the dotnet-ef tool 427
Scaffolding models using an existing database 428
Configuring preconvention models 432
Querying EF Core models 433
Filtering included entities 435
Unicode characters in the Windows console 436
Filtering and sorting products 437
Getting the generated SQL 438
Logging EF Core using a custom logging provider 439
Filtering logs by provider-specific values 442
Logging with query tags 443
Pattern matching with Like 444
Defining global filters 445
Loading patterns with EF Core 446
Eager loading entities 446
Enabling lazy loading 447
Explicit loading entities 448
Manipulating data with EF Core 450
Inserting entities 450
Updating entities 452
Deleting entities 453

Pooling database contexts 454

[xvii]

Table of Contents

Working with transactions 454
Controlling transactions using isolation levels 455
Defining an explicit transaction 455

Code First EF Core models 456
Understanding migrations 463

Practicing and exploring 464
Exercise 10.1 — Test your knowledge 464
Exercise 10.2 — Practice exporting data using different serialization formats 464
Exercise 10.3 — Explore topics 464
Exercise 10.4 — Explore NoSQL databases 465

Summary 465

Chapter 11: Querying and Manipulating Data Using LINQ 467

Writing LINQ expressions 467
What makes LINQ? 467
Building LINQ expressions with the Enumerable class 468

Understanding deferred execution 470
Filtering entities with Where 471
Targeting a named method 473
Simplifying the code by removing the explicit delegate instantiation 474
Targeting a lambda expression 474
Sorting entities 475

Sorting by a single property using OrderBy 475

Sorting by a subsequent property using ThenBy 475
Declaring a query using var or a specified type 476
Filtering by type 476
Working with sets and bags using LINQ 478

Using LINQ with EF Core 480
Building an EF Core model 480
Filtering and sorting sequences 483
Projecting sequences into new types 485
Joining and grouping sequences 486

Joining sequences 487

Group-joining sequences 488
Aggregating sequences 490

Sweetening LINQ syntax with syntactic sugar 491

Using multiple threads with parallel LINQ 492
Creating an app that benefits from multiple threads 492

Using Windows 494

Using macOS 494

For all operating systems 494

Creating your own LINQ extension methods 495

Trying the chainable extension method 498

Trying the mode and median methods 498

Working with LINQ to XML 499
Generating XML using LINQ to XML 499

Reading XML using LINQ to XML 500

[xviii]

Table of Contents

Practicing and exploring 501
Exercise 11.1 — Test your knowledge 501
Exercise 11.2 — Practice querying with LINQ 502
Exercise 11.3 — Explore topics 503

Summary 503

Chapter 12: Improving Performance and Scalability Using Multitasking 505

Understanding processes, threads, and tasks 505

Monitoring performance and resource usage 506
Evaluating the efficiency of types 506
Monitoring performance and memory using diagnostics 507

Useful members of the Stopwatch and Process types 508
Implementing a Recorder class 508
Measuring the efficiency of processing strings 510
Monitoring performance and memory using Benchmark.NET 512

Running tasks asynchronously 516
Running multiple actions synchronously 516
Running multiple actions asynchronously using tasks 518

Starting tasks 518
Waiting for tasks 519
Using wait methods with tasks 519
Continuing with another task 520
Nested and child tasks 522
Wrapping tasks around other objects 523

Synchronizing access to shared resources 524
Accessing a resource from multiple threads 525
Applying a mutually exclusive lock to a conch 526

Understanding the lock statement 527
Avoiding deadlocks 528
Synchronizing events 529
Making CPU operations atomic 530
Applying other types of synchronization 531

Understanding async and await 532
Improving responsiveness for console apps 532
Improving responsiveness for GUI apps 533
Improving scalability for web applications and web services 537
Common types that support multitasking 537
Using await in catch blocks 537
Working with async streams 538

Practicing and exploring 539
Exercise 12.1 — Test your knowledge 539
Exercise 12.2 — Explore topics 539

Summary 539

Chapter 13: Introducing Practical Applications of C# and .NET 541

Understanding app models for C# and .NET 541

Building websites using ASP.NET Core 542

[xix]

Table of Contents

Building websites using a content management system 542
Building web applications using SPA frameworks 543
Building web and other services 544
Building mobile and desktop apps 545
Alternatives to .NET MAUI 545
Understanding Uno Platform 545
Understanding Avalonia 546
New features in ASP.NET Core 546
ASP.NET Core 1.0 546
ASP.NET Core 1.1 546
ASP.NET Core 2.0 546
ASP.NET Core 2.1 547
ASP.NET Core 2.2 547
ASP.NET Core 3.0 548
ASP.NET Core 3.1 548
Blazor WebAssembly 3.2 548
ASP.NET Core 5.0 548
ASP.NET Core 6.0 548
Building Windows-only desktop apps 549
Understanding legacy Windows application platforms 549
Understanding modern .NET support for legacy Windows platforms 550
Structuring projects 550
Structuring projects in a solution or workspace 551
Using other project templates 552
Installing additional template packs 552
Building an entity data model for the Northwind database 553
Creating a class library for entity models using SQLite 554
Improving the class-to-table mapping 555
Creating a class library for a Northwind database context 559
Creating a class library for entity models using SQL Server 562
Practicing and exploring 565
Exercise 13.1 — Test your knowledge 565
Exercise 13.2 — Explore topics 565
Summary 565
Chapter 14: Building Websites Using ASP.NET Core Razor Pages 567
Understanding web development 567
Understanding HTTP 567
Understanding the components of a URL 568
Assigning port numbers for projects in this book 569
Using Google Chrome to make HTTP requests 569
Understanding client-side web development technologies 572
Understanding ASP.NET Core 572
Classic ASP.NET versus modern ASP.NET Core 573
Creating an empty ASP.NET Core project 574
Testing and securing the website 576
Enabling stronger security and redirect to a secure connection 579

[xx]

Table of Contents

Controlling the hosting environment 580
Separating configuration for services and pipeline 582
Enabling a website to serve static content 584
Creating a folder for static files and a web page 584
Enabling static and default files 585
Exploring ASP.NET Core Razor Pages 586
Enabling Razor Pages 586
Adding code to a Razor Page 587
Using shared layouts with Razor Pages 588
Using code-behind files with Razor Pages 591
Using Entity Framework Core with ASP.NET Core 593
Configure Entity Framework Core as a service 593
Manipulating data using Razor Pages 596
Enabling a model to insert entities 596
Defining a form to insert a new supplier 597
Injecting a dependency service into a Razor Page 597
Using Razor class libraries 598
Creating a Razor class library 598
Disabling compact folders for Visual Studio Code 599
Implementing the employees feature using EF Core 600
Implementing a partial view to show a single employee 602
Using and testing a Razor class library 603
Configuring services and the HTTP request pipeline 604
Understanding endpoint routing 604
Configuring endpoint routing 605
Reviewing the endpoint routing configuration in our project 605
Registering services in the ConfigureServices method 606
Setting up the HTTP request pipeline in the Configure method 608
Summarizing key middleware extension methods 609
Visualizing the HTTP pipeline 610
Implementing an anonymous inline delegate as middleware 610
Practicing and exploring 612
Exercise 14.1 — Test your knowledge 612
Exercise 14.2 — Practice building a data-driven web page 613
Exercise 14.3 — Practice building web pages for console apps 613
Exercise 14.4 — Explore topics 613
Summary 613
Chapter 15: Building Websites Using the Model-View-Controller Pattern 615
Setting up an ASP.NET Core MVC website 615
Creating an ASP.NET Core MVC website 616
Creating the authentication database for SQL Server LocalDB 617
Exploring the default ASP.NET Core MVC website 618
Understanding visitor registration 619
Reviewing an MVC website project structure 620
Reviewing the ASP.NET Core Identity database 622

[xxi]

Table of Contents

Exploring an ASP.NET Core MVC website 622
Understanding ASP.NET Core MVC initialization 622
Understanding the default MVC route 625
Understanding controllers and actions 626

Understanding the ControllerBase class 626
Understanding the Controller class 627
Understanding the responsibilities of a controller 628
Understanding the view search path convention 629
Understanding logging 630
Understanding filters 631
Using a filter to secure an action method 631
Enabling role management and creating a role programmatically 632
Using a filter to cache a response 635
Using a filter to define a custom route 636
Understanding entity and view models 637
Understanding views 640

Customizing an ASP.NET Core MVC website 643
Defining a custom style 643
Setting up the category images 643
Understanding Razor syntax 643
Defining a typed view 644
Reviewing the customized home page 647
Passing parameters using a route value 648
Understanding model binders in more detail 650

Disambiguating action methods 652
Passing a route parameter 654
Passing a form parameter 654
Validating the model 654
Understanding view helper methods 657

Querying a database and using display templates 659

Improving scalability using asynchronous tasks 662
Making controller action methods asynchronous 662

Practicing and exploring 663
Exercise 15.1 — Test your knowledge 663
Exercise 15.2 — Practice implementing MVC by implementing a
category detail page 664
Exercise 15.3 — Practice improving scalability by understanding
and implementing async action methods 664
Exercise 15.4 — Practice unit testing MVC controllers 665
Exercise 15.5 — Explore topics 665

Summary 665

Chapter 16: Building and Consuming Web Services 667

Building web services using ASP.NET Core Web API 667

Understanding web service acronyms 667
Understanding Windows Communication Foundation (WCF) 668
An alternative to WCF 668

Understanding HTTP requests and responses for Web APls 669

[xxii]

Table of Contents

Creating an ASP.NET Core Web API project 671
Reviewing the web service's functionality 674
Creating a web service for the Northwind database 675
Creating data repositories for entities 677
Implementing a Web API controller 681
Understanding action method return types 681
Configuring the customer repository and Web API controller 683
Specifying problem details 687
Controlling XML serialization 688
Documenting and testing web services 688
Testing GET requests using a browser 688
Testing HTTP requests with the REST Client extension 690
Making GET requests using REST Client 690
Making other requests using REST Client 692
Understanding Swagger 693
Testing requests with Swagger Ul 694
Enabling HTTP logging 700
Consuming web services using HTTP clients 702
Understanding HttpClient 702
Configuring HTTP clients using HttpClientFactory 702
Getting customers as JSON in the controller 703
Enabling Cross-Origin Resource Sharing 705
Implementing advanced features for web services 707
Implementing a Health Check API 708
Implementing Open API analyzers and conventions 709
Implementing transient fault handling 709
Adding security HTTP headers 710
Building web services using minimal APls 711
Building a weather service using minimal APls 712
Testing the minimal weather service 714
Adding weather forecasts to the Northwind website home page 714
Practicing and exploring 716
Exercise 16.1 — Test your knowledge 716
Exercise 16.2 — Practice creating and deleting customers with HttpClient 717
Exercise 16.3 — Explore topics 717
Summary 717
Chapter 17: Building User Interfaces Using Blazor 719
Understanding Blazor 719
JavaScript and friends 720
Silverlight — C# and .NET using a plugin 720
WebAssembly — a target for Blazor 720
Understanding Blazor hosting models 720
Understanding Blazor components 721
What is the difference between Blazor and Razor? 722

[xxiii]

Table of Contents

Comparing Blazor project templates 723
Reviewing the Blazor Server project template 723
Understanding CSS and JavaScript isolation 729
Understanding Blazor routing to page components 729
How to define a routable page component 729
How to navigate Blazor routes 729
How to pass route parameters 730
Understanding base component classes 730
How to use the navigation link component with routes 732
Running the Blazor Server project template 732
Reviewing the Blazor WebAssembly project template 733
Building components using Blazor Server 737
Defining and testing a simple component 737
Making the component a routable page component 738
Getting entities into a component 739
Abstracting a service for a Blazor component 742
Defining forms using the EditForm component 745
Building and using a customer form component 746
Testing the customer form component 749
Building components using Blazor WebAssembly 750
Configuring the server for Blazor WebAssembly 751
Configuring the client for Blazor WebAssembly 754
Testing the Blazor WebAssembly components and service 757
Improving Blazor WebAssembly apps 758
Enabling Blazor WebAssembly AOT 759
Exploring Progressive Web App support 760
Implementing offline support for PWAs 762
Understanding the browser compatibility analyzer for Blazor WebAssembly 762
Sharing Blazor components in a class library 763
Interop with JavaScript 765
Libraries of Blazor components 767
Practicing and exploring 767
Exercise 17.1 — Test your knowledge 768
Exercise 17.2 — Practice by creating a times table component 768
Exercise 17.3 — Practice by creating a country navigation item 768
Exercise 17.4 — Explore topics 769
Summary 769
Epilogue 771
Next steps on your C# and .NET learning journey 771
Polishing your skills with design guidelines 771
Books to take your learning further 772
.NET MAUI delayed 773
Next edition coming November 2022 773
Good luck! 773
Index 775

I xxiv 1
[xxiv]

Preface

There are programming books that are thousands of pages long that aim to be comprehensive
references for the C# language, .NET libraries, app models like websites, services, and desktop,
and mobile apps.

This book is different. It is concise and aims to be a brisk, fun read packed with practical hands-
on walkthroughs of each subject. The breadth of the overarching narrative comes at the cost of
some depth, but you will find many signposts to explore further if you wish.

This book is simultaneously a step-by-step guide to learning modern C# proven practices using
cross-platform .NET and a brief introduction to the main types of practical applications that can
be built with them. This book is best for beginners to C# and .NET, or programmers who have
worked with C# in the past but feel left behind by the changes in the past few years.

If you already have experience with older versions of the C# language, then in the first section
of Chapter 2, Speaking C#, you can review tables of the new language features and jump straight
to them.

If you already have experience with older versions of the .NET libraries, then in the first section
of Chapter 7, Packaging and Distributing .NET Types, you can review tables of the new library
features and jump straight to them.

I will point out the cool corners and gotchas of C# and .NET, so you can impress colleagues
and get productive fast. Rather than slowing down and boring some readers by explaining
every little thing, I will assume that you are smart enough to Google an explanation for topics
that are related but not necessary to include in a beginner-to-intermediate guide that has
limited space in the printed book.

Where to find the code solutions

You can download solutions for the step-by-step guided tasks and exercises from the GitHub
repository at the following link: https://github.com/markjprice/csl1@dotneté.

If you don't know how, then I provide instructions on how to do this at the end of Chapter 1,
Hello, C#! Welcome, .NET!.

[xxv]

https://github.com/markjprice/cs10dotnet6

Preface

What this book covers

Chapter 1, Hello, C#! Welcome, .NET!, is about setting up your development environment and
using either Visual Studio or Visual Studio Code to create the simplest application possible
with C# and .NET. For simplified console apps, you will see the use of the top-level program
feature introduced in C# 9. For learning how to write simple language constructs and library
features, you will see the use of .NET Interactive Notebooks. You will also learn about some
good places to look for help and ways to contact me to get help with an issue or give me
feedback to improve the book and future editions through its GitHub repository.

Chapter 2, Speaking C#, introduces the versions of C# and has tables showing which versions
introduced new features. I explain the grammar and vocabulary that you will use every day
to write the source code for your applications. In particular, you will learn how to declare and
work with variables of different types.

Chapter 3, Controlling Flow, Converting Types, and Handling Exceptions, covers using operators to
perform simple actions on variables, including comparisons, writing code that makes decisions,
pattern matching in C# 7 to C# 10, repeating a block of statements, and converting between
types. It also covers writing code defensively to handle exceptions when they inevitably occur.

Chapter 4, Writing, Debugging, and Testing Functions, is about following the Don't Repeat
Yourself (DRY) principle by writing reusable functions using both imperative and functional
implementation styles. You will also learn how to use debugging tools to track down and
remove bugs, monitoring your code while it executes to diagnose problems, and rigorously
testing your code to remove bugs and ensure stability and reliability before it gets deployed
into production.

Chapter 5, Building Your Own Types with Object-Oriented Programming, discusses all the different
categories of members that a type can have, including fields to store data and methods

to perform actions. You will use object-oriented programming (OOP) concepts, such as
aggregation and encapsulation. You will learn about language features such as tuple syntax
support and out variables, default literals, and inferred tuple names, as well as how to define
and work with immutable types using the record keyword, init-only properties, and with
expressions introduced in C# 9.

Chapter 6, Implementing Interfaces and Inheriting Classes, explains deriving new types from
existing ones using OOP. You will learn how to define operators and local functions, delegates
and events, how to implement interfaces about base and derived classes, how to override

a member of a type, how to use polymorphism, how to create extension methods, how to

cast between classes in an inheritance hierarchy, and about the big change in C# 8 with the
introduction of nullable reference types.

Chapter 7, Packaging and Distributing .NET Types, introduces the versions of .NET and has tables
showing which versions introduced new library features, and then presents .NET types that
are compliant with .NET Standard and how they relate to C#. You will learn how to write

and compile code on any of the supported operating systems: Windows, macOS, and Linux
variants. You will learn how to package, deploy, and distribute your own apps and libraries.

[xxvi]

Preface

Chapter 8, Working with Common .NET Types, discusses the types that allow your code to
perform common practical tasks, such as manipulating numbers and text, dates and times,
storing items in collections, working with the network and manipulating images, and
implementing internationalization.

Chapter 9, Working with Files, Streams, and Serialization, covers interacting with the filesystem,
reading and writing to files and streams, text encoding, and serialization formats like JSON and
XML, including the improved functionality and performance of the System.Text.Json classes.

Chapter 10, Working with Data Using Entity Framework Core, explains reading and writing to
relational databases, such as Microsoft SQL Server and SQLite, using the object-relational
mapping (ORM) technology named Entity Framework Core (EF Core). You will learn how to
define entity models that map to existing tables in a database, as well as how to define Code
First models that can create the tables and database at runtime.

Chapter 11, Querying and Manipulating Data Using LINQ, teaches you about Language
INtegrated Queries (LINQs) —language extensions that add the ability to work with sequences
of items and filter, sort, and project them into different outputs. You will learn about the special
capabilities of Parallel LINQ (PLINQ) and LINQ to XML.

Chapter 12, Improving Performance and Scalability Using Multitasking, discusses allowing multiple
actions to occur at the same time to improve performance, scalability, and user productivity.
You will learn about the async Main feature and how to use types in the System.Diagnostics
namespace to monitor your code to measure performance and efficiency.

Chapter 13, Introducing Practical Applications of C# and .NET, introduces you to the types of
cross-platform applications that can be built using C# and .NET. You will also build an EF
Core model to represent the Northwind database that will be used throughout the rest of the
chapters in the book.

Chapter 14, Building Websites Using ASP.NET Core Razor Pages, is about learning the basics of
building websites with a modern HTTP architecture on the server side using ASP.NET Core.
You will learn how to implement the ASP.NET Core feature known as Razor Pages, which
simplifies creating dynamic web pages for small websites, and about building the HTTP
request and response pipeline.

Chapter 15, Building Websites Using the Model-View-Controller Pattern, is about learning how
to build large, complex websites in a way that is easy to unit test and manage with teams
of programmers using ASP.NET Core MVC. You will learn about startup configuration,
authentication, routes, models, views, and controllers.

Chapter 16, Building and Consuming Web Services, explains building backend REST architecture
web services using the ASP.NET Core Web API and how to properly consume them using
factory-instantiated HTTP clients.

Chapter 17, Building User Interfaces Using Blazor, introduces how to build web user interface
components using Blazor that can be executed either on the server side or inside the client-side
web browser. You will see the differences between Blazor Server and Blazor WebAssembly and
how to build components that are easier to switch between the two hosting models.

[xxvii]

Preface

Three bonus online chapters complete this bumper edition. You can read the following chapters
and the appendix at https://static.packt-cdn.com/downloads/9781801077361_Bonus_
Content.pdf:

Chapter 18, Building and Consuming Specialized Services, introduces you to building services using
gRPC, implementing real-time communications between server and client using SignalR,
exposing an EF Core model using OData, and hosting functions in the cloud that respond to
triggers using Azure Functions.

Chapter 19, Building Mobile and Desktop Apps Using .NET MAUI, introduces you to building
cross-platform mobile and desktop apps for Android, iOS, macOS, and Windows. You will
learn the basics of XAML, which can be used to define the user interface for a graphical app.

Chapter 20, Protecting Your Data and Applications, is about protecting your data from being
viewed by malicious users using encryption, and from being manipulated or corrupted using
hashing and signing. You will also learn about authentication and authorization to protect
applications from unauthorized users.

Appendix, Answers to the Test Your Knowledge Questions, has the answers to the test questions
at the end of each chapter.

What you need for this book

You can develop and deploy C# and .NET apps using Visual Studio Code on many platforms,
including Windows, macOS, and many varieties of Linux.

An operating system that supports Visual Studio Code and an internet connection is all you
need to complete all but one chapter.

If you prefer to use Visual Studio for Windows or macOS, or a third-party tool like JetBrains
Rider, then you can.

You will need macOS to build the iOS app in Chapter 19, Building Mobile and Desktop Apps
Using .NET MAUI, because you must have macOS and Xcode to compile iOS apps.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots and diagrams used
in this book. The color images will help you better understand the changes in the output.

You can download this file from https://static.packt-cdn.com/downloads/9781801077361
ColorImages.pdf.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

[xxviii}

https://static.packt-cdn.com/downloads/9781801077361_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801077361_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801077361_Bonus_Content.pdf
https://static.packt-cdn.com/downloads/9781801077361_Bonus_Content.pdf

Preface

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLSs, user input, and Twitter handles. For example; "The
Controllers, Models, and Views folders contain ASP.NET Core classes and the .cshtml files for
execution on the server."

A block of code is set as follows:

names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are highlighted:

names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

Any command-line input or output is written as follows:

dotnet new console

Bold: Indicates a new term, an important word, or words that you see on the screen, for
example, in menus or dialog boxes. For example: "Clicking on the Next button moves you to
the next screen."

\/V Important notes and links to external sources of further reading

appear in a box like this.

|
\@l Good Practice: Recommendations for how to program like an expert
2N appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title
in the subject of your message and email us at customercare@packtpub.com.

[xxix]

customercare@packtpub.com

Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report
this to us. Please visit, www. packtpub.com/support/errata, selecting your book, clicking on the
Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name. Please
contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share your thoughts

Once you've read C# 10 and .NET 6 - Modern Cross-Platform Development, Sixth Edition, we'd love
to hear your thoughts! Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

[xxx]

www.packtpub.com/support/errata
copyright@packt.com
authors.packtpub.com
authors.packtpub.com
https://packt.link/r/1801077363

01

Hello, C#! Welcome, .NET!

In this first chapter, the goals are setting up your development environment, understanding
the similarities and differences between modern .NET, .NET Core, .NET Framework, Mono,
Xamarin, and .NET Standard, creating the simplest application possible with C# 10 and .NET 6
using various code editors, and then discovering good places to look for help.

The GitHub repository for this book has solutions using full application projects for all code
tasks and notebooks when possible:

https://github.com/markjprice/csl@dotnet6

Simply press the . (dot) key or change . com to .dev in the link above to change the GitHub
repository into a live editor using Visual Studio Code for the Web, as shown in Figure 1.1:

€% Program.cs - csldotnets [GitH. X |-+ ._ _1:_,2'—"‘ - -
3 O (5] httpsy//github.dev/markiprice/cs 10dotnets % 7= @& CNoH-,mr-ng @ .-
EXPLORER =s B [Preview] \markiprice\cs 10dotnetB\README.md
~ CSTODOTNETS (GITHUBI
> hssets Repository for the Packt Publishing book
> docs
C# 10 and .NET 6 - Modern Cross-Platform Development, Sixth
Edition
C Program.cs X ==
scode ¥ Chapterd » ToplevelProgram > € Pragram.cs
1 // See https://aka.ms/new-console-template for more information -
2
® ToplevelProgram.csproj 3 Console.Writeline("Helle from a Tep Level E'r‘ogr‘am!l"];
4 Console.Writeline{Environment . 05Version.VersionString);
> OUTLINE
> TIMELINE
¥ GitHub' §P main O @odo Ln'3,Col51 Spaces:4 UTF-8 with8OM CRIF €8 € Leyetts & 0Q

Figure 1.1: Visual Studio Code for the Web live editing the book's GitHub repository

[11]

https://github.com/markjprice/cs10dotnet6

Hello, C#! Welcome, .NET!

This is great to run alongside your chosen code editor as you work through the book's coding
tasks. You can compare your code to the solution code and easily copy and paste parts if
needed.

Throughout this book, I use the term modern .NET to refer to .NET 6 and its predecessors like
.NET 5 that come from .NET Core. I use the term legacy .NET to refer to .NET Framework,
Mono, Xamarin, and .NET Standard. Modern .NET is a unification of those legacy platforms
and standards.

After this first chapter, the book can be divided into three parts: first, the grammar and
vocabulary of the C# language; second, the types available in .NET for building app features;
and third, examples of common cross-platform apps you can build using C# and .NET.

Most people learn complex topics best by imitation and repetition rather than reading a
detailed explanation of the theory; therefore, I will not overload you with detailed explanations
of every step throughout this book. The idea is to get you to write some code and see it run.

You don't need to know all the nitty-gritty details immediately. That will be something that
comes with time as you build your own apps and go beyond what any book can teach you.

In the words of Samuel Johnson, author of the English dictionary in 1755, I have committed "a
few wild blunders, and risible absurdities, from which no work of such multiplicity is free." I
take sole responsibility for these and hope you appreciate the challenge of my attempt to lash
the wind by writing this book about rapidly evolving technologies like C# and .NET, and the
apps that you can build with them.

This first chapter covers the following topics:

* Setting up your development environment

* Understanding .NET

* Building console apps using Visual Studio 2022

* Building console apps using Visual Studio Code

* Exploring code using .NET Interactive Notebooks

* Reviewing the folders and files for projects

* Making good use of the GitHub repository for this book
* Looking for help

Setting up your development environment

Before you start programming, you'll need a code editor for C#. Microsoft has a family of code
editors and Integrated Development Environments (IDEs), which include:

e Visual Studio 2022 for Windows
e Visual Studio 2022 for Mac

[2]

Chapter 01

¢ Visual Studio Code for Windows, Mac, or Linux
* GitHub Codespaces

Third parties have created their own C# code editors, for example, JetBrains Rider.

Choosing the appropriate tool and application type

for learning
What is the best tool and application type for learning C# and .NET?

When learning, the best tool is one that helps you write code and configuration but does not
hide what is really happening. IDEs provide graphical user interfaces that are friendly to use,
but what are they doing for you underneath? A more basic code editor that is closer to the
action while providing help to write your code is better while you are learning,.

Having said that, you can make the argument that the best tool is the one you are already
familiar with or that you or your team will use as your daily development tool. For that reason,
I want you to be free to choose any C# code editor or IDE to complete the coding tasks in this
book, including Visual Studio Code, Visual Studio for Windows, Visual Studio for Mac, or even
JetBrains Rider.

In the third edition of this book, I gave detailed step-by-step instructions for both Visual Studio
for Windows and Visual Studio Code for all coding tasks. Unfortunately, that got messy and
confusing quickly. In this sixth edition, I give detailed step-by-step instructions for how to
create multiple projects in both Visual Studio 2022 for Windows and Visual Studio Code only
in Chapter 1. After that, I give names of projects and general instructions that work with all tools
so you can use whichever tool you prefer.

The best application type for learning the C# language constructs and many of the .NET
libraries is one that does not distract with unnecessary application code. For example, there is
no need to create an entire Windows desktop application or a website just to learn how to write
a switch statement.

For that reason, I believe the best method for learning the C# and .NET topics in Chapters 1 to
12 is to build console applications. Then, in Chapter 13 to 19 onward, you will build websites,
services, and graphical desktop and mobile apps.

Pros and cons of the .NET Interactive Notebooks
extension

Another benefit of Visual Studio Code is the .NET Interactive Notebooks extension. This
extension provides an easy and safe place to write simple code snippets. It enables you to create
a single notebook file that mixes "cells" of Markdown (richly formatted text) and code using C#
and other related languages, such as PowerShell, F#, and SQL (for databases).

[3]

Hello, C#! Welcome, .NET!

However, NET Interactive Notebooks does have some limitations:

* They cannot read input from the user, for example, you cannot use ReadLine or ReadKey.
* They cannot have arguments passed to them.
* They do not allow you to define your own namespaces.

* They do not have any debugging tools (but these are coming in the future).

Using Visual Studio Code for cross-platform development

The most modern and lightweight code editor to choose from, and the only one from Microsoft
that is cross-platform, is Microsoft Visual Studio Code. It can run on all common operating
systems, including Windows, macOS, and many varieties of Linux, including Red Hat
Enterprise Linux (RHEL) and Ubuntu.

Visual Studio Code is a good choice for modern cross-platform development because it has an
extensive and growing set of extensions to support many languages beyond C#.

Being cross-platform and lightweight, it can be installed on all platforms that your apps will be
deployed to for quick bug fixes and so on. Choosing Visual Studio Code means a developer can
use a cross-platform code editor to develop cross-platform apps.

Visual Studio Code has strong support for web development, although it currently has weak
support for mobile and desktop development.

Visual Studio Code is supported on ARM processors so that you can develop on Apple Silicon
computers and Raspberry Pi.

Visual Studio Code is by far the most popular integrated development environment, with over
70% of professional developers selecting it in the Stack Overflow 2021 survey.

Using GitHub Codespaces for development in the cloud

GitHub Codespaces is a fully configured development environment based on Visual Studio
Code that can be spun up in an environment hosted in the cloud and accessed through any web
browser. It supports Git repos, extensions, and a built-in command-line interface so you can
edit, run, and test from any device.

Using Visual Studio for Mac for general development

Microsoft Visual Studio 2022 for Mac can create most types of applications, including console
apps, websites, web services, desktop, and mobile apps.

To compile apps for Apple operating systems like iOS to run on devices like the iPhone and
iPad, you must have Xcode, which only runs on macOS.

[4]

Chapter 01

Using Visual Studio for Windows for general development

Microsoft Visual Studio 2022 for Windows can create most types of applications, including
console apps, websites, web services, desktop, and mobile apps. Although you can use Visual
Studio 2022 for Windows with its Xamarin extensions to write a cross-platform mobile app, you
still need macOS and Xcode to compile it.

It only runs on Windows, version 7 SP1 or later. You must run it on Windows 10 or Windows
11 to create Universal Windows Platform (UWP) apps that are installed from the Microsoft
Store and run in a sandbox to protect your computer.

What | used

To write and test the code for this book, I used the following hardware:

* HP Spectre (Intel) laptop
* Apple Silicon Mac mini (M1) desktop
* Raspberry Pi 400 (ARM v8) desktop

And I used the following software:

* Visual Studio Code on:
* macOS on an Apple Silicon Mac mini (M1) desktop
* Windows 10 on an HP Spectre (Intel) laptop
* Ubuntu 64 on a Raspberry Pi 400

* Visual Studio 2022 for Windows on:
* Windows 10 on an HP Spectre (Intel) laptop

* Visual Studio 2022 for Mac on:
* macOS on an Apple Silicon Mac mini (M1) desktop

I hope that you have access to a variety of hardware and software too, because seeing the
differences in platforms deepens your understanding of development challenges, although any
one of the above combinations is enough to learn the fundamentals of C# and .NET and how to
build practical apps and websites.

More Information: You can learn how to write code with C# and .NET using
‘ , a Raspberry Pi 400 with Ubuntu Desktop 64-bit by reading an extra article
\p/ that I wrote at the following link: https://github.com/markjprice/

cs9dotnet5-extras/blob/main/raspberry-pi-ubuntu64/README .md.

[5]

https://github.com/markjprice/cs9dotnet5-extras/blob/main/raspberry-pi-ubuntu64/README.md
https://github.com/markjprice/cs9dotnet5-extras/blob/main/raspberry-pi-ubuntu64/README.md

Hello, C#! Welcome, .NET!

Deploying cross-platform

Your choice of code editor and operating system for development does not limit where your
code gets deployed.

.NET 6 supports the following platforms for deployment:

* Windows: Windows 7 SP1, or later. Windows 10 version 1607, or later, including
Windows 11. Windows Server 2012 R2 SP1, or later. Nano Server version 1809, or later.

* Mac: macOS Mojave (version 10.14), or later.

* Linux: Alpine Linux 3.13, or later. CentOS 7, or later. Debian 10, or later. Fedora 32,
or later. openSUSE 15, or later. Red Hat Enterprise Linux (RHEL) 7, or later. SUSE
Enterprise Linux 12 SP2, or later. Ubuntu 16.04, 18.04, 20.04, or later.

e Android: API 21, or later.
e i0S: 10, or later.
Windows ARM64 support in .NET 5 and later means you can develop on, and deploy to,

Windows ARM devices like Microsoft Surface Pro X. But developing on an Apple M1 Mac
using Parallels and a Windows 10 ARM virtual machine is apparently twice as fast!

Downloading and installing Visual Studio 2022 for

Windows

Many professional Microsoft developers use Visual Studio 2022 for Windows in their day-to-
day development work. Even if you choose to use Visual Studio Code to complete the coding
tasks in this book, you might want to familiarize yourself with Visual Studio 2022 for Windows
too.

If you do not have a Windows computer, then you can skip this section and continue to the
next section where you will download and install Visual Studio Code on macOS or Linux.

Since October 2014, Microsoft has made a professional quality edition of Visual Studio for
Windows available to students, open source contributors, and individuals for free. It is called
Community Edition. Any of the editions are suitable for this book. If you have not already
installed it, let's do so now:

1. Download Microsoft Visual Studio 2022 version 17.0 or later for Windows from the
following link: https://visualstudio.microsoft.com/downloads/.

Start the installer.
On the Workloads tab, select the following:
e ASP.NET and web development
* Azure development
* .NET desktop development
* Desktop development with C++

[6]

https://visualstudio.microsoft.com/downloads/

Chapter 01

* Universal Windows Platform development
* Mobile development with .NET

4. On the Individual components tab, in the Code tools section, select the following:
* Class Designer
e Git for Windows

* PreEmptive Protection - Dotfuscator

Click Install and wait for the installer to acquire the selected software and install it.
When the installation is complete, click Launch.

The first time that you run Visual Studio, you will be prompted to sign in. If you have a
Microsoft account, you can use that account. If you don't, then register for a new one at
the following link: https://signup.live.com/.

8. The first time that you run Visual Studio, you will be prompted to configure your
environment. For Development Settings, choose Visual C#. For the color theme, I
chose Blue, but you can choose whatever tickles your fancy.

9. If you want to customize your keyboard shortcuts, navigate to Tools | Options..., and
then select the Keyboard section.

Microsoft Visual Studio for Windows keyboard shortcuts

In this book, I will avoid showing keyboard shortcuts since they are often customized. Where
they are consistent across code editors and commonly used, I will try to show them. If you
want to identify and customize your keyboard shortcuts, then you can, as shown at the
following link: https://docs.microsoft.com/en-us/visualstudio/ide/identifying-and-
customizing-keyboard-shortcuts-in-visual-studio.

Downloading and installing Visual Studio Code

Visual Studio Code has rapidly improved over the past couple of years and has pleasantly
surprised Microsoft with its popularity. If you are brave and like to live on the bleeding edge,
then there is an Insiders edition, which is a daily build of the next version.

Even if you plan to only use Visual Studio 2022 for Windows for development, I recommend
that you download and install Visual Studio Code and try the coding tasks in this chapter using
it, and then decide if you want to stick with just using Visual Studio 2022 for the rest of the
book.

Let's now download and install Visual Studio Code, the .NET SDK, and the C# and .NET
Interactive Notebooks extensions:

1. Download and install either the Stable build or the Insiders edition of Visual Studio
Code from the following link: https://code.visualstudio.com/.

[71]

https://signup.live.com/
https://docs.microsoft.com/en-us/visualstudio/ide/identifying-and-customizing-keyboard-shortcuts-in-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/identifying-and-customizing-keyboard-shortcuts-in-visual-studio
https://code.visualstudio.com/

Hello, C#! Welcome, .NET!

\Q/\/

More Information: If you need more help installing Visual Studio
Code, you can read the official setup guide at the following link:
https://code.visualstudio.com/docs/setup/setup-overview.

2. Download and install the .NET SDKs for versions 3.1, 5.0, and 6.0 from the following
link: https://www.microsoft.com/net/download.

&

To fully learn how to control NET SDKs, we need multiple versions
installed. .NET Core 3.1, .NET 5.0, and .NET 6.0 are the three currently
supported versions. You can safely install multiple ones side by side.
You will learn how to target the one you want throughout this book.

3. Toinstall the C# extension, you must first launch the Visual Studio Code application.

In Visual Studio Code, click the Extensions icon or navigate to View | Extensions.

5. C# is one of the most popular extensions available, so you should see it at the top of the
list, or you can enter C# in the search box.

Click Install and wait for supporting packages to download and install.

Enter .NET Interactive in the search box to find the .NET Interactive Notebooks

extension.

8. C(lick Install and wait for it to install.

Installing other extensions

In later chapters of this book, you will use more extensions. If you want to install them now, all
the extensions that we will use are shown in the following table:

Extension name and identifier

Description

C# for Visual Studio Code (powered by
OmniSharp)

ms-dotnettools.csharp

C# editing support, including syntax highlighting,
IntelliSense, Go to Definition, Find All References,
debugging support for .NET, and support for csproj
projects on Windows, macOS, and Linux.

NET Interactive Notebooks

ms-dotnettools.dotnet-interactive-
vscode

This extension adds support for using .NET Interactive
in a Visual Studio Code notebook. It has a dependency
on the Jupyter extension (ms-toolsai.jupyter).

MSBuild project tools

tinytoy.msbuild-project-tools

Provides IntelliSense for MSBuild project files,
including autocomplete for <PackageReference>
elements.

REST Client

humao.rest-client

Send an HTTP request and view the response directly
in Visual Studio Code.

[8]

https://www.microsoft.com/net/download
https://code.visualstudio.com/docs/setup/setup-overview

Chapter 01

ILSpy .NET Decompiler Decompile MSIL assemblies - support for modern
NET, .NET Framework, .NET Core, and .NET
icsharpcode.ilspy-vscode Standard.
Create, debug, manage, and deploy serverless
Azure Functions for Visual Studio Code apps directly from VS Code. It has dependencies
on Azure Account (ms-vscode.azure-account)
ms-azuretools.vscode-azurefunctions and Azure Resources (ms-azuretools.vscode-

azureresourcegroups) extensions.

GitHub Repositories Browse, search, edit, and commit to any remote GitHub

github.remotehub repository directly from within Visual Studio Code.

SQL Server (mssql) for Visual Studio Code For developing Microsoft SQL Server, Azure SQL
Database, and SQL Data Warehouse everywhere with

ms-mssqgl.mssql a rich set of functionalities.

Protobuf 3 support for Visual Studio Code Syntax highlighting, syntax validation, code snippets,
code completion, code formatting, brace matching, and

zxh4@4.vscode-proto3 line and block commenting.

Understanding Microsoft Visual Studio Code versions

Microsoft releases a new feature version of Visual Studio Code (almost) every month and bug
fix versions more frequently. For example:

* Version 1.59, August 2021 feature release
* Version 1.59.1, August 2021 bug fix release

The version used in this book is 1.59, but the version of Microsoft Visual Studio Code is less
important than the version of the C# for Visual Studio Code extension that you installed.

While the C# extension is not required, it provides IntelliSense as you type, code navigation,
and debugging features, so it's something that's very handy to install and keep updated to
support the latest C# language features.

Microsoft Visual Studio Code keyboard shortcuts

In this book, I will avoid showing keyboard shortcuts used for tasks like creating a new file
since they are often different on different operating systems. The situations where I will
show keyboard shortcuts are when you need to repeatedly press the key, for example, while
debugging. These are also more likely to be consistent across operating systems.

If you want to customize your keyboard shortcuts for Visual Studio Code, then you can, as
shown at the following link: https://code.visualstudio.com/docs/getstarted/keybindings.

I recommend that you download a PDF of keyboard shortcuts for your operating system from
the following list:

e Windows: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.
pdf

[o]

https://code.visualstudio.com/docs/getstarted/keybindings
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf

Hello, C#! Welcome, .NET!

* macOS: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf

e Linux: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf

Understanding .NET

NET 6, .NET Core, .NET Framework, and Xamarin are related and overlapping platforms for
developers used to build applications and services. In this section, I'm going to introduce you
to each of these .NET concepts.

Understanding .NET Framework

NET Framework is a development platform that includes a Common Language Runtime
(CLR), which manages the execution of code, and a Base Class Library (BCL), which provides
a rich library of classes to build applications from.

Microsoft originally designed .NET Framework to have the possibility of being cross-platform,
but Microsoft put their implementation effort into making it work best with Windows.

Since .NET Framework 4.5.2, it has been an official component of the Windows operating
system. Components have the same support as their parent products, so 4.5.2 and later follow
the life cycle policy of the Windows OS on which it is installed. NET Framework is installed
on over one billion computers, so it must change as little as possible. Even bug fixes can cause
problems, so it is updated infrequently.

For .NET Framework 4.0 or later, all of the apps on a computer written for NET Framework
share the same version of the CLR and libraries stored in the Global Assembly Cache (GAC),
which can lead to issues if some of them need a specific version for compatibility.

I
\@’ Good Practice: Practically speaking, .NET Framework is Windows-only and a

legacy platform. Do not create new apps using it.

Understanding the Mono, Xamarin, and Unity
projects

Third parties developed a .NET Framework implementation named the Mono project. Mono is
cross-platform, but it fell well behind the official implementation of .NET Framework.

Mono has found a niche as the foundation of the Xamarin mobile platform as well as cross-
platform game development platforms like Unity.

[10]

https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf

Chapter 01

Microsoft purchased Xamarin in 2016 and now gives away what used to be an expensive
Xamarin extension for free with Visual Studio. Microsoft renamed the Xamarin Studio
development tool, which could only create mobile apps, to Visual Studio for Mac and gave

it the ability to create other types of projects like console apps and web services. With Visual
Studio 2022 for Mac, Microsoft has replaced parts of the Xamarin Studio editor with parts from
Visual Studio 2022 for Windows to provide closer parity of experience and performance. Visual
Studio 2022 for Mac was also rewritten to be a truly native macOS Ul app to improve reliability
and work with macOS's built-in assistive technologies.

Understanding .NET Core

Today, we live in a truly cross-platform world where modern mobile and cloud development
have made Windows, as an operating system, much less important. Because of that, Microsoft
has been working on an effort to decouple .NET from its close ties with Windows. While
rewriting .NET Framework to be truly cross-platform, they've taken the opportunity to refactor
and remove major parts that are no longer considered core.

This new product was branded .NET Core and includes a cross-platform implementation of the
CLR known as CoreCLR and a streamlined BCL known as CoreFX.

Scott Hunter, Microsoft Partner Director Program Manager for .NET, has said that "Forty
percent of our .NET Core customers are brand-new developers to the platform, which is what
we want with .NET Core. We want to bring new people in."

.NET Core is fast-moving, and because it can be deployed side by side with an app, it can
change frequently, knowing those changes will not affect other .NET Core apps on the same
machine. Most improvements that Microsoft makes to .NET Core and modern .NET cannot be
easily added to .NET Framework.

Understanding the journey to one .NET

At the Microsoft Build developer conference in May 2020, the .NET team announced that their
plans for the unification of .NET had been delayed. They said that .NET 5 would be released on
November 10, 2020, and it would unify all the various .NET platforms except mobile. It would
not be until .NET 6 in November 2021 that mobile will also be supported by the unified .NET
platform.

.NET Core has been renamed .NET and the major version number has skipped the number
four to avoid confusion with .NET Framework 4.x. Microsoft plans on annual major version
releases every November, rather like Apple does major version number releases of iOS every
September.

[11]

Hello, C#! Welcome, .NET!

The following table shows when the key versions of modern .NET were released, when future
releases are planned, and which version is used by the various editions of this book:

Version Released Edition Published
.NET Core RC1 November 2015 First March 2016
.NET Core 1.0 June 2016

.NET Core 1.1 November 2016

.NET Core 1.0.4 and .NET Core 1.1.1 March 2017 Second March 2017
.NET Core 2.0 August 2017

DET Core ;‘;raiwp in Windows 10Fall | 5ctober 2017 Third November 2017
NET Core 2.1 (LTS) May 2018

.NET Core 2.2 (Current) December 2018

.NET Core 3.0 (Current) September 2019 Fourth October 2019
.NET Core 3.1 (LTS) December 2019

Blazor WebAssembly 3.2 (Current) May 2020

.NET 5.0 (Current) November 2020 Fifth November 2020
.NET 6.0 (LTS) November 2021 Sixth November 2021
NET 7.0 (Current) November 2022 Seventh November 2022
.NET 8.0 (LTS) November 2023 Eighth November 2023

.NET Core 3.1 included Blazor Server for building web components. Microsoft had

also planned to include Blazor WebAssembly in that release, but it was delayed. Blazor
WebAssembly was later released as an optional add-on for .NET Core 3.1. I include it in the
table above because it was versioned as 3.2 to exclude it from the LTS of .NET Core 3.1.

Understanding .NET support

.NET versions are either Long Term Support (LTS) or Current, as described in the

following list:

* LTS releases are stable and require fewer updates over their lifetime. These are a good
choice for applications that you do not intend to update frequently. LTS releases will
be supported for 3 years after general availability, or 1 year after the next LTS release

ships, whichever is longer.

* Current releases include features that may change based on feedback. These are a good
choice for applications that you are actively developing because they provide access
to the latest improvements. After a 6-month maintenance period, or 18 months after
general availability, the previous minor version will no longer be supported.

[12]

Chapter 01

Both receive critical fixes throughout their lifetime for security and reliability. You must stay up
to date with the latest patches to get support. For example, if a system is running 1.0 and 1.0.1
has been released, 1.0.1 will need to be installed to get support.

To better understand your choices of Current and LTS releases, it is helpful to see it visually,
with 3-year-long black bars for LTS releases, and variable-length gray bars for Current releases
that end with cross-hatching for the 6 months after a new major or minor release that they
retain support for, as shown in Figure 1.2:

Version

-NET Core 2.1
NET Core 3.0
MET Core 3.1

MET 5.0
MET 6.0
MNET 7.0
MET &0
JNET 9.0
NET 10.0

Blazor WebaAssembly 3.2 Current

Support *
LTS
Current
LTS

Current
LTS
Current
LTS
Current
LTS

2019 2020 021 2022 2023 2024 2025 2026

Figure 1.2: Support for various versions

For example, if you had created a project using .NET Core 3.0, then when Microsoft released
.NET Core 3.1 in December 2019, you had to upgrade your project to .NET Core 3.1 by March
2020. (Before .NET 5, the maintenance period for Current releases was only three months.)

If you need long-term support from Microsoft, then choose .NET 6.0 today and stick with it
until .NET 8.0, even once Microsoft releases NET 7.0. This is because .NET 7.0 will be a current
release and it will therefore lose support before .NET 6.0 does. Just remember that even with
LTS releases you must upgrade to bug fix releases like 6.0.1.

All versions of .NET Core and modern .NET have reached their end of life except those shown
in the following list:

e .NET 5.0 will reach end of life in May 2022.

e NET Core 3.1 will reach end of life on December 3, 2022.
e NET 6.0 will reach end of life in November 2024.

Understanding .NET Runtime and .NET SDK versions

.NET Runtime versioning follows semantic versioning, that is, a major increment indicates

breaking changes, minor increments indicate new features, and patch increments indicate bug
fixes.

.NET SDK versioning does not follow semantic versioning. The major and minor version
numbers are tied to the runtime version it is matched with. The patch number follows a
convention that indicates the major and minor versions of the SDK.

[13]

Hello, C#! Welcome, .NET!

You can see an example of this in the following table:

Change Runtime SDK

Initial release 6.0.0 6.0.100
SDK bug fix 6.0.0 6.0.101
Runtime and SDK bug fix 6.0.1 6.0.102
SDK new feature 6.0.1 6.0.200

Removing old versions of .NET

NET Runtime updates are compatible with a major version such as 6.x, and updated releases
of the NET SDK maintain the ability to build applications that target previous versions of the
runtime, which enables the safe removal of older versions.

You can see which SDKs and runtimes are currently installed using the following commands:

* dotnet --list-sdks

® dotnet --list-runtimes

On Windows, use the App & features section to remove .NET SDKs. On macOS or Windows,
use the dotnet-core-uninstall tool. This tool is not installed by default.

For example, while writing the fourth edition, I used the following command every month:

dotnet-core-uninstall remove --all-previews-but-latest --sdk

What is different about modern .NET?

Modern .NET is modularized compared to the legacy .NET Framework, which is monolithic.
It is open source and Microsoft makes decisions about improvements and changes in the open.
Microsoft has put particular effort into improving the performance of modern .NET.

It is smaller than the last version of .NET Framework due to the removal of legacy and non-
cross-platform technologies. For example, workloads such as Windows Forms and Windows
Presentation Foundation (WPF) can be used to build graphical user interface (GUI)
applications, but they are tightly bound to the Windows ecosystem, so they are not included
with .NET on macOS and Linux.

Windows development

One of the features of modern .NET is support for running old Windows Forms and WPF
applications using the Windows Desktop Pack that is included with the Windows version of
.NET Core 3.1 or later, which is why it is bigger than the SDKs for macOS and Linux. You can
make some small changes to your legacy Windows app if necessary, and then rebuild it for
.NET 6 to take advantage of new features and performance improvements.

[14]

Chapter 01

Web development

ASP.NET Web Forms and Windows Communication Foundation (WCF) are old web
application and service technologies that fewer developers are choosing to use for new
development projects today, so they have also been removed from modern .NET. Instead,
developers prefer to use ASP.NET MVC, ASP.NET Web API, SignalR, and gRPC. These
technologies have been refactored and combined into a platform that runs on modern .NET,
named ASP.NET Core. You'll learn about the technologies in Chapter 14, Building Websites
Using ASP.NET Core Razor Pages, Chapter 15, Building Websites Using the Model-View-Controller
Pattern, Chapter 16, Building and Consuming Web Services, and Chapter 18, Building and Consuming
Specialized Services.

More Information: Some .NET Framework developers are upset that ASP.NET
Web Forms, WCF, and Windows Workflow (WF) are missing from modern
.NET and would like Microsoft to change their minds. There are open source

‘ , projects to enable WCF and WF to migrate to modern .NET. You can read

\p/ more at the following link: https://devblogs.microsoft.com/dotnet/
supporting-the-community-with-wf-and-wcf-oss-projects/. Thereis
an open source project for Blazor Web Forms components at the following
link: https://github.com/FritzAndFriends/BlazorWebFormsComponents.

Database development

Entity Framework (EF) 6 is an object-relational mapping technology that is designed to work
with data that is stored in relational databases such as Oracle and Microsoft SQL Server. It has
gained baggage over the years, so the cross-platform API has been slimmed down, has been
given support for non-relational databases like Microsoft Azure Cosmos DB, and has been
renamed Entity Framework Core. You will learn about it in Chapter 10, Working with Data Using
Entity Framework Core.

If you have existing apps that use the old EF, then version 6.3 is supported on .NET Core 3.0 or
later.

Themes of modern .NET

Microsoft has created a website using Blazor that shows the major themes of modern .NET:
https://themesof.net/.

Understanding .NET Standard

The situation with .NET in 2019 was that there were three forked .NET platforms controlled by
Microsoft, as shown in the following list:

* .NET Core: For cross-platform and new apps
* .NET Framework: For legacy apps

* Xamarin: For mobile apps

[15]

https://themesof.net/
https://devblogs.microsoft.com/dotnet/supporting-the-community-with-wf-and-wcf-oss-projects/
https://devblogs.microsoft.com/dotnet/supporting-the-community-with-wf-and-wcf-oss-projects/
https://github.com/FritzAndFriends/BlazorWebFormsComponents

Hello, C#! Welcome, .NET!

Each had strengths and weaknesses because they were all designed for different scenarios. This
led to the problem that a developer had to learn three platforms, each with annoying quirks
and limitations.

Because of that, Microsoft defined .NET Standard - a specification for a set of APIs that all .NET
platforms could implement to indicate what level of compatibility they have. For example,
basic support is indicated by a platform being compliant with .NET Standard 1.4.

With .NET Standard 2.0 and later, Microsoft made all three platforms converge on a modern
minimum standard, which made it much easier for developers to share code between any
flavor of NET.

For .NET Core 2.0 and later, this added most of the missing APIs that developers need to
port old code written for .NET Framework to the cross-platform .NET Core. However, some
APIs are implemented but throw an exception to indicate to a developer that they should not
actually be used! This is usually due to differences in the operating system on which you run
.NET. You'll learn how to handle these exceptions in Chapter 2, Speaking C#.

It is important to understand that .NET Standard is just a standard. You are not able to install
NET Standard in the same way that you cannot install HTML5. To use HTML5, you must
install a web browser that implements the HTMLS5 standard.

To use .NET Standard, you must install a .NET platform that implements the .NET Standard
specification. The last .NET Standard, version 2.1, is implemented by .NET Core 3.0, Mono,
and Xamarin. Some features of C# 8.0 require .NET Standard 2.1. INET Standard 2.1 is not
implemented by .NET Framework 4.8, so we should treat NET Framework as legacy.

With the release of .NET 6 in November 2021, the need for .INET Standard has reduced
significantly because there is now a single .NET for all platforms, including mobile. .NET 6 has
a single BCL and two CLRs: CoreCLR is optimized for server or desktop scenarios like websites
and Windows desktop apps, and the Mono runtime is optimized for mobile and web browser
apps that have limited resources.

Even now, apps and websites created for .NET Framework will need to be supported, so it is
important to understand that you can create .NET Standard 2.0 class libraries that are backward
compatible with legacy .NET platforms.

.NET platforms and tools used by the book editions

For the first edition of this book, which was written in March 2016, I focused on .NET Core
functionality but used .NET Framework when important or useful features had not yet been
implemented in .NET Core because that was before the final release of .NET Core 1.0. Visual
Studio 2015 was used for most examples, with Visual Studio Code shown only briefly.

The second edition was (almost) completely purged of all .NET Framework code examples so
that readers were able to focus on .NET Core examples that truly run cross-platform.

[16]

Chapter 01

The third edition completed the switch. It was rewritten so that all of the code was pure .NET
Core. But giving step-by-step instructions for both Visual Studio Code and Visual Studio 2017
for all tasks added complexity.

The fourth edition continued the trend by only showing coding examples using Visual Studio
Code for all but the last two chapters. In Chapter 20, Building Windows Desktop Apps, it used
Visual Studio running on Windows 10, and in Chapter 21, Building Cross-Platform Mobile Apps,
it used Visual Studio for Mac.

In the fifth edition, Chapter 20, Building Windows Desktop Apps, was moved to Appendix B to
make space for a new Chapter 20, Building Web User Interfaces Using Blazor. Blazor projects can
be created using Visual Studio Code.

In this sixth edition, Chapter 19, Building Mobile and Desktop Apps Using .NET MAUI, was
updated to show how mobile and desktop cross-platform apps can be created using Visual
Studio 2022 and .NET MAUI (Multi-platform App UI).

By the seventh edition and the release of .NET 7, Visual Studio Code will have an extension
to support NET MAUI. At that point, readers will be able to use Visual Studio Code for all
examples in the book.

Understanding intermediate language

The C# compiler (named Roslyn) used by the dotnet CLI tool converts your C# source code
into intermediate language (IL) code and stores the IL in an assembly (a DLL or EXE file). IL
code statements are like assembly language instructions, which are executed by .NET's virtual
machine, known as CoreCLR.

At runtime, CoreCLR loads the IL code from the assembly, the just-in-time (JIT) compiler
compiles it into native CPU instructions, and then it is executed by the CPU on your machine.

The benefit of this two-step compilation process is that Microsoft can create CLRs for Linux
and macOS, as well as for Windows. The same IL code runs everywhere because of the second
compilation step, which generates code for the native operating system and CPU instruction set.

Regardless of which language the source code is written in, for example, C#, Visual Basic, or
F#, all .NET applications use IL code for their instructions stored in an assembly. Microsoft and
others provide disassembler tools that can open an assembly and reveal this IL code, such as
the ILSpy .NET Decompiler extension.

Comparing .NET technologies

We can summarize and compare .NET technologies today, as shown in the following table:

Technology Description Host operating systems

A modern feature set, full C# 8, 9, and 10 support, used
Modern .NET to port existing apps or create new desktop, mobile,
and web apps and services

Windows, macOS,
Linux, Android, iOS

[171]

Hello, C#! Welcome, .NET!

NET Framework A legacy feature set, hn.rutefi C#.S :.;upport,.no C# 9or Windows only
10 support, used to maintain existing applications only
Xamarin Mobile and desktop apps only Android, iOS, macOS

Building console apps using Visual Studio
2022

The goal of this section is to showcase how to build a console app using Visual Studio 2022 for
Windows.

If you do not have a Windows computer or you want to use Visual Studio Code, then you can
skip this section since the code will be the same, just the tooling experience is different.

Managing multiple projects using Visual Studio 2022

Visual Studio 2022 has a concept named a solution that allows you to open and manage
multiple projects simultaneously. We will use a solution to manage the two projects that you
will create in this chapter.

Writing code using Visual Studio 2022

Let's get started writing code!

1. Start Visual Studio 2022.
2. In the Start window, click Create a new project.

3. In the Create a new project dialog, enter console in the Search for templates box, and
select Console Application, making sure that you have chosen the C# project template
rather than another language, such as F# or Visual Basic, as shown in Figure 1.3:

- O x,

Create a new project [mE

Clear all

Becent Project tem plates All languages - All platforms - All project types

Alist of your recently accessed templates will be i I - I NET—
displayed here. i E Console Application
4 project for creating a command-line application that can run on .NET Core on
Windows, Linux and macOS

Linu

H R Wiesdows Console
ﬁ“ Console Applic
A project for creating a command line application that can run on JNET Core on
Windaows, Linux and macO5

Visual Base Limvu maclls Windows Consale

Figure 1.3: Selecting the Console Application project template

[18]

Chapter 01

4. Click Next.

5. In the Configure your new project dialog, enter Hel1loCS for the project name, enter C:\
Code for the location, and enter Chaptere1 for the solution name, as shown in Figure 1.4:

Configure your new project

Console Application ¥ Linx meS Windows Console

Project name

HelloCs J
Location
ChCode '] [e ‘

Solution name @
Chapter1]

___| Place solution and project in the same directory

Figure 1.4: Configuring names and locations for your new project

6. Click Next.

We are deliberately going to use the older project template for NET

\/V 5.0 to see what a full console application looks like. In the next section,

you will create a console application using .NET 6.0 and see what has
changed.

7. In the Additional information dialog, in the Target Framework drop-down list, note
the choices of Current and long-term support versions of .NET, and then select .NET 5.0
(Current) and click Create.

8. In Solution Explorer, double-click to open the file named Program. cs, and note that
Solution Explorer shows the HelloCS project, as shown in Figure 1.5:

O fle Edit Visw Gt Project Buid Dsbug Test Ansiyze TJools Eglensions Window Help | Search (Cuiedl Pl thapteron - o x
: PrEA® & Uveshore BV m

= | [Debug_~| [any cPu -} P riellocs = B

-1 % HelloCS Program -1 ZaMaintstang]] args

1 hsing System;

“namespace HelloCS [solution ‘Chapterd1” (1 of 1 project)
{ M 4 [F HolloCs
iElass Program b &8 Dependencios
B CE Programcs
static veid Main(stringl] args) B

{
Consola. WriteLine("Helle World!");

J WRbED oD aen s

CRIF

lml Chl

SPC

a

A Sefect Repository &

Figure 1.5: Editing Program.cs in Visual Studio 2022

[19]

Hello, C#! Welcome, .NET!

9. InProgram.cs, modify line 9 so that the text that is being written to the console says
Hello, Ci#!

Compiling and running code using Visual Studio

The next task is to compile and run the code.

1. In Visual Studio, navigate to Debug | Start Without Debugging.

2. The output in the console window will show the result of running your application, as
shown in Figure 1.6:

€] File Edit Wiew Git Project Build Debug Test Analyze Tools Extensions Window Help Search (CuisO P

£

B2 BP9 | Debug - Ay - PHelocs - | @ i 2w A i [Live Share

Solution Explorer
Fo T .
~{ "% HelloCS Program | Fa Mainistring() args i ARl o5 8F ;B

using System;
il eh Solution Explorer (Cirl+

namespace HelloCs = Selution 'Chapter01” [1of 1 project)
¢ 4 [Hellocs
= class Program P & Dependencies
{ b Programics
static vold Main(string[] args)
{ Solution Explorer [
Conzole.Writeline("Hella, Cal");

B Miscrosoft Visual Studio Debug Console

Error List.—

Figure 1.6: Running the console app on Windows

3. Press any key to close the console window and return to Visual Studio.

Select the HelloCS project and then, in the Solution Explorer toolbar, toggle on the
Show All Files button, and note that the compiler-generated bin and obj folders are
visible, as shown in Figure 1.7

of fie Edt View Git Project Buld Debug Test Analyze Tools Extensions Window Halp P chaptert = o %
Bl -SRI R o = & = | Debug - AnyCPU R S - n e = & Live Share &7
h Al Solution Explorer w B
= | ®aMainistringl] args) e &l ors 8 ,;.E
— L]

using System;
£~

=] - | Shew Al Files |
-Inamespace HelloCS B3 sotution “Chapter01” {1 of 1 projec
{ 4 [HelloCs

tlass Program b & Dependencies

{ b F imports
7 static vola Main(string] args) Bl bin
8 { b L obj
a Console.Writeline{"Hella, C#1"); b € Program.es

¥
b
¥

LRIF

S Solution Explore: [(E0

L hia

2

Error List .

2,

L This item does not suppert previewing 1+ Add to Source Control =

Figure 1.7: Showing the compiler-generated folders and files

[20]

Chapter 01

Understanding the compiler-generated folders and files

Two compiler-generated folders were created, named obj and bin. You do not need to look
inside these folders or understand their files yet. Just be aware that the compiler needs to create
temporary folders and files to do its work. You could delete these folders and their files, and
they can be recreated later. Developers often do this to "clean" a project. Visual Studio even has
a command on the Build menu named Clean Solution that deletes some of these temporary
files for you. The equivalent command with Visual Studio Code is dotnet clean.

* The obj folder contains one compiled object file for each source code file. These objects
haven't been linked together into a final executable yet.

* The bin folder contains the binary executable for the application or class library. We will
look at this in more detail in Chapter 7, Packaging and Distributing .NET Types.

Writing top-level programs

You might be thinking that was a lot of code just to output Hello, C#!.

Although the boilerplate code is written for you by the project template, is there a simpler way?
Well, in C# 9 or later, there is, and it is known as top-level programs.

Let's compare the console app created by the project template, as shown in the following code:

using System;

namespace HelloCS

{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Hello World!");
}
}
}

To the new top-level program minimum console app, as shown in the following code:
using System;
Console.WriteLine("Hello World!™");

That is a lot simpler, right? If you had to start with a blank file and write all the statements
yourself, this is better. But how does it work?

During compilation, all the boilerplate code to define a namespace, the Program class, and its
Main method, is generated and wrapped around the statements you write.

[21]

Hello, C#! Welcome, .NET!

Key points to remember about top-level programs include the following list:

* Any using statements still must to go at the top of the file.
* There can be only one file like this in a project.
The using System; statement at the top of the file imports the System namespace. This enables

the Console.WriteLine statement to work. You will learn more about namespaces in the next
chapter.

Adding a second project using Visual Studio 2022

Let's add a second project to our solution to explore top-level programs:

In Visual Studio, navigate to File | Add | New Project.

2. Inthe Add a new project dialog, in Recent project templates, select Console
Application [C#] and then click Next.

3. In the Configure your new project dialog, for the Project name, enter TopLevelProgram,
leave the location as C:\Code\Chapterel, and then click Next.

4. In the Additional information dialog, select NET 6.0 (Long-term support), and then
click Create.

5. In Solution Explorer, in the TopLevelProgram project, double-click Program.cs to open
it.
6. InProgram.cs, note the code consists of only a comment and a single statement because

it uses the top-level program feature introduced in C# 9, as shown in the following
code:

Console.WriteLine("Hello, World!");

But when I introduced the concept of top-level programs earlier, we needed a using System;
statement. Why don't we need that here?

Implicitly imported namespaces

The trick is that we do still need to import the System namespace, but it is now done for us
using a feature introduced in C# 10. Let's see how:

1. In Solution Explorer, select the TopLevelProgram project and toggle on the Show All
Files button, and note that the compiler-generated bin and obj folders are visible.

2. Expand the obj folder, expand the Debug folder, expand the net6.0 folder, and open the
file named TopLevelProgram.GlobalUsings.g.cs.

3. Note that this file is automatically created by the compiler for projects that target .NET
6, and that it uses a feature introduced in C# 10 called global imports that imports
some commonly used namespaces like System for use in all code files, as shown in the
following code:

[22]

Chapter 01

global using global: :System;

global using global::System.Collections.Generic;
global using global::System.IO;

global using global::System.Ling;

global using global::System.Net.Http;

global using global::System.Threading;

global using global::System.Threading.Tasks;

I will explain more about this feature in the next chapter. For now,
‘ , just note that a significant change between .NET 5 and .NET 6 is that
\p/ many of the project templates, like the one for console applications,
use new language features to hide what is really happening.

In the TopLevelProgram project, in Program.cs, modify the statement to output a
different message and the version of the operating system, as shown in the following
code:
Console.WriteLine("Hello from a Top Level Program!");
Console.WriteLine(Environment.OSVersion.VersionString);

In Solution Explorer, right-click the Chapter01 solution, select Set Startup Projects...,
set Current selection, and then click OK.

In Solution Explorer, click the TopLevelProgram project (or any file or folder within it),
and note that Visual Studio indicates that TopLevelProgram is now the startup project
by making the project name bold.

Navigate to Debug | Start Without Debugging to run the TopLevelProgram project,
and note the result, as shown in Figure 1.8:

' File Edit MView Git Project Build Debug Test Analyze Tools Extensions Window Help | Search{CuleQ) P

= || Debug =} Any CPU | |ToplevelProgram =| P ToplevelProgam = :‘ ; L5 Live Share Q m

Programecs: & X ToplevelProgram ciprey T ¥ = B ERRERR N - Box
O 2] TopLevelProgram o ‘r -l g -2 ﬁf_i é‘r:
1 f/ See https://aka.ms/new-console-template for more information - B = = S ¥
Console . WriteLine("Hello from a Tep Level Program!"): [3 solution "Chapter01’ (2 of 2 prajects}
Console. Writeline(Environment . DSVersion.VersionString); b B Hellocs

4[4 TopleveiProgram
b & Dependencies
b 3N imports

bin

a

Figure 1.8: Running a top-level program in a Visual Studio solution with two projects on Windows

[23]

Hello, C#! Welcome, .NET!

Building console apps using Visual Studio
Code

The goal of this section is to showcase how to build a console app using Visual Studio Code.

If you never want to try Visual Studio Code or .NET Interactive Notebooks, then please feel
free to skip this section and the next, and then continue with the Reviewing the folders and files for
projects section.

Both the instructions and screenshots in this section are for Windows, but the same actions will
work with Visual Studio Code on the macOS and Linux variants.

The main differences will be native command-line actions such as deleting a file: both the
command and the path are likely to be different on Windows or macOS and Linux. Luckily,
the dotnet command-line tool will be identical on all platforms.

Managing multiple projects using Visual Studio
Code

Visual Studio Code has a concept named a workspace that allows you to open and manage
multiple projects simultaneously. We will use a workspace to manage the two projects that you
will create in this chapter.

Writing code using Visual Studio Code

Let's get started writing code!

Start Visual Studio Code.
Make sure that you do not have any open files, folders, or workspaces.

Navigate to File | Save Workspace As....

Ll

In the dialog box, navigate to your user folder on macOS (mine is named markjprice),
your Documents folder on Windows, or any directory or drive in which you want to
save your projects.

5. Click the New Folder button and name the folder Code. (If you completed the section
for Visual Studio 2022, then this folder will already exist.)

In the Code folder, create a new folder named Chaptere@1-vscode.

In the Chapterel-vscode folder, save the workspace as Chapterel.code-workspace.
8. Navigate to File | Add Folder to Workspace... or click the Add Folder button.

[24]

Chapter 01

9.

In the Chaptere1-vscode folder, create a new folder named HelloCs.

10. Select the HellocCs folder and click the Add button.

11.

12.

13.

14.

Navigate to View | Terminal.

We are deliberately going to use the older project template for NET

\/‘/ 5.0 to see what a full console application looks like. In the next section,

you will create a console application using .NET 6.0 and see what has
changed.

In TERMINAL, make sure that you are in the HelloCS folder, and then use the dotnet
command-line tool to create a new console app that targets .NET 5.0, as shown in the
following command:

dotnet new console -f net5.0

You will see that the dotnet command-line tool creates a new Console Application
project for you in the current folder, and the EXPLORER window shows the two files
created, HelloCS. csproj and Program.cs, and the obj folder, as shown in Figure 1.9:

®) Fite Edit ‘Selection View Go Run Terminal Help Chapterd (Warkspace]) - Visual Studio Code - (o K

CHAPTERD1 (woRksPace) [7 U0 &

TERMINAL

Ps CihCode\Chapterdl-vscode\HelloCss dot new console -f nets.@
The template "Console Application” was created successfully.

Pracessing post-creation actions...

Running "dotnet restore’ on C:\Code\Chapter@l-vscode\HelloCS\HelloCS.csprof. ..
Ts to restore...

\Chapter8l-vscode\HelloCS\HelloCS.csproj (in 75 ms).

> DUTLINE 1apterdl-vscote\Hellocss []

3 ILSPY DECOMPILED MEMBERS
¥ @oA0 @ ElHeloCSespro) fo R

Figure 1.9: The EXPLORER window will show that two files and a folder have been created

In EXPLORER, click on the file named Program. cs to open it in the editor window. The
first time that you do this, Visual Studio Code may have to download and install C#
dependencies like OmniSharp, NET Core Debugger, and Razor Language Server, if it
did not do this when you installed the C# extension or if they need updating. Visual
Studio Code will show progress in the Output window and eventually the message
Finished, as shown in the following output:

Installing C# dependencies...
Platform: win32, x86_64

Downloading package 'OmniSharp for Windows (.NET 4.6 / x64)' (36150

[25]

Hello, C#! Welcome, .NET!

Validating download...
Integrity Check succeeded.
Installing package 'OmniSharp for Windows (.NET 4.6 / x64)'

Downloading package '.NET Core Debugger (Windows / x64)' (45048

Validating download...
Integrity Check succeeded.
Installing package '.NET Core Debugger (Windows / x64)'

Downloading package 'Razor Language Server (Windows / x64)' (52344
Installing package 'Razor Language Server (Windows / x64)'

Finished

The preceding output is from Visual Studio Code on Windows.

\/V When run on macOS or Linux, the output will look slightly different,

but the equivalent components for your operating system will be
downloaded and installed.

15. Folders named obj and bin will have been created and when you see a notification
saying that required assets are missing, click Yes, as shown in Figure 1.10:

o] File Edit Selection View Go Run Termina! Help Program cs - Chapter0 (Workspace) - Vicual Studio Code - & ¥
@ EXPLORER C Programigs %
“ OPEN EDITORS HelloCs > € Progr
X € Progrom.cs 1 using System;

« CHAPTERO1 (WORKSPACE)
namespace HelloCs

4 {

v HelioCs

VELIGELLIE UL
Integrity Check succeeded.
Installing package ".NET Core Debugger (Windows / x54)°

Downloading package 'Razor Language Seo o
Done! y
Installing package "Razor Language Ser

Finished

2 OUTLINE
> ILSPY DECOMPILED MEMBERS

¥ @os0 @ FHelocs in1,Col1 Spaces:d UTF-BwithBOM CRIF €& f5

Figure 1.10: Warning message to add required build and debug assets

16. If the notification disappears before you can interact with it, then you can click the bell
icon in the far-right corner of the status bar to show it again.

[26]

Chapter 01

17. After a few seconds, another folder named .vscode will be created with some files that
are used by Visual Studio Code to provide features like IntelliSense during debugging,
which you will learn more about in Chapter 4, Writing, Debugging, and Testing Functions.

18. In Program.cs, modify line 9 so that the text that is being written to the console says

Hello, Ci#!
L Good Practice: Navigate to File | Auto Save. This toggle will save the
/@ annoyance of remembering to save before rebuilding your application
g each time.

Compiling and running code using the dotnet CLI

The next task is to compile and run the code:

1. Navigate to View | Terminal and enter the following command:

2. The output in the TERMINAL window will show the result of running your
application, as shown in Figure 1.11:

o] File Edit Selection View 'Go Run Terminal Help Programics - Chapter (Workspace] - Visua! Studio Code = (m] *
@ C© Programi.cs %
“* OPEN EDITORS alfal’s C Progr
X € Programes 1 using System;

' CHAPTERDT (WORKSPACE)
| namespace Hellols
< HelioCs:

4 f

> wicode
class Propram

> obj 6 { :
= HelloCs.caproj
© Programecs 7 static void Mainfstring[] args)

8 {

9 Console. WriteLine("Hello, C#!");

s

TERMINAL Tk £S s 1: cmd

C:\Codeh\Chapterdl -vscode\HelloCS>dotnet run
Helle, CH!
> OUTLINE

» ILSPY DECOMPILED MEMBERS C:yCodehChapteral -vscode'Hell ocs:l
¥ @oA0 @ BFlHelocs Lnd, Col2 Spacessd UTE-BwithBOM CRIF C&2 & 0

Figure 1.11: The output of running your first console application

Adding a second project using Visual Studio Code

Let's add a second project to our workspace to explore top-level programs:

1. In Visual Studio Code, navigate to File | Add Folder to Workspace....

[27]

Hello, C#! Welcome, .NET!

2.

In the Chaptero1-vscode folder, use the New Folder button to create a new folder
named TopLevelProgram, select it, and click Add.

Navigate to Terminal | New Terminal, and in the drop-down list that appears, select
TopLevelProgram. Alternatively, in EXPLORER, right-click the TopLevelProgram folder
and then select Open in Integrated Terminal.

In TERMINAL, confirm that you are in the TopLevelProgram folder, and then enter the
command to create a new console application, as shown in the following command:

dotnet new console

Good Practice: When using workspaces, be careful when entering
L commands in TERMINAL. Be sure that you are in the correct folder
‘@‘ before entering potentially destructive commands! That is why I got

4 N\
£ you to create a new terminal for TopLevelProgram before issuing the

command to create a new console app.

Navigate to View | Command Palette.

Enter omni, and then, in the drop-down list that appears, select OmniSharp: Select
Project.

In the drop-down list of two projects, select the TopLevelProgram project, and when
prompted, click Yes to add required assets to debug.

Good Practice: To enable debugging and other useful features, like
L code formatting and Go to Definition, you must tell OmniSharp which
- /@\' project you are actively working on in Visual Studio Code. You can

g quickly toggle active projects by clicking the project/folder to the
right of the flame icon on the left side of the status bar.

In EXPLORER, in the TopLevelProgram folder, select Program. cs, and then change the
existing statement to output a different message and also output the operating system
version string, as shown in the following code:

Console.WriteLine("Hello from a Top Level Program!");
Console.WriteLine(Environment.OSVersion.VersionString);

In TERMINAL, enter the command to run a program, as shown in the following
command:

[28]

Chapter 01

10. Note the output in the TERMINAL window, as shown in Figure 1.12:

») File Edit Selection Vew Go Run Jerminal Help Program.cs - Chepler0t (Workspace] - Visual Studio Code - B b8

“ CHAPTEROT (WORKSPACE) oplevelProgram ¥ € P

Console.Write
4 Console.Write

ina{"Helle from a Tap Level Pregram!|");
ine{Envircnment.08Version.VersionString);

TERMINAL EBLIG CONSOL T

B Top Level Pragram!
2 QUTLINE Micros ndows NT 18.¢.19843.8
> ILSPY DECOMPILED MEMBERS Ps C: ey Chapteral \'f.-:0:13'~_T0:‘Lc-\'f.".'b|‘-:|gr‘er.1-.- l

¥ ®oAo & B Toplevefrogram.csprof Lnd,Col 56 Spaces:d UTF-BwithBOM CRLF cf & 0

Figure 1.12: Running a top-level program in a Visual Studio Code workspace with two projects on Windows

If you were to run the program on macOS Big Sur, the environment operating system would be
different, as shown in the following output:

Hello from a Top Level Program!
Unix 11.2.3

Managing multiple files using Visual Studio Code

If you have multiple files that you want to work with at the same time, then you can put them
side by side as you edit them:

In EXPLORER, expand the two projects.
Open both Program. cs files from the two projects.

Click, hold, and drag the edit window tab for one of your open files to arrange them so
that you can see both files at the same time.

Exploring code using .NET Interactive
Notebooks

NET Interactive Notebooks makes writing code even easier than top-level programs.
It requires Visual Studio Code, so if you did not install it earlier, please install it now.

[29]

Hello, C#! Welcome, .NET!

Creating a notebook

First, we need to create a notebook:

In Visual Studio Code, close any open workspaces or folders.
Navigate to View | Command Palette.

Type .net inter, and then select .NET Interactive: Create new blank notebook,
as shown in Figure 1.13:

4 Eife Edit Selection Miew Go Run Jeérminal Help Welcame - Visuai Studic Code - =] *

NET Interactive: Create new blank notebook

More..

¥ QUTLINE

3 ILSPY DECOMPILED MEMBERS Show welorme p

Figure 1.13: Creating a new blank .NET notebook

4. When prompted to select the file extension, choose Create as '.dib’'.

.dib is an experimental file format defined by Microsoft to avoid
confusion and compatibility issues with the .ipynb format used by
Python interactive notebooks. The file extension was historically only

, for Jupyter notebooks that can contain an interactive (I) mix of data,

\/;p; Python code (PY), and output in a notebook file (NB). With .NET

Interactive Notebooks, the concept has expanded to allow a mix of
C#, F#, SQL, HTML, JavaScript, Markdown, and other languages.
.dib is polyglot, meaning it supports mixed languages. Conversion
between the .dib and .ipynb file formats is supported.

Select C# for the default language for code cells in the notebook.

If a newer version of .NET Interactive is available, you might have to wait for it to
uninstall the older version and install the newer one. Navigate to View | Output

and select .NET Interactive : diagnostics in the drop-down list. Please be patient. It
can take a few minutes for the notebook to appear because it has to start up a hosting
environment for .NET. If nothing happens after a few minutes, then close Visual Studio
Code and restart it.

[30]

Chapter 01

7. Once the NET Interactive Notebooks extension is downloaded and installed, the
OUTPUT window diagnostics will show that a Kernel process has started (your process
and port number will be different from the output below), as shown in the following
output, which has been edited to save space:

Extension started for VS Code Stable.

Kernel process 12516 Port 59565 is using tunnel uri http://
localhost:59565/

Writing and running code in a notebook

Next, we can write code in the notebook cells:

1. The first cell should already be set to C# (.NET Interactive), but if it is set to anything
else, then click the language selector in the bottom-right corner of the code cell and then
select C# (.NET Interactive) as the language mode for that cell, and note your other
choices of language for a code cell, as shown in Figure 1.14:

) File Edit Selection View Go ERun Terminal Help = Untitted-1.dib - Visusl Studio Code - o *
il
Q
=+ NO FOLDER OPENED C# [NET Interactive) [dotnet-interactive.csharp) - Current Language B NET Interactive
You have net yet opened a fol > b B - B
C# [NET Interactive
You can clone a repositary

apen 2 répository or pull

QUTPLIT FRMINAL WSO JMET Interactive : diagm =85 Sl

insaailed.mr_},ﬂ is added to the manifest file
c:\Usersimarkj\appData\Roami

dotnet- interactive-vscodey . ¢ MOTFICATIONS -
Kernel for "*DOTNET-INTERACT
Kernel process 9828 Port 57:
Kernel for 'untitled:Untitle
» OUTLINE Kernel process 19124 Port 57 Installing WNET Interactive version T.0:235707
7 ILSPY DECOMPILED MEMBERS

MNET Interactive installation complete,

Call tof T F

Figure 1.14: Changing the language for a code cell in a .NET Interactive notebook

2. Inside the C# (.NET Interactive) code cell, enter a statement to output a message to the
console, and note that you do not need to end the statement with a semicolon, as you
normally would in a full application, as shown in the following code:

Console.WriteLine("Hello, .NET Interactive!")

[31]

Hello, C#! Welcome, .NET!

3. Click the Execute Cell button to the left of the code cell and note the output that
appears in the gray box under the code cell, as shown in Figure 1.15:

M File Edit Selection View Go FRun Terminal Help » Untitled-1.dib - Visual Studic Code = m} X
Untitled-1.dic @ 18T

+ Code 4 Markdown [® Fun Al S5 Clear Outputs = Bl NET Interactive

v Console.Writeline{"Hello, .NET Interactive!”)
Execute Cell (Ctrl +Ait+Enter) |

Figure 1.15: Running code in a notebook and seeing the output below

Saving a notebook

Like any other file, we should save the notebook before continuing further:

1. Navigate to File | Save As....
2. Change to the Chaptere1-vscode folder and save the notebook as Chaptere1.dib.
3. Close the Chapterei.dib editor tab.

Adding Markdown and special commands to a
notebook

We can mix and match cells containing Markdown and code with special commands:

Navigate to File | Open File..., and select the Chaptere1.dib file.
If you are prompted with Do you trust the authors of these files?, click Open.

Hover your mouse above the code block and click + Markup to add a Markdown cell.

Ll

Type a heading level 1, as shown in the following Markdown:

Chapter 1 - Hello, C#! Welcome, .NET!
Mixing *rich* **text** and code is cool!

5. Click the tick in the top-right corner of the cell to stop editing the cell and view the
processed Markdown.

rearrange them.

\/‘/ If your cells are in the wrong order, then you can drag and drop to

[32]

Chapter 01

Hover between the Markdown cell and the code cell and click + Code.

Type a special command to output version information about .NET Interactive, as
shown in the following code:

#!about

8. Click the Execute Cell button and note the output, as shown in Figure 1.16:

o] File Edit Selection Miew Go Run Terminal Help Chapter@1.dib - Visual Studio Code - O b4
Chapterdl dib X M -«

: Code af code Chapter0l.dib » MeChapter 1 - Hello, C#! Welcome, .NET #labout
+ Code + Markdown [Run All =% Clear Outputs == B NET Interactive

Chapter 1 - Hello, C#! Welcome, .NET!

Mixing rich text and code is cool!

>» Dy 8 - W
ke #!about
01 NET | tl

.NET Interactive

© 2020 Microsoft Corporation

Version: 1.0.235701+3881a95164de75fca84f5f1102713606b7878044

Build date: 2021-07-31T09:15:30.19671052

https://github.com/dotnet/interactive

T+ Code T Markdewn
Console.WriteLine("Hello, .NET Interactive!")

0.1s C# (NET Interactive;

Hello, .NET Interactivel

Cell20f3 & 0

Figure 1.16: Mixing Markdown, code, and special commands in a .NET Interactive notebook

Executing code in multiple cells

When you have multiple code cells in a notebook, you must execute the preceding code cells
before their context becomes available in subsequent code cells:

1. At the bottom of the notebook, add a new code cell, and then type a statement to
declare a variable and assign an integer value, as shown in the following code:

int number = 8;

2. At the bottom of the notebook, add a new code cell, and then type a statement to output
the number variable, as shown in the following code:

Console.WriteLine(number);

[33]

Hello, C#! Welcome, .NET!

3. Note the second code cell does not know about the number variable because it was
defined and assigned in another code cell, aka context, as shown in Figure 1.17:

] Fil= Edit Selection Miew Go Bun Jerminal Help Chapterd1.dib - Visual Studic Code = =] *
Chapterdldib =

3 M Chapte

|I||
fia

4+ Code < Markdowr [Run al

int number = 8;

8 1= L == 3 -
b Console.Writel i"'-(ﬂ}i’!‘},’f_ﬁ);l §‘
| t vEEnteE b seut CE (NET interactive)

% @1A0 cellsofs & 0

Figure 1.17: The number variable does not exist in the current cell or context

4. In the first cell, click the Execute Cell button to declare and assign a value to the
variable, and then in the second cell, click the Execute Cell button to output the number
variable, and note that this works. (Alternatively, in the first cell, you can click the
Execute Cell and Below button.)

Good Practice: If you have related code split between two cells,
: remember to execute the preceding cell before executing the
\@l subsequent cell. At the top of the notebook, there are the following
- buttons - Clear Outputs and Run All These are very handy because
- you can click one and then the other to ensure that all code cells are
executed properly, as long as they are in the correct order.

Using .NET Interactive Notebooks for the code in
this book

Throughout the rest of the chapters, I will not give explicit instructions to use notebooks, but
the GitHub repository for the book has solution notebooks when appropriate. I expect many
readers will want to run my pre-created notebooks for language and library features covered
in Chapters 2 to 12, which they want to see in action and learn about without having to write a
complete application, even if it is just a console app:

https://github.com/markjprice/csl@dotnet6/tree/main/notebooks

Reviewing the folders and files for projects

In this chapter, you created two projects named HelloCS and TopLevelProgram.

[34]

https://github.com/markjprice/cs10dotnet6/tree/main/notebooks

Chapter 01

Visual Studio Code uses a workspace file to manage multiple projects. Visual Studio 2022 uses
a solution file to manage multiple projects. You also created a .NET Interactive notebook.

The result is a folder structure and files that will be repeated in subsequent chapters, although
with more than just two projects, as shown in Figure 1.18:

& Code & Chapterel-vscode
l& Chapterol Chapterel.dib
Chapter@l.sln Chapter@l.code-workspace
B)
& HelloCs f& HelloCs

HelloCS.csproj HelloCS. csproj
Program.cs Program.cs

f& TopLevelProgram & TopLevelProgram

TopLevelProgram.csproj TopLevelProgram.csproj

Program.cs Program.cs
L J

Figure 1.18: Folder structure and files for the two projects in this chapter

Understanding the common folders and files

Although .code-workspace and .sln files are different, the project folders and files such as
HelloCS and TopLevelProgram are identical for Visual Studio 2022 and Visual Studio Code. This
means that you can mix and match between both code editors if you like:

* In Visual Studio 2022, with a solution open, navigate to File | Add Existing Project...
to add a project file created by another tool.

* In Visual Studio Code, with a workspace open, navigate to File | Add Folder to
Workspace... to add a project folder created by another tool.

Good Practice: Although the source code, like the .csproj and
. cs files, is identical, the bin and obj folders that are automatically
| generated by the compiler could have mismatched file versions
\@’ that give errors. If you want to open the same project in both Visual
- Studio 2022 and Visual Studio Code, delete the temporary bin and
- obj folders before opening the project in the other code editor. This is
why I asked you to create a different folder for the Visual Studio Code
solutions in this chapter.

[35]

Hello, C#! Welcome, .NET!

Understanding the solution code on GitHub

The solution code in the GitHub repository for this book includes separate folders for Visual
Studio Code, Visual Studio 2022, and .NET Interactive notebook files, as shown in the following
list:

* Visual Studio 2022 solutions: https://github.com/markjprice/csl@dotnet6/tree/main/
vs4win

* Visual Studio Code solutions: https://github.com/markjprice/csl@dotnet6/tree/
main/vscode

* NET Interactive Notebook solutions: https://github.com/markjprice/cs1@dotnet6/
tree/main/notebooks

Good Practice: If you need to, return to this chapter to remind
yourself how to create and manage multiple projects in the code
L editor of your choice. The GitHub repository has step-by-step
‘,@\‘ instructions for four code editors (Visual Studio 2022 for Windows,
Z Visual Studio Code, Visual Studio 2022 for Mac, and JetBrains
Rider), along with additional screenshots: https://github.com/

markjprice/csl@dotnet6/blob/main/docs/code-editors/.

Making good use of the GitHub repository for
this book

Git is a commonly used source code management system. GitHub is a company, website, and
desktop application that makes it easier to manage Git. Microsoft purchased GitHub in 2018, so
it will continue to get closer integration with Microsoft tools.

I created a GitHub repository for this book, and I use it for the following;:

* To store the solution code for the book that can be maintained after the print
publication date.

* To provide extra materials that extend the book, like errata fixes, small improvements,
lists of useful links, and longer articles that cannot fit in the printed book.

* To provide a place for readers to get in touch with me if they have issues with the book.

Raising issues with the book

If you get stuck following any of the instructions in this book, or if you spot a mistake in the
text or the code in the solutions, please raise an issue in the GitHub repository:

[36]

https://github.com/markjprice/cs10dotnet6/tree/main/vs4win
https://github.com/markjprice/cs10dotnet6/tree/main/vs4win
https://github.com/markjprice/cs10dotnet6/tree/main/vscode
https://github.com/markjprice/cs10dotnet6/tree/main/vscode
https://github.com/markjprice/cs10dotnet6/tree/main/notebooks
https://github.com/markjprice/cs10dotnet6/tree/main/notebooks
https://github.com/markjprice/cs10dotnet6/blob/main/docs/code-editors/
https://github.com/markjprice/cs10dotnet6/blob/main/docs/code-editors/

Chapter 01

1. Use your favorite browser to navigate to the following link: https://github.com/
markjprice/csl@dotnet6/issues.

Click New Issue.
Enter as much detail as possible that will help me to diagnose the issue. For example:

1. Your operating system, for example, Windows 11 64-bit, or macOS Big Sur
version 11.2.3.

Your hardware, for example, Intel, Apple Silicon, or ARM CPU.

Your code editor, for example, Visual Studio 2022, Visual Studio Code, or
something else, including the version number.

As much of your code and configuration that you feel is relevant and necessary.
Description of expected behavior and the behavior experienced.
Screenshots (if possible).

Writing this book is a side hustle for me. I have a full-time job, so I mostly work on the book

at weekends. This means that I cannot always respond immediately to issues. But I want all

my readers to be successful with my book, so if I can help you (and others) without too much
trouble, then I will gladly do so.

Giving me feedback

If you'd like to give me more general feedback about the book, then the GitHub repository
README .md page has links to some surveys. You can provide the feedback anonymously, or if
you would like a response from me, then you can supply an email address. I will only use this
email address to answer your feedback.

I'love to hear from my readers about what they like about my book, as well as suggestions for
improvements and how they are working with C# and .NET, so don't be shy. Please get in
touch!

Thank you in advance for your thoughtful and constructive feedback.

Downloading solution code from the GitHub
repository

I use GitHub to store solutions to all the hands-on, step-by-step coding examples throughout
chapters and the practical exercises that are featured at the end of each chapter. You will find
the repository at the following link: https://github.com/markjprice/cs1@dotnets6.

[37]

https://github.com/markjprice/cs10dotnet6/issues
https://github.com/markjprice/cs10dotnet6/issues
https://github.com/markjprice/cs10dotnet6

Hello, C#! Welcome, .NET!

If you just want to download all the solution files without using Git, click the green Code
button and then select Download ZIP, as shown in Figure 1.19:

B markjprice [cs10dotnet6

<> Code (1) Issues 1"l Pull requests) Actions] Projects 7 Security |~ Insights

¥ main ~ ¥ 1branch © 0 tags Go to file m

e
9 markjprice Initial commit Bl Clone @

HTTPS GitHub CLI

Assals iR Commk https://github.con/markiprice/csied (7]
Chapter01 nitial commit Use Git or checkout with SYN using the web URL
Chapter02 Initial commit

[¥1 Open with GitHub Desktop
Chapter03 nitial commit
Chapter04 nitial commit [3) Download ZIP
Chapter05 Initial commit 13 minutes ago

Figure 1.19: Downloading the repository as a ZIP file

I recommend that you add the preceding link to your favorite bookmarks because I also use the
GitHub repository for this book for publishing errata (corrections) and other useful links.

Using Git with Visual Studio Code and the
command line

Visual Studio Code has support for Git, but it will use your operating system's Git installation,
so you must install Git 2.0 or later first before you get these features.

You can install Git from the following link: https://git-scm.com/download.

If you like to use a GUI, you can download GitHub Desktop from the following link: https://
desktop.github.com.

Cloning the book solution code repository

Let's clone the book solution code repository. In the steps that follow, you will use the Visual
Studio Code terminal, but you could enter the commands at any command prompt or terminal
window:

1. Create a folder named Repos-vscode in your user or Documents folder, or wherever you
want to store your Git repositories.
In Visual Studio Code, open the Repos-vscode folder.

Navigate to View | Terminal, and enter the following command:

git clone https://github.com/markjprice/csl@dotnet6.git

[38]

https://git-scm.com/download
https://desktop.github.com
https://desktop.github.com

Chapter 01

4. Note that cloning all the solutions for all of the chapters will take a minute or so, as
shown in Figure 1.20:

ﬂ Fite' Edit Selection WView Go Ron Terminal Help Repos-vicode - Visunt Stedio Code

EXPLORER

 OPEN EDITORS
* REPOS-VSCODE

ERMINAL TPUT DESUG CONSOLE 1 ¢md - =

Microsoft Windows [Version 18.8.19842.858]
{c) 2020 Microsoft Corporation. All rights reserved.

C:\Repos-vscoderpit clone https://github.com/markjprice/csiddotnete. git
Cloning into ' otnets' ...
remote: E objects: 536, done.

remote: Compressing objects: 10e% (!
remote: Total 536 (delta 182), reused 421 (delta 181), pack-reused @ eceiving objects: 91% (488/
Receiving cbjects: 188X (535/336), 16.93 MiB | 1.79 MiB/s, done.

ing deltas: 67% (122/182)

Resolving deltas: 18@% (182/182), done.

> OUTUINE

> TIMELINE
> ILSPY DECOMPILED MEMBERS €:\Repas-vscodes]

Pmain O Bodo

Figure 1.20: Cloning the book solution code using Visual Studio Code

Looking for help

This section is all about how to find quality information about programming on the web.

Reading Microsoft documentation

The definitive resource for getting help with Microsoft developer tools and platforms is
Microsoft Docs, and you can find it at the following link: https://docs.microsoft.com/.

Getting help for the dotnet tool

At the command line, you can ask the dotnet tool for help with its commands:

1. To open the official documentation in a browser window for the dotnet new command,
enter the following at the command line or in the Visual Studio Code terminal:

dotnet help new

2. To get help output at the command line, use the -h or --help flag, as shown in
the following command:

dotnet new console -h

3. You will see the following partial output:

Console Application (C#)
Author: Microsoft

Description: A project for creating a command-line application that can
run on .NET Core on Windows, Linux and macOS

[39]

https://docs.microsoft.com/

Hello, C#! Welcome, .NET!

Options:
-f|--framework. The target framework
net6.0
net5.0
netcoreapp3.1.
netcoreapp3.0.
Default: net6.0

--langVersion
Optional

Sets langVersion in the

for the project.
- Target net6.0
- Target net5.0
- Target netcoreapp3.1
- Target netcoreapp3.0

created project file text -

Getting definitions of types and their members

One of the most useful features of a code editor is Go To Definition. It is available in Visual
Studio Code and Visual Studio 2022. It will show what the public definition of the type or
member looks like by reading the metadata in the compiled assembly.

Some tools, such as ILSpy .NET Decompiler, will even reverse-engineer from the metadata and

IL code back into C# for you.

Let's see how to use the Go To Definition feature:

1. In Visual Studio 2022 or Visual Studio Code, open the solution/workspace named

Chapterol.

2. Inthe HelloCS project, in Program. cs, in Main, enter the following statement to declare

an integer variable named z:

int z;

3. (lick inside int and then right-click and choose Go To Definition.

In the code window that appears, you can see how the int data type is defined, as

shown in Figure 1.21:

off rie Edt View Git Project
Hig- B8 "l

= | Debug = AnyCPU = P HelloCs =

I (%] Systemn Runtime =i Systemint3z

-inamespace System
i
public readonly struct '.'ml.‘!:i : IComparable, IComparab
{
public const TntiZ MaxValue = 2147433547;
.. public const Inti} Minvalue = -2147483648;

it L] »

Error List =

(J Ready

Build Debug Test Analyze Tools Extensions Window
W B L [] :

l1a2¢Int3d», IConvertible, IFquatable

Help Search (Crisq) R Chapteri - a W

|85 Live Share 40

Int32 {from metadata] B T X GRS PE R SR

bk @dl o-5 8B

|
ey loken=bB2E5f 111 1d50aa : 1
searcn Solubon Exf or (CRni+)

37 Sohition “Chapterd* (2 of 2 projects)
4 [HelloCs
b &8 Dependencies
b HY impents
b L3 bin
b [cb
B €* Programes
4 [ToplevelProgram

b 5 Dependencies

- € Programics

CRIF

Ir:15 Ch3l Col34 SPC

4 Add to Source Control » &

Figure 1.21: The int data type metadata

[40]

Chapter 01

You can see that int:
* Is defined using the struct keyword
* Isin the System.Runtime assembly
* Isin the System namespace
* Isnamed Int32
* Is therefore an alias for the System.Int32 type
* Implements interfaces such as IComparable
* Has constant values for its maximum and minimum values

e Has methods such as Parse

Good Practice: When you try to use Go To Definition in Visual
| Studio Code, you will sometimes see an error saying No definition
\@l found. This is because the C# extension does not know about the
current project. To fix this issue, navigate to View | Command
Palette, enter omni, select OmniSharp: Select Project, and then select
the project that you want to work with.

Right now, the Go To Definition feature is not that useful to you because you do not
yet know what all of this information means.

By the end of the first part of this book, which consists of Chapters 2 to 6, and which
teaches you about C#, you will know enough for this feature to become very handy.

In the code editor window, scroll down to find the Parse method with a single string
parameter on line 106, and the comments that document it on lines 86 to 105, as shown
in Figure 1.22:

Dq File Edit View Git Project Bulld Debug Test Analyze Tools Extensions Windsw Help Search (Cuied) T Chapter0l = 0} X
-0 Bt WY - <] pebug - AnycRU - B Hellocs = | BB i TR n e Ik TS |2 LveShare

[NE RPN IS Bl ~ & Sojution Explorer -

N -ti‘ Systeminti2 —|EI MaxValue - o RAB m-5 gi@ }.'..i
86 = M = 3
87 /1 Summary: Search Selution Explarer (Ctrls 2.
88 2 Converts the string reprosentation of a number to its 32-bit signed integer eguiva 1 solutien 'ChapterD1’ (2 of 2 projects)
& H 4 [Hellocs
%8 /I Paraseters: P & Dependencies
a1 P b B Imports
a3 i & string containing a number to convert. b tin
93 i b Ciobj

// Returns: b

: . C* Program.cs
4 A 32-bit signed integer equivalent to the number contained in s,

4 [ToplevelProgram
B ' Dependencies

/{ Exceptions:

97 £ Py
28 M T:System. ArgumentNullException: -l

99 £ 5 is null.

lae ’i

1al Fr T:System. FormatException:

182 M s is not in the correct format.

183 M

184 £ T18ystem. OverflowException:

185 I s represents a number less than System,Int32.MinValue or greater than System.Int32
186 public static [nt32 Parse{string s); hd

& No issues found F 4 » Im15 Ch31 Cob34 SPC CRIF

+

Add to Sotrce Control = M

Figure 1.22: The comments for the Parse method with a string parameter

[41]

Hello, C#! Welcome, .NET!

In the comments, you will see that Microsoft has documented the following;:

A summary that describes the method.
Parameters like the string value that can be passed to the method.
The return value of the method, including its data type.

Three exceptions that might occur if you call this method, including
ArgumentNullException, FormatException, and OverflowException. Now, we know that
we could choose to wrap a call to this method in a try statement and which exceptions

to catch.

Hopefully, you are getting impatient to learn what all this means!

Be patient for a little longer. You are almost at the end of this chapter, and in the next chapter,
you will dive into the details of the C# language. But first, let's see where else you can look for

help.

Looking for answers on Stack Overflow

Stack Overflow is the most popular third-party website for getting answers to difficult
programming questions. It's so popular that search engines such as DuckDuckGo have a

special way to write a query to search the site:

1. Start your favorite web browser.
2. Navigate to DuckDuckGo. com, enter the following query, and note the search results,

which are also shown in Figure 1.23:

Iso securestring

Q
= ctackoverflow Producis Customers Use cases securestring [T Sign up
_'.-."r
Home Search Results Advanced Search Tips B Microsoft Azute
UBLIC
Reaulls for securestring . .
© Stack Overfiow | Build and develop apps with
Togs securesiring Search Azure, Free until you say
otherwise.
Usars s
ks 500 results _Rr}le\fance | Newest | More ~ Try Azure Free 5 ' =
i Whas e 179 Q: When would | need a SecureString in NET? . _— H
), First 10 Free verea I'm trying to grok the purpose of NET's SecureString. From MSDN: An instance
of the Syslern. Strng class is both immutable and, when no longer needed,
cannol be prog for ... from puter memaory. A
SecureString object is similar to a String object in that it has a lext value,
However, the valug of a § String object is encrypted, can be
modified .
) R T asked Sep 26 '08 by Richard Tessian
Margan yborsasurify

Figure 1.23: Stack Overflow search results for securestring

[42]

DuckDuckGo.com

Chapter 01

Searching for answers using Google

You can search Google with advanced search options to increase the likelihood of finding what
you need:

1. Navigate to Google.

2. Search for information about garbage collection using a simple Google query, and
note that you will probably see a lot of ads for garbage collection services in your local
area before you see the Wikipedia definition of garbage collection in computer science.

3. Improve the search by restricting it to a useful site such as Stack Overflow, and
by removing languages that we might not care about, such as C++, Rust, and Python, or
by adding C# and .NET explicitly, as shown in the following search query:

garbage collection site:stackoverflow.com +C# -Java

Subscribing to the official .NET blog

To keep up to date with .NET, an excellent blog to subscribe to is the official .NET Blog, written
by the .NET engineering teams, and you can find it at the following link: https://devblogs.
microsoft.com/dotnet/.

Watching Scott Hanselman's videos

Scott Hanselman from Microsoft has an excellent YouTube channel about computer stuff they
didn't teach you: http://computerstufftheydidntteachyou.com/.

I recommend it to everyone working with computers.

Practicing and exploring

Let's now test your knowledge and understanding by trying to answer some questions, getting
some hands-on practice, and going into the topics covered throughout this chapter in greater
detail.

Exercise 1.1 — Test your knowledge

Try to answer the following questions, remembering that although most answers can be found
in this chapter, you should do some online research or code writing to answer others:

1. Is Visual Studio 2022 better than Visual Studio Code?
2. Is .NET 6 better than .NET Framework?

[43]

https://devblogs.microsoft.com/dotnet/
https://devblogs.microsoft.com/dotnet/
http://computerstufftheydidntteachyou.com/

Hello, C#! Welcome, .NET!

What is .NET Standard and why is it still important?

Why can a programmer use different languages, for example, C# and F#, to write
applications that run on .NET?

5. What is the name of the entry point method of a .NET console application and how
should it be declared?

What is a top-level program and how do you access any command-line arguments?
What do you type at the prompt to build and execute C# source code?

What are some benefits of using .NET Interactive Notebooks to write C# code?

0 *® N

Where would you look for help for a C# keyword?

10. Where would you look for solutions to common programming problems?

to download from a link in the README on the GitHub repository:
https://github.com/markjprice/csledotnets.

D’ Appendix, Answers to the Test Your Knowledge Questions, is available
\”/

Exercise 1.2 — Practice C# anywhere

You don't need Visual Studio Code or even Visual Studio 2022 for Windows or Mac to write
C#. You can go to .NET Fiddle - https://dotnetfiddle.net/ - and start coding online.

Exercise 1.3 — Explore topics

A book is a curated experience. I have tried to find the right balance of topics to include in the
printed book. Other content that I have written can be found in the GitHub repository for this
book.

I believe that this book covers all the fundamental knowledge and skills a C# and .NET
developer should have or be aware of. Some longer examples are best included as links to
Microsoft documentation or third-party article authors.

Use the links on the following page to learn more details about the topics covered in this
chapter:

https://github.com/markjprice/csl@dotnet6/blob/main/book-1inks.md#chapter-1---hello-
c-welcome-net

[44]

https://dotnetfiddle.net/
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-1---hello-c-welcome-net
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-1---hello-c-welcome-net
https://github.com/markjprice/cs10dotnet6

Chapter 01

Summary

In this chapter, we:

* Set up your development environment.

¢ Discussed the similarities and differences between modern .NET, .NET Core, NET
Framework, Xamarin, and .NET Standard.

* Used Visual Studio Code with the NET SDK and Visual Studio 2022 for Windows to
create some simple console applications.

* Used .NET Interactive Notebooks to execute snippets of code for learning.
* Learned how to download the solution code for this book from a GitHub repository.

* And, most importantly, learned how to find help.

In the next chapter, you will learn how to "speak" C#.

[45]

02

Speaking C#

This chapter is all about the basics of the C# programming language. Over the course of

this chapter, you'll learn how to write statements using the grammar of C#, as well as being
introduced to some of the common vocabulary that you will use every day. In addition to this,
by the end of the chapter, you'll feel confident in knowing how to temporarily store and work
with information in your computer's memory.

This chapter covers the following topics:

* Introducing the C# language
* Understanding C# grammar and vocabulary
* Working with variables

* Exploring more about console applications

Introducing the C# language

This part of the book is about the C# language — the grammar and vocabulary that you will use
every day to write the source code for your applications.

Programming languages have many similarities to human languages, except that in
programming languages, you can make up your own words, just like Dr. Seuss!

In a book written by Dr. Seuss in 1950, If I Ran the Zoo, he states this:

"And then, just to show them, I'll sail to Ka-Troo And Bring Back an It-Kutch, a Preep, and a
Proo, A Nerkle, a Nerd, and a Seersucker, too!"

Understanding language versions and features

This part of the book covers the C# programming language and is written primarily for
beginners, so it covers the fundamental topics that all developers need to know, from declaring
variables to storing data to how to define your own custom data types.

[47]

Speaking C#

This book covers features of the C# language from version 1.0 up to the latest version 10.0.

If you already have some familiarity with older versions of C# and are excited to find out
about the new features in the most recent versions of C#, I have made it easier for you to jump
around by listing language versions and their important new features below, along with the
chapter number and topic title where you can learn about them.

C#1.0

C# 1.0 was released in 2002 and included all the important features of a statically typed object-
oriented modern language, as you will see throughout Chapters 2 to 6.

C# 2.0

C# 2.0 was released in 2005 and focused on enabling strong data typing using generics, to
improve code performance and reduce type errors, including the topics listed in the following
table:

Feature Chapter | Topic
Nullable value types 6 Making a value type nullable
Generics 6 Making types more reusable with generics

C# 3.0

C# 3.0 was released in 2007 and focused on enabling declarative coding with Language
INtegrated Queries (LINQ) and related features like anonymous types and lambda
expressions, including the topics listed in the following table:

Feature Chapter | Topic

Implicitly typed local variables | 2 Inferring the type of a local variable

All topics in Chapter 11, Querying and Manipulating Data

LINQ 1 Using LINQ

C#4.0

C# 4.0 was released in 2010 and focused on improving interoperability with dynamic languages
like F# and Python, including the topics listed in the following table:

Feature Chapter | Topic
Dynamic types 2 Storing dynamic types
Named/optional arguments 5 Optional parameters and named arguments

[48]

Chapter 02

C#5.0

C# 5.0 was released in 2012 and focused on simplifying asynchronous operation support
by automatically implementing complex state machines while writing what looks like
synchronous statements, including the topics listed in the following table:

Feature Chapter Topic

Simplified asynchronous tasks 12 Understanding async and await

C#6.0

C# 6.0 was released in 2015 and focused on minor refinements to the language, including the
topics listed in the following table:

Feature Chapter Topic

static imports 2 Simplifying the usage of the console
Interpolated strings 2 Displaying output to the user
Expression bodied members 5 Defining read-only properties

C#7.0

C# 7.0 was released in March 2017 and focused on adding functional language features like
tuples and pattern matching, as well as minor refinements to the language, including the topics
listed in the following table:

Feature Chapter Topic

Binary literals and digit separators |2 Storing whole numbers

Pattern matching Pattern matching with the if statement

3

out variables 5
Tuples 5
6

Local functions

Controlling how parameters are passed

Combining multiple values with tuples

Defining local functions

C#7.1

C# 7.1 was released in August 2017 and focused on minor refinements to the language,
including the topics listed in the following table:

Feature Chapter Topic

Default literal expressions 5 Setting fields with default literal

Inferred tuple element names 5 Inferring tuple names

async Main 12 Improving responsiveness for console apps

[49]

Speaking C#

C#T7.2

C# 7.2 was released in November 2017 and focused on minor refinements to the language,
including the topics listed in the following table:

Feature Chapter Topic

Leading underscores in numeric literals | 2 Storing whole numbers

Non-trailing named arguments Optional parameters and named arguments

5
private protected access modifier 5 Understanding access modifiers
5

You can test == and ! = with tuple types Comparing tuples

C#7.3

C# 7.3 was released in May 2018 and focused on performance-oriented safe code that improves
ref variables, pointers, and stackalloc. These are advanced and rarely needed for most
developers, so they are not covered in this book.

C#8

C# 8 was released in September 2019 and focused on a major change to the language related to
null handling, including the topics listed in the following table:

Feature Chapter | Topic

Nullable reference types 6 Making a reference type nullable

Switch expressions 3 Simplifying switch statements with switch expressions
Default interface methods 6 Understanding default interface methods

C#9

C# 9 was released in November 2020 and focused on record types, refinements to pattern
matching, and minimal-code console apps, including the topics listed in the following table:

Feature Chapter | Topic

Minimal-code console apps 1 Top-level programs

Target-typed new 2 Using target-typed new to instantiate objects
Enhanced pattern matching |5 Pattern matching with objects

Records 5 Working with records

C#10

C# 10 was released in November 2021 and focused on features that minimize the amount of
code needed in common scenarios, including the topics listed in the following table:

[50]

Chapter 02

Feature Chapter Topic

Global namespace imports Importing namespaces

Constant string literals Formatting using interpolated strings

File-scoped namespaces Simplifying namespace declarations

Required properties Requiring properties to be set during instantiation

Record structs Working with record struct types

N[N |G NN

Null parameter checks Checking for null in method parameters

Understanding C# standards

Over the years, Microsoft has submitted a few versions of C# to standards bodies, as shown in
the following table:

C# version ECMA standard ISO/IEC standard

1.0 ECMA-334:2003 ISO/IEC 23270:2003
2.0 ECMA-334:2006 ISO/IEC 23270:2006
5.0 ECMA-334:2017 ISO/IEC 23270:2018

The standard for C# 6 is still a draft and work on adding C# 7 features is progressing. Microsoft
made C# open source in 2014.

There are currently three public GitHub repositories for making the work on C# and related
technologies as open as possible, as shown in the following table:

Description Link

C# language design https://github.com/dotnet/csharplang
Compiler implementation https://github.com/dotnet/roslyn

Standard to describe the language https://github.com/dotnet/csharpstandard

Discovering your C# compiler versions

NET language compilers for C# and Visual Basic, also known as Roslyn, along with a separate
compiler for F#, are distributed as part of the NET SDK. To use a specific version of C#, you
must have at least that version of the NET SDK installed, as shown in the following table:

.NET SDK Roslyn compiler Default C# language
1.0.4 2.0-22 7.0

114 23-24 7.1

212 26-27 7.2

2.1.200 2.8-2.10 7.3

3.0 3.0-34 8.0

5.0 3.8 9.0

6.0 3.9-3.10 10.0

[51]

https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn
https://github.com/dotnet/csharpstandard

Speaking C#

When you create class libraries then you can choose to target .NET Standard as well as versions
of modern .NET. They have default C# language versions, as shown in the following table:

NET Standard C#
2.0 7.3
21 8.0

How to output the SDK version

Let's see what .NET SDK and C# language compiler versions you have available:

On macOS, start Terminal. On Windows, start Command Prompt.

To determine which version of the NET SDK you have available, enter the following
command:

dotnet --version

3. Note the version at the time of writing is 6.0.100, indicating that it is the initial version
of the SDK without any bug fixes or new features yet, as shown in the following output:

6.0.100

Enabling a specific language version compiler

Developer tools like Visual Studio and the dotnet command-line interface assume that you
want to use the latest major version of a C# language compiler by default. Before C# 8.0 was
released, C# 7.0 was the latest major version and was used by default. To use the improvements
in a C# point release like 7.1, 7.2, or 7.3, you had to add a <LangVersion> configuration element
to the project file, as shown in the following markup:

<LangVersion>7.3</LangVersion>

After the release of C# 10.0 with .NET 6.0, if Microsoft releases a C# 10.1 compiler and you
want to use its new language features then you will have to add a configuration element to
your project file, as shown in the following markup:

<LangVersion>10.1</LangVersion>

Potential values for the <LangVersion> are shown in the following table:

LangVersion Description
7,71,72,73
Entering a specific version number will use that compiler if it has been installed.
8,9,10
. Uses the highest major number, for example, 7.0 in August 2019, 8.0 in October
latestmajor

2019, 9.0 in November 2020, 10.0 in November 2021.

[52]

Chapter 02

latest Uses the highest major and highest minor number, for example, 7.2 in 2017, 7.3 in
2018, 8 in 2019, perhaps 10.1 in early 2022.
review Uses the highest available preview version, for example, 10.0 in July 2021 with
pre .NET 6.0 Preview 6 installed.

After creating a new project, you can edit the .csproj file and add the <LangVersion> element,
as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net6.0</TargetFramework>
<LangVersion>preview</LangVersion>
</PropertyGroup>

</Project>

Your projects must target net6.0 to use the full features of C# 10.

| Good Practice: If you are using Visual Studio Code and you have not done
\@’ so already, install the Visual Studio Code extension named MSBuild project
NUR tools. This will give you IntelliSense while editing . csproj files, including

- making it easy to add the <LangVersion> element with appropriate values.

Understanding C# grammar and vocabulary

To learn simple C# language features, you can use .NET Interactive Notebooks, which remove
the need to create an application of any kind.

To learn some other C# language features, you will need to create an application. The simplest
type of application is a console application.

Let's start by looking at the basics of the grammar and vocabulary of C#. Throughout this
chapter, you will create multiple console applications, with each one showing related features
of the C# language.

Showing the compiler version

We will start by writing code that shows the compiler version:

1. If you've completed Chapter 1, Hello, C#! Welcome, .NET!, then you will already have a
Code folder. If not, then you'll need to create it.

[53]

Speaking C#

2. Use your preferred code editor to create a new console app, as defined in the following
list:

Project template: Console Application [C#] / console
Workspace/solution file and folder: Chaptere2
Project file and folder: Vocabulary

| Good Practice: If you have forgotten how, or did not complete
\@’ the previous chapter, then step-by-step instructions for creating a
workspace/solution with multiple projects are given in Chapter 1,
Hello, C#! Welcome, .NET!.

3. Open the Program.cs file, and at the top of the file, under the comment, add a statement
to show the C# version as an error, as shown in the following code:

f#terror version

4. Run the console application:
1. In Visual Studio Code, in a terminal, enter the command dotnet run.
2. In Visual Studio, navigate to Debug | Start Without Debugging. When
prompted to continue and run the last successful build, click No.

5. Note the compiler version and language version appear as a compiler error message
number €S8304, as shown in Figure 2.1:

o Chapterd? e | b4

‘;I |8 Live Share A9 m

g File Edit View Git Project Build [ebug Test Agalyre TJools Extensions Window Help

Y W

B-SBB| 0 - -|loew -l -] B voabuiay - D

i Programics. & X = & solution Explorer ol o

B 5 Vocabulary -l | s op B-oa8 “'i]
1 // See https://aka.ms/new-conscle-template for more information a
2 | #error version gl Seoch Solution Bxplorer {Culs) Pl
Consolo.Writeline("Hello, Werld!i™); R solition ‘Chapterd2’ (1 of 1 project)
u + B 4 [Vocabulary
W% @ A0 = S| W o« » In2 Ch15 SPC CRIF b #8 Dependancies
€% Programcs

Error List

ode Description

@ csioze #emor version' Vocabulary Program.cs 2
Compiter versicn:

© csa304 '400-3.21402.23 (d51d1aT3) Vacabulany Pregram.cs 2 Active
Language versson: 10.0.

Saolution Explorer

¢ Selec

1 Add to Source Control =

Figure 2.1: A compiler error that shows the C# language version

6. The error message in the Visual Studio Code PROBLEMS window or Visual Studio
Error List window says Compiler version: '4.8.0..." with language version 10.@.

7. Comment out the statement that causes the error, as shown in the following code:

// #error version

8. Note that the compiler error messages disappear.

[54]

Chapter 02

Understanding C# grammar

The grammar of C# includes statements and blocks. To document your code, you can use
comments.

L Good Practice: Comments should not be the only way that you document

‘,@\' your code. Choosing sensible names for variables and functions, writing unit

S tests, and creating actual documents are other ways to document your code.

Statements

In English, we indicate the end of a sentence with a full stop. A sentence can be composed of
multiple words and phrases, with the order of words being part of the grammar. For example,
in English, we say "the black cat."

The adjective, black, comes before the noun, cat. Whereas French grammar has a different order;
the adjective comes after the noun: "le chat noir." What's important to take away from this is
that the order matters.

C# indicates the end of a statement with a semicolon. A statement can be composed of multiple
variables and expressions. For example, in the following statement, totalPrice is a variable
and subtotal + salesTax is an expression:

var totalPrice = subtotal + salesTax;

The expression is made up of an operand named subtotal, an operator +, and another operand
named salesTax. The order of operands and operators matters.

Comments

When writing your code, you're able to add comments to explain your code using a double
slash, //. By inserting // the compiler will ignore everything after the // until the end of the
line, as shown in the following code:

var totalPrice = subtotal + salesTax;

To write a multiline comment, use /* at the beginning and */ at the end of the comment, as
shown in the following code:

[55]

Speaking C#

Good Practice: Well-designed code, including function signatures with
L well-named parameters and class encapsulation, can be somewhat self-
',@\' documenting. When you find yourself putting too many comments and
= explanations in your code, ask yourself: can I rewrite, aka refactor, this code to

make it more understandable without long comments?

Your code editor has commands to make it easier to add and remove comment characters, as
shown in the following list:

* Visual Studio 2022 for Windows: Navigate to Edit | Advanced | Comment Selection
or Uncomment Selection

* Visual Studio Code: Navigate to Edit | Toggle Line Comment or Toggle Block

Comment
: Good Practice: You comment code by adding descriptive text above
N\ 7/ .
@ or after code statements. You comment out code by adding comment
- characters before or around statements to make them inactive.
- Uncommenting means removing the comment characters.

Blocks

In English, we indicate a new paragraph by starting a new line. C# indicates a block of code
with the use of curly brackets, { }.

Blocks start with a declaration to indicate what is being defined. For example, a block can
define the start and end of many language constructs including namespaces, classes, methods,
or statements like foreach.

You will learn more about namespaces, classes, and methods later in this chapter and
subsequent chapters but to briefly introduce some of those concepts now:

* A namespace contains types like classes to group them together.

* A class contains the members of an object including methods.

* A method contains statements that implement an action that an object can take.

Examples of statements and blocks

In the project template for console apps when targeting .NET 5.0, note that examples of the
grammar of C# have been written for you by the project template. I've added some comments
to the statements and blocks, as shown in the following code:

using System;

namespace Basics

{

class Program

{

[56]

Chapter 02

static void Main(string[] args)
{
Console.WriteLine("Hello World!");
¥
}
¥

Understanding C# vocabulary

The C# vocabulary is made up of keywords, symbol characters, and types.

Some of the predefined, reserved keywords that you will see in this book include using,
namespace, class, static, int, string, double, bool, if, switch, break, while, do, for, foreach,
and, or, not, record, and init.

Some of the symbol characters that you will see include ", *, +, -, *, /, %, @ and $.

There are other contextual keywords that only have a special meaning in a specific context.

However, that still means that there are only about 100 actual C# keywords in the language.

Comparing programming languages to human

languages

The English language has more than 250,000 distinct words, so how does C# get away with
only having about 100 keywords? Moreover, why is C# so difficult to learn if it has only
0.0416% of the number of words in the English language?

One of the key differences between a human language and a programming language is that
developers need to be able to define the new "words" with new meanings. Apart from the
about 100 keywords in the C# language, this book will teach you about some of the hundreds
of thousands of "words" that other developers have defined, but you will also learn how to
define your own "words."

Programmers all over the world must learn English because most programming languages use
English words such as namespace and class. There are programming languages that use other
human languages, such as Arabic, but they are rare. If you are interested in learning more, this
YouTube video shows a demonstration of an Arabic programming language: https://youtu.
be/dk08cdwfevs.

Changing the color scheme for C# syntax

By default, Visual Studio Code and Visual Studio show C# keywords in blue to make them
easier to differentiate from other code. Both tools allow you to customize the color scheme:

1. In Visual Studio Code, navigate to Code | Preferences | Color Theme (it is on the File
menu on Windows).

[571]

https://youtu.be/dkO8cdwf6v8
https://youtu.be/dkO8cdwf6v8

Speaking C#

2.

Select a color theme. For reference, I'll use the Light+ (default light) color theme so that
the screenshots look good in a printed book.

In Visual Studio, navigate to Tools | Options.

In the Options dialog box, select Fonts and Colors, and then select the display items
that you would like to customize.

Help for writing correct code

Plain text editors such as Notepad don't help you write correct English. Likewise, Notepad
won't help you write correct C# either.

Microsoft Word can help you write English by highlighting spelling mistakes with red
squiggles, with Word saying that "icecream" should be ice-cream or ice cream, and grammatical
errors with blue squiggles, such as a sentence should have an uppercase first letter.

Similarly, Visual Studio Code's C# extension and Visual Studio help you write C# code
by highlighting spelling mistakes, such as the method name should be WriteLine with an
uppercase L, and grammatical errors, such as statements that must end with a semicolon.

The C# extension constantly watches what you type and gives you feedback by highlighting
problems with colored squiggly lines, similar to that of Microsoft Word.

Let's see it in action:

4.

In Program. cs, change the L in the WriteLine method to lowercase.
Delete the semicolon at the end of the statement.

In Visual Studio Code, navigate to View | Problems, or in Visual Studio navigate to
View | Error List, and note that a red squiggle appears under the code mistakes and
details are shown, as you can see in Figure 2.2:

O e Edt View Gt Pioject Buld Debug Tes Apalyze Tools Extensione Windew Help | Sewrch cuie0) P chapteriz - o o
: -2 EHE|9 T - Debug -!'nr_v,«r:P_u = P vocabalary * P [0S = e S Bl e T 12 Uveshars & m

-

a Solution Explorer
El 51 vocabulary
1 -/ See hitps://aka.ms/nem-console-teaplate for more infermation
2 /{ #error version

3 aI

Al b-coE &
b Cnlisk = p_}.

. aplerda 1 6f 1 preject]
4 [& Vocabulary
b #F Dependencies

C2% Program.cs

Ao e sl #e P Ini3 Ch35 SPC CRIF

Entire Sclution *| [0 2 Enou-:' 'A 0 Wiamings @ 0 Messages I_‘5| Build + IntelliSense | search Error List P~
? Code Description Project Fite Line * Suppression State

@ 51002 | expected Viocabulary Program.cs 3 Active

O o ‘Conscle’ does not contain a

- Pr .C5 Acti
definition for "Writeline' iocahulary g 3 et

Salution Explorer |8

]

4 Select Repesitory ~

Figure 2.2: The Error List window showing two compile errors

Fix the two coding errors.

[58]

Chapter 02

Importing namespaces

System is a namespace, which is like an address for a type. To refer to someone's location
exactly, you might use Oxford.HighStreet.BobSmith, which tells us to look for a person named
Bob Smith on the High Street in the city of Oxford.

System.Console.WriteLine tells the compiler to look for a method named WriteLine in a type
named Console in a namespace named System. To simplify our code, the Console Application
project template for every version of .NET before 6.0 added a statement at the top of the code
file to tell the compiler to always look in the System namespace for types that haven't been
prefixed with their namespace, as shown in the following code:

using System;

We call this importing the namespace. The effect of importing a namespace is that all available
types in that namespace will be available to your program without needing to enter the
namespace prefix and will be seen in IntelliSense while you write code.

\/;p,> .NET Interactive notebooks have most namespaces imported automatically.

Implicitly and globally importing namespaces

Traditionally, every .cs file that needs to import namespaces would have to start with using
statements to import those namespaces. Namespaces like System and System.Ling are needed
in almost all . cs files, so the first few lines of every .cs file often had at least a few using
statements, as shown in the following code:

using System;
using System.Ling;
using System.Collections.Generic;

When creating websites and services using ASP.NET Core, there are often dozens of
namespaces that each file would have to import.

C# 10 introduces some new features that simplify importing namespaces.

First, the global using statement means you only need to import a namespace in one .cs file
and it will be available throughout all . cs files. You could put global using statements in the
Program.cs file but I recommend creating a separate file for those statements named something
like GlobalUsings.cs or GlobalNamespaces.cs, as shown in the following code:

global using System;
global using System.Ling;
global using System.Collections.Generic;

[59]

Speaking C#

I
\@’ Good Practice: As developers get used to this new C# feature, I expect one

7 naming convention for this file to become the standard.

Second, any projects that target NET 6.0 and therefore use the C# 10 compiler generate a.cs
file in the obj folder to implicitly globally import some common namespaces like System. The
specific list of implicitly imported namespaces depends on which SDK you target, as shown in
the following table:

SDK Implicitly imported namespaces

System
System.Collections.Generic
System.IO
Microsoft.NET.Sdk System.Ling
System.Net.Http
System.Threading

System.Threading.Tasks

Same as Microsoft.NET.Sdk and:
System.Net.Http.Json
Microsoft.AspNetCore.Builder
Microsoft.AspNetCore.Hosting
Microsoft.AspNetCore.Http
Microsoft.NET.Sdk.Web
Microsoft.AspNetCore.Routing
Microsoft.Extensions.Configuration
Microsoft.Extensions.DependencyInjection

Microsoft.Extensions.Hosting

Microsoft.Extensions.Logging

Same as Microsoft.NET.Sdk and:
Microsoft.Extensions.Configuration
Microsoft.NET.Sdk.Worker Microsoft.Extensions.DependencyInjection

Microsoft.Extensions.Hosting

Microsoft.Extensions.Logging

[60]

Chapter 02

Let's see the current auto-generated implicit imports file:

1.

In Solution Explorer, select the Vocabulary project, toggle on the Show All Files
button, and note the compiler-generated bin and obj folders are visible.

Expand the obj folder, expand the Debug folder, expand the net6.0 folder, and open the
file named Vocabulary.GlobalUsings.g.cs.

Note this file is automatically created by the compiler for projects that target .NET 6.0,
and that it imports some commonly used namespaces including System.Threading, as
shown in the following code:

global using global: :System;

global using global::System.Collections.Generic;
global using global::System.IO;

global using global::System.Ling;

global using global::System.Net.Http;

global using global::System.Threading;

global using global::System.Threading.Tasks;

Close the Vocabulary.GlobalUsings.g.cs file.

In Solution Explorer, select the project, and then add additional entries to the project
file to control which namespaces are implicitly imported, as shown highlighted in the
following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net6.0</TargetFramework>
<Nullable>enable</Nullable>
<ImplicitUsings>enable</ImplicitUsings>
</PropertyGroup>

<ItemGroup>
<Using Remove="System.Threading" />
<Using Include="System.Numerics" />
</ItemGroup>

</Project>

Save the changes to the project file.

Expand the obj folder, expand the Debug folder, expand the net6.0 folder, and open the
file named Vocabulary.GlobalUsings.g.cs.

Note this file now imports System.Numerics instead of System.Threading, as shown
highlighted in the following code:

global using global: :System;

[61]

Speaking C#

global using global::System.Collections.Generic;
global using global::System.IO;

global using global::System.Ling;

global using global::System.Net.Http;

global using global::System.Threading.Tasks;
global using global::System.Numerics;

9. C(lose the Vocabulary.GlobalUsings.g.cs file.

You can disable the implicitly imported namespaces feature for all SDKs by removing an entry
in the project file, as shown in the following markup:

<ImplicitUsings>enable</ImplicitUsings>

Verbs are methods

In English, verbs are doing or action words, like run and jump. In C#, doing or action words
are called methods. There are hundreds of thousands of methods available to C#. In English,
verbs change how they are written based on when in time the action happens. For example,
Amir was jumping in the past, Beth jumps in the present, they jumped in the past, and Charlie will
jump in the future.

In C#, methods such as WriteLine change how they are called or executed based on the
specifics of the action. This is called overloading, which we'll cover in more detail in Chapter 5,
Building Your Own Types with Object-Oriented Programming. But for now, consider the following
example:

Console.WriteLine();
Console.WriteLine("Hello Ahmed");

Console.WriteLine("Temperature on {@:D} is {1}°C.",
DateTime.Today, 23.4);

A different analogy is that some words are spelled the same but have different meanings
depending on the context.

Nouns are types, variables, fields, and properties

In English, nouns are names that refer to things. For example, Fido is the name of a dog. The
word "dog" tells us the type of thing that Fido is, and so in order for Fido to fetch a ball, we
would use his name.

[62]

Chapter 02

In C#, their equivalents are types, variables, fields, and properties. For example:

* Animal and Car are types; they are nouns for categorizing things.
* Head and Engine might be fields or properties; nouns that belong to Animal and Car.

* Fido and Bob are variables; nouns for referring to a specific object.

There are tens of thousands of types available to C#, though have you noticed how I didn't
say, "There are tens of thousands of types in C#?" The difference is subtle but important.
The language of C# only has a few keywords for types, such as string and int, and strictly
speaking, C# doesn't define any types. Keywords such as string that look like types are
aliases, which represent types provided by the platform on which C# runs.

It's important to know that C# cannot exist alone; after all, it's a language that runs on variants
of .NET. In theory, someone could write a compiler for C# that uses a different platform, with
different underlying types. In practice, the platform for C# is NET, which provides tens of
thousands of types to C#, including System.Int32, which is the C# keyword alias int maps to,
as well as many more complex types, such as System.Xml.Ling.XDocument.

It's worth taking note that the term type is often confused with class. Have you ever played
the parlor game Twenty Questions, also known as Animal, Vegetable, or Mineral? In the game,
everything can be categorized as an animal, vegetable, or mineral. In C#, every type can be
categorized as a class, struct, enum, interface, or delegate. You will learn what these mean in
Chapter 6, Implementing Interfaces and Inheriting Classes. As examples, the C# keyword string is
a class, but int is a struct. So, it is best to use the term type to refer to both.

Revealing the extent of the C# vocabulary

We know that there are more than 100 keywords in C#, but how many types are there? Let's
write some code to find out how many types (and their methods) are available to C# in our
simple console application.

Don't worry exactly how this code works for now but know that it uses a technique called
reflection:

1. We'll start by importing the System.Reflection namespace at the top of the Program.cs
file, as shown in the following code:

using System.Reflection;

2. Delete the statement that writes Hello World! and replace it with the following code:

Assembly? assembly = Assembly.GetEntryAssembly();
if (assembly == null) return;

foreach (AssemblyName name in assembly.GetReferencedAssemblies())

{

[63]

Speaking C#

Assembly a = Assembly.Load(name);

int methodCount = 0;

foreach (TypeInfo t in a.DefinedTypes)
{

methodCount += t.GetMethods().Count();
}

Console.WritelLine(
"{0:N0} types with {1:N@} methods in {2} assembly.",
argd: a.DefinedTypes.Count(),
argl: methodCount, arg2: name.Name);

}

3. Run the code. You will see the actual number of types and methods that are available
to you in the simplest application when running on your OS. The number of types and
methods displayed will be different depending on the operating system that you are
using, as shown in the following outputs:

// Output on Windows

0 types with @ methods in System.Runtime assembly.
106 types with 1,126 methods in System.Ling assembly.
44 types with 645 methods in System.Console assembly.

// Output on macOS

0 types with @ methods in System.Runtime assembly.
103 types with 1,094 methods in System.Ling assembly.
57 types with 701 methods in System.Console assembly.

Why does the System.Runtime assembly contain zero types? This

\/V assembly is special because it contains only type-forwarders rather

than actual types. A type-forwarder represents a type that has been
implemented outside of .NET or for some other advanced reason.

4. Add statements to the top of the file after importing the namespace to declare some
variables, as shown highlighted in the following code:

using System.Reflection;

[64]

Chapter 02

System.Data.DataSet ds;
HttpClient client;

By declaring variables that use types in other assemblies, those assemblies are loaded
with our application, which allows our code to see all the types and methods in them.
The compiler will warn you that you have unused variables but that won't stop your
code from running.

5. Run the console application again and view the results, which should look similar to
the following outputs:

// Output on Windows

0 types with @ methods in System.Runtime assembly.

383 types with 6,854 methods in System.Data.Common assembly.
456 types with 4,590 methods in System.Net.Http assembly.
106 types with 1,126 methods in System.Ling assembly.

44 types with 645 methods in System.Console assembly.

// Output on macOS

0 types with @ methods in System.Runtime assembly.

376 types with 6,763 methods in System.Data.Common assembly.
522 types with 5,141 methods in System.Net.Http assembly.
103 types with 1,094 methods in System.Ling assembly.

57 types with 701 methods in System.Console assembly.

Now, you have a better sense of why learning C# is a challenge, because there are so many
types and methods to learn. Methods are only one category of a member that a type can have,
and you and other programmers are constantly defining new types and members!

Working with variables

All applications process data. Data comes in, data is processed, and then data goes out.

Data usually comes into our program from files, databases, or user input, and it can be put
temporarily into variables that will be stored in the memory of the running program. When the
program ends, the data in memory is lost. Data is usually output to files and databases, or to
the screen or a printer. When using variables, you should think about, firstly, how much space
the variable takes in the memory, and, secondly, how fast it can be processed.

We control this by picking an appropriate type. You can think of simple common types such
as int and double as being different-sized storage boxes, where a smaller box would take less
memory but may not be as fast at being processed; for example, adding 16-bit numbers might
not be processed as fast as adding 64-bit numbers on a 64-bit operating system. Some of these
boxes may be stacked close by, and some may be thrown into a big heap further away.

[65]

Speaking C#

Naming things and assigning values

There are naming conventions for things, and it is good practice to follow them, as shown in
the following table:

Naming convention Examples Used for

Camel case cost, orderDetail, dateOfBirth | Local variables, private fields
. String, Int32, Cost, Types, non-private fields, and

Title case aka Pascal case DateOfBirth, Run other members like methods

[Good Practice: Following a consistent set of naming conventions will enable

\ 7/
'@\' your code to be easily understood by other developers (and yourself in the

4 =
E future!).

The following code block shows an example of declaring a named local variable and assigning
a value to it with the = symbol. You should note that you can output the name of a variable
using a keyword introduced in C# 6.0, nameof:

double heightInMetres = 1.88;
Console.WriteLine($"The variable {nameof(heightInMetres)} has the value
{heightInMetres}.");

The message in double quotes in the preceding code wraps onto a second line because the
width of a printed page is too narrow. When entering a statement like this in your code editor,
type it all in a single line.

Literal values

When you assign to a variable, you often, but not always, assign a literal value. But what is

a literal value? A literal is a notation that represents a fixed value. Data types have different
notations for their literal values, and over the next few sections, you will see examples of using
literal notation to assign values to variables.

Storing text

For text, a single letter, such as an A, is stored as a char type.

| Good Practice: Actually, it can be more complicated than that. Egyptian
\@/ Hieroglyph A002 (U+13001) needs two System.Char values (known as
S surrogate pairs) to represent it: \uD80C and \uDCO1. Do not always assume
one char equals one letter or you could introduce weird bugs into your code.

/

[66]

Chapter 02

A char is assigned using single quotes around the literal value, or assigning the return value of
a fictitious function call, as shown in the following code:

char letter = 'A’;
char digit = '1°';
char symbol = '$';
char userChoice = GetSomeKeystroke();

For text, multiple letters, such as Bob, are stored as a string type and are assigned using double
quotes around the literal value, or assigning the return value of a function call, as shown in the
following code:

string firstName = "Bob";
string lastName = "Smith";
string phoneNumber = "(215) 555-4256";

string address = GetAddressFromDatabase(id: 563);

Understanding verbatim strings

When storing text in a string variable, you can include escape sequences, which represent
special characters like tabs and new lines using a backslash, as shown in the following code:

string fullNameWithTabSeparator = "Bob\tSmith";

But what if you are storing the path to a file on Windows, and one of the folder names starts
with a T, as shown in the following code?

string filePath = "C:\televisions\sony\bravia.txt";

The compiler will convert the \t into a tab character and you will get errors!

You must prefix with the @ symbol to use a verbatim literal string, as shown in the following
code:

string filePath = @"C:\televisions\sony\bravia.txt";
To summarize:

* Literal string: Characters enclosed in double-quote characters. They can use escape
characters like \t for tab. To represent a backslash, use two: \\.

* Verbatim string: A literal string prefixed with @ to disable escape characters so that a
backslash is a backslash. It also allows the string value to span multiple lines because
the white space characters are treated as themselves instead of instructions to the
compiler.

* Interpolated string: A literal string prefixed with $ to enable embedded formatted
variables. You will learn more about this later in this chapter.

[671]

Speaking C#

Storing numbers

Numbers are data that we want to perform an arithmetic calculation on, for example,
multiplying. A telephone number is not a number. To decide whether a variable should be
stored as a number or not, ask yourself whether you need to perform arithmetic operations

on the number or whether the number includes non-digit characters such as parentheses or
hyphens to format the number, such as (414) 555-1234. In this case, the number is a sequence of
characters, so it should be stored as a string.

Numbers can be natural numbers, such as 42, used for counting (also called whole numbers);
they can also be negative numbers, such as -42 (called integers); or, they can be real numbers,
such as 3.9 (with a fractional part), which are called single- or double-precision floating-point
numbers in computing.

Let's explore numbers:
1. Use your preferred code editor to add a new Console Application to the Chaptere2
workspace/solution named Numbers:

1. In Visual Studio Code, select Numbers as the active OmniSharp project. When
you see the pop-up warning message saying that required assets are missing,
click Yes to add them.

2. In Visual Studio, set the startup project to the current selection.

2. InProgram.cs, delete the existing code and then type statements to declare some
number variables using various data types, as shown in the following code:

uint naturalNumber = 23;

int integerNumber = -23;

float realNumber = 2.3F;

double anotherRealNumber = 2.3;

Storing whole numbers

You might know that computers store everything as bits. The value of a bit is either 0 or 1. This
is called a binary number system. Humans use a decimal number system.

The decimal number system, also known as Base 10, has 10 as its base, meaning there are ten
digits, from 0 to 9. Although it is the number base most commonly used by human civilizations,
other number base systems are popular in science, engineering, and computing. The binary
number system, also known as Base 2, has two as its base, meaning there are two digits, 0 and 1.

[68]

Chapter 02

The following table shows how computers store the decimal number 10. Take note of the bits
with the value 1 in the 8 and 2 columns; 8 + 2 = 10:

128 64 32 16 8 4 2
0 0 0 0

So, 10 in decimal is 00001010 in binary.

Improving legibility by using digit separators

Two of the improvements seen in C# 7.0 and later are the use of the underscore character _as a
digit separator, and support for binary literals.

You can insert underscores anywhere into the digits of a number literal, including decimal,
binary, or hexadecimal notation, to improve legibility.

For example, you could write the value for 1 million in decimal notation, that is, Base 10, as
1_000_000.

You can even use the 2/3 grouping common in India: 10_00_oee.

Using binary notation

To use binary notation, that is, Base 2, using only 1s and Os, start the number literal with @b. To
use hexadecimal notation, that is, Base 16, using 0 to 9 and A to F, start the number literal with ex.

Exploring whole numbers

Let's enter some code to see some examples:

1. InProgram.cs, type statements to declare some number variables using underscore
separators, as shown in the following code:

int decimalNotation = 2_000 _000;
int binaryNotation = ©b_0001 1110 1000 0100 1000 0000;
int hexadecimalNotation = Ox_©01E_8480;

Console.WriteLine($"{decimalNotation == binaryNotation}");
Console.WriteLine(
$"{decimalNotation == hexadecimalNotation}");

2. Run the code and note the result is that all three numbers are the same, as shown in the
following output:

True
True

[69]

Speaking C#

Computers can always exactly represent integers using the int type or one of its sibling types,
such as long and short.

Storing real numbers

Computers cannot always represent real, aka decimal or non-integer, numbers precisely. The
float and double types store real numbers using single- and double-precision floating points.

Most programming languages implement the IEEE Standard for Floating-Point Arithmetic.
IEEE 754 is a technical standard for floating-point arithmetic established in 1985 by the Institute
of Electrical and Electronics Engineers (IEEE).

The following table shows a simplification of how a computer represents the number 12.75 in
binary notation. Note the bits with the value 1 in the 8, 4, %2, and ¥4 columns.

8+4+ %2+ Y=12%=12.75.

128 64 32 16 8 4 2 1 . Y Ya 1/8 1/16
0 0 0 0 1 1 0 0 . 1 1 0 0

So, 12.75 in decimal is ©0001100.1100 in binary. As you can see, the number 12.75 can
be exactly represented using bits. However, some numbers can't, something that we'll be
exploring shortly.

Writing code to explore number sizes

C# has an operator named sizeof() that returns the number of bytes that a type uses in
memory. Some types have members named Minvalue and MaxValue, which return the minimum
and maximum values that can be stored in a variable of that type. We are now going to use
these features to create a console application to explore number types:

1. InProgram.cs, type statements to show the size of three number data types, as shown
in the following code:
Console.WriteLine($"int uses {sizeof(int)} bytes and can store numbers in
the range {int.MinValue:N@} to {int.MaxValue:N@}.");

Console.WriteLine($"double uses {sizeof(double)} bytes and can store
numbers in the range {double.MinValue:N@} to {double.MaxValue:NO}.");

Console.WriteLine($"decimal uses {sizeof(decimal)} bytes and can store
numbers in the range {decimal.MinValue:N@} to {decimal.MaxValue:N©}.");

The width of the printed pages in this book makes the string values (in double quotes)
wrap over multiple lines. You must type them on a single line, or you will get compile
errors.

[70]

Chapter 02

2. Run the code and view the output, as shown in Figure 2.3:

" File Edit View Git Prgject Build Debug Test Apayze Tools: Edensions Window Help

BB E® = 1% = |iDebug ~||Any CPU - | Numbers - P Himbers ~

*

Figure 2.3: Size and range information for common number data types

An int variable uses four bytes of memory and can store positive or negative numbers up

to about 2 billion. A double variable uses eight bytes of memory and can store much bigger
values! A decimal variable uses 16 bytes of memory and can store big numbers, but not as big
as a double type.

But you may be asking yourself, why might a double variable be able to store bigger numbers
than a decimal variable, yet it's only using half the space in memory? Well, let's now find out!

Comparing double and decimal types

You will now write some code to compare double and decimal values. Although it isn't hard to
follow, don't worry about understanding the syntax right now:

1. Type statements to declare two double variables, add them together and compare them
to the expected result, and write the result to the console, as shown in the following
code:

Console.WriteLine("Using doubles:");
double a = 0.1;
double b = 0.2;

if (a + b == 0.3)

{
Console.WriteLine($"{a} + {b} equals {0.3}");
}
else
{
Console.WriteLine($"{a} + {b} does NOT equal {@.3}");
}

[711]

Speaking C#

2. Run the code and view the result, as shown in the following output:

Using doubles:

0.1 + 0.2 does NOT equal 0.3

In locales that use a comma for the decimal separator the result will look slightly different, as
shown in the following output:

0,1 + 0,2 does NOT equal 0,3

The double type is not guaranteed to be accurate because some numbers like 0.1 literally
cannot be represented as floating-point values.

As a rule of thumb, you should only use double when accuracy, especially when comparing the
equality of two numbers, is not important. An example of this may be when you're measuring
a person's height and you will only compare values using greater than or less than, but never
equals.

The problem with the preceding code is illustrated by how the computer stores the number 0.1,
or multiples of it. To represent @.1 in binary, the computer stores 1 in the 1/16 column, 1 in the
1/32 column, 1 in the 1/256 column, 1 in the 1/512 column, and so on.

The number 0.1 in decimal is 0.00011001100110011... in binary, repeating forever:

1 |. |w |% |[1/8 |1/16 |1/32|1/64 |1/128 |1/256 |1/512 |1/1024 |1/2048
0 |. [0 |0 |0 1 1 0 0 1 1 0 0

Good Practice: Never compare double values using ==. During the First
N Gulf War, an American Patriot missile battery used double values in its
- ,@\' calculations. The inaccuracy caused it to fail to track and intercept an incoming
£ Iraqi Scud missile, and 28 soldiers were killed; you can read about this at

https://www.ima.umn.edu/~arnold/disasters/patriot.html.

Copy and paste the statements that you wrote before (that used the double variables).

Modify the statements to use decimal and rename the variables to c and d, as shown in
the following code:
Console.WritelLine("Using decimals:");

decimal ¢ = 0.1M;
decimal d = 0.2M;

if (c + d == 0.3M)
{

Console.WriteLine($"{c} + {d} equals {0.3M}");
¥

else

{

[72]

https://www.ima.umn.edu/~arnold/disasters/patriot.html

Chapter 02

Console.WriteLine($"{c} + {d} does NOT equal {@.3M}");
}

3. Run the code and view the result, as shown in the following output:

Using decimals:
0.1 + 0.2 equals 0.3

The decimal type is accurate because it stores the number as a large integer and shifts the
decimal point. For example, 0.1 is stored as 1, with a note to shift the decimal point one place to
the left. 12.75 is stored as 1275, with a note to shift the decimal point two places to the left.

Good Practice: Use int for whole numbers. Use double for real numbers that
L will not be compared for equality to other values; it is okay to compare double
‘,@_ values being less than or greater than, and so on. Use decimal for money,
E CAD drawings, general engineering, and wherever the accuracy of a real

number is important.

The double type has some useful special values: double.NaN represents not-a-number

(for example, the result of dividing by zero), double.Epsilon represents the smallest
positive number that can be stored in a double, and double.PositiveInfinity and double.
NegativeInfinity represent infinitely large positive and negative values.

Storing Booleans

Booleans can only contain one of the two literal values true or false, as shown in the following
code:

bool happy = true;
bool sad = false;

They are most commonly used to branch and loop. You don't need to fully understand them
yet, as they are covered more in Chapter 3, Controlling Flow, Converting Types, and Handling
Exceptions.

Storing any type of object

There is a special type named object that can store any type of data, but its flexibility comes
at the cost of messier code and possibly poor performance. Because of those two reasons, you
should avoid it whenever possible. The following steps show how to use object types if you
need to use them:

1. Use your preferred code editor to add a new Console Application to the Chaptere2
workspace/solution named Variables.

2. In Visual Studio Code, select Variables as the active OmniSharp project. When you see
the pop-up warning message saying that required assets are missing, click Yes to add
them.

[73]

Speaking C#

3.

4.

5.

6.

In Program. cs, type statements to declare and use some variables using the object type,
as shown in the following code:

object height = 1.88;

object name = "Amir";

Console.WriteLine($"{name} is {height} metres tall.");

int lengthl = name.Length;
int length2 ((string)name).Length;
Console.WriteLine($"{name} has {length2} characters.");

Run the code and note that the fourth statement cannot compile because the data type
of the name variable is not known by the compiler, as shown in Figure 2.4:

QA, Eile Edit Wiew Git Project Build [Debug Test Apslyre Tools Extensions Mindow - Help PE——— P Chapteri2

i@ B-SFBE| 9D < Debug - Any CRU = | lvariables | variables = B @ | LEL 0 waskea R m

b Program.cst 80X

T T
- “BPeson « | 62 BinthDate

object helqh‘t = 1.88; // storing a double in an object
ahJN‘t name = "Amir"; /f storing a string in an object
“onsole.Writeline($"{name} is {height} metres tall.");

int lengthl = name.Length; // gives compile error!
Length2 = (Cstr:

Console.Writeline($' 061: 'object’ does nat contain a definition for "Langth’ and no accessible extension methad ‘Length’ accepting a first argument of type ‘object’

could be found (are you missing a using directive or an assembly reference?)

In? Chl SPC CRIF

4 Add to Source Control 49 Select Repository = [}

Figure 2.4: The object type does not have a Length property

Add comment double slashes to the beginning of the statement that cannot compile to
"comment out" the statement to make it inactive.

Run the code again and note that the compiler can access the length of a string if the
programmer explicitly tells the compiler that the object variable contains a string by
prefixing with a cast expression like (string), as shown in the following output:

Amir is 1.88 metres tall.
Amir has 4 characters.

The object type has been available since the first version of C#, but C# 2.0 and later have a
better alternative called generics, which we will cover in Chapter 6, Implementing Interfaces
and Inheriting Classes, which will provide us with the flexibility we want, but without the
performance overhead.

Storing dynamic types

There is another special type named dynamic that can also store any type of data, but even
more than object, its flexibility comes at the cost of performance. The dynamic keyword was
introduced in C# 4.0. However, unlike object, the value stored in the variable can have its
members invoked without an explicit cast. Let's make use of a dynamic type:

[74]

Chapter 02

1. Add statements to declare a dynamic variable and then assign a string literal value, and
then an integer value, and then an array of integer values, as shown in the following
code:

dynamic something = "Ahmed";

2. Add a statement to output the length of the dynamic variable, as shown in the following
code:

Console.WriteLine($"Length is {something.Length}");

3. Run the code and note it works because a string value does have a Length property, as
shown in the following output:

Length is 5

Uncomment the statement that assigns an int value.

5. Run the code and note the runtime error because int does not have a Length property,
as shown in the following output:

Unhandled exception. Microsoft.CSharp.RuntimeBinder.

RuntimeBinderException: 'int' does not contain a definition for 'Length'

Uncomment the statement that assigns the array.

Run the code and note the output because an array of three int values does have a
Length property, as shown in the following output:

Length is 3

One limitation of dynamic is that code editors cannot show IntelliSense to help you write the
code. This is because the compiler cannot check what the type is during build time. Instead, the
CLR checks for the member at runtime and throws an exception if it is missing.

Exceptions are a way to indicate that something has gone wrong at runtime. You will learn
more about them and how to handle them in Chapter 3, Controlling Flow, Converting Types, and
Handling Exceptions.

[751]

Speaking C#

Declaring local variables

Local variables are declared inside methods, and they only exist during the execution of that
method, and once the method returns, the memory allocated to any local variables is released.

Strictly speaking, value types are released while reference types must wait for a garbage
collection. You will learn about the difference between value types and reference types in
Chapter 6, Implementing Interfaces and Inheriting Classes.

Specifying the type of a local variable

Let's explore local variables declared with specific types and using type inference:

1. Type statements to declare and assign values to some local variables using specific
types, as shown in the following code:
int population = 66_000_000;
double weight = 1.88;
decimal price = 4.99M;
string fruit = "Apples";
char letter = 'Z';
bool happy = true;

Depending on your code editor and color scheme, it will show green squiggles under each of
the variable names and lighten their text color to warn you that the variable is assigned but its
value is never used.

Inferring the type of a local variable

You can use the var keyword to declare local variables. The compiler will infer the type from
the value that you assign after the assignment operator, =.

A literal number without a decimal point is inferred as an int variable, that is, unless you add a
suffix, as described in the following list:

* L:infers long

* UL:infers ulong
* M:infers decimal
* D:infers double
* F:infers float

A literal number with a decimal point is inferred as double unless you add the M suffix, in
which case, it infers a decimal variable, or the F suffix, in which case, it infers a float variable.

[76]

Chapter 02

Double quotes indicate a string variable, single quotes indicate a char variable, and the true
and false values infer a bool type:

1. Modify the previous statements to use var, as shown in the following code:
var population = 66_000_000;
var weight = 1.88;
var price = 4.99M;
var fruit = "Apples";
var letter = 'Z';
var happy = true;

2. Hover your mouse over each of the var keywords and note that your code editor shows
a tooltip with information about the type that has been inferred.

3. At the top of the class file, import the namespace for working with XML to enable us to
declare some variables using types in that namespace, as shown in the following code:

using System.Xml;

Good Practice: If you are using .NET Interactive Notebooks, then
L add using statements in a separate code cell above the code cell
',@\' where you write the main code. Then click Execute Cell to ensure the
E namespaces are imported. They will then be available in subsequent
code cells.

4. Under the previous statements, add statements to create some new objects, as shown in
the following code:

var xmll = new XmlDocument();
XmlDocument xml2 = new XmlDocument();

var filel = File.CreateText("somethingl.txt");
StreamWriter file2 = File.CreateText("something2.txt");

Good Practice: Although using var is convenient, some developers
avoid using it, to make it easier for a code reader to understand the
| types in use. Personally, I use it only when the type is obvious. For
\ 7/ . . . P
@ example, in the preceding code statements, the first statement is just
NI as clear as the second in stating what the type of the xml variables are,
- but it is shorter. However, the third statement isn't clear in showing
the type of the file variable, so the fourth is better because it shows
that the type is StreamWriter. If in doubt, spell it out!

[771]

Speaking C#

Using target-typed new to instantiate objects

With C# 9, Microsoft introduced another syntax for instantiating objects known as target-typed
new. When instantiating an object, you can specify the type first and then use new without
repeating the type, as shown in the following code:

XmlDocument xml3 = new();

If you have a type with a field or property that needs to be set, then the type can be inferred, as
shown in the following code:

class Person

{
public DateTime BirthDate;

}

Person kim = new();
kim.BirthDate = new(1967, 12, 26);

L Good Practice: Use target-typed new to instantiate objects unless you must use
‘@‘ a pre-version 9 C# compiler. I have used target-typed new throughout the rest

h of this book. Please let me know if you spot any cases that I missed!

Getting and setting the default values for types

Most of the primitive types except string are value types, which means that they must have

a value. You can determine the default value of a type by using the default() operator and
passing the type as a parameter. You can assign the default value of a type by using the default
keyword.

The string type is a reference type. This means that string variables contain the memory
address of a value, not the value itself. A reference type variable can have a null value, which
is a literal that indicates that the variable does not reference anything (yet). null is the default
for all reference types.

You'll learn more about value types and reference types in Chapter 6, Implementing Interfaces and
Inheriting Classes.

Let's explore default values:

1. Add statements to show the default values of an int, bool, DateTime, and string, as
shown in the following code:

Console.WriteLine($"default(int) = {default(int)}");
Console.WriteLine($"default(bool) = {default(bool)}");
Console.WriteLine($"default(DateTime) = {default(DateTime)}");
Console.WriteLine($"default(string) = {default(string)}");

[78]

Chapter 02

2. Run the code and view the result, noting that your output for the date and time might
be formatted differently if you are not running it in the UK, and that null values output
as an empty string, as shown in the following output:
default(int) = @
default(bool) = False

default(DateTime) = 01/01/0001 00:00:00
default(string) =

3. Add statements to declare a number, assign a value, and then reset it to its default
value, as shown in the following code:

int number = 13;

Console.WriteLine($"number has been set to: {number}");

number = default;

Console.WriteLine($"number has been reset to its default: {number}");

4. Run the code and view the result, as shown in the following output:

number has been set to: 13
number has been reset to its default: ©

Storing multiple values in an array

When you need to store multiple values of the same type, you can declare an array. For
example, you may do this when you need to store four names in a string array.

The code that you will write next will allocate memory for an array for storing four string
values. It will then store string values at index positions 0 to 3 (arrays usually have a lower
bound of zero, so the index of the last item is one less than the length of the array).

Good Practice: Do not assume that all arrays count from zero. The most
L common type of array in .NET is an szArray, a single-dimension zero-indexed
',@\' array, and these use the normal [] syntax. But .NET also has mdArray, a
g multi-dimensional array, and they do not have to have a lower bound of zero.

These are rarely used but you should know they exist.

Finally, it will loop through each item in the array using a for statement, something that
we will cover in more detail in Chapter 3, Controlling Flow, Converting Types, and Handling
Exceptions.

Let's look at how to use an array:

1. Type statements to declare and use an array of string values, as shown in the following
code:

string[] names;

[79]

Speaking C#

names = new string[4];

names[@] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

for (int i = @; i < names.Length; i++)

{

Console.WriteLine(names[i]);

}

2. Run the code and note the result, as shown in the following output:

Kate
Jack

Rebecca
Tom

Arrays are always of a fixed size at the time of memory allocation, so you need to decide how
many items you want to store before instantiating them.

An alternative to defining the array in three steps as above is to use array initializer syntax, as
shown in the following code:

string[] names2 = new[] { "Kate", "Jack", "Rebecca", "Tom" };

When you use the new[] syntax to allocate memory for the array, you must have at least one
item in the curly braces so that the compiler can infer the data type.

Arrays are useful for temporarily storing multiple items, but collections are a more flexible
option when adding and removing items dynamically. You don't need to worry about
collections right now, as we will cover them in Chapter 8, Working with Common .NET Types.

Exploring more about console applications

We have already created and used basic console applications, but we're now at a stage where
we should delve into them more deeply.

Console applications are text-based and are run at the command line. They typically perform
simple tasks that need to be scripted, such as compiling a file or encrypting a section of a
configuration file.

Equally, they can also have arguments passed to them to control their behavior.

[80]

Chapter 02

An example of this would be to create a new console app using the F# language with a
specified name instead of using the name of the current folder, as shown in the following
command line:

dotnet new console -lang "F#" --name "ExploringConsole"

Displaying output to the user

The two most common tasks that a console application performs are writing and reading data.
We have already been using the WriteLine method to output, but if we didn't want a carriage
return at the end of the lines, we could have used the Write method.

Formatting using numbered positional arguments

One way of generating formatted strings is to use numbered positional arguments.

This feature is supported by methods like Write and Writeline, and for methods that do not
support the feature, the string parameter can be formatted using the Format method of string.

The first few code examples in this section will work with a .NET Interactive

\/V notebook because they are about outputting to the console. Later in this

section, you will learn about getting input via the console and sadly notebooks
do not support this.

Let's begin formatting:

1. Use your preferred code editor to add a new Console Application to the Chaptere2
workspace/solution named Formatting.

In Visual Studio Code, select Formatting as the active OmniSharp project.

In Program. cs, type statements to declare some number variables and write them to the
console, as shown in the following code:

int numberOfApples = 12;
decimal pricePerApple = 0.35M;

Console.WriteLine(
format: "{0} apples costs {1:C}",
argd: numberOfApples,
argl: pricePerApple * numberOfApples);

string formatted = string.Format(
format: "{0} apples costs {1:C}",
argd: numberOfApples,
argl: pricePerApple * numberOfApples);

[81]

Speaking C#

The WriteToFile method is a nonexistent method used to illustrate the idea.

| Good Practice: Once you become more comfortable with formatting strings,
\@’ you should stop naming the parameters, for example, stop using format:,
AR arg@:, and argl:. The preceding code uses a non-canonical style to show
- where the 0 and 1 came from while you are learning.

Formatting using interpolated strings

C# 6.0 and later have a handy feature named interpolated strings. A string prefixed with $
can use curly braces around the name of a variable or expression to output the current value of
that variable or expression at that position in the string, as the following shows:

1. Enter a statement at the bottom of the Program. cs file, as shown in the following code:

Console.WriteLine($" {numberOfApples} apples costs {pricePerApple *
numberOfApples:C}");

2. Run the code and view the result, as shown in the following partial output:

12 apples costs £4.20

For short, formatted string values, an interpolated string can be easier for people to read. But
for code examples in a book, where lines need to wrap over multiple lines, this can be tricky.
For many of the code examples in this book, I will use numbered positional arguments.

Another reason to avoid interpolated strings is that they can't be read from resource files to be
localized.

Before C# 10, string constants could only be combined by using concatenation, as shown in the
following code:

private const string firstname = "Omar";
private const string lastname = "Rudberg";
private const string fullname = firstname +

+ lastname;
With C# 10, interpolated strings can now be used, as shown in the following code:
private const string fullname = "{firstname} {lastname}";

This only works for combining string constant values. It cannot work with other types like
numbers that would require runtime data type conversions.

Understanding format strings

A variable or expression can be formatted using a format string after a comma or colon.

An Ne format string means a number with a thousand separators and no decimal places, while a
C format string means currency. The currency format will be determined by the current thread.

[82]

Chapter 02

For instance, if you run this code on a PC in the UK, you'll get pounds sterling with commas as
the thousand separators, but if you run this code on a PC in Germany, you will get euros with
dots as the thousand separators.

The full syntax of a format item is:

{ index [, alignment] [: formatString] }

Each format item can have an alignment, which is useful when outputting tables of values,
some of which might need to be left- or right-aligned within a width of characters. Alignment
values are integers. Positive integers mean right-aligned and negative integers mean left-
aligned.

For example, to output a table of fruit and how many of each there are, we might want to
left-align the names within a column of 10 characters and right-align the counts formatted as
numbers with zero decimal places within a column of six characters:

1. At the bottom of Program.cs, enter the following statements:

string applesText = "Apples";
int applesCount = 1234;

string bananasText = "Bananas";
int bananasCount = 56789;

Console.WriteLine(
format: "{0,-10} {1,6:N0}",
argd: "Name",
argl: "Count");

Console.WriteLine(
format: "{0,-10} {1,6:N0}",
argd: applesText,
argl: applesCount);

Console.WriteLine(
format: "{0,-10} {1,6:N0}",
argd: bananasText,
argl: bananasCount);

2. Run the code and note the effect of the alignment and number format, as shown in the
following output:

Name

Apples
EERENER

[83]

Speaking C#

Getting text input from the user

We can get text input from the user using the ReadLine method. This method waits for the
user to type some text, then as soon as the user presses Enter, whatever the user has typed is
returned as a string value.

Good Practice: If you are using a .NET Interactive notebook for this section,
then note that it does not support reading input from the console using
N Console.ReadLine(). Instead, you must set literal values, as shown in the
‘,@\‘ following code: string? firstName = "Gary";. This is often quicker to
g experiment with because you can simply change the literal string value and
click the Execute Cell button instead of having to restart a console app each

time you want to enter a different string value.

Let's get input from the user:

1. Type statements to ask the user for their name and age and then output what they
entered, as shown in the following code:

Console.Write("Type your first name and press ENTER: ");
string? firstName = Console.ReadlLine();

Console.Write("Type your age and press ENTER: ");
string? age = Console.ReadlLine();

Console.WritelLine(
$"Hello {firstName}, you look good for {age}.");

2. Run the code, and then enter a name and age, as shown in the following output:

Type your name and press ENTER: Gary
Type your age and press ENTER: 34

Hello Gary, you look good for 34.

The question marks at the end of the string? data type declaration
‘ / indicate that we acknowledge that a null (empty) value could be
\p/ returned from the call to ReadLine. You will learn more about this in
Chapter 6, Implementing Interfaces and Inheriting Classes.

Simplifying the usage of the console

In C# 6.0 and later, the using statement can be used not only to import a namespace but also to
further simplify our code by importing a static class. Then, we won't need to enter the Console
type name throughout our code. You can use your code editor's find and replace feature to
remove the times we have previously written Console:

[84]

Chapter 02

At the top of the Program.cs file, add a statement to statically import the
System.Console class, as shown in the following code:

using static System.Console;

Select the first Console. in your code, ensuring that you select the dot after the word
Console too.

In Visual Studio, navigate to Edit | Find and Replace | Quick Replace, or in Visual
Studio Code, navigate to Edit | Replace, and note that an overlay dialog appears ready
for you to enter what you would like to replace Console. with, as shown in Figure 2.5:

trl+) = 0 x

@ - = S Debug ~| | Ay CPU +| |Formatting = P oromatting * B & L & teeshare B m
| Rl Solution Explorer > 0 x

omating | i d wdlo-conm 4=

1 I using static System. Console; i T —

X[N s W search Soiution Explarer (O Pl

e 4
- 6"3~‘_L ‘W 4 [rormatting -
Replace all [Alt+4) B8 Dependencies
I

I int numberOfApples = 12;

decimal pricePerfpple = ©.35M; S et

: b CE Programucs I
& | EEREEEwriteLine(il « B Numbers
format: "{0} apples costs {1:C}", . b &8 Dependencies
arg8: nusberdfApples, P cum :v| p. ;
argl: pricePerApple * numberOfApples); o i
~ | 4 EE variables

b @& Dependencies -

D W03 o E W

& No ssues founed ¥~ 1 L4 ek Chd SPC CRLF

4 Addto Source Contral = 4 Salect

Figure 2.5: Using the Replace feature in Visual Studio to simplify your code

Leave the replace box empty, click on the Replace all button (the second of the two
buttons to the right of the replace box), and then close the replace box by clicking on the
cross in its top-right corner.

Getting key input from the user

We can get key input from the user using the ReadKey method. This method waits for the user
to press a key or key combination that is then returned as a ConsolekKeyInfo value.

You will not be able to execute the call to the ReadKey method using a .NET Interactive
notebook, but if you have created a console application, then let's explore reading key presses:

1. Type statements to ask the user to press any key combination and then output

information about it, as shown in the following code:

Write("Press any key combination: ");
ConsoleKeyInfo key = ReadKey();
WriteLine();
WriteLine("Key: {0}, Char: {1}, Modifiers: {2}",
argo: key.Key,
argl: key.KeyChar,
arg2: key.Modifiers);

[85]

Speaking C#

2. Run the code, press the K key, and note the result, as shown in the following output:

Press any key combination: k

Key: K, Char: k, Modifiers: @

3. Run the code, hold down Shift and press the K key, and note the result, as shown in the
following output:

Press any key combination: K

Key: K, Char: K, Modifiers: Shift

4. Run the code, press the F12 key, and note the result, as shown in the following output:

Press any key combination:

Key: F12, Char: , Modifiers: @

/ When running a console application in a terminal within Visual Studio
\/;D; Code, some keyboard combinations will be captured by the code

editor or operating system before they can be processed by your app.

Passing arguments to a console app

You might have been wondering how to get any arguments that might be passed to a console
application.

In every version of .NET prior to version 6.0, the console application project template made it
obvious, as shown in the following code:

using System;

namespace Arguments

{ class Program
{
static void Main(string[] args)
! Console.WriteLine("Hello World!");
}
}
}

The string[] args arguments are declared and passed in the Main method of the Program class.
They're an array used to pass arguments into a console application. But in top-level programs,
as used by the console application project template in .NET 6.0 and later, the Program class and
its Main method are hidden, along with the declaration of the args string array. The trick is that
you must know it still exists.

Command-line arguments are separated by spaces. Other characters like hyphens and colons
are treated as part of an argument value.

[86]

Chapter 02

To include spaces in an argument value, enclose the argument value in single or double quotes.

Imagine that we want to be able to enter the names of some colors for the foreground and
background, and the dimensions of the terminal window at the command line. We would be
able to read the colors and numbers by reading them from the args array, which is always
passed into the Main method aka the entry point of a console application:

1. Use your preferred code editor to add a new Console Application to the Chaptere2
workspace/solution named Arguments. You will not be able to use a .NET Interactive
notebook because you cannot pass arguments to a notebook.

In Visual Studio Code, select Arguments as the active OmniSharp project.

Add a statement to statically import the System.Console type and a statement to output
the number of arguments passed to the application, as shown in the following code:

using static System.Console;

WriteLine($"There are {args.Length} arguments.");

L Good Practice: Remember to statically import the System.Console
‘,@\‘ type in all future projects to simplify your code, as these instructions
g will not be repeated every time.

4. Run the code and view the result, as shown in the following output:

There are @ arguments.

5. If you are using Visual Studio, then navigate to Project | Arguments Properties, select
the Debug tab, and in the Application arguments box, enter some arguments, save the
changes, and then run the console application, as shown in Figure 2.6:

of File Edit View Gt Foject Build Debug Test Anshze Tools Extensions’ Window Help Seach (Cvis0 £ chapteo? - 5

PO | e BP9 - - Debug - Ay CRy - P Aguments~ | U [5 | Live Share &

Solution Explorer

Build Events

Package

Debug®

Signing Launch; Project ~

Coxlo Anatysis 2 E

Resources Application arguments: firstarg second arg thirdarg “fourth arg] b & Dependencies
b & Programecs

4 [Mumbers

Profile: Arguments = Meowi.. [Arguments

8] Formatting

Figure 2.6: Entering application arguments in Visual Studio project properties

6. If you are using Visual Studio Code, then in a terminal, enter some arguments after the
dotnet run command, as shown in the following command line:

dotnet run firstarg second-arg third:arg "fourth arg"

[87]

Speaking C#

7. Note the result indicates four arguments, as shown in the following output:

There are 4 arguments.

8. To enumerate or iterate (that is, loop through) the values of those four arguments, add
the following statements after outputting the length of the array:
foreach (string arg in args)

{

WriteLine(arg);

}

9. Run the code again and note the result shows the details of the four arguments, as
shown in the following output:

There are 4 arguments.
firstarg

second-arg
third:arg
fourth arg

Setting options with arguments

We will now use these arguments to allow the user to pick a color for the background,
foreground, and cursor size of the output window. The cursor size can be an integer value from
1, meaning a line at the bottom of the cursor cell, up to 100, meaning a percentage of the height
of the cursor cell.

The System namespace is already imported so that the compiler knows about the ConsoleColor
and Enum types:

1. Add statements to warn the user if they do not enter three arguments and then parse
those arguments and use them to set the color and dimensions of the console window,
as shown in the following code:

if (args.Length < 3)

{
WriteLine("You must specify two colors and cursor size, e.g.");
WriteLine("dotnet run red yellow 50");
return;

}

ForegroundColor = (ConsoleColor)Enum.Parse(
enumType: typeof(ConsoleColor),
value: args[©0],
ignoreCase: true);

BackgroundColor = (ConsoleColor)Enum.Parse(
enumType: typeof(ConsoleColor),

[88]

Chapter 02

value: args[1],
ignoreCase: true);

CursorSize = int.Parse(args[2]);

\/;D’; Setting the CursorSize is only supported on Windows.

In Visual Studio, navigate to Project | Arguments Properties, and change the
arguments to: red yellow 50, run the console app, and note the cursor is half the size
and the colors have changed in the window, as shown in Figure 2.7

File Edit View Gt Froject Build Debug Test Analyze Tools Extensions Window Help Search (CwisQ P

bl i T LR DR S ——mpsie ko L.
B Microsalt Visual Studio Debug Console

Arguments”

C:\Code\Chapteral\Argumentsibin\Debug\nets . B\Argusents. exe (process 11952) exited with

Packag . % .
Press any key to close this window . . .

Signing

|
Code Anabyss

PO E OGRS

I Application arguments: red yellow 50 4 [Formatting

b & Dependencies

b ©* Program.cs
i 1

7 Build succeeded

Figure 2.7: Setting colors and cursor size on Windows

In Visual Studio Code, run the code with arguments to set the foreground color to red,
the background color to yellow, and the cursor size to 50%, as shown in the following

command:

dotnet run red yellow 50

On macOS, you'll see an unhandled exception, as shown in Figure 2.8:

L] @ Program.cs — Chapter02 (Workspace)
@ EXPLORER C Program.cs =
» OPEN EDITORS Arguments > © Program.cs > {} Ar am > @ tring(]
-+ CHAPTEROZ (WORKSPACE) 29 BackgroundColor =
S Batics 39 enumType: typeof(C
\ L 31 value: args[1],
¥ewiables 32 tgnorecase: true);
33 1
34 CursorSize = int.Parselargsi2]);
TERMINAL PROBLEMS (8 CUTPL DEBUG CONSOLE 3: bash T 0O & L
< Arguments <
5 bin HarksHatBodk-Pro-13TATEImSRTS Sarkjprices Gornet run red) yellow 58
S There are 3 argisenats,
> obj red
® Argumarits.csproj ye?.lo-
© Programics Unhandled exception. System.PlatformiotiupportedException: Gperation is not supported on this platfoms.
at System.ConsolePal.set CursarSive| Int3Z value)
» QUTLINE at System, Console.set LursorSize(Int32 value)
% NPM SCRIPTS b g; JArguments, Program.MainiSteingl] args) in fUsersy/markjprice/Code/Chag f Prog Ce:id
» ILSPY DECOMPILED MEMBERS Harks-MacBook-Fro-13:Arguments markiprices I

£ Variables Ln 36, Col1 Spaces:2 UTF-BwithBOM CRLF CF &

Figure 2.8: An unhandled exception on unsupported macOS

[89]

Speaking C#

Although the compiler did not give an error or warning, at runtime some API calls may fail on
some platforms. Although a console application running on Windows can change its cursor
size, on macQOS, it cannot, and complains if you try.

Handling platforms that do not support an API

So how do we solve this problem? We can solve this by using an exception handler. You will
learn more details about the try-catch statement in Chapter 3, Controlling Flow, Converting
Types, and Handling Exceptions, so for now, just enter the code:

1. Modify the code to wrap the lines that change the cursor size in a try statement, as
shown in the following code:

try
{
CursorSize = int.Parse(args[2]);
}
catch (PlatformNotSupportedException)
{

WriteLine("The current platform does not support changing the size of
the cursor.");

}

2. If you were to run the code on macOS then you would see the exception is caught, and
a friendlier message is shown to the user.

Another way to handle differences in operating systems is to use the OperatingSystem class in
the System namespace, as shown in the following code:

if (OperatingSystem.IsWindows())
{

}
else if (OperatingSystem.IsWindowsVersionAtLeast(major: 10))

{

}
else if (OperatingSystem.IsIOSVersionAtLeast(major: 14, minor: 5))

{

}
else if (OperatingSystem.IsBrowser())

{

[90]

Chapter 02

The operatingSystem class has equivalent methods for other common operating systems
like Android, iOS, Linux, macOS, and even the browser, which is useful for Blazor web
components.

A third way to handle different platforms is to use conditional compilation statements.

There are four preprocessor directives that control conditional compilation: #if, #elif, #else,
and #endif.

You define symbols using #define, as shown in the following code:
#define MYSYMBOL

Many symbols are automatically defined for you, as shown in the following table:

Target Framework | Symbols
.NET Standard NETSTANDARD2_0, NETSTANDARD2_1, and so on
Modern .NET NET6_0, NET6_0_ANDROID, NET6_0@_IOS, NET6_0_WINDOWS, and so on

You can then write statements that will compile only for the specified platforms, as shown in
the following code:

#if NET6_O_ ANDROID
#elif NET6_0_I0S
#else

#endif

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore the topics covered in this chapter with deeper research.

Exercise 2.1 — Test your knowledge

To get the best answer to some of these questions, you will need to do your own research. I want
you to "think outside the book" so I have deliberately not provided all the answers in the book.

I want to encourage you to get in to the good habit of looking for help elsewhere, following the
principle of "teach a person to fish."

1. What statement can you type in a C# file to discover the compiler and language
version?

2. What are the two types of comments in C#?

[o1]

Speaking C#

What is the difference between a verbatim string and an interpolated string?
Why should you be careful when using float and double values?

How can you determine how many bytes a type like double uses in memory?
When should you use the var keyword?

What is the newest way to create an instance of a class like Xm1Document?

Why should you be careful when using the dynamic type?

0 X N O »

How do you right-align a format string?

10. What character separates arguments for a console application?

/ Appendix, Answers to the Test Your Knowledge Questions is available to download
\/;p> from a link in the README on the GitHub repository: https://github.com/

markjprice/csl@dotnet6.

Exercise 2.2 — Test your knowledge of number
types

What type would you choose for the following "numbers"?

A person's telephone number
A person's height

A person's age

A person's salary

A book's ISBN

A book's price

A book's shipping weight

A country's population

o X NSO

The number of stars in the universe

—_
o

. The number of employees in each of the small or medium businesses in the United
Kingdom (up to about 50,000 employees per business)

Exercise 2.3 — Practice number sizes and ranges

In the Chaptere2 solution/workspace, create a console application project named Exercise@2
that outputs the number of bytes in memory that each of the following number types uses and
the minimum and maximum values they can have: sbyte, byte, short, ushort, int, uint, long,
ulong, float, double, and decimal.

[92]

https://github.com/markjprice/cs10dotnet6
https://github.com/markjprice/cs10dotnet6

Chapter 02

The result of running your console application should look something like Figure 2.9:

8 Microsoft Visual Studio Debug Console m] s

ushort
int

uint
IOﬂg
ulong
float

000 R RENMNNRE R

double B8 7976931 862315 3088 1.797693134 1S57E+3
decimal 16 792 ?) 79228162514 J 439503

Figure 2.9: The result of outputting number type sizes

, Code solutions for all exercises are available to download or clone from the
\/;n; GitHub repository at the following link: https://github.com/markjprice/

csledotnets6.

Exercise 2.4 — Explore topics

Use the links on the following page to learn more detail about the topics covered in this
chapter:

https://github.com/markjprice/csl@dotnet6/blob/main/book-1inks.md#chapter-2---
speaking-c

Summary

In this chapter, you learned how to:

* Declare variables with a specified or an inferred type.

* Use some of the built-in types for numbers, text, and Booleans.
* Choose between number types.

* Control output formatting in console apps.

In the next chapter, you will learn about operators, branching, looping, converting between
types, and how to handle exceptions.

[93]

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-2---speaking-c
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-2---speaking-c
https://github.com/markjprice/cs10dotnet6
https://github.com/markjprice/cs10dotnet6

05

Controlling Flow, Converting
Types, and Handling Exceptions

This chapter is all about writing code that performs simple operations on variables, makes
decisions, performs pattern matching, repeats statements or blocks, converts variable or
expression values from one type to another, handles exceptions, and checks for overflows in
number variables.

This chapter covers the following topics:

* Operating on variables

* Understanding selection statements

* Understanding iteration statements

* (Casting and converting between types
* Handling exceptions

* Checking for overflow

Operating on variables

Operators apply simple operations such as addition and multiplication to operands such as
variables and literal values. They usually return a new value that is the result of the operation
that can be assigned to a variable.

Most operators are binary, meaning that they work on two operands, as shown in the following
pseudocode:

var resultOfOperation = firstOperand operator secondOperand;

[95]

Controlling Flow, Converting Types, and Handling Exceptions

Examples of binary operators include adding and multiplying, as shown in the following code:

int x = 5;

int y = 3;

int resultOfAdding = x + y;

int resultOfMultiplying = x * y;

Some operators are unary, meaning they work on a single operand, and can apply before or
after the operand, as shown in the following pseudocode:

var resultOfOperation = onlyOperand operator;
var resultOfOperation2 = operator onlyOperand;

Examples of unary operators include incrementors and retrieving a type or its size in bytes, as
shown in the following code:

int x = 5;

int postfixIncrement = x++;

int prefixIncrement = ++x;

Type theTypeOfAnInteger = typeof(int);

int howManyBytesInAnInteger = sizeof(int);

A ternary operator works on three operands, as shown in the following pseudocode:

var resultOfOperation = firstOperand firstOperator
secondOperand secondOperator thirdOperand;

Exploring unary operators

Two common unary operators are used to increment, ++, and decrement, --, a number. Let us
write some example code to show how they work:

1. If you've completed the previous chapters, then you will already have a Code folder. If
not, then you'll need to create it.

2. Use your preferred coding tool to create a new console app, as defined in the following
list:

1. Project template: Console Application / console
2. Workspace/solution file and folder: Chaptere3
3. Project file and folder: Operators

3. At the top of Progranm.cs, statically import System.Console.

In Program. cs, declare two integer variables named a and b, set a to 3, increment a while
assigning the result to b, and then output their values, as shown in the following code:
int a = 3;
int b = a++;
WriteLine($"a is {a}, b is {b}");

[96]

Chapter 03

5. Before running the console application, ask yourself a question: what do you think the
value of b will be when output? Once you've thought about that, run the code, and
compare your prediction against the actual result, as shown in the following output:

a is 4, b is 3

The variable b has the value 3 because the ++ operator executes after the assignment; this
is known as a postfix operator. If you need to increment before the assignment, then use

the prefix operator.

6. Copy and paste the statements, and then modify them to rename the variables and use
the prefix operator, as shown in the following code:

int ¢ = 3;
int d = ++c¢;

WriteLine($"c is {c}, d is {d}");

7. Rerun the code and note the result, as shown in the following output:

a is 4, b is 3

c is 4, d is 4

4 AY

Good Practice: Due to the confusion between prefix and postfix for
the increment and decrement operators when combined with an
L assignment, the Swift programming language designers decided to
'@' drop support for this operator in version 3. My recommendation
g for usage in C# is to never combine the use of ++ and - - operators
with an assignment operator, =. Perform the operations as separate
statements.

Exploring binary arithmetic operators

Increment and decrement are unary arithmetic operators. Other arithmetic operators are
usually binary and allow you to perform arithmetic operations on two numbers, as the

following shows:

1. Add the statements to declare and assign values to two integer variables named e and
f, and then apply the five common binary arithmetic operators to the two numbers, as
shown in the following code:

int e = 11;
int £ = 3;

WriteLine($"e is {e}, f is {f}");

WriteLine($"e +
WriteLine($"e -
WriteLine($"e *
WriteLine($"e /
WriteLine($"e %

-+ -h -h -h -h

{e
{e
{e
{e
{e

+

X~ *x 1

£1");
£1");
£1");
£}");
£}");

[97]

Controlling Flow, Converting Types, and Handling Exceptions

2. Run the code and note the result, as shown in the following output:
e is 11, f is 3
+ 14
8

To understand the divide / and modulo % operators when applied to integers, you need
to think back to primary school. Imagine you have eleven sweets and three friends.

How can you divide the sweets between your friends? You can give three sweets to
each of your friends, and there will be two left over. Those two sweets are the modulus,
also known as the remainder after dividing. If you have twelve sweets, then each friend
gets four of them, and there are none left over, so the remainder would be 0.

3. Add statements to declare and assign a value to a double variable named g to show
the difference between whole number and real number divisions, as shown in the
following code:

double g = 11.0;
WriteLine($"g is {g:N1}, f is {f}");
WriteLine($"g / f = {g / f}");

4. Run the code and note the result, as shown in the following output:

g is 11.0, f is 3

g / f = 3.6666666666666665

If the first operand is a floating-point number, such as g with the value 11.9, then the divide
operator returns a floating-point value, such as 3.6666666666665, rather than a whole number.

Assignment operators

You have already been using the most common assignment operator, =.

To make your code more concise, you can combine the assignment operator with other
operators like arithmetic operators, as shown in the following code:

int p = 6;
p += 3;
p_= 3)
p*=3;
p /= 3;

Exploring logical operators

Logical operators operate on Boolean values, so they return either true or false. Let's explore
binary logical operators that operate on two Boolean values:

[98]

Chapter 03

1. Use your preferred coding tool to add a new console app to the Chaptere3 workspace/
solution named BooleanOperators.

1. In Visual Studio Code, select BooleanOperators as the active OmniSharp project.
When you see the pop-up warning message saying that required assets are
missing, click Yes to add them.

2. In Visual Studio, set the start up project for the solution to the current selection.

!
\@/ Good Practice: Remember to statically import the System.Console

7 type to simplify statements.

2. InProgram.cs, add statements to declare two Boolean variables with values of true and
false, and then output truth tables showing the results of applying AND, OR, and XOR
(exclusive OR) logical operators, as shown in the following code:

bool a = true;

bool b = false;

WriteLine($"AND | a | b g
WriteLine($"a | {a & a,-5} | {a & b,-5} ");
WriteLine($"b | {b & a,-5} | {b & b,-5} ");
WriteLine();

WriteLine($"OR | a | b g
WriteLine($"a | {a | a,-5} | {a | b,-5} ");
WriteLine($"b | {b | a,-5} | {b | b,-5} ");
WriteLine();

WriteLine($"XOR | a | b P9 g
WriteLine($"a | {a ~ a,-5} | {a ~ b,-5} ");
WriteLine($"b | {b ~ a,-5} | {b ~ b,-5} ");

3. Run the code and note the results, as shown in the following output:

[99]

Controlling Flow, Converting Types, and Handling Exceptions

For the AND & logical operator, both operands must be true for the result to be true. For the
OR | logical operator, either operand can be true for the result to be true. For the XOR * logical
operator, either operand can be true (but not both!) for the result to be true.

Exploring conditional logical operators

Conditional logical operators are like logical operators, but you use two symbols instead of one,
for example, && instead of &, or | | instead of |.

In Chapter 4, Writing, Debugging, and Testing Functions, you will learn about functions in more
detail, but I need to introduce functions now to explain conditional logical operators, also
known as short-circuiting Boolean operators.

A function executes statements and then returns a value. That value could be a Boolean value
like true that is used in a Boolean operation. Let's make use of conditional logical operators:

1. At the bottom of Program. cs, write statements to declare a function that writes a
message to the console and returns true, as shown in the following code:
static bool DoStuff()
{

WriteLine("I am doing some stuff.");
return true;

}

! Good Practice: If you are using .NET Interactive Notebook, write the

\ 7/
‘,@\‘ DoStuff function in a separate code cell and then execute it to make

E its context available to other code cells.

2. After the previous WritelLine statements, perform an AND & operation on the a and b
variables and the result of calling the function, as shown in the following code:

WriteLine();

WriteLine($"a & DoStuff()
WriteLine($"b & DoStuff()

{a & DoStuff()}");
{b & DoStuff()}");

3. Run the code, view the result, and note that the function was called twice, once for a
and once for b, as shown in the following output:

I am doing some stuff.
a & DoStuff() = True

I am doing some stuff.
b & DoStuff() = False

4. Change the & operators into & operators, as shown in the following code:

WriteLine($"a && DoStuff() = {a &% DoStuff()}");
WriteLine($"b && DoStuff() = {b && DoStuff()}");

[100]

Chapter 03

5. Run the code, view the result, and note that the function does run when combined with
the a variable. It does not run when combined with the b variable because the b variable
is false so the result will be false anyway, so it does not need to execute the function,
as shown in the following output:

I am doing some stuff.
a && DoStuff() = True

b & DoStuff() = False // DoStuff function was not executed!

Good Practice: Now you can see why the conditional logical operators
are described as being short-circuiting. They can make your apps

!
\@’ more efficient, but they can also introduce subtle bugs in cases where
- you assume that the function would always be called. It is safest to
- avoid them when used in combination with functions that cause side
effects.

Exploring bitwise and binary shift operators

Bitwise operators affect the bits in a number. Binary shift operators can perform some common
arithmetic calculations much faster than traditional operators, for example, any multiplication
by a factor of 2.

Let's explore bitwise and binary shift operators:

1. Use your preferred coding tool to add a new Console Application to the Chaptere3
workspace/solution named BitwiseAndShiftOperators.

2. In Visual Studio Code, select BitwiseAndShiftOperators as the active OmniSharp
project. When you see the pop-up warning message saying that required assets are
missing, click Yes to add them.

3. InProgram.cs, type statements to declare two integer variables with values 10 and
6, and then output the results of applying AND, OR, and XOR bitwise operators, as
shown in the following code:

int a = 10;

int b = 6;

WriteLine($"a = {a}");
WriteLine($"b = {b}");
WriteLine($"a & b = {a & b}");
WriteLine($"a | b = {a | b}");

WriteLine($"a ~ b = {a ~ b}");

4. Run the code and note the results, as shown in the following output:

[101]

Controlling Flow, Converting Types, and Handling Exceptions

a|b=14
a b =12

5. InProgram.cs, add statements to output the results of applying the left-shift operator to
move the bits of the variable a by three columns, multiplying a by 8, and right-shifting
the bits of the variable b by one column, as shown in the following code:

WriteLine($"a << 3 = {a << 3}");
WriteLine($"a * 8 = {a * 8}");

WriteLine($"b >> 1 = {b >> 1}");

6. Run the code and note the results, as shown in the following output:

The 80 result is because the bits in it were shifted three columns to the left, so the 1-bits moved
into the 64- and 16-bit columns and 64 + 16 = 80. This is the equivalent of multiplying by 8,
but CPUs can perform a bit-shift faster. The 3 result is because the 1-bits in b were shifted one
column into the 2- and 1-bit columns.

I Good Practice: Remember that when operating on integer values, the & and

\ 7/
‘,@\‘ | symbols are bitwise operators, and when operating on Boolean values like

E true and false, the & and | symbols are logical operators.

We can illustrate the operations by converting the integer values into binary strings of zeros
and ones:

1. At the bottom of Program.cs, add a function to convert an integer value into a binary
(Base2) string of up to eight zeros and ones, as shown in the following code:

static string ToBinaryString(int value)

{
return Convert.ToString(value, toBase: 2).PadLeft(8, '9");

}

2. Above the function, add statements to output a, b, and the results of the various bitwise
operators, as shown in the following code:
WriteLine();
WriteLine("Outputting integers as binary:");

[102]

Chapter 03

WriteLine($"a
WriteLine($"b

{ToBinaryString(a)}");
{ToBinaryString(b)}");

WriteLine($"a & b = {ToBinaryString(a & b)}");
WriteLine($"a | b = {ToBinaryString(a | b)}");
WriteLine($"a ~ b = {ToBinaryString(a ~ b)}");

3. Run the code and note the results, as shown in the following output:

Outputting integers as binary:
a 00001010
00000110

00000010
00001110
00001100

Miscellaneous operators

nameof and sizeof are convenient operators when working with types:

* nameof returns the short name (without the namespace) of a variable, type, or member
as a string value, which is useful when outputting exception messages.

* sizeof returns the size in bytes of simple types, which is useful for determining the
efficiency of data storage.

There are many other operators; for example, the dot between a variable and its members is
called the member access operator and the round brackets at the end of a function or method
name are called the invocation operator, as shown in the following code:

int age = 47;

char firstDigit = age.ToString()[0];

Understanding selection statements

Every application needs to be able to select from choices and branch along different code
paths. The two selection statements in C# are if and switch. You can use if for all your code,
but switch can simplify your code in some common scenarios such as when there is a single
variable that can have multiple values that each require different processing.

[103]

Controlling Flow, Converting Types, and Handling Exceptions

Branching with the if statement

The if statement determines which branch to follow by evaluating a Boolean expression. If the
expression is true, then the block executes. The else block is optional, and it executes if the if
expression is false. The if statement can be nested.

The if statement can be combined with other if statements as else if branches, as shown in
the following code:

if (expressionl)

{
}

else if (expression2)

{
¥

else if (expression3)

Each if statement's Boolean expression is independent of the others and, unlike switch
statements, does not need to reference a single value.

Let's write some code to explore selection statements like if:

1. Use your preferred coding tool to add a new Console Application to the Chaptere3
workspace/solution named SelectionStatements.

In Visual Studio Code, select SelectionStatements as the active OmniSharp project.

In Program. cs, type statements to check if a password is at least eight characters, as
shown in the following code:

string password = "ninja";

if (password.Length < 8)

{
WriteLine("Your password is too short. Use at least 8 characters.");
}
else
{
WriteLine("Your password is strong.");
}

[104]

Chapter 03

4. Run the code and note the result, as shown in the following output:

Your password is too short. Use at least 8 characters.

Why you should always use braces with if statements

As there is only a single statement inside each block, the preceding code could be written
without the curly braces, as shown in the following code:

if (password.Length < 8)

WriteLine("Your password is too short. Use at least 8 characters.");
else

WriteLine("Your password is strong.");

This style of if statement should be avoided because it can introduce serious bugs, for example,
the infamous #gotofail bug in Apple's iPhone iOS operating system.

For 18 months after Apple's iOS 6 was released, in September 2012, it had a bug in its Secure
Sockets Layer (SSL) encryption code, which meant that any user running Safari, the device's
web browser, who tried to connect to secure websites, such as their bank, was not properly
secure because an important check was being accidentally skipped.

Just because you can leave out the curly braces doesn't mean you should. Your code is not
"more efficient" without them; instead, it is less maintainable and potentially more dangerous.

Pattern matching with the if statement

A feature introduced with C# 7.0 and later is pattern matching. The if statement can use the is
keyword in combination with declaring a local variable to make your code safer:

1. Add statements so that if the value stored in the variable named o is an int, then the
value is assigned to the local variable named i, which can then be used inside the if
statement. This is safer than using the variable named o because we know for sure that
i is an int variable and not something else, as shown in the following code:

object o = "3";
int j = 4;

if (o is int 1)

{
WriteLine($"{i} x {3} = {i * j}");
¥
else
{
WriteLine("o is not an int so it cannot multiply!");
}

[105]

Controlling Flow, Converting Types, and Handling Exceptions

2.

Run the code and view the results, as shown in the following output:

0 is not an int so it cannot multiply!

Delete the double-quote characters around the "3" value so that the value stored in the
variable named o is an int type instead of a string type.

Rerun the code to view the results, as shown in the following output:

3 x4 =12

Branching with the switch statement

The switch statement is different from the if statement because switch compares a single
expression against a list of multiple possible case statements. Every case statement is related to
the single expression. Every case section must end with:

The break keyword (like case 1 in the following code)

Or the goto case keywords (like case 2 in the following code)

Or they should have no statements (like case 3 in the following code)

Or the goto keyword that references a named label (like case 5 in the following code)

Or the return keyword to leave the current function (not shown in the code)

Let's write some code to explore the switch statements:

1.

Type statements for a switch statement. You should note that the penultimate
statement is a label that can be jumped to, and the first statement generates a random
number between 1 and 6 (the number 7 in the code is an exclusive upper bound). The
switch statement branches are based on the value of this random number, as shown in
the following code:

int number = (new Random()).Next(1, 7);
WriteLine($"My random number is {number}");

switch (number)
{
case 1:
WriteLine("One");
break;
case 2:
WriteLine("Two");
goto case 1;
case 3:
case 4:
WriteLine("Three or four");
goto case 1;
case 5:
goto A_label;

[106]

Chapter 03

default:
WriteLine("Default");
break;

}

WriteLine("After end of switch");
A_label:
WriteLine($"After A_label");

| Good Practice: You can use the goto keyword to jump to another case
\@' or a label. The goto keyword is frowned upon by most programmers
AR but can be a good solution to code logic in some scenarios. However,
you should use it sparingly.

2. Run the code multiple times to see what happens in various cases of random numbers,
as shown in the following example output:

// first random run
My random number is 4
Three or four

One

After end of switch
After A_label

// second random run
My random number is 2
Two

One

After end of switch
After A _label

// third random run
My random number is 6
Default

After end of switch
After A_label

// fourth random run
My random number is 1
One

After end of switch
After A_label

// fifth random run
My random number is 5
After A_label

[107]

Controlling Flow, Converting Types, and Handling Exceptions

Pattern matching with the switch statement

Like the if statement, the switch statement supports pattern matching in C# 7.0 and later. The
case values no longer need to be literal values; they can be patterns.

Let's see an example of pattern matching with the switch statement using a folder path. If you
are using macOS, then swap the commented statement that sets the path variable and replace
my username with your user folder name:

1. Add statements to declare a string path to a file, open it as either a read-only or
writeable stream, and then show a message based on what type and capabilities the
stream has, as shown in the following code:

string path = @"C:\Code\Chaptere3";

Write("Press R for read-only or W for writeable: ");
ConsoleKeyInfo key = ReadKey();
WriteLine();

Stream? s;

if (key.Key == ConsoleKey.R)
{

s = File.Open(
Path.Combine(path, "file.txt"),
FileMode.OpenOrCreate,
FileAccess.Read);

}

else
{

s = File.Open(
Path.Combine(path, "file.txt"),
FileMode.OpenOrCreate,
FileAccess.Write);

string message;

switch (s)
{
case FileStream writeableFile when s.CanWrite:
message = "The stream is a file that I can write to.";
break;
case FileStream readOnlyFile:
message = "The stream is a read-only file.";
break;

[108]

Chapter 03

case MemoryStream ms:
message = "The stream is a memory address.";
break;

default:
message
break;

case null:
message
break;

"The stream is some other type.";

"The stream is null.";

WriteLine(message);

2. Run the code and note that the variable named s is declared as a Stream type so it
could be any subtype of stream, such as a memory stream or file stream. In this code,
the stream is created using the File.Open method, which returns a file stream and,
depending on your key press, it will be writeable or read-only, so the result will be a
message that describes the situation, as shown in the following output:

The stream is a file that I can write to.

In .NET, there are multiple subtypes of Stream, including FileStream and MemoryStream. In C#
7.0 and later, your code can more concisely branch, based on the subtype of stream, and declare
and assign a local variable to safely use it. You will learn more about the System.I0 namespace
and the Stream type in Chapter 9, Working with Files, Streams, and Serialization.

Additionally, case statements can include a when keyword to perform more specific pattern
matching. In the first case statement in the preceding code, s will only be a match if the stream
is a FileStream and its CanWrite property is true.

Simplifying switch statements with switch
expressions

In C# 8.0 or later, you can simplify switch statements using switch expressions.

Most switch statements are very simple, yet they require a lot of typing. switch expressions
are designed to simplify the code you need to type while still expressing the same intent

in scenarios where all cases return a value to set a single variable. switch expressions use a
lambda, =>, to indicate a return value.

Let's implement the previous code that used a switch statement using a switch expression so
that you can compare the two styles:

1. Type statements to set the message based on what type and capabilities the stream has,
using a switch expression, as shown in the following code:

message = s switch

{

[109]

Controlling Flow, Converting Types, and Handling Exceptions

FileStream writeableFile when s.CanWrite

=> "The stream is a file that I can write to.",
FileStream readOnlyFile

=> "The stream is a read-only file.",
MemoryStream ms

=> "The stream is a memory address.",
null

=> "The stream is null.",

=> "The stream is some other type."

}s
WriteLine(message);

The main differences are the removal of the case and break keywords. The underscore
character _ is used to represent the default return value.

2. Run the code, and note the result is the same as before.

Understanding iteration statements

Iteration statements repeat a block of statements either while a condition is true or for each
item in a collection. The choice of which statement to use is based on a combination of ease of
understanding to solve the logic problem and personal preference.

Looping with the while statement

The while statement evaluates a Boolean expression and continues to loop while it is true. Let's
explore iteration statements:

1. Use your preferred coding tool to add a new Console Application to the Chaptere3
workspace/solution named IterationStatements.

In Visual Studio Code, select IterationStatements as the active OmniSharp project.
In Program. cs, type statements to define a while statement that loops while an integer
variable has a value less than 10, as shown in the following code:

int x = 0;

while (x < 10)
{

WriteLine(x);
X++;

}

[110]

Chapter 03

4. Run the code and view the results, which should be the numbers 0 to 9, as shown in the
following output:

0
1
2
3
4
)
6
7
8
9

Looping with the do statement

The do statement is like while, except the Boolean expression is checked at the bottom of the
block instead of the top, which means that the block always executes at least once, as the
following shows:

1. Type statements to define a do loop, as shown in the following code:

string? password;

do
{

Write("Enter your password: ");
password = ReadlLine();

}
while (password != "Pa$$word");

WriteLine("Correct!");

2. Run the code, and note that you are prompted to enter your password repeatedly until
you enter it correctly, as shown in the following output:

Enter your password: password
Enter your password: 12345678
Enter your password: ninja

Enter your password: correct horse battery staple
Enter your password: Pa$$word
Correct!

3. As an optional challenge, add statements so that the user can only make ten attempts
before an error message is displayed.

[111]

Controlling Flow, Converting Types, and Handling Exceptions

Looping with the for statement

The for statement is like while, except that it is more succinct. It combines:

* An initializer expression, which executes once at the start of the loop.

* A conditional expression, which executes on every iteration at the start of the loop to
check whether the looping should continue.

* Aniterator expression, which executes on every loop at the bottom of the statement.

The for statement is commonly used with an integer counter. Let's explore some code:

1. Type a for statement to output the numbers 1 to 10, as shown in the following code:

for (int y = 1; y <= 10; y++)
{
WritelLine(y);

}

2. Run the code to view the result, which should be the numbers 1 to 10.

Looping with the foreach statement

The foreach statement is a bit different from the previous three iteration statements.

It is used to perform a block of statements on each item in a sequence, for example, an array
or collection. Each item is usually read-only, and if the sequence structure is modified during
iteration, for example, by adding or removing an item, then an exception will be thrown.

Try the following example:

1. Type statements to create an array of string variables and then output the length of each
one, as shown in the following code:

string[] names = { "Adam", "Barry", "Charlie" };

foreach (string name in names)

{

WriteLine($"{name} has {name.Length} characters.");

}
2. Run the code and view the results, as shown in the following output:

Adam has 4 characters.

Barry has 5 characters.
Charlie has 7 characters.

[112]

Chapter 03

Understanding how foreach works internally

A creator of any type that represents multiple items, like an array or collection, should make
sure that a programmer can use the foreach statement to enumerate through the type's items.

Technically, the foreach statement will work on any type that follows these rules:

The type must have a method named GetEnumerator that returns an object.

2. The returned object must have a property named Current and a method named
MoveNext.

3. The MoveNext method must change the value of Current and return true if there are
more items to enumerate through or return false if there are no more items.

There are interfaces named IEnumerable and IEnumerable<T> that formally define these rules,
but technically the compiler does not require the type to implement these interfaces.

The compiler turns the foreach statement in the preceding example into something like the
following pseudocode:

IEnumerator e = names.GetEnumerator();

while (e.MoveNext())

{
string name = (string)e.Current;
WriteLine($"{name} has {name.Length} characters.");

}

Due to the use of an iterator, the variable declared in a foreach statement cannot be used to
modify the value of the current item.

Casting and converting between types

You will often need to convert values of variables between different types. For example, data
input is often entered as text at the console, so it is initially stored in a variable of the string
type, but it then needs to be converted into a date/time, or number, or some other data type,
depending on how it should be stored and processed.

Sometimes you will need to convert between number types, like between an integer and a
floating point, before performing calculations.

Converting is also known as casting, and it has two varieties: implicit and explicit. Implicit
casting happens automatically, and it is safe, meaning that you will not lose any information.

Explicit casting must be performed manually because it may lose information, for example,
the precision of a number. By explicitly casting, you are telling the C# compiler that you
understand and accept the risk.

[113]

Controlling Flow, Converting Types, and Handling Exceptions

Casting numbers implicitly and explicitly

Implicitly casting an int variable into a double variable is safe because no information can be
lost as the following shows:

1.

Use your preferred coding tool to add a new Console Application to the Chaptere3
workspace/solution named CastingConverting.

In Visual Studio Code, select CastingConverting as the active OmniSharp project.

In Program. cs, type statements to declare and assign an int variable and a double
variable, and then implicitly cast the integer's value when assigning it to the double
variable, as shown in the following code:

int a = 10;

double b = a;

WriteLine(b);

Type statements to declare and assign a double variable and an int variable, and then
implicitly cast the double value when assigning it to the int variable, as shown in the
following code:

double ¢ = 9.8;
int d = ¢;
WriteLine(d);

Run the code and note the error message, as shown in the following output:

Error: (6,9): error CS0266: Cannot implicitly convert type 'double' to

"int'. An explicit conversion exists (are you missing a cast?)

This error message will also appear in the Visual Studio Error List or Visual Studio
Code PROBLEMS window.

You cannot implicitly cast a double variable into an int variable because it is potentially
unsafe and could lose data, like the value after the decimal point. You must explicitly
cast a double variable into an int variable using a pair of round brackets around

the type you want to cast the double type into. The pair of round brackets is the cast
operator. Even then, you must beware that the part after the decimal point will be
trimmed off without warning because you have chosen to perform an explicit cast and
therefore understand the consequences.

Modify the assignment statement for the d variable, as shown in the following code:
int d = (int)c;
WriteLine(d);

Run the code to view the results, as shown in the following output:

10
9

[114]

Chapter 03

We must perform a similar operation when converting values between larger integers
and smaller integers. Again, beware that you might lose information because any value
too big will have its bits copied and then be interpreted in ways that you might not
expect!

8. Enter statements to declare and assign a long 64-bit variable to an int 32-bit variable,
both using a small value that will work and a too-large value that will not, as shown in
the following code:

long e = 10;

int f = (int)e;

WriteLine($"e is {e:N@} and f is {f:NO}");
e = long.MaxValue;

f = (int)e;

WriteLine($"e is {e:N@} and f is {f:NO}");

9. Run the code to view the results, as shown in the following output:

e is 10 and f is 10
e is 9,223,372,036,854,775,807 and f is -1

10. Modify the value of e to 5 billion, as shown in the following code:
e = 5_000 000 000;

11. Run the code to view the results, as shown in the following output:

e is 5,000,000,000 and f is 705,032,704

Converting with the System.Convert type

An alternative to using the cast operator is to use the System.Convert type. The System.Convert
type can convert to and from all the C# number types, as well as Booleans, strings, and date
and time values.

Let's write some code to see this in action:

1. At the top of Program. cs, statically import the System.Convert class, as shown in the
following code:

using static System.Convert;

2. At the bottom of Program.cs, type statements to declare and assign a value to a double
variable, convert it to an integer, and then write both values to the console, as shown in
the following code:

double g = 9.8;

int h = ToInt32(g);
WriteLine($"g is {g} and h is {h}");

[115]

Controlling Flow, Converting Types, and Handling Exceptions

3. Run the code and view the result, as shown in the following output:

g 1s 9.8 and h is 10

One difference between casting and converting is that converting rounds the double value 9.8
up to 10 instead of trimming the part after the decimal point.

Rounding numbers

You have now seen that the cast operator trims the decimal part of a real number and that the
System.Convert methods round up or down. However, what is the rule for rounding?

Understanding the default rounding rules

In British primary schools for children aged 5 to 11, pupils are taught to round up if the decimal
part is .5 or higher and round down if the decimal part is less.

Let's explore if C# follows the same primary school rule:

1. Type statements to declare and assign an array of double values, convert each of them
to an integer, and then write the result to the console, as shown in the following code:

double[] doubles = new[]
{ 9.49, 9.5, 9.51, 10.49, 10.5, 10.51 };

foreach (double n in doubles)

{
WriteLine($"ToInt32({n}) is {ToInt32(n)}");

}

2. Run the code and view the result, as shown in the following output:

ToInt32(9.49) is 9
ToInt32(9.5) is 10
ToInt32(9.51) is 10

ToInt32(10.49) is 10
ToInt32(10.5) is 10
ToInt32(10.51) is 11

We have shown that the rule for rounding in C# is subtly different from the primary school
rule:

* Italways rounds down if the decimal part is less than the midpoint .5.
* It always rounds up if the decimal part is more than the midpoint .5.

* It will round up if the decimal part is the midpoint .5 and the non-decimal part is odd,
but it will round down if the non-decimal part is even.

[116]

Chapter 03

This rule is known as Banker's Rounding, and it is preferred because it reduces bias by
alternating when it rounds up or down. Sadly, other languages such as JavaScript use the
primary school rule.

Taking control of rounding rules

You can take control of the rounding rules by using the Round method of the Math class:

1. Type statements to round each of the double values using the "away from zero"
rounding rule, also known as rounding "up," and then write the result to the console, as
shown in the following code:

foreach (double n in doubles)

{
WriteLine(format:
"Math.Round({@}, @, MidpointRounding.AwayFromZero) is {1}",
argo: n,
argl: Math.Round(value: n, digits: 0,
mode: MidpointRounding.AwayFromZero));
}

2. Run the code and view the result, as shown in the following output:

Round(9.49, 0, MidpointRounding.AwayFromZero) is 9
Round(9.5, @, MidpointRounding.AwayFromZero) is 10
Round(9.51, @, MidpointRounding.AwayFromZero) is 10

Round(10.49, 0, MidpointRounding.AwayFromZero) is 10
Round(10.5, @, MidpointRounding.AwayFromZero) is 11
Round(10.51, @, MidpointRounding.AwayFromZero) is 11

!
\@’_ Good Practice: For every programming language that you use, check

2 its rounding rules. They may not work the way you expect!

Converting from any type to a string

The most common conversion is from any type into a string variable for outputting as human-
readable text, so all types have a method named ToString that they inherit from the System.
Object class.

The ToString method converts the current value of any variable into a textual representation.
Some types can't be sensibly represented as text, so they return their namespace and type name
instead.

[117]

Controlling Flow, Converting Types, and Handling Exceptions

Let's convert some types into a string:

1. Type statements to declare some variables, convert them to their string representation,
and write them to the console, as shown in the following code:

int number = 12;
WriteLine(number.ToString());

bool boolean = true;
WriteLine(boolean.ToString());

DateTime now = DateTime.Now;
WriteLine(now.ToString());

object me = new();
WriteLine(me.ToString());

2. Run the code and view the result, as shown in the following output:

12
True

02/28/2021 17:33:54
System.Object

Converting from a binary object to a string

When you have a binary object like an image or video that you want to either store or transmit,
you sometimes do not want to send the raw bits because you do not know how those bits
could be misinterpreted, for example, by the network protocol transmitting them or another
operating system that is reading the store binary object.

The safest thing to do is to convert the binary object into a string of safe characters.
Programmers call this Base64 encoding.

The Convert type has a pair of methods, ToBase64String and FromBase64String, that perform
this conversion for you. Let's see them in action:

1. Type statements to create an array of bytes randomly populated with byte values, write
each byte nicely formatted to the console, and then write the same bytes converted to
Base64 to the console, as shown in the following code:

byte[] binaryObject = new byte[128];

(new Random()).NextBytes(binaryObject);
WriteLine("Binary Object as bytes:");

for(int index = ©; index < binaryObject.Length; index++)

[118]

Chapter 03

{
Write($"{binaryObject[index]:X} ");

}

WriteLine();

string encoded = ToBase64String(binaryObject);
WriteLine($"Binary Object as Base64: {encoded}");

By default, an int value would output assuming decimal notation, that is, base10. You
can use format codes such as :X to format the value using hexadecimal notation.

2. Run the code and view the result, as shown in the following output:

Binary Object as bytes:
B3 4D 55 DE 2D E BB CF BE 4D E6 53 C3 C2 9B 67 3 45 F9 E5 20 61 7E 4F 7A
81 EC 49 FO 49 1D 8E D4 F7 DB 54 AF A0 81 5 B8 BE CE F8 36 90 7A D4 36 42

4 75 81 1B AB 51 CE 5 63 AC 22 72 DE 74 2F 57 7F CB E7 47 B7 62 C3 F4 2D
61 93 85 18 EA 6 17 12 AE 44 A8 D B8 4C 89 85 A9 3C D5 E2 46 EO 59 C9 DF

10 AF ED EF 8AAl1 B1 8D EE 4A BE 48 EC 79 A5 A 5F 2F 30 87 4A C7 7F 5D C1 D
26 EE

Binary Object as Base64: s01V3i00u8++TeZTw8KbZwNF +eUgYX5PeoHsSTBIHY7U99tU
r6CBBbi+zvg2kHrUNKIEdYEbgq1HOBWOSInLedC9Xf8vnR7diw/QtYZOFGOoGFxKuRKgNuEyJha
k81eJG4FnJ3xCv7e+KobGN7kq+SO x5pQpfLzCHSsd/XcENJud=

Parsing from strings to numbers or dates and times

The second most common conversion is from strings to numbers or date and time values.

The opposite of ToString is Parse. Only a few types have a Parse method, including all the
number types and DateTime.

Let's see Parse in action:

1. Type statements to parse an integer and a date and time value from strings and then
write the result to the console, as shown in the following code:
int age = int.Parse("27");
DateTime birthday = DateTime.Parse("4 July 1980");

WriteLine($"I was born {age} years ago.");
WriteLine($"My birthday is {birthday}.");
WriteLine($"My birthday is {birthday:D}.");

Run the code and view the result, as shown in the following output:

I was born 27 years ago.
My birthday is ©4/07/1980 00:00:00.

My birthday is 04 July 1980.

[119]

Controlling Flow, Converting Types, and Handling Exceptions

By default, a date and time value outputs with the short date and time format. You can
use format codes such as D to output only the date part using the long date format.

| Good Practice: Use the standard date and time format specifiers, as
\@' shown at the following link: https://docs.microsoft.com/en-
A us/dotnet/standard/base-types/standard-date-and-time-
= format-strings#itable-of-format-specifiers

Errors using Parse

One problem with the Parse method is that it gives errors if the string cannot be converted.

1. Type a statement to attempt to parse a string containing letters into an integer variable,
as shown in the following code:

int count = int.Parse("abc");

2. Run the code and view the result, as shown in the following output:

Unhandled Exception: System.FormatException: Input string was not in a

correct format.

As well as the preceding exception message, you will see a stack trace. I have not included
stack traces in this book because they take up too much space.

Avoiding exceptions using the TryParse method

To avoid errors, you can use the TryParse method instead. TryParse attempts to convert the
input string and returns true if it can convert it and false if it cannot.

The out keyword is required to allow the TryParse method to set the count variable when the
conversion works.

Let's see TryParse in action:

1. Replace the int count declaration with statements to use the TryParse method and ask
the user to input a count for a number of eggs, as shown in the following code:

Write("How many eggs are there? ");
string? input = ReadlLine();

if (int.TryParse(input, out int count))

{
WriteLine($"There are {count} eggs.");
}
else
{
WriteLine("I could not parse the input.");
}

[120]

https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings#table-of-format-specifiers
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings#table-of-format-specifiers
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings#table-of-format-specifiers

Chapter 03

2. Run the code, enter 12, and view the result, as shown in the following output:

How many eggs are there? 12
There are 12 eggs.

3. Run the code, enter twelve (or change the string value to "twelve" in a notebook), and
view the result, as shown in the following output:

How many eggs are there? twelve
I could not parse the input.

You can also use methods of the System.Convert type to convert string values into other types;
however, like the Parse method, it gives an error if it cannot convert.

Handling exceptions

You've seen several scenarios where errors have occurred when converting types. Some
languages return error codes when something goes wrong. .NET uses exceptions that are richer
and designed only for failure reporting compared to return values that have multiple uses.
When this happens, we say a runtime exception has been thrown.

When an exception is thrown, the thread is suspended and if the calling code has defined a
try-catch statement, then it is given a chance to handle the exception. If the current method
does not handle it, then its calling method is given a chance, and so on up the call stack.

As you have seen, the default behavior of a console application or a .NET Interactive notebook
is to output a message about the exception, including a stack trace, and then stop running the
code. The application is terminated. This is better than allowing the code to continue executing
in a potentially corrupt state. Your code should only catch and handle exceptions that it
understands and can properly fix.

Good Practice: Avoid writing code that will throw an exception whenever
L possible, perhaps by performing if statement checks. Sometimes you can't,
'@\' and sometimes it is best to allow the exception to be caught by a higher-level
g component that is calling your code. You will learn how to do this in Chapter 4,
Writing, Debugging, and Testing Functions.

4

Wrapping error-prone code in a try block

When you know that a statement can cause an error, you should wrap that statement in a try
block. For example, parsing from text to a number can cause an error. Any statements in the
catch block will be executed only if an exception is thrown by a statement in the try block.

[121]

Controlling Flow, Converting Types, and Handling Exceptions

We don't have to do anything inside the catch block. Let's see this in action:

1. Use your preferred coding tool to add a new Console Application to the Chaptere3
workspace/solution named HandlingExceptions.

In Visual Studio Code, select HandlingExceptions as the active OmniSharp project.

Type statements to prompt the user to enter their age and then write their age to the
console, as shown in the following code:

WriteLine("Before parsing");
Write("What is your age? ");
string? input = ReadlLine();

try
{
int age = int.Parse(input);
WriteLine($"You are {age} years old.");
}
catch
{

}
WriteLine("After parsing");

You will see the following compiler message: Warning CS8604 Possible
null reference argument for parameter 's' in 'int int.
Parse(string s)'. By default in new .NET 6 projects, Microsoft has enabled
nullable reference types so you will see many more compiler warnings like
this. In production code, you should add code to check for null and handle
that possibility appropriately. In this book, I will not include these null
/ checks because the code samples are not designed to be production quality

\/§p> and null checks everywhere will clutter the code and use up valuable pages.
In this case, it is impossible for input to be null because the user must press
Enter for ReadLine to return and that will return an empty string. You will
see hundreds of more examples of potentially null variables throughout
the code samples in this book. Those warnings are safe to ignore for the
book code examples. You only need similar warnings when you write your
own production code. You will see more about null handling in Chapter 6,
Implementing Interfaces and Inheriting Classes.

This code includes two messages to indicate before parsing and after parsing to make
clearer the flow through the code. These will be especially useful as the example code
grows more complex.

4. Run the code, enter 49, and view the result, as shown in the following output:

Before parsing
What is your age? 49

You are 49 years old.
After parsing

[122]

Chapter 03

5. Run the code, enter Kermit, and view the result, as shown in the following output:

Before parsing

What is your age? Kermit
After parsing

When the code was executed, the error exception was caught and the default message and stack
trace were not output, and the console application continued running. This is better than the
default behavior, but it might be useful to see the type of error that occurred.

Good Practice: You should never use an empty catch statement like this
in production code because it "swallows" exceptions and hides potential

:@'_ problems. You should at least log the exception if you cannot or do not want to
NI handle it properly, or rethrow it so that higher-level code can decide instead.
- You will learn about logging in Chapter 4, Writing, Debugging, and Testing
Functions.

Catching all exceptions

To get information about any type of exception that might occur, you can declare a variable of
type System.Exception to the catch block:

1. Add an exception variable declaration to the catch block and use it to write information
about the exception to the console, as shown in the following code:

catch (Exception ex)

{
WriteLine($"{ex.GetType()} says {ex.Message}");

}
2. Run the code, enter Kermit again, and view the result, as shown in the following output:

Before parsing
What is your age? Kermit

System.FormatException says Input string was not in a correct format.
After parsing

Catching specific exceptions

Now that we know which specific type of exception occurred, we can improve our code by
catching just that type of exception and customizing the message that we display to the user:

1. Leave the existing catch block, and above it, add a new catch block for the format
exception type, as shown in the following highlighted code:
catch (FormatException)

{

WriteLine("The age you entered is not a valid number format.");

[123]

Controlling Flow, Converting Types, and Handling Exceptions

}
catch (Exception ex)
{
WriteLine($"{ex.GetType()} says {ex.Messagel}");
}

2. Run the code, enter Kermit again, and view the result, as shown in the following output:

Before parsing

What is your age? Kermit

The age you entered is not a valid number format.
After parsing

The reason we want to leave the more general catch below is that there might be other
types of exceptions that can occur.

Run the code, enter 9876543210, and view the result, as shown in the following output:

Before parsing
What is your age? 9876543210
System.OverflowException says Value was either too large or too small for

an Int32.
After parsing

Let's add another catch block for this type of exception.

4. Leave the existing catch blocks, and add a new catch block for the overflow exception
type, as shown in the following highlighted code:

catch (OverflowException)

{
WriteLine("Your age is a valid number format but it is either too big or
small.");
}
catch (FormatException)
{
WriteLine("The age you entered is not a valid number format.");
}

5. Run the code, enter 9876543210, and view the result, as shown in the following output:

Before parsing
What is your age? 9876543210

Your age is a valid number format but it is either too big or small.
After parsing

The order in which you catch exceptions is important. The correct order is related to the
inheritance hierarchy of the exception types. You will learn about inheritance in Chapter 5,
Building Your Own Types with Object-Oriented Programming. However, don't worry too much
about this —the compiler will give you build errors if you get exceptions in the wrong order
anyway.

[124]

Chapter 03

Good Practice: Avoid over-catching exceptions. They should often be allowed
L to propagate up the call stack to be handled at a level where more information
'@\' is known about the circumstances that could change the logic of how they
g should be handled. You will learn about this in Chapter 4, Writing, Debugging,
and Testing Functions.

4

Catching with filters

You can also add filters to a catch statement using the when keyword, as shown in the following
code:

Write("Enter an amount: ");
string? amount = ReadLine();
try
{
decimal amountValue = decimal.Parse(amount);
¥
catch (FormatException) when (amount.Contains("$"))
{
WriteLine("Amounts cannot use the dollar sign!");
}
catch (FormatException)
{

WriteLine("Amounts must only contain digits!");

}

Checking for overflow

Earlier, we saw that when casting between number types, it was possible to lose information,
for example, when casting from a long variable to an int variable. If the value stored in a type
is too big, it will overflow.

Throwing overflow exceptions with the checked
statement

The checked statement tells .NET to throw an exception when an overflow happens instead of
allowing it to happen silently, which is done by default for performance reasons.

We will set the initial value of an int variable to its maximum value minus one. Then, we will
increment it several times, outputting its value each time. Once it gets above its maximum
value, it overflows to its minimum value and continues incrementing from there. Let's see this
in action:

1. Use your preferred coding tool to add a new Console Application to the Chaptere3
workspace/solution named CheckingForOverflow.

[125]

Controlling Flow, Converting Types, and Handling Exceptions

In Visual Studio Code, select CheckingForOverflow as the active OmniSharp project.

In Program. cs, type statements to declare and assign an integer to one less than
its maximum possible value, and then increment it and write its value to the console
three times, as shown in the following code:

int x = int.MaxValue - 1;
WriteLine($"Initial value: {x}");

X++;
WriteLine($"After incrementing: {x}");
X++;
WriteLine($"After incrementing: {x}");
X++;

WriteLine($"After incrementing: {x}");

4. Run the code and view the result that shows the value overflowing silently and
wrapping around to large negative values, as shown in the following output:
Initial value: 2147483646
After incrementing: 2147483647

After incrementing: -2147483648
After incrementing: -2147483647

5. Now, let's get the compiler to warn us about the overflow by wrapping the statements
using a checked statement block, as shown highlighted in the following code:
checked
{

int x = int.MaxValue - 1;
WriteLine($"Initial value: {x}");

X++;

WriteLine($"After incrementing: {x}");

X++;

WriteLine($"After incrementing: {x}");

X++;

WriteLine($"After incrementing: {x}");
}

6. Run the code and view the result that shows the overflow being checked and
causing an exception to be thrown, as shown in the following output:
Initial value: 2147483646
After incrementing: 2147483647

Unhandled Exception: System.OverflowException: Arithmetic operation
resulted in an overflow.

[126]

Chapter 03

7. Just like any other exception, we should wrap these statements in a try statement block

and display a nicer error message for the user, as shown in the following code:

try
{

}

catch (OverflowException)

{

WriteLine("The code overflowed but I caught the exception.");

}

8. Run the code and view the result, as shown in the following output:

Initial value: 2147483646
After incrementing: 2147483647

The code overflowed but I caught the exception.

Disabling compiler overflow checks with the
unchecked statement

The previous section was about the default overflow behavior at runtime and how to use the
checked statement to change that behavior. This section is about compile time overflow behavior
and how to use the unchecked statement to change that behavior.

A related keyword is unchecked. This keyword switches off overflow checks performed by the
compiler within a block of code. Let's see how to do this:

1.

Type the following statement at the end of the previous statements. The compiler will
not compile this statement because it knows it would overflow:

int y = int.MaxValue + 1;

Hover your mouse pointer over the error, and note a compile-time check is shown as an
error message, as shown in Figure 3.1:

& @ Program.cs — Chapter03 (Workspace)
@ EXPLORER © Program.cs X m
& DPEN EDITORS kAR O TioN 5 i bibseaa R e A e i S e s
2V = 2147483547
@ < © Program.cs CheckingForOverflon 1 23 } int-int.MaxValue = 2147483647 I
++ CHAPTEROZ [WORKSPAGE) 24 catch (0 Represents the largest possible value of an System.Int32 . This field is constant.
5 {
5 r— The operation overflows at compile time in checked mode {CS@228)
s [CheckingForOver fLow]
28 | Peek Probler Mo quick fixes available
i | Ant y = inb Maxvalue s 1 =
30 ¥
abj 31 1
R 12
& CheckingForCverflow.cspro) }
© Program.cs 1 prOELEMS () CUTPUT DEBUG CONSOLE TERMINA Filtor. Egtext, " €8 & A %
« € Program 1
PTG (& Thee ke time in checked mode (CSG220) [CheckingForOverflow
» ILSPY DECOMPILED MEMBERS

B140 & BCheckingForOverflow Ln28 Coll Spaces: 4 UTF-BwihBOM CRLF Cf SharpPad:5255

Figure 3.1: A compile-time check in the PROBLEMS window

[127]

Controlling Flow, Converting Types, and Handling Exceptions

3.

To disable compile-time checks, wrap the statement in an unchecked block, write the
value of y to the console, decrement it, and repeat, as shown in the following code:

unchecked

{

int y = int.MaxValue + 1;
WriteLine($"Initial value: {y}");

y--5
WriteLine($"After decrementing: {y}");
y--5

WriteLine($"After decrementing: {y}");
}

Run the code and view the results, as shown in the following output:

Initial value: -2147483648
After decrementing: 2147483647

After decrementing: 2147483646

Of course, it would be rare that you would want to explicitly switch off a check like this
because it allows an overflow to occur. But perhaps you can think of a scenario where you
might want that behavior.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore with deeper research into this chapter's topics.

Exercise 3.1 — Test your knowledge

Answer the following questions:

What happens when you divide an int variable by @?
What happens when you divide a double variable by @?

What happens when you overflow an int variable, that is, set it to a value
beyond its range?

What is the difference between x = y++; and x = ++y;?

What is the difference between break, continue, and return when used inside a
loop statement?

What are the three parts of a for statement and which of them are required?

What is the difference between the = and == operators?

[128]

Chapter 03

8. Does the following statement compile?

for (; true;) ;

9. What does the underscore _ represent in a switch expression?

10. What interface must an object implement to be enumerated over by using the foreach
statement?

Exercise 3.2 — Explore loops and overflow

What will happen if this code executes?

int max = 500;
for (byte i = 0; i < max; i++)
{

WriteLine(i);

}

Create a console application in Chaptere3 named Exercise@2 and enter the preceding code. Run
the console application and view the output. What happens?

What code could you add (don't change any of the preceding code) to warn us about the
problem?

Exercise 3.3 — Practice loops and operators

FizzBuzz is a group word game for children to teach them about division. Players take turns to
count incrementally, replacing any number divisible by three with the word fizz, any number
divisible by five with the word buzz, and any number divisible by both with fizzbuzz.

Create a console application in Chaptere3 named Exercisee3 that outputs a simulated FizzBuzz
game counting up to 100. The output should look something like Figure 3.2:

@ @ Chapter03 (Warkspace}

= OPEN EDITORS
“* CHARTERO3 (WORKSPACE)

> Exerc PROBLEMS CUTPUT TERMINAL -+ 4; bash 2+ M E ~ X

~ Ex Marks-MacBook-Pro-13:Exercised3 markjprice$ dotnet run
1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz,

11, Fizz, 13, 14, FizzBuzz, 16, 17, Fizz, 19, Buzz,

? bin Fizz, 22, 23, Fizz, Buzz, 2b, Fizz, 28, 29, FizzBuzz,
31, 32, Fizz, 34, Buzz, Fizz, 37, 38, Fizz, Buzz,

» wscode

=00} 41, Fizz, 43, 44, FizzBuzz, 46, 47, Fizz, 49, Buzz,
a Exercise03.csproj Fizz, 52, 53, Fizz, Buzz, 56, Fizz, 58, 59, FizzBuzz,
e 61, b2, Fizz, b4, Buzz, Fizz, 67, &8, Fizz, Buzz,

© Program.cs 71, Fizz, 73, 74, FizzBuzz, 76, 77, Firz, 79, Buiz,
PR . CUTLINE Fizz, 82, 83, Fizz, Buzz, 86, Fizz, B8, 89, FizzBuaz,
'?_"-j_" 91, 92, Fizz, 94, Buzz, Fizz, 97, 98, Fizz, Buzz

» ILSPY DECOMPILED MEMBERS

Qo0 & MmErercisens sharpPad:5255 @ A&

Figure 3.2: A simulated FizzBuzz game output

[129]

Controlling Flow, Converting Types, and Handling Exceptions

Exercise 3.4 — Practice exception handling

Create a console application in Chapter®3 named Exercise@4 that asks the user for two
numbers in the range 0-255 and then divides the first number by the second:

Enter a number between @ and 255: 100
Enter another number between © and 255: 8

100 divided by 8 is 12

Write exception handlers to catch any thrown errors, as shown in the following output:

Enter a number between @ and 255: apples

Enter another number between @ and 255: bananas
FormatException: Input string was not in a correct format.

Exercise 3.5 — Test your knowledge of operators

What are the values of x and y after the following statements execute?

1. Increment and addition operators:

R 2 38
y = 2 + ++X;

2. Binary shift operators:
X = 3 << 2;
y =10 >> 1;

3. Bitwise operators:

X
y

10 & 8;
10 | 7;

Exercise 3.6 — Explore topics

Use the links on the following page to learn about the topics covered in this chapter in more
detail:

https://github.com/markjprice/csl@dotnet6/blob/main/book-1inks.md#chapter-3---
controlling-flow-and-converting-types

Summary

In this chapter, you experimented with some operators, learned how to branch and loop, how
to convert between types, and how to catch exceptions.

You are now ready to learn how to reuse blocks of code by defining functions, how to pass values
into them and get values back, and how to track down bugs in your code and squash them!

[130]

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-3---controlling-flow-and-converting-types
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-3---controlling-flow-and-converting-types

04

Writing, Debugging, and
Testing Functions

This chapter is about writing functions to reuse code, debugging logic errors during
development, logging exceptions during runtime, unit testing your code to remove bugs, and
ensuring stability and reliability.

This chapter covers the following topics:

* Writing functions

* Debugging during development
* Logging during runtime

* Unit testing

* Throwing and catching exceptions in functions

Writing functions

A fundamental principle of programming is Don't Repeat Yourself (DRY).

While programming, if you find yourself writing the same statements over and over again,
then turn those statements into a function. Functions are like tiny programs that complete one
small task. For example, you might write a function to calculate sales tax and then reuse that
function in many places in a financial application.

Like programs, functions usually have inputs and outputs. They are sometimes described as
black boxes, where you feed some raw materials in one end, and a manufactured item emerges
at the other. Once created, you don't need to think about how they work.

[131]

Writing, Debugging, and Testing Functions

Times table example

Let's say that you want to help your child learn their times tables, so you want to make it easy
to generate a times table for a number, such as the 12 times table:

1 x 12 = 12
2 x 12 = 24

12 x 12 = 144

You previously learned about the for statement earlier in this book, so you know that it can be
used to generate repeated lines of output when there is a regular pattern, such as the 12 times
table, as shown in the following code:

for (int row = 1; row <= 12; row++)

{
Console.WriteLine($"{row} x 12 = {row * 12}");

}

However, instead of outputting the 12 times table, we want to make this more flexible, so it
could output the times table for any number. We can do this by creating a function.

Writing a times table function

Let's explore functions by creating one to output any times table for numbers 0 to 255
multiplied by 1 to 12:

1. Use your preferred coding tool to create a new console app, as defined in the following
list:
1. Project template: Console Application / console
2. Workspace/solution file and folder: Chaptere4

3. Project file and folder: WritingFunctions

2. Statically import System.Console.

3. InProgram.cs, write statements to define a function named TimesTable, as shown in the
following code:

static void TimesTable(byte number)

{
WriteLine($"This is the {number} times table:");
for (int row = 1; row <= 12; row++)
{
WriteLine($"{row} x {number} = {row * number}");
}
WriteLine();
}

[132]

Chapter 04

In the preceding code, note the following:
* TimesTable must have a byte value passed to it as a parameter named number.

* TimesTable is a static method because it will be called by the static method
Main.

* TimesTable does not return a value to the caller, so it is declared with the void
keyword before its name.

* TimesTable uses a for statement to output the times table for the number passed
to it.

4. After the statement that statically imports the Console class and before the TimesTable
function, call the function and pass in a byte value for the number parameter, for
example, 6, as shown highlighted in the following code:

using static System.Console;

TimesTable(6);

| Good Practice: If a function has one or more parameters where just

\@/ passing the values may not provide enough meaning, then you can

NIR optionally specify the name of the parameter as well as its value, as
= shown in the following code: TimesTable(number: 6).

5. Run the code and then view the result, as shown in the following output:

the 6 times table:
6
12
18
24
30
36

X

42

48

54
60
66
72

W 00 NOUVT A WN PR
X X X X X X X X
[e)We) W e) W o) W) e) @) W0) @)

6. Change the number passed into the TimesTable function to other byte values between @
and 255 and confirm that the output times tables are correct.

7. Note that if you try to pass a non-byte number, for example, an int or double or string,
an error is returned, as shown in the following output:

Error: (1,12): error CS1503: Argument 1: cannot convert from 'int' to

'byte'

[133]

Writing, Debugging, and Testing Functions

Writing a function that returns a value

The previous function performed actions (looping and writing to the console), but it did not

return a value. Let's say that you need to calculate sales or value-added tax (VAT). In Europe,

VAT rates can range from 8% in Switzerland to 27% in Hungary. In the United States, state
sales taxes can range from 0% in Oregon to 8.25% in California.

\Q//

Tax rates change all the time, and they vary based on many factors. You do not
need to contact me to tell me that the tax rate in Virginia is 6%. Thank you.

Let's implement a function to calculate taxes in various regions around the world:

1. Add a function named CalculateTax, as shown in the following code:

static decimal CalculateTax(
decimal amount, string twolLetterRegionCode)

{

decimal rate = 0.0M;

switch (twolLetterRegionCode)

{

case "CH":
rate = 0.08M;
break;

case "DK":

case "NO":
rate = 0.25M;
break;

case "GB":

case "FR":
rate = 0.2M;
break;

case "HU":
rate = 0.27M;
break;

case "OR":

case "AK":

case "MT":
rate = 0.0M;
break;

case "ND":

case "WI":

case "ME":

[134]

Chapter 04

case "VA":
rate = 0.05M;
break;

case "CA":
rate 0.0825M;
break;

default:
rate = 0.06M;
break;

return amount * rate;

}

In the preceding code, note the following:

* CalculateTax has two inputs: a parameter named amount that will be the
amount of money spent, and a parameter named twolLetterRegionCode that
will be the region the amount is spent in.

* CalculateTax will perform a calculation using a switch statement and then
return the sales tax or VAT owed on the amount as a decimal value; so, before
the name of the function, we have declared the data type of the return value to
be decimal.

2. Comment out the TimesTable method call and call the CalculateTax method, passing
values for the amount such as 149 and a valid region code such as FR, as shown in the
following code:

decimal taxToPay = CalculateTax(amount: 149, twolLetterRegionCode: "FR");
WriteLine($"You must pay {taxToPay} in tax.");

3. Run the code and view the result, as shown in the following output:

You must pay 29.8 in tax.

, We could format the taxToPay output as currency by using {taxToPay:C}
\/§p> but it will use your local culture to decide how to format the currency symbol
and decimals. For example, for me in the UK, I would see £29. 80.

Can you think of any problems with the CalculateTax function as written? What would happen
if the user enters a code such as fr or UK? How could you rewrite the function to improve it?
Would using a switch expression instead of a switch statement be clearer?

[135]

Writing, Debugging, and Testing Functions

Converting numbers from cardinal to ordinal

Numbers that are used to count are called cardinal numbers, for example, 1, 2, and 3, whereas
numbers used to order are ordinal numbers, for example, 1st, 2nd, and 3rd. Let's create a
function to convert cardinals to ordinals:

1. Write a function named CardinalToOrdinal that converts a cardinal int value into
an ordinal string value; for example, it converts 1 into 1st, 2 into 2nd, and so on, as
shown in the following code:

static string CardinalToOrdinal(int number)

{

switch (number)
{
case 11:
case 12:
case 13:
return $"{number}th";
default:
int lastDigit

number % 10;

string suffix = lastDigit switch
{
1 => "st",
2 => "nd",
3 => "rd",
=> "th"
¥
return $"{number}{suffix}";
}
}

From the preceding code, note the following:

* CardinalToOrdinal has one input: a parameter of the int type named number,
and one output: a return value of the string type.

* A switch statement is used to handle the special cases of 11, 12, and 13.

* A switch expression then handles all other cases: if the last digit is 1, then use st
as the suffix; if the last digit is 2, then use nd as the suffix; if the last digit is 3,
then use rd as the suffix; and if the last digit is anything else, then use th as the
suffix.

2. Write a function named RunCardinalToOrdinal that uses a for statement to loop
from 1 to 40, calling the CardinalToOrdinal function for each number and writing
the returned string to the console, separated by a space character, as shown in the
following code:

[136]

Chapter 04

static void RunCardinalToOrdinal()

{
for (int number = 1; number <= 40; number++)
{
Write($"{CardinalToOrdinal(number)} ");
}
WriteLine();
}

3. Comment out the CalculateTax statements, and call the RunCardinalToOrdinal method,
as shown in the following code:

RunCardinalToOrdinal();

4. Run the code and view the results, as shown in the following output:

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 1eth 11th 12th 13th 14th 15th 16th
17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st

32nd 33rd 34th 35th 36th 37th 38th 39th 40th

Calculating factorials with recursion

The factorial of 5 is 120, because factorials are calculated by multiplying the starting number by
one less than itself, and then by one less again, and so on, until the number is reduced to 1. An
example can be seen here: 5 x4 x3 x2 x 1 =120.

Factorials are written like this: 5!, where the exclamation mark is read as bang, so 5! =120,
that is, five bang equals one hundred and twenty. Bang is a good name for factorials because they
increase in size very rapidly, just like an explosion.

We will write a function named Factorial; this will calculate the factorial for an int passed to
it as a parameter. We will use a clever technique called recursion, which means a function that
calls itself within its implementation, either directly or indirectly:

1. Add a function named Factorial, and a function to call it, as shown in the following
code:

static int Factorial(int number)

{

if (number < 1)

{

[137]

Writing, Debugging, and Testing Functions

return 0;
}
else if (number == 1)
{
return 1;
}
else
{
return number * Factorial(number - 1);
}

}

As before, there are several noteworthy elements of the preceding code, including the
following;:

* If the input parameter number is zero or negative, Factorial returns .

* If the input parameter number is 1, Factorial returns 1, and therefore stops
calling itself.

* If the input parameter number is larger than one, which it will be in all other
cases, Factorial multiplies the number by the result of calling itself and
passing one less than number. This makes the function recursive.

More Information: Recursion is clever, but it can lead to problems,
such as a stack overflow due to too many function calls because
/ memory is used to store data on every function call, and it eventually
\/;p> uses too much. Iteration is a more practical, if less succinct, solution in
languages such as C#. You can read more about this at the following
link: https://en.wikipedia.org/wiki/ Recursion_(computer_
science)#Recursion_versus_iteration.

2. Add a function named RunFactorial that uses a for statement to output the factorials
of numbers from 1 to 14, calls the Factorial function inside its loop, and then outputs
the result, formatted using the code No, which means number format uses thousand
separators with zero decimal places, as shown in the following code:

static void RunFactorial()

{
for (int i = 1; i < 15; i++)
{
WriteLine($"{i}! = {Factorial(i):Ne}");
}
}

3. Comment out the RunCardinalToOrdinal method call and call the RunFactorial method.

[138]

https://en.wikipedia.org/wiki/ Recursion_(computer_science)#Recursion_versus_iteration
https://en.wikipedia.org/wiki/ Recursion_(computer_science)#Recursion_versus_iteration

Chapter 04

4. Run the code and view the results, as shown in the following output:

120
720
5,040

40,320
362,880

= 3,628,800

= 39,916,800

= 479,001,600
1,932,053,504

= 1,278,945,280

It is not immediately obvious in the previous output, but factorials of 13 and higher overflow
the int type because they are so big. 12! is 479,001,600, which is about half a billion. The
maximum positive value that can be stored in an int variable is about two billion. 13! is
6,227,020,800, which is about six billion and when stored in a 32-bit integer it overflows silently
without showing any problems.

Do you remember what we can do to be notified of a numeric overflow?

What should you do to get notified when an overflow happens? Of course, we could solve the
problem for 13! and 14! by using a long (64-bit integer) instead of an int (32-bit integer), but we
will quickly hit the overflow limit again.

The point of this section is to understand that numbers can overflow and how to show that
rather than ignore it, not specifically how to calculate factorials higher than 12!.

1. Modify the Factorial function to check for overflows, as shown highlighted in the
following code:
checked
{

return number * Factorial(number - 1);

B

2. Modify the RunFactorial function to handle overflow exceptions when calling the
Factorial function, as shown highlighted in the following code:
try
{
WriteLine($"{i}! = {Factorial(i):Ne}");
s

[139]

Writing, Debugging, and Testing Functions

catch (System.OverflowException)
{

WriteLine($"{i}! is too big for a 32-bit integer.");
}

3. Run the code and view the results, as shown in the following output:

24
120
720
5,040

40,320
362,880
= 3,628,800
39,916,800
479,001,600
is too big for a 32-bit integer.
is too big for a 32-bit integer.

Documenting functions with XML comments

By default, when calling a function such as CardinalToOrdinal, code editors will show a tooltip
with basic information, as shown in Figure 4.1:

[] @ Program.cs — Chaptar0d (Workspace)
@ EXPLORER C* Program.cs % m
~ OPEN EDITORS WritingFunctions » € Program.cs » {} WritingFunctions > 43 WritingFunctions Program >) RunCardinalTeOrdinal(
i- X € Program.cs . - ; :
e R _;@ ::atzc void BunCardinalTeGrdinal()
~ WritingFunctions 132 for (int number = 1: number <- Af: numharsil
> nscode 133 { string Program.CardinalToOrdinal(int number)
> bin 134 \-.|".'.v.'-['5"{C.a:'ai-'..aL?-.'.-O-':l_-wl[I’.L.rr-her]} *¥i
138 1
> ot 135 , " H|
13 WriteLine();
€ Program.cs 2 ‘{' } s sk

oy
Goga
hoe

> OUTLINE =
QoA & WWritngFunctions Ln134, Col 38 Spaces:d UTF-Bwith BOM CRLF C# SharpPadi526c @ M

Figure 4.1: A tooltip showing the default simple method signature
Let's improve the tooltip by adding extra information:

1. If you are using Visual Studio Code with the C# extension, you should navigate to
View | Command Palette | Preferences: Open Settings (UI), and then search for
formatOnType and make sure that is enabled. C# XML documentation comments are a
built-in feature of Visual Studio 2022.

2. On the line above the CardinalToOrdinal function, type three forward slashes ///, and
note that they are expanded into an XML comment that recognizes that the function has
a single parameter named number.

[140]

Chapter 04

3. Enter suitable information for the XML documentation comment for a summary and to
describe the input parameter and the return value for the CardinalToOrdinal function,
as shown in the following code:

/// <summary>
11/

/// </summary>

/// <param name="number">
</param>

/// <returns>

</returns>

4. Now, when calling the function, you will see more details, as shown in Figure 4.2:

L] [] Program.cs — ChapterDd (Workspace)
@ <PLERER € Program.cs X o -
“ OPEN EDITCRS writingFunctions » € Program.es > {} WritingFunctions * S Writingf t F 1 B RunCardinal ToOrdinali
- 3 O Prouraincs % — . :
() € Program.cs . . ; string Program.CardinalTeOrdinall{int number)
+ CHAPTEROA (WORKSPACE) 13 static void RunCardinalTolrding
~- WritinaFunctions { number: Number is a cardinal value .9, 1, 2, 3, and so on
o . far {int number = 1; number <
i { Pass a 32-bit integer and it will be converted into its ordinal aquivalent. =
write{s"{CardinalTodrdinal thunber 35 1
¥
A 141 WriteLinel};
3 OUTLINE 143

Qo h0o & WwritngFunctions Ln139, Col 38 Spaces: 4 UTF-8withBOM CRLF C# SharpPad:5255 @ &

Figure 4.2: A tooltip showing the more detailed method signature

At the time of writing the sixth edition, C# XML documentation comments do not work in
NET Interactive notebooks.

\ ! 7
'@\' Good Practice: Add XML documentation comments to all your functions.

4

Using lambdas in function implementations

F# is Microsoft's strongly typed functional-first programming language that, like C#,
compiles to IL to be executed by .NET. Functional languages evolved from lambda calculus;
a computational system based only on functions. The code looks more like mathematical
functions than steps in a recipe.

Some of the important attributes of functional languages are defined in the following list:

* Modularity: The same benefit of defining functions in C# applies to functional
languages. Break up a large complex code base into smaller pieces.

* Immutability: Variables in the C# sense do not exist. Any data value inside a function
cannot change. Instead, a new data value can be created from an existing one. This
reduces bugs.

[141]

Writing, Debugging, and Testing Functions

* Maintainability: Code is cleaner and clearer (for mathematically inclined
programmers!).

Since C# 6, Microsoft has worked to add features to the language to support a more functional
approach. For example, adding tuples and pattern matching in C# 7, non-null reference types
in C# 8, and improving pattern matching and adding records, that is, immutable objects in C# 9.

In C# 6, Microsoft added support for expression-bodied function members. We will look at an
example of this now.

The Fibonacci sequence of numbers always starts with 0 and 1. Then the rest of the sequence
is generated using the rule of adding together the previous two numbers, as shown in the
following sequence of numbers:

01123581321 3455 ...

The next term in the sequence would be 34 + 55, which is 89.

We will use the Fibonacci sequence to illustrate the difference between an imperative and
declarative function implementation:

1. Add a function named FibImperative that will be written in an imperative style, as
shown in the following code:

static int FibImperative(int term)
{

if (term == 1)

{

return 0;

¥

else if (term == 2)

{

return 1;

}

else

{
return FibImperative(term - 1) + FibImperative(term - 2);
}
}

2. Add a function named RunFibImperative that calls FibImperative inside a for
statement that loops from 1 to 30, as shown in the following code:

static void RunFibImperative()
{
for (int i = 1; i <= 30; i++)
{
WriteLine("The {0} term of the Fibonacci sequence is {1:N©}.",
argd: CardinalToOrdinal(i),
argl: FibImperative(term: i));

[142]

Chapter 04

}

3. Comment out the other method calls and call the RunFibImperative method.

4. Run the code and view the results, as shown in the following output:

Fibonacci sequence is

Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fibonacci

sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence
sequence

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

is
is

144,
233.
377.
610.
987.
1,597.
2,584.
4,181.
6,765.
10,946.
17,711.
28,657.
46,368.
75,025.
121,393.
196,418.
317,811.
514,229,

5. Add a function named FibFunctional written in a declarative style, as shown in the

following code:

static int FibFunctional(int term) =>

term switch

{
=> 0,
=> 1,

_ => FibFunctional(term - 1) + FibFunctional(term - 2)

1

[143]

Writing, Debugging, and Testing Functions

6. Add a function to call it inside a for statement that loops from 1 to 30, as shown in the
following code:

static void RunFibFunctional()

{
for (int i = 1; i <= 30; i++)
{
WriteLine("The {0} term of the Fibonacci sequence is {1:N@}.",
argd: CardinalToOrdinal(i),
argl: FibFunctional(term: i));
}
b

7. Comment out the RunFibImperative method call, and call the RunFibFunctional method.

8. Run the code and view the results (which will be the same as before).

Debugging during development

In this section, you will learn how to debug problems at development time. You must use a
code editor that has debugging tools such as Visual Studio or Visual Studio Code. At the time
of writing, you cannot use .NET Interactive Notebooks to debug code, but this is expected to be
added in the future.

More Information: Some people find it tricky setting up the OmniSharp
, debugger for Visual Studio Code. I have included instructions for the most
\/;p> common issues, but if you still have trouble, try reading the information at the
following link: https://github.com/OmniSharp/omnisharp-vscode/blob/
master/debugger.md

Creating code with a deliberate bug

Let's explore debugging by creating a console app with a deliberate bug that we will then use
the debugger tools in your code editor to track down and fix:

1. Use your preferred coding tool to add a new Console Application to the Chaptere4
workspace/solution named Debugging.

2. In Visual Studio Code, select Debugging as the active OmniSharp project. When you see
the pop-up warning message saying that required assets are missing, click Yes to add
them.

3. In Visual Studio, set the startup project for the solution to the current selection.
In Program. cs, add a function with a deliberate bug, as shown in the following code:

static double Add(double a, double b)
{

return a * b;

}

[144]

https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md
https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md

Chapter 04

5. Below the Add function, write statements to declare and set some variables and then add
them together using the buggy function, as shown in the following code:

double a = 4.5;

double b = 2.5;

double answer = Add(a, b);
WriteLine($"{a} + {b} = {answer}");

WriteLine("Press ENTER to end the app.");

ReadlLine();

6. Run the console application and view the result, as shown in the following partial
output:

But wait, there's a bug! 4.5 added to 2.5 should be 7, not 11.25!

We will use the debugging tools to hunt for and squash the bug.

Setting a breakpoint and start debugging

Breakpoints allow us to mark a line of code that we want to pause at to inspect the program
state and find bugs.

Using Visual Studio 2022

Let's set a breakpoint and then start debugging using Visual Studio 2022:

Click in the statement that declares the variable named a.

Navigate to Debug | Toggle Breakpoint or press F9. A red circle will then appear in
the margin bar on the left-hand side and the statement will be highlighted in red to
indicate that a breakpoint has been set, as shown in Figure 4.3:

m File Edit View Git Project Bulld Debug Test Analyze Tools Estensions Window Help !Ecar::'_ {Cul+ o | Chapterod £ (] =
FCRRE R = = | [oobug -] [any cPu -| [pebugging gl R: euse £ EEE
il Programucs: & pt| Solution Esplorer - X
i EE 4 -1 -| 4 of e-288 9,9_5
1 using static System.Console; =
sarch Salution Explorer [Ctrls P~
3 “istatic double Add(double a, double b) [F sehution Chapterdd’ (2 of 2 projects)
4 1 " f| 4 [Debugging
5 return a « b; // deliberate bug! b #5 Dependencies
& }
b cm
i 4 FHw rﬁ!‘??m
it Vritis ot
8 double a = U4.5; b &g Q: ':“h i
9 double b = 2.5; pandencies
18 double answer = Add(a, b): b C# Program.cs
11 WriteLine($"{a} + {b} = {answer}"); -
100% ~ & @ Ho lsues found il L7 Chil SPC CRIF

) Itemis) Saved 4 Add to Soures Contiol 4P Select Repository = [

Figure 4.3: Toggling breakpoints using Visual Studio 2022

[145]

Writing, Debugging, and Testing Functions

Breakpoints can be toggled off with the same action. You can also left-click in the
margin to toggle a breakpoint on and off, or right-click a breakpoint to see more
options, such as delete, disable, or edit conditions or actions for an existing breakpoint.

3. Navigate to Debug | Start Debugging or press F5. Visual Studio starts the console
application and then pauses when it hits the breakpoint. This is known as break mode.
Extra windows titled Locals (showing current values of local variables), Watch 1
(showing any watch expressions you have defined), Call Stack, Exception Settings,
and Immediate Window appear. The Debugging toolbar appears. The line that will be
executed next is highlighted in yellow, and a yellow arrow points at the line from the
margin bar, as shown in Figure 4.4

® Fle Edit View Git Project Build Debug Test Analyze Tools Extensions Wincow Heip | search (Curl+ £

i@®- EEE 9 PN RS>t LD 12 lveshae R m

Programes & X
5 Debugging

=]

double a = 4.5;|

9 double b = 2.5;

i@ double answer = Add(a, b);

1 Writeline($"{a} + {b} = {answer}");
ReadLine(); // wait for user to press ENTER

NS LOnNos

5,

Search (Ctri+E) Pl Search Depth: (3 |

Mame Walue

Sargs {string[0]}
“a 0
&b o do

a double

Control = €0 Select Repository = [

Figure 4.4: Break mode in Visual Studio 2022

If you do not want to see how to use Visual Studio Code to start debugging then you can skip
the next section and continue to the section titled Navigating with the debugging toolbar.

Using Visual Studio Code

Let's set a breakpoint and then start debugging using Visual Studio Code:

Click in the statement that declares the variable named a.

Navigate to Run | Toggle Breakpoint or press F9. A red circle will appear in the
margin bar on the left-hand side to indicate that a breakpoint has been set, as shown in
Figure 4.5:

[146]

Chapter 04

)Q File = Edit Selection View Go Run Terminzl Help Program:cs - Chaplerd (Workspace) - Visual Studio Code = | #
@ EXPIORER = © Pragram.cs % m: =
~ cHAPTERD4 (workseace) [B} O & pels g © Pragramcs
W nctions 1 using static System.lonsole;
v Dy ging =
" 3 static double Add{double a, double b)
- b

return a * b; // deliberare bug!

© Program.cs ® B double a = 4.5;
g double b = 2.5;
13 double answer = add(a, -b);
11 wreitetine($“{a} + {b} = {answer}"};

12 ReadLine(); // wait for user to press ENTER
13
7 OUTLINE
» ILSPY DECOMPILED MEMBERS
¥ @odo & I pebuagingcsproi In1,Col1 Spaces:2 UTF-BwithBOM CRIF c¢ & 0

Figure 4.5: Toggling breakpoints using Visual Studio Code

Breakpoints can be toggled off with the same action. You can also left-click in the
margin to toggle a breakpoint on and off, or right-click to see more options, such as
remove, edit, or disable an existing breakpoint; or adding a breakpoint, conditional
breakpoint, or logpoint when a breakpoint does not yet exist.

record some information without having to actually stop executing
the code at that point.

B’ Logpoints, also known as tracepoints, indicate that you want to
\"/

Navigate to View | Run, or in the left navigation bar you can click the Run and Debug
icon (the triangle "play" button and "bug"), as shown in Figure 4.5.

At the top of the DEBUG window, click on the dropdown to the right of the Start
Debugging button (green triangular "play" button), and select .NET Core Launch
(console) (Debugging), as shown in Figure 4.6:

)0 File ' Edit ‘Sefection Miew Go Run Terminzl Help Program cs - Chaptenld Wodkspace) - Visual Studio Code = a #

RN A& [),_NET Core Lau
{E

w VARIABLES

7 static System.Console;
ic double Add{double a, double b)

turn a * b; // deliberate bug!

< WATEH Add Config (
® B double a = 4.5;

9 double b = 2.5;

18 double answer = Add(a, b);

11 writeLine($"{a} + {b} = {answer}");

12 ReadLine(); // wait for user to press ENTER

3 Debugging csproj Inl,Col1 Spaces2 UTF-BwilhBOM CRLF 2 B 0

Figure 4.6: Selecting the project to debug using Visual Studio Code

[147]

Writing, Debugging, and Testing Functions

Good Practice: If you do not see a choice in the dropdown list for the
Debugging project, it is because that project does not have the assets
| needed to debug. Those assets are stored in the .vscode folder. To
\@l create the . vscode folder for a project, navigate to View | Command
S Palette, select OmniSharp: Select Project, and then select the
Debugging project. After a few seconds, when prompted, Required
assets to build and debug are missing from 'Debugging'. Add
them?, click Yes to add the missing assets.

/

5. At the top of the DEBUG window, click the Start Debugging button (green triangular
"play" button), or navigate to Run | Start Debugging, or press F5. Visual Studio Code
starts the console application and then pauses when it hits the breakpoint. This is
known as break mode. The line that will be executed next is highlighted in yellow, and
a yellow block points at the line from the margin bar, as shown in Figure 4.7

)Q File ' Edit ‘Sefection Miew Go Run Terminzl Help Program cs - Chaptenld Wodkspace) - Visual Studio Code - a o
4 [NETCorelau~ % - € Program.es % s ok T 90 g -

“ VARIABLES

 Locals wn @ * b; // deliberate bug!

$ B double a = 4.5;
double b = 2.5;
18 double answer = Add{a, b);
ina(3"{a} + (b} = {answer}"};
2(); // wait for user to press ENTER

> WATCH

> CALLSTACK PALISED ON BREAKPOINT PROBLEME OUTPLIT TERMINA DEg

* BREAKPOINTS

LS Col 16 (15 selectend) Spaces: 2 UTF-BwithBOM CRF c8 8§ O

Figure 4.7: Break mode in Visual Studio Code

Navigating with the debugging toolbar

Visual Studio Code shows a floating toolbar with buttons to make it easy to access debugging
features. Visual Studio 2022 has one button in its Standard toolbar to start or continue
debugging and a separate Debugging toolbar for the rest of the tools.

Both are shown in Figure 4.8 and as described in the following list:

[148]

Chapter 04

Visual Studio Visual Studio Code
P Continue ~ ‘ mO(=>t 2| #H [E ey [
= oD d—-‘ol-—-t—-‘ Q
5 IE£55gg3 8 823535 %
c ¥°°‘J'1£—OO 5 = = £ 0O £ &
= © W o a o o 8 9 0 s B
c Y S3x 8 g 2a n cC o]
S &8 "85 e S @ & 8 ¢
o g = & = o 2 ©
a = o
o Q O
& = ot
=
g =
<= =
w (=]
-
v

Figure 4.8: Debugging toolbars in Visual Studio 2022 and Visual Studio Code

Continue/ F5: This button will continue running the program from the current position
until it ends or hits another breakpoint.

Step Over/F10, Step Into/F11, and Step Out/ Shift + F11 (blue arrows over dots):
These buttons step through the code statements in various ways, as you will see in a
moment.

Restart/ Ctrl or Cmd + Shift + F5 (circular arrow): This button will stop and then
immediately restart the program with the debugger attached again.

Stop/ Shift + F5 (red square): This button will stop the debugging session.

Debugging windows

While debugging, both Visual Studio Code and Visual Studio show extra windows that allow
you to monitor useful information, such as variables, while you step through your code.

The most useful windows are described in the following list:

VARIABLES, including Locals, which shows the name, value, and type for any local
variables automatically. Keep an eye on this window while you step through your code.

WATCH, or Watch 1, which shows the value of variables and expressions that you
manually enter.

CALL STACK, which shows the stack of function calls.
BREAKPOINTS, which shows all your breakpoints and allows finer control over them.

[149]

Writing, Debugging, and Testing Functions

When in break mode, there is also a useful window at the bottom of the edit area:

* DEBUG CONSOLE or Immediate Window enables live interaction with your code.
You can interrogate the program state, for example, by entering the name of a variable.
For example, you can ask a question such as, "What is 1+2?" by typing 1+2 and pressing
Enter, as shown in Figure 4.9:

¢ B Program.cs Detuggng 13 > 142

®© 040 4>.NET Core Launch (console) (Debugging) & I Debugging: Ln13, Col 6 (1 selected) Spaces: 2, UTF-8withBOM CRLF C# & Q

Figure 4.9: Interrogating the program state

Stepping through code

Let's explore some ways to step through the code using either Visual Studio or Visual Studio
Code:

1. Navigate to Run/Debug | Step Into, or click on the Step Into button in the toolbar, or
press F11. The yellow highlight steps forward one line.

2. Navigate to Run/Debug | Step Over, or click on the Step Over button in the toolbar,
or press F10. The yellow highlight steps forward one line. At the moment, you can see
that there is no difference between using Step Into or Step Over.

3. You should now be on the line that calls the Add method, as shown in Figure 4.10:

] File Edit Selection View Go Run Terminal Help Prograrmcs - Ciiapterdd (Woikspace] - Visual Studic Code = o *
AUNA C[> NET Corelau~ £ -+ € Pragromecs X g or 50 M=
“ VARIABLES Debugging > € Programics
- return. a * bj // deliberate bug!

~ Locals

&}

* 8 double a = 4.5;
Fuble b =
nswer = Add{a, b);
e($"{a} + {b} = {answer}"};
3 // wait for user to press ENTER

> WATCH
» CALL STACK PAUSLD ON SRLAKFOINT
~ BREAKPOINTS FRICBLEM! UTRUT TERMINA DEBUG CONSOLE

Ln 10; Col 27 {26 setected] Spaces 2’ UTE-BwithBOM CRIF €0 & ©

Figure 4.10: Stepping into and over code
The difference between Step Into and Step Over can be seen when you are about to
execute a method call:

* If you click on Step Into, the debugger steps into the method so that you can
step through every line in that method.

* If you click on Step Over, the whole method is executed in one go; it does not
skip over the method without executing it.

[150]

Chapter 04

Click on Step Into to step inside the method.

Hover your mouse pointer over the a or b parameters in the code editing window and
note that a tooltip appears showing their current value.

6. Select the expression a * b, right-click the expression, and select Add to Watch or Add
Watch. The expression is added to the WATCH window, showing that this operator is
multiplying a by b to give the result 11.25.

7. Inthe WATCH or Watch 1 window, right-click the expression and choose Remove
Expression or Delete Watch.

Fix the bug by changing * to + in the Add function.

Stop debugging, recompile, and restart debugging by clicking the circular arrow
Restart button or pressing Ctrl or Cmd + Shift + F5.

10. Step over the function, take a minute to note how it now calculates correctly, and click
the Continue button or press F5.

11. With Visual Studio Code, note that when writing to the console during debugging,
the output appears in the DEBUG CONSOLE window instead of the TERMINAL
window, as shown in Figure 4.11:

)Q File ' Edit ‘Sefection Miew Go Run Terminzl Help Program cs - Chaptenld Wodkspace) - Visual Studio Code = | *
A NETCore Lau~ | £} - € Programes X s ok T 90 M-

“ VARIABLES

' Logals 3 static double Add{double a, double b)

<y iTerservie i
~ =k o 5 return a #+ b // deliberate bugl
3
84 N
L =l
® 8 double a = 4,5;
answer [double]: 7 5 double b = 2.5;
WY | 18 double ans.uer.' - Add(a, b%;
4 11 iteLine($"{a} + {b} = {answer}"};
T RUSED ON B PO - , o
AL aTh il cosdicuid > 12 ReadlLinef); // wait for user to press ENTER

* BREAKPOINTS

DEBUS CONSOLE Fiiter {e.g, text, lexchude = oA~ X

Figure 4.11: Writing to the DEBUG CONSOLE during debugging

Customizing breakpoints

It is easy to make more complex breakpoints:

1. If you are still debugging, click the Stop button in the debugging toolbar, or navigate to
Run/Debug | Stop Debugging, or press Shift + F5.

Navigate to Run | Remove All Breakpoints or Debug | Delete All Breakpoints.
Click on the WriteLine statement that outputs the answer.

Set a breakpoint by pressing F9 or navigating to Run/Debug | Toggle Breakpoint.

[151]

Writing, Debugging, and Testing Functions

5. In Visual Studio Code, right-click the breakpoint and choose Edit Breakpoint..., and
then enter an expression, such as the answer variable must be greater than 9, and
note the expression must evaluate to true for the breakpoint to activate, as shown

in Figure 4.12:
)q File ' Edit ‘Sefection Miew Go Run Terminzl Help Program:cs - Chaplerdd (Workspace) - Visual Studio Code =] o
ﬂ]“;‘, RUNA. [NET CoreLau~ | {8} - € Program.cs X @ -
> VARIABLES | Cp
2 WATCH
= 8 double a = 4.5;
2 CALL STACK PAUSED O BREAKPOINT 9 double b = _?.‘);
* BREAKPOINTS 18 double answer = Add{a, b};
| Al Exceptions ® 11 Writetine(3"{a} + {b} = {answer}"};
B User-Unhar 2 -
Bl User-Unhandl Exprossion v answer 3 9
¢ Brogamec
12 Readline(); // wait for user to press ENTER

@00 g NET Core Launch {corsole] (Dsbugging) § B Debugging.csprei Ln13,Col1 Spaces:? UTF-BwilhBOM CRLF €8 5§

Figure 4.12: Customizing a breakpoint with an expression using Visual Studio Code

6. In Visual Studio, right-click the breakpoint and choose Conditions..., and then enter an
expression, such as the answer variable must be greater than 9, and note the expression
must evaluate to true for the breakpoint to activate.

Start debugging and note the breakpoint is not hit.

Stop debugging.

Edit the breakpoint or its conditions and change its expression to less than 9.
10. Start debugging and note the breakpoint is hit.
11. Stop debugging.

12. Edit the breakpoint or its conditions, (in Visual Studio click Add condition) and select
Hit Count, then enter a number such as 3, meaning that you would have to hit the
breakpoint three times before it activates, as shown in Figure 4.13:

o) Fie Edit View Git Project Buld Debig Test Analyze Tools Baensions Window Help P chapters = 0O %

SOl e WD | pebug - AnycPU » P Dibugging ~ | a7 N S 5 1 Live Share & PREVIEW

i e -g "=, Debugging. Program 'i_ "'-'g!n*.ain.'sl(ingl_} argsi o Ga -5 0B
double a = 4.5; // or you can use var . o
double B = 2.5: Search Solution Explorer [Ctris)) =l -
double answer = Add{a, b); &1 solution ‘Chapterdd’ (2 of 2 projects)
($'{a} *+ {b} = {answeri®); 4[] Debugging
Breakpoint Settings % [! B & Dependencies
b B o Programcs
Location: Program.cs, Line 18, Characten: 7, Must match source 4 [WritingFunctions
[#] cenditions b Dependencies
Conditional Expression * lstrue P 2% brmgrame

And Hit Count - =
Al condition

[Actions

Close

& No lssues found L 18 Ch9 SPC CAIF

ce Contral ~ M

Figure 4.13: Customizing a breakpoint with an expression and hot count using Visual Studio 2022

[152]

Chapter 04

13. Hover your mouse over the breakpoint's red circle to see a summary, as shown in

Figure 4.14:
(-] 8 Program.cs — ChapterDd (Workspace)
é-}; N B NET Core Launc ~ | & gl - € Program.cs -
; ¥ VARIABLES Debugging » € Programes » {(} D buge @
S WATCH 1 double a = 4 H
= 15 double b = 2.5;
> GALL STACK 16 double answer = Add{a, b);
~ BREAKPOINTS ® Expression: answer < 93%"{a} + {b} = {answer}i"};
[All Excepticns Hit Count: 3 : /f wait for user to press ENTER
M User-Unhandled Exceptions l) ! ¥ —
o M Program.cs Debuggie 17 3 '

G 0M 0 g% MET Cora Launch (console) (Debugging) & EYDebugging Ln17 Col1 Spaces: 2 UTF-BwithBOM CRLF C¥ & O

Figure 4.14: A summary of a customized breakpoint in Visual Studio Code

You have now fixed a bug using some debugging tools and seen some advanced possibilities
for setting breakpoints.

Logging during development and runtime

Once you believe that all the bugs have been removed from your code, you would then compile
a release version and deploy the application, so that people can use it. But no code is ever bug
free, and during runtime unexpected errors can occur.

End users are notoriously bad at remembering, admitting to, and then accurately describing
what they were doing when an error occurred, so you should not rely on them accurately
providing useful information to reproduce the problem to understand what caused the
problem and then fix it. Instead, you can instrument your code, which means logging events
of interest.

Good Practice: Add code throughout your application to log what is
| happening, and especially when exceptions occur, so that you can review the
\@’ logs and use them to trace the issue and fix the problem. Although we will see
NIR logging again in Chapter 10, Working with Data Using Entity Framework Core,
- and in Chapter 15, Building Websites Using the Model-View-Controller Pattern,
logging is a huge topic, so we can only cover the basics in this book.

Understanding logging options

.NET includes some built-in ways to instrument your code by adding logging capabilities. We
will cover the basics in this book. But logging is an area where third parties have created a rich
ecosystem of powerful solutions that extend what Microsoft provides. I cannot make specific
recommendations because the best logging framework depends on your needs. But I include
some common ones in the following list:

* Apache log4net
* NLog
* Serilog

[153]

Writing, Debugging, and Testing Functions

Instrumenting with Debug and Trace

There are two types that can be used to add simple logging to your code: Debug and Trace.

Before we delve into them in more detail, let's look at a quick overview of each one:

* The Debug class is used to add logging that gets written only during development.

* The Trace class is used to add logging that gets written during both development and
runtime.

You have seen the use of the Console type and its WriteLine method write out to the console
window. There is also a pair of types named Debug and Trace that have more flexibility in
where they write out to.

The Debug and Trace classes write to any trace listener. A trace listener is a type that can be
configured to write output anywhere you like when the WriteLine method is called. There
are several trace listeners provided by .NET, including one that outputs to the console, and
you can even make your own by inheriting from the TraceListener type.

Writing to the default trace listener

One trace listener, the DefaultTraceListener class, is configured automatically and writes to
Visual Studio Code's DEBUG CONSOLE window or Visual Studio's Debug window. You can
configure other trace listeners using code.

Let's see trace listeners in action:

1. Use your preferred coding tool to add a new Console Application to the Chaptere4
workspace/solution named Instrumenting.

2. In Visual Studio Code, select Instrumenting as the active OmniSharp project. When
you see the pop-up warning message saying that required assets are missing, click
Yes to add them.

3. InProgram.cs, import the System.Diagnostics namespace.

Write a message from the Debug and Trace classes, as shown in the following code:

Debug.WriteLine("Debug says, I am watching!");
Trace.WriteLine("Trace says, I am watching!");

5. In Visual Studio, navigate to View | Output and make sure Show output from:
Debug is selected.

6. Start debugging the Instrumenting console application, and note that DEBUG
CONSOLE in Visual Studio Code or the Output window in Visual Studio 2022 shows
the two messages, mixed with other debugging information, such as loaded assembly
DLLs, as shown in Figures 4.15 and 4.16:

[154]

Chapter 04

[] @ Program.cs — ChapterDd (Workspace)
AUN B NET Core Launc ' & & C' Program.cs X
% VARIABLES Instrumenting > € Program.cs > {} Instrumenting > &2 Instrumenting.Program > & Main{string[] args)
Sl WATCH 0 referanca
ol . GALLSTACK 1: :La;.\c void Main{stringl] args)
- BREAKPOINTS
: i 11 Debug.WriteLine("Debug says, I am watching!");
[All Excepticns 12 Trace.WriteLine("Trace says, I am watching!"}: h .
User-Unhandled Exceptions -
TERMINAL QUTPUT DEBUG CONSOLE Fliter (&3 text, texclude) =
@ B Program.cs Debugging 7 ; 2 i d A :)'

@0 M50 4 MNET Core Launch (console) (Instrumenting) & B Instrumenting Ln42 Col3 Spaces: 2 UTF-8 with BOM

Figure 4.15: Visual Studio Code DEBUG CONSOLE shows the two messages in blue

% Fle Edit View Git Project Bulld Debug Test Analyze Tools Extensions Window Heip |'£L3.':r.:C'.:I-C- PI

B-2Be [

= | |Debig | Any CPU

| Live Share A m

* & solution Explorer

z enfing -4 - - o -8B ,E‘

using System.Diagnostics; a

~ ! Instrumenting

P & spilesrwe (Cirls Pi-
3 Debug.WriteLine("Debug says, I am watching!"); l_ B4 selution "Chapterds' (3 of 3 projects)
u Trace.WriteLine{"Trace says, I am watching!"}; 4 [Debugging

b &S Depandencies
B ¥ Programcs
v B 4 [Instrumenting

& © Mo issues found v P Lm38 Chi3 SPC CRIF

Show outpit from: | Debug ~f

'Instrumenting.exe’ ([CoreCLR: DefaultDomain): Loaded ‘Ci\Program
‘Instrumenting.exe’ (CoreCLR: clrhost): Loaded 'Ci\CodelChaptere
'Insteumenting.exe’ {CoreCLR: clrhost): Loaded 'C:\Program Filasyj
‘Instrumenting.exe’ (CoreCLR: clrhost): Loaded 'C:\Program Files)
‘Instrumenting.exe’ [CoreCLR: clrhost): Loaded 'C:\Program Files)iy
Debug says, I am watching!
Trace says, I am watching!

B Microscft Visual Studic Debug Console = [m] x

Figure 4.16: Visual Studio 2022 Output window shows Debug output including the two messages

Configuring trace listeners

Now, we will configure another trace listener that will write to a text file:

1. Before the Debug and Trace calls to WriteLine, add a statement to create a new text file
on the desktop and pass it into a new trace listener that knows how to write to a text file,
and enable automatic flushing for its buffer, as shown highlighted in the following code:

Trace.Listeners.Add(new TextWriterTraceListener(
File.CreateText(Path.Combine(Environment.GetFolderPath(
Environment.SpecialFolder.DesktopDirectory), "log.txt"))));

Trace.AutoFlush = true;

Debug.WriteLine("Debug says, I am watching!");
Trace.WritelLine("Trace says, I am watching!");

[155]

Writing, Debugging, and Testing Functions

Good Practice: Any type that represents a file usually implements
a buffer to improve performance. Instead of writing immediately
L to the file, data is written to an in-memory buffer and only once the
- /@\' buffer is full will it be written in one chunk to the file. This behavior
g can be confusing while debugging because we do not immediately
see the results! Enabling AutoFlush means it calls the Flush method

automatically after every write.

2. In Visual Studio Code, run the release configuration of the console app by entering the
following command in the TERMINAL window for the Instrumenting project and note
that nothing will appear to have happened:

dotnet run --configuration Release

3. In Visual Studio 2022, in the standard toolbar, select Release in the Solution
Configurations dropdown list, as shown in Figure 4.17:

‘){I File . Edit View Git Project Build Debug Test Analyze “Tock Extensions ‘Window Help Search (Ctri+ » Chapter0d - (|} s
{O - - B D - - Relesse ¢ AnyCPU - b nstrumenting = | By L5 b | = | - CHUTT N ol prcview |

Solution Configurations e " B
- Solutien Explorer - W g

ENE Rl i Frogram.cs

Figure 4.17: Selecting the Release configuration in Visual Studio

4. In Visual Studio 2022, run the release configuration of the console app by navigating to
Debug | Start Without Debugging.

5. On your desktop, open the file named log.txt and note that it contains the message
Trace says, I am watching!.

6. In Visual Studio Code, run the debug configuration of the console app by entering the
following command in the TERMINAL window for the Instrumenting project:

dotnet run --configuration Debug

7. In Visual Studio, in the standard toolbar, select Debug in the Solution Configurations
dropdown list and then run the console app by navigating to Debug | Start
Debugging.

8. On your desktop, open the file named log.txt and note that it contains both the
message, Debug says, I am watching! and Trace says, I am watching!.

Good Practice: When running with the Debug configuration, both Debug and
| Trace are active and will write to any trace listeners. When running with the
\@' Release configuration, only Trace will write to any trace listeners. You can
AR therefore use Debug.Writeline calls liberally throughout your code, knowing
- they will be stripped out automatically when you build the release version of
your application and will therefore not affect performance.

[156]

Chapter 04

Switching trace levels

The Trace.WritelLine calls are left in your code even after release. So, it would be great to have
fine control over when they are output. This is something we can do with a trace switch.

The value of a trace switch can be set using a number or a word. For example, the number 3 can
be replaced with the word Info, as shown in the following table:

Number Word Description

0 Off This will output nothing.

1 Error This will output only errors.

2 Warning This will output errors and warnings.

3 Info This will output errors, warnings, and information.
4 Verbose This will output all levels.

Let's explore using trace switches. First, we will add some NuGet packages to our project to
enable loading configuration settings from a JSON appsettings file.

Adding packages to a project in Visual Studio Code

Visual Studio Code does not have a mechanism to add NuGet packages to a project, so we will
use the command-line tool:

Navigate to the TERMINAL window for the Instrumenting project.

Enter the following command:

dotnet add package Microsoft.Extensions.Configuration

3. Enter the following command:

dotnet add package Microsoft.Extensions.Configuration

4. Enter the following command:

dotnet add package Microsoft.Extensions.Configuration

5. Enter the following command:

dotnet add package Microsoft.Extensions.Configuration.FileExtensions

dotnet add package adds a reference to a NuGet package to your project
‘ p, file. It will be downloaded during the build process. dotnet add reference
\/ adds a project-to-project reference to your project file. The referenced project
will be compiled if needed during the build process.

[157]

Writing, Debugging, and Testing Functions

Adding packages to a project in Visual Studio 2022

Visual Studio has a graphical user interface for adding packages.

1. In Solution Explorer, right-click the Instrumenting project and select Manage NuGet

Packages.
Select the Browse tab.
In the search box, enter Microsoft.Extensions.Configuration.

Select each of these NuGet packages and click the Install button, as shown in Figure 4.18:

1. Microsoft.Extensions.Configuration

2. Microsoft.Extensions.Configuration.Binder

3. Microsoft.Extensions.Configuration.Json

4. Microsoft.Extensions.Configuration.FileExtensions
o) e Edit View Git Project Build Deblg Test Analyze Tools Extensions Window Halp Searcr (e R Chapterdd = 5| %
S0 Bt WP Cebug = Ary CPU = P Instrumenting | Ba _ | Live Share PREVIEW

S NuGet Instrumenting + X KU IR0l Program.cs.

- 8

Solution Explorer

S@mH b5 @
o -
01 Sclution 'Chapterdd’ (3 of 3 project =
4 o Debugging
- b % Dependencies

B € Program.cs
4 [Instrumenting

b & Dependencies

b d Imperts

Browse Instalied Updates NuGet Package Manager: Instrumenting

&

Search Solyution Explorer [Cri+)

Tosoft Extensions Configuration %~ G |¥] Include prerelense Packege scurce: nugetorg =

H Microsoft.Extension:® nugetars

jew.1.2110212 o

sjoo) Ipsoubel] SUCREIGOON

Microsoft.E: Co v600-pr

Implementation of el

frecgess pair based configu

Lr!ian: Latest prerelease 64 ~ Irstall
Implementation of key value pair based configuration | : b b
o s sration. Includes the | el

Each packege i hcensed to S y b obf

fou, mor does it grant any || - - —— B € Programes

4 [WritingFunctions

Description B S Dependencies

4

|—| Do not show this again

+ Add to Source Contral =

Figure 4.18: Installing NuGet packages using Visual Studio 2022

L Good Practice: There are also packages for loading configuration from XML
‘,@\‘ files, INI files, environment variables, and the command line. Use the most
E appropriate technique for setting configuration in your projects.

Reviewing project packages

After adding the NuGet packages, we can see the references in the project file:

1. Open Instrumenting.csproj (double-click the Instrumenting project in Visual Studio's
Solution Explorer) and note the <ItemGroup> section with the added NuGet packages,
as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>

[158]

Chapter 04

<OutputType>Exe</OutputType>

<TargetFramework>net6.0</TargetFramework>

<Nullable>enable</Nullable>

<ImplicitUsings>enable</ImplicitUsings>
</PropertyGroup>

<ItemGroup>
<PackageReference
Include="Microsoft.Extensions.Configuration"
Version="6.0.0" />
<PackageReference
Include="Microsoft.Extensions.Configuration.Binder"
Version="6.0.0" />
<PackageReference
Include="Microsoft.Extensions.Configuration.FileExtensions"
Version="6.0.0" />
<PackageReference
Include="Microsoft.Extensions.Configuration.Json"
Version="6.0.0" />
</ItemGroup>

</Project>

Add a file named appsettings.json to the Instrumenting project folder.

Modify appsettings.json to define a setting named PacktSwitch with a Level value, as
shown in the following code:

{
"PacktSwitch": {

"Level": "Info"

}
}

In Visual Studio 2022, in Solution Explorer, right-click appsettings.json, select
Properties, and then in the Properties window, change Copy to Output Directory to
Copy if newer. This is necessary because unlike Visual Studio Code, which runs the
console app in the project folder, Visual Studio runs the console app in Instrumenting\
bin\Debug\net6.0 or Instrumenting\bin\Release\net6.0.

At the top of Program. cs, import the Microsoft.Extensions.Configuration namespace

Add some statements to the end of Program. cs to create a configuration builder that
looks in the current folder for a file named appsettings. json, build the configuration,
create a trace switch, set its level by binding to the configuration, and then output the
four trace switch levels, as shown in the following code:

ConfigurationBuilder builder = new();

builder.SetBasePath(Directory.GetCurrentDirectory())

[159]

Writing, Debugging, and Testing Functions

.AddJsonFile("appsettings.json",
optional: true, reloadOnChange: true);

IConfigurationRoot configuration = builder.Build();

TraceSwitch ts = new(
displayName: "PacktSwitch",
description: "This switch is set via a JSON config.");

configuration.GetSection("PacktSwitch").Bind(ts);

Trace.WriteLineIf(ts.TraceError, "Trace error");

Trace.WriteLineIf(ts.TraceWarning, "Trace warning");
Trace.WriteLineIf(ts.TraceInfo, "Trace information");
Trace.WritelLineIf(ts.TraceVerbose, "Trace verbose");

Set a breakpoint on the Bind statement.

Start debugging the Instrumenting console app.In the VARIABLES or Locals window,
expand the ts variable expression, and note that its Level is 0ff and its TraceError,
TraceWarning, and so on are all false, as shown in Figure 4.19:

o6 Fie Edit View Git Project Build Debug Test Analyze Tools Eensions Window Help Search (Coe
Lol non Ml|De0 -

2 Chapter0d = 15 *

1 Live Share 5% PREVIEW

ez
> % a

< B Continue~ B 0o m & D ¥

Programes 2 X

¥ Instrumenting - ' "% Instrurmienting. Program

| 9 Mainistring]) args)

@ 7] configuration.GetSection| PacktSwitch).Bind(ts);| Dingnostics session: 1 seconds (1,381 5 selected)
36 10 |
Trace.WriteLineI#{ts. TraceError, “Trace errar"}; I I =
Trace WritelineIf{ts.TraceWarning, "Trace warning");
TraceWriteLineI#(ts. TraceInfo, "Trace information™); Summary Events Memory Usage CPU Usage

18 Trace.MritelineI¥{ts.TraceVerbose, “Trace verbose");

X v Ll 4 In:35 Chi13 SPC CRLF

Events

N issuas found

Call Stack

Search (Ctrl+E) P =l & 5 SesrchDupth: 3 Noime
Mame Value N Ll diltinstr ing.P) Mainistringl] args) Line 35 c#
4 {System. Diagnostics. TraceSwitch] System.Diag...

b & Attributes iSystam.Collections. Specialized StringDic.. System.Coll...
& Description *This switch s set via a JSON config.” A = string
F DisplayName “PacktSwitch” Q ~ string
F Level Cff System.Diag...
& SuitchSetting 0 int
F TraceEror false bool
F Traceinfo false bool
F TraceVerbose false baal
F TraceWaming. fakse boal
o Q- string

&

uree Contral =

Figure 4.19: Watching the trace switch variable properties in Visual Studio 2022

9. Step into the call to the Bind method by clicking the Step Into or Step Over buttons
or pressing F11 or F10, and note the ts variable watch expression updates to the Info
level.

[160]

Chapter 04

10. Step into or over the four calls to Trace.WriteLineIf and note that all levels up to Info
are written to the DEBUG CONSOLE or Output - Debug window, but not Verbose, as
shown in Figure 4.20:

[] Program.cs — ChapterDd (Workspace)
AUN B NET Core Launch (console) (i & &1 - C Program.cs X |- et S il A [

~ VARIABLES wstrumenting > © Program.cs

{ nting > & Instrumenting Program > £ Main(string[] args
29 var ts = new Switehi =
3 displayName: “"PacktSwitch",
3 description: "This switch is set wia a JSON config.");
ringd. 32
=

: *This switch is set via a Jso. ® 33 configuration.GetSection{"PacktSwitch") . Bind(ts);

34
: "PacktSwitch"
i 35 Trace.WriteLineIf(ts.TraceError, "Trace error™};
38 Trace.W flts.TraceWarning, "Trace warning"};
tting [int]: 3 37 Trace.Write elf(ts.Tracelnfo, "Trace infermation™); =
Error [bool]: true 38 Trace.WritelLineIf(ts.TraceVerbose, “Trace verbose");
racelnfo [bool]: troe 38 ¥
Tra 13 =

TERMIMAL DEBUG CONSOLE . Fittar (.3, text, lexclude) = o =

Tracefarning [

Value [string]: "@"

> WATCH
> GALL STACK
» BREAKPOINTS >
@0 A0 4> NET Cora Launch (console) (nstrumenting] & B Instrumenting Ln 39, Col 6:(1 selectod) Spaces: 2 UTF-8withBOM CRLF C# & ([

Figure 4.20: Different trace levels shown in the DEBUG CONSOLE in Visual Studio Code

11. Stop debugging.

12. Modify appsettings.json to set a level of 2, which means warning, as shown in
the following JSON file:

{
"PacktSwitch": {

"Level": "2"

}

13. Save the changes.

14. In Visual Studio Code, run the console application by entering the following command
in the TERMINAL window for the Instrumenting project:

dotnet run --configuration Release

15. In Visual Studio, in the standard toolbar, select Release in the Solution
Configurations dropdown list and then run the console app by navigating to Debug |
Start Without Debugging.

16. Open the file named log. txt and note that this time, only trace error and
warning levels are the output of the four potential trace levels, as shown in the
following text file:

Trace says, I am watching!

Trace error
Trace warning

If no argument is passed, the default trace switch level is 0ff (0), so none of the switch levels
are output.

[161]

Writing, Debugging, and Testing Functions

Unit testing

Fixing bugs in code is expensive. The earlier that a bug is discovered in the development
process, the less expensive it will be to fix.

Unit testing is a good way to find bugs early in the development process. Some developers
even follow the principle that programmers should create unit tests before they write code,
and this is called Test-Driven Development (TDD).

Microsoft has a proprietary unit testing framework known as MS Test. There is also a
framework named NUnit. However, we will use the free and open-source third-party
framework xUnit.net. xUnit was created by the same team that built NUnit but they fixed the
mistakes they felt they made previously. xUnit is more extensible and has better community
support.

Understanding types of testing

Unit testing is just one of many types of testing, as described in the following table:

Type of testing Description

Unit Tests the smallest unit of code, typically a method or function. Unit testing is
performed on a unit of code isolated from its dependencies by mocking them

if needed. Each unit should have multiple tests: some with typical inputs and
expected outputs, some with extreme input values to test boundaries, and some
with deliberately wrong inputs to test exception handling.

Integration Tests if the smaller units and larger components work together as a single piece of
software. Sometimes involves integrating with external components that you do
not have source code for.

System Tests the whole system environment in which your software will run.

Performance Tests the performance of your software; for example, your code must return a web
page full of data to a visitor in under 20 milliseconds.

Load Tests how many requests your software can handle simultaneously while
maintaining required performance, for example, 10,000 concurrent visitors to a
website.

User Acceptance | Tests if users can happily complete their work using your software.

Creating a class library that needs testing

First, we will create a function that needs testing. We will create it in a class library project.
A class library is a package of code that can be distributed and referenced by other .NET
applications:

1. Use your preferred coding tool to add a new Class Library to the Chaptere4
workspace/solution named CalculatorLib. The dotnet new template is named
classlib.

2. Rename the file named Classl.cs to Calculator.cs.

[162]

Chapter 04

3. Modify the file to define a Calculator class (with a deliberate bug!), as shown in
the following code:

namespace Packt

{

public class Calculator

{
public double Add(double a, double b)

{
return a * b;
}
¥
¥

4. Compile your class library project:
1. In Visual Studio 2022, navigate to Build | Build CalculatorLib.
2. In Visual Studio Code, in TERMINAL, enter the command dotnet build.

5. Use your preferred coding tool to add a new xUnit Test Project [C#] to the
Chaptere4 workspace/solution named CalculatorLibUnitTests. The dotnet new
template is named xunit.

6. If you are using Visual Studio, in Solution Explorer, select the
CalculatorLibUnitTests project, navigate to Project | Add Project Reference..., check
the box to select the CalculatorLib project, and then click OK.

7. If you are using Visual Studio Code, use the dotnet add reference command or
click on the file named CalculatorLibUnitTests.csproj, and modify the configuration
to add an item group with a project reference to the CalculatorLib project, as shown
highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>net6.0</TargetFramework>
<Nullable>enable</Nullable>

<IsPackable>false</IsPackable>
</PropertyGroup>

<ItemGroup>

<PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.10.0" />

<PackageReference Include="xunit" Version="2.4.1" />

<PackageReference Include="xunit.runner.visualstudio"” Version="2.4.3">
<IncludeAssets>runtime; build; native; contentfiles;

analyzers; buildtransitive</IncludeAssets>

<PrivateAssets>all</PrivateAssets>

</PackageReference>

<PackageReference Include="coverlet.collector"” Version="3.0.2">

[163]

Writing, Debugging, and Testing Functions

<IncludeAssets>runtime; build; native; contentfiles;
analyzers; buildtransitive</IncludeAssets>
<PrivateAssets>all</PrivateAssets>
</PackageReference>
</ItemGroup>

<ItemGroup>
<ProjectReference
Include="..\CalculatorLib\CalculatorLib.csproj" />
</ItemGroup>
</Project>

8. Build the CalculatorLibUnitTests project.

Writing unit tests

A well-written unit test will have three parts:

* Arrange: This part will declare and instantiate variables for input and output.

* Act: This part will execute the unit that you are testing. In our case, that means calling
the method that we want to test.

* Assert: This part will make one or more assertions about the output. An assertion is
a belief that, if not true, indicates a failed test. For example, when adding 2 and 2, we
would expect the result to be 4.

Now, we will write some unit tests for the Calculator class:

Rename the file UnitTestl.cs to CalculatorUnitTests.cs and then open it.

2. In Visual Studio Code, rename the class to CalculatorUnitTests. (Visual Studio
prompts you to rename the class when you rename the file.)

3. Import the Packt namespace.

Modify the CalculatorUnitTests class to have two test methods for adding 2
and 2, and adding 2 and 3, as shown in the following code:

using Packt;
using Xunit;

namespace CalculatorLibUnitTests

{

public class CalculatorUnitTests

{

[164]

Chapter 04

[Fact]
public void TestAdding2And2()

{

double a = 2;

double b = 2;

double expected = 4;
Calculator calc = new();

double actual = calc.Add(a, b);

Assert.Equal(expected, actual);

}
[Fact]
public void TestAdding2And3()
{
double a = 2;
double b = 3;
double expected = 5;
Calculator calc = new();

double actual = calc.Add(a, b);

Assert.Equal(expected, actual);

Running unit tests using Visual Studio Code

Now we are ready to run the unit tests and see the results:

1. Inthe CalculatorLibUnitTest project's TERMINAL window, run the tests, as shown in
the following command:

dotnet test

[165]

Writing, Debugging, and Testing Functions

2. Note that the results indicate that two tests ran, one test passed, and one test failed, as

shown in Figure 4.21:

@ EXPLURER
- OPEN EDITORS
% € CalculatorUnitTests.cs Calculato.,
~ CHAPTEROA (WORKSPACE]
log.txt
€ Program.cs
+ CaleulatorLib
> bin
> ob|
© Calculator.cs
& CalculatorLib.csproj
~ CalculatorLibUnitTests
> bin
¥ obj
% CalculatorLibUnitTests cspro|

© CalculatorUnitTests.cs

> OUTLINE
» NPM SCRIPTS
> ILSPY DECOMPILED MEMBERS

EHOoMD

&* MET Core Launch [console) (Instrumenting) @&

CaleulatorlinitTests.cs — Chapter0d (Workspace]

TERMINAL ~ PROBLEMS OUTPUT DEBUG CONSOLE 3: bash v+ M @ ~ X
Marks-MacBook-Pro-13:CalculatorLibllnitTests markjprice$ dotnet test
Determining projects to restore...
All projects are up-to-date for restore.
You are using & preview version of .NET. See: https://aka.ms/dotret—core-preview
Calculaterlib -> fUsers/markjprice/Code/Chapterd4/Calculatorliin/bin/Debug/nets.8/Calculatoriib. dil
CalculatorLibUnitTests -> fUsers/markjprice/Code/Chapter@d/CalculatorLibUnitTests/bin/Debug/net5./Ca
leulatorLibinitTests. dil
Test run for /Users/markjprice/Code/Chapterdd/CalculatorLiblnitTests/bin/Debug/netS. 8/CalculatorLiblnit
Tests.d1L{.NETCoreApp, Versionsvs. @
Microsoft (R) Test Execution Command Line Tool Version 16,8.8-preview-20200811-81

Copyright [c) Microsoft Corporation. ALl rights reserved.

Starting test execution, please wait...
A total of 1 test files astched the specified pattern.
[xUnit.net 09:00:28.64) CalculatorLibUnitTests,CalculatorUnitTests, TestAdding2And3 [FAIL)

Failed CalculaterLibUnitTests.CalculatorlnitTests,TestAdding2and3 [5 ms]

Error Message:

hssert.Equall) Failure
Expected: 5
Actual: @

Stack Trace:

at CalculatorLibUnitTests.CaleulatorUnit

4/CalculatorlibUnitTests/CalculatorUnitTests.cs

tAdding2and3() In fUsers/markjprice/Code/Chapterd
ine 37

Failed! - Failed: 1, Passed: 1, Skipped: @, Total: 2, Duration: 7 ms - fUsers/markjpri
ce/Code/Chapterd4/CalculatorLibUnitTests/bin/Debug/net5.@/CaleulatorLibUnitTests. dll (net5.0)
fusr/local/share/dotnet/sdk/5. 0. 108~preview. 8. 28417.9/Microsoft. TestPlat form. targets(32,5): error MSB41
B1: The "Microsoft.TestPlatform.Build.Tasks.V5TestTask" task returned false but did not leog an error. [
fUsers/markjprice/Code/Chapterdd/CaleulatorLiblinitTests/CaleulatorLibinitTests. csprojl
Marks-MacBook-Pro-13:CalculatorLibUnitTests markjprices Jj

& 3 CalculatorLibUnitTests Ln3,Ccl1 Spaces:2 UTF-B8 CRLF

Figure 4.21: The unit test results in Visual Studio Code's TERMINAL

Running unit tests using Visual Studio

Now we are ready to run the unit tests and see the results:

1. Navigate to Test | Run All Tests.

2.

In Test Explorer, note that the results indicate that two tests ran, one test passed, and

one test failed, as shown in Figure 4.22:

o4 File© Edit View Gt Project

o= B B P8 o] pebug -
CalculatorUnitTests.cs_-
T CaleutatorkibUnit] Test Explorer

1 Zusi

usi
| Test

& Testhdding2And2
€ Testhdding2and3

Build Debug

br-Crolazoo] ke s

{ 4 €3 CalculaterlibUntTests {3}
4 €3 ColculatorlibUnitTests (2}
4 63 CalculatorinitTests (2)

Test Analyze Tools Exensions Window Help

Any CRU = ¥ CalculatortibUnitTests = | 1 CRIVSTS T ST PREVIEW

Group Summary
CaiculatorUnitTests
Tests in group:: 2
(T Totsl Duration: 18 ms

Duraticn Traits.

W0ms

Error Message

10ms
0 ms
1ms
9ms

Outcomes
& 1 Passed
€ 1 Failed

AssertEquall) Fallure Expected: 5 Acteal 6

& Noissues found

Ln:d0d Ch2 SPC

Figure 4.22: The unit test results in Visual Studio 2022's Test Explorer

Fix the bug

Now you can fix the bug;:

1. Fix the bug in the Add method.
2. Run the unit tests again to see that the bug has now been fixed and both tests pass.

[166]

Chapter 04

Throwing and catching exceptions in functions

In Chapter 3, Controlling Flow, Converting Types, and Handling Exceptions, you were introduced
to exceptions and how to use a try-catch statement to handle them. But you should only catch
and handle an exception if you have enough information to mitigate the issue. If you do not,
then you should allow the exception to pass up through the call stack to a higher level.

Understanding usage errors and execution errors

Usage errors are when a programmer misuses a function, typically by passing invalid values

as parameters. They could be avoided by that programmer changing their code to pass valid
values. When some programmers first learn C# and .NET, they sometimes think exceptions can
always be avoided because they assume all errors are usage errors. Usage errors should all be
fixed before production runtime.

Execution errors are when something happens at runtime that cannot be fixed by writing
"better" code. Execution errors can be split into program errors and system errors. If you
attempt to access a network resource but the network is down, you need to be able to handle
that system error by logging an exception, and possibly backing off for a time and trying again.
But some system errors, such as running out of memory, simply cannot be handled. If you
attempt to open a file that does not exist, you might be able to catch that error and handle it
programmatically by creating a new file. Program errors can be programmatically fixed by
writing smart code. System errors often cannot be fixed programmatically.

Commonly thrown exceptions in functions

Very rarely should you define new types of exceptions to indicate usage errors. .NET already
defines many that you should use.

When defining your own functions with parameters, your code should check the parameter
values and throw exceptions if they have values that will prevent your function from properly
functioning.

For example, if a parameter should not be null, throw ArgumentNullException. For other
problems, throw ArgumentException, NotSupportedException, or InvalidOperationException.
For any exception, include a message that describes the problem for whoever will have to read
it (typically a developer audience for class libraries and functions, or end users if it is at the
highest level of a GUI app), as shown in the following code:

static void Withdraw(string accountName, decimal amount)

{

if (accountName is null)

{

throw new ArgumentNullException(paramName: nameof(accountName));

}

if (amount < 9)

[167]

Writing, Debugging, and Testing Functions

{

throw new ArgumentException(
message: $"{nameof(amount)} cannot be less than zero.");

|
\@' Good Practice: If a function cannot successfully perform its operation, you

should consider that a function failure and report it by throwing an exception.

You should never need to write a try-catch statement to catch these usage type errors. You
want the application to terminate. These exceptions should cause the programmer who is
calling the function to fix their code to prevent the problem. They should be fixed before
production deployment. That does not mean that your code does not need to throw usage error
type exceptions. You should — to force other programmers to call your functions correctly!

Understanding the call stack

The entry point for a .NET console application is the Main method of the Program class,
regardless of if you have explicitly defined this class and method or if it was created for you by
the top-level program feature.

The Main method will call other methods, that call other methods, and so on, and these methods
could be in the current project or in referenced projects and NuGet packages, as shown in
Figure 4.23:

—
Program.Alpha

h 4
h 4

Program.Main Program.Beta

MyConsoleApp.exe

A 4

F N

MyClassLib.dll Calculator.Delta Calculator.Gamma

Figure 4.23: A chain of method calls that create a call stack

Let's create a similar chain of methods to explore where we could catch and handle exceptions:

[168]

Chapter 04

Use your preferred coding tool to add a new Class Library to the Chaptere4
workspace/solution named CallStackExceptionHandlingLib.

Rename the Classi.cs file to Calculator.cs.

Open Calculator.cs and modify its contents, as shown in the following code:

using static System.Console;
namespace Packt;

public class Calculator

{ public static void Gamma()
{
WriteLine("In Gamma");
Delta();
}

private static void Delta()
{
WriteLine("In Delta");
File.OpenText("bad file path");
}
}

Use your preferred coding tool to add a new Console Application to the
Chaptere4 workspace/solution named CallStackExceptionHandling.

In Visual Studio Code, select CallStackExceptionHandling as the active

OmniSharp project. When you see the pop-up warning message saying that required

assets are missing, click Yes to add them.

In the CallStackExceptionHandling project, add a reference to the
CallStackExceptionHandlinglLib project.

In Program. cs, add statements to define two methods and chain calls to them,

and the methods in the class library, as shown in the following code:

using Packt;
using static System.Console;

WriteLine("In Main");
Alpha();

static void Alpha()

{
WriteLine("In Alpha");

Beta();
}

[169]

Writing, Debugging, and Testing Functions

static void Beta()

{
WriteLine("In Beta");
Calculator.Gamma();

}

8. Run the console app, and note the results, as shown in the following partial output:

In Main
In Alpha
In Beta
In Gamma
In Delta
Unhandled exception. System.IO.FileNotFoundException: Could not find file
'C:\Code\Chaptere4\CallStackExceptionHandling\bin\Debug\net6.0\bad file
path'.

at Microsoft.Win32.SafeHandles.SafeFileHandle.CreateFile(...

at Microsoft.Win32.SafeHandles.SafeFileHandle.Open(...

at System.IO.Strategies.OSFileStreamStrategy..ctor(...

at System.IO.Strategies.FileStreamHelpers.ChooseStrategyCore(...

at System.IO.Strategies.FileStreamHelpers.ChooseStrategy(...

at System.IO.StreamReader.ValidateArgsAndOpenPath(...

at System.IO.File.OpenText(String path) in ...

at Packt.Calculator.Delta() in C:\Code\Chaptero4\
CallStackExceptionHandlinglLib\Calculator.cs:1line 16

at Packt.Calculator.Gamma() in C:\Code\Chaptero4\
CallStackExceptionHandlingLib\Calculator.cs:line 10

at <Program>$.<<Main>$>g Beta|@_1() in C:\Code\Chaptere4s\
CallStackExceptionHandling\Program.cs:1line 16

at <Program>$.<<Main>$>g Alpha|@ 0() in C:\Code\Chaptere4\
CallStackExceptionHandling\Program.cs:1line 10

at <Program>$.<Main>$(String[] args) in C:\Code\Chaptero4\
CallStackExceptionHandling\Program.cs:line 5

Note the following;:

* The call stack is upside-down. Starting from the bottom, you see:

* The first call is to the Main entry point function in the auto-generated Program
class. This is where arguments are passed in as a string array.

e The second call is to the Alpha function.
e The third call is to the Beta function.
e The fourth call is to the Gamma function.

* The fifth call is to the Delta function. This function attempts to open a file by
passing a bad file path. This causes an exception to be thrown. Any function
with a try-catch statement could catch this exception. If they do not, it is
automatically passed up the call stack until it reaches the top, where NET
outputs the exception (and the details of this call stack).

[170]

Chapter 04

Where to catch exceptions

Programmers can decide if they want to catch an exception near the failure point, or centralized
higher up the call stack. This allows your code to be simplified and standardized. You might
know that calling an exception could throw one or more types of exception, but you do not
need to handle any of them at the current point in the call stack.

Rethrowing exceptions

Sometimes you want to catch an exception, log it, and then rethrow it. There are three ways to
rethrow an exception inside a catch block, as shown in the following list:

To throw the caught exception with its original call stack, call throw.

To throw the caught exception as if it was thrown at the current level in the call stack,
call throw with the caught exception, for example, throw ex. This is usually poor
practice because you have lost some potentially useful information for debugging.

3. To wrap the caught exception in another exception that can include more information
in a message that might help the caller understand the problem, throw a new exception
and pass the caught exception as the innerException parameter.

If an error could occur when we call the Gamma function then we could catch the exception and
then perform one of the three techniques of rethrowing an exception, as shown in the following
code:

try
{

Gamma();

}
catch (IOException ex)

{

LogException(ex);

throw ex;
throw;

throw new InvalidOperationException(
message: "Calculation had invalid values. See inner exception for why.",
innerException: ex);

[171]

Writing, Debugging, and Testing Functions

Let's see this in action with our call stack example:

1. Inthe CallStackExceptionHandling project, in Program.cs, in the Beta function, add a
try-catch statement around the call to the Gamma function, as shown highlighted in the
following code:

static void Beta()

{
WriteLine("In Beta");

try
{

Calculator.Gamma();

}

catch (Exception ex)
{
WriteLine($"Caught this: {ex.Message}");
throw ex;
¥
¥

2. Note the green squiggle under the ex to warn you that you will lose call stack
information.

3. Run the console app and note the output excludes some details of the call stack, as
shown in the following output:

Caught this: Could not find file 'C:\Code\Chaptero4\
CallStackExceptionHandling\bin\Debug\net6.0\bad file path'.

Unhandled exception. System.IO.FileNotFoundException: Could not find file
'C:\Code\Chaptere4\CallStackExceptionHandling\bin\Debug\net6.0\bad file
path'.

File name: 'C:\Code\Chapter@4\CallStackExceptionHandling\bin\Debug\net6.0\
bad file path'

at <Program>$.<<Main>$>g_Beta|@ 1() in C:\Code\Chaptere4\
CallStackExceptionHandling\Program.cs:1line 25

at <Program>$.<<Main>$>g Alpha|@ 0() in C:\Code\Chaptere4\
CallStackExceptionHandling\Program.cs:1line 11

at <Program>$.<Main>$(String[] args) in C:\Code\Chaptere4\
CallStackExceptionHandling\Program.cs:line 6

4. Delete the ex when rethrowing.

5. Run the console app and note the output includes all the details of the call stack.

[172]

Chapter 04

Implementing the tester-doer pattern

The tester-doer pattern can avoid some thrown exceptions (but not eliminate them completely).
This pattern uses pairs of functions: one to perform a test, the other to perform an action that
would fail if the test is not passed.

NET implements this pattern itself. For example, before adding an item to a collection by
calling the Add method, you can test to see if it is read-only, which would cause Add to fail and
therefore throw an exception.

For example, before withdrawing money from a bank account, you might test that the account
is not overdrawn, as shown in the following code:

if (!bankAccount.IsOverdrawn())

{

bankAccount.Withdraw(amount);

}

Problems with the tester-doer pattern

The tester-doer pattern can add performance overhead, so you can also implement the try
pattern, which in effect combines the test and do parts into a single function, as we saw with
TryParse.

Another problem with the tester-doer pattern occurs when you are using multiple threads.

In this scenario, one thread could call the test function and it returns okay. But then another
thread executes that changes the state. Then the original thread continues executing assuming
everything is fine, but it is not fine. This is called a race condition. We will see how we could
handle it in Chapter 12, Improving Performance and Scalability Using Multitasking.

If you implement your own try pattern function and it fails, remember to set the out parameter
to the default value of its type and then return false, as shown in the following code:

static bool TryParse(string? input, out Person value)

{

if (someFailure)

{

value = default(Person);
return false;

}

value = new Person() { ... };
return true;

}

[173]

Writing, Debugging, and Testing Functions

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore with deeper research into the topics covered in this chapter.

Exercise 4.1 — Test your knowledge

Answer the following questions. If you get stuck, try Googling the answers if necessary, while
remembering that if you get totally stuck, the answers are in the Appendix:

1. What does the C# keyword void mean?
2. What are some differences between imperative and functional programming styles?

3. In Visual Studio Code or Visual Studio, what is the difference between pressing
F5, Ctrl or Cmd + F5, Shift + F5, and Ctrl or Cmd + Shift + F5?

Where does the Trace.WriteLine method write its output to?
What are the five trace levels?
What is the difference between the Debug and Trace classes?

When writing a unit test, what are the three "A"s?

SN

When writing a unit test using xUnit, what attribute must you decorate the test
methods with?

9. What dotnet command executes xUnit tests?

10. What statement should you use to rethrow a caught exception named ex without losing
the stack trace?

Exercise 4.2 — Practice writing functions with
debugging and unit testing

Prime factors are the combination of the smallest prime numbers that, when multiplied
together, will produce the original number. Consider the following example:

* Prime factors of 4 are: 2 x 2
* Prime factors of 7 are: 7
* Prime factors of 30 are: 5 x 3 x 2
* Prime factors of 40 are:5x 2 x 2 x 2
* Prime factors of 50 are: 5 x 5 x 2
Create a workspace/solution named PrimeFactors to contain three projects: a class library

with a method named PrimeFactors that, when passed an int variable as a parameter, returns
a string showing its prime factors; a unit tests project; and a console application to use it.

To keep it simple, you can assume that the largest number entered will be 1,000.

[174]

Chapter 04

Use the debugging tools and write unit tests to ensure that your function works correctly
with multiple inputs and returns the correct output.

Exercise 4.3 — Explore topics

Use the links on the following page to learn more detail about the topics covered in this
chapter:

https://github.com/markjprice/csl@dotnet6/blob/main/book-1inks.md#chapter-4---
writing-debugging-and-testing-functions

Summary

In this chapter, you learned how to write reusable functions with input parameters and return
values, in both an imperative and functional style, and then how to use the Visual Studio and
Visual Studio Code debugging and diagnostic features to fix any bugs in them. Finally, you
learned how to throw and catch exceptions in functions and understand the call stack.

In the next chapter, you will learn how to build your own types using object-oriented
programming techniques.

[175]

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-4---writing-debugging-and-testing-functions
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-4---writing-debugging-and-testing-functions

05

Building Your Own Types with
Object-Oriented Programming

This chapter is about making your own types using object-oriented programming (OOP).
You will learn about all the different categories of members that a type can have, including
fields to store data and methods to perform actions. You will use OOP concepts such as
aggregation and encapsulation. You will also learn about language features such as tuple
syntax support, out variables, inferred tuple names, and default literals.

This chapter will cover the following topics:

* Talking about OOP

* Building class libraries

* Storing data with fields

* Writing and calling methods

* Controlling access with properties and indexers
* Pattern matching with objects

* Working with records

Talking about OOP

An object in the real world is a thing, such as a car or a person, whereas an object in
programming often represents something in the real world, such as a product or bank account,
but this can also be something more abstract.

In C#, we use the class (mostly) or struct (sometimes) C# keywords to define a type of object.
You will learn about the difference between classes and structs in Chapter 6, Implementing
Interfaces and Inheriting Classes. You can think of a type as being a blueprint or template for an
object.

[177]

Building Your Own Types with Object-Oriented Programming

The concepts of OOP are briefly described here:

Encapsulation is the combination of the data and actions that are related to an object.
For example, a BankAccount type might have data, such as Balance and AccountName,
as well as actions, such as Deposit and Withdraw. When encapsulating, you often want
to control what can access those actions and the data, for example, restricting how the
internal state of an object can be accessed or modified from the outside.

Composition is about what an object is made of. For example, a Car is composed of
different parts, such as four Wheel objects, several Seat objects, and an Engine.

Aggregation is about what can be combined with an object. For example, a Person is
not part of a Car object, but they could sit in the driver's Seat and then become the car's
Driver —two separate objects that are aggregated together to form a new component.

Inheritance is about reusing code by having a subclass derive from a base or
superclass. All functionality in the base class is inherited by and becomes available in
the derived class. For example, the base or super Exception class has some members
that have the same implementation across all exceptions, and the sub or derived
SqlException class inherits those members and has extra members only relevant to
when a SQL database exception occurs, like a property for the database connection.

Abstraction is about capturing the core idea of an object and ignoring the details or
specifics. C# has the abstract keyword that formalizes this concept. If a class is not
explicitly abstract, then it can be described as being concrete. Base or superclasses are
often abstract, for example, the superclass Stream is abstract, and its subclasses, like
FileStream and MemoryStream, are concrete. Only concrete classes can be used to create
objects; abstract classes can only be used as the base for other classes because they are
missing some implementation. Abstraction is a tricky balance. If you make a class more
abstract, more classes will be able to inherit from it, but at the same time, there will be
less functionality to share.

Polymorphism is about allowing a derived class to override an inherited action to
provide custom behavior.

Building class libraries

Class library assemblies group types together into easily deployable units (DLL files). Apart
from when you learned about unit testing, you have only created console applications or .NET
Interactive notebooks to contain your code. To make the code that you write reusable across
multiple projects, you should put it in class library assemblies, just like Microsoft does.

Creating a class library

The first task is to create a reusable .NET class library:

1.

Use your preferred coding tool to create a new class library, as defined in the following
list:

1. Project template: Class Library / classlib

[178]

Chapter 05

2. Workspace/solution file and folder: Chapteres
3. Project file and folder: PacktLibrary

2. Open the PacktLibrary.csproj file, and note that by default class libraries target .NET 6

and therefore can only work with other .NET 6-compatible assemblies, as shown in the
following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>net6.0</TargetFramework>
<Nullable>enable</Nullable>
<ImplicitUsings>enable</ImplicitUsings>
</PropertyGroup>

</Project>

3. Modify the framework to target .NET Standard 2.0 and remove the entries that enable
nullable and implicit usings, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>

<TargetFramework>netstandard2.0</TargetFramework>
</PropertyGroup>

</Project>

Save and close the file.
Delete the file named Class1.cs.

Compile the project so that other projects can reference it later:

1. In Visual Studio Code, enter the following command: dotnet build.

2. In Visual Studio, navigate to Build | Build PacktLibrary.

| Good Practice: To use the latest C# language and .NET platform features, put
\@’ types in a .NET 6 class library. To support legacy .NET platforms like NET

4 AY

= Core, NET Framework, and Xamarin, put types that you might reuse in a.NET
- Standard 2.0 class library.

Defining a class in a namespace
The next task is to define a class that will represent a person:
1. Add a new class file named Person.cs.
2. Statically import System.Console.
3. Set the namespace to Packt.Shared.

[179]

Building Your Own Types with Object-Oriented Programming

Good Practice: We're doing this because it is important to put your classes in
| a logically named namespace. A better namespace name would be domain-
_z:>: specific, for example, System.Numerics for types related to advanced
N numbers. In this case, the types we will create are Person, BankAccount, and
WondersOfTheWorld and they do not have a typical domain so we will use the
more generic Packt.Shared.

4

Your class file should now look like the following code:

using System;
using static System.Console;

namespace Packt.Shared

{

public class Person

{
}
¥

Note that the C# keyword public is applied before class. This keyword is an access modifier,
and it allows for any other code to access this class.

If you do not explicitly apply the public keyword, then it will only be accessible within the
assembly that defined it. This is because the implicit access modifier for a class is internal. We
need this class to be accessible outside the assembly, so we must make sure it is public.

Simplifying namespace declarations

To simplify your code if you are targeting .NET 6.0 and therefore using C# 10 or later, you
can end a namespace declaration with a semi-colon and remove the braces, as shown in the
following code:

using System;
namespace Packt.Shared;

public class Person

{
¥

This is known as a file-scoped namespace declaration. You can only have one file-scoped
namespace per file. We will use this in a class library that targets .NET 6.0 later in this chapter.

[180]

Chapter 05

|
\@’ Good Practice: Put each type that you create in its own file so that you can use

file-scoped namespace declarations.

Understanding members

This type does not yet have any members encapsulated within it. We will create some over the
following pages. Members can be fields, methods, or specialized versions of both. You'll find a
description of them here:

* Fields are used to store data. There are also three specialized categories of field, as
shown in the following bullets:

* Constant: The data never changes. The compiler literally copies the data into
any code that reads it.

* Read-only: The data cannot change after the class is instantiated, but the data
can be calculated or loaded from an external source at the time of instantiation.

* Event: The data references one or more methods that you want to execute
when something happens, such as clicking on a button or responding to a
request from some other code. Events will be covered in Chapter 6, Implementing
Interfaces and Inheriting Classes.

* Methods are used to execute statements. You saw some examples when you learned
about functions in Chapter 4, Writing, Debugging, and Testing Functions. There are also
four specialized categories of method:

* Constructor: The statements execute when you use the new keyword to allocate
memory to instantiate a class.

* Property: The statements execute when you get or set data. The data is
commonly stored in a field but could be stored externally or calculated at
runtime. Properties are the preferred way to encapsulate fields unless the
memory address of the field needs to be exposed.

* Indexer: The statements execute when you get or set data using "array" syntax
(1.

* Operator: The statements execute when you use an operator like + and / on
operands of your type.

Instantiating a class

In this section, we will make an instance of the Person class.

[181]

Building Your Own Types with Object-Oriented Programming

Referencing an assembly

Before we can instantiate a class, we need to reference the assembly that contains it from
another project. We will use the class in a console app:

1. Use your preferred coding tool to add a new console app to the Chapteres workspace/
solution named PeopleApp.

2. If you are using Visual Studio Code:

1. Select PeopleApp as the active OmniSharp project. When you see the pop-up
warning message saying that required assets are missing, click Yes to add them.

2. Edit PeopleApp.csproj to add a project reference to PacktLibrary, as shown
highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net6.0</TargetFramework>
<Nullable>enable</Nullable>
<ImplicitUsings>enable</ImplicitUsings>
</PropertyGroup>

<ItemGroup>
<ProjectReference Include="../PacktLibrary/PacktLibrary.csproj" />
</ItemGroup>

</Project>

3. Inaterminal, enter a command to compile the PeopleApp project and its
dependency PacktLibrary project, as shown in the following command:

dotnet build

3. If you are using Visual Studio:
1. Set the startup project for the solution to the current selection.

2. In Solution Explorer, select the PeopleApp project, navigate to Project | Add
Project Reference..., check the box to select the PacktLibrary project, and then
click OK.

3. Navigate to Build | Build PeopleApp.

Importing a namespace to use a type

Now, we are ready to write statements to work with the Person class:

1. In the PeopleApp project/folder, open Program.cs.

[182]

Chapter 05

2. At the top of the Program. cs file, delete the comment, and add statements to import the
namespace for our Person class and statically import the Console class, as shown in the
following code:

using Packt.Shared;
using static System.Console;

3. InProgram.cs, add statements to:
* Create an instance of the Person type.

* Output the instance using a textual description of itself.

The new keyword allocates memory for the object and initializes any internal data. We
could use var in place of the Person class name, but then we would need to specify
Person after the new keyword, as shown in the following code:

Person bob = new();
WriteLine(bob.ToString());

You might be wondering, "Why does the bob variable have a method named ToString?
The Person class is empty!" Don't worry, we're about to find out!

4. Run the code and view the result, as shown in the following output:

Packt.Shared.Person

Understanding objects

Although our Person class did not explicitly choose to inherit from a type, all types ultimately
inherit directly or indirectly from a special type named System.0Object.

The implementation of the ToString method in the System.0Object type simply outputs the full
namespace and type name.

Back in the original Person class, we could have explicitly told the compiler that Person inherits
from the System.0Object type, as shown in the following code:

public class Person : System.Object

When class B inherits from class A, we say that A is the base or superclass and B is the derived
or subclass. In this case, System.0Object is the base or superclass and Person is the derived or
subclass.

You can also use the C# alias keyword object, as shown in the following code:

public class Person : object

[183]

Building Your Own Types with Object-Oriented Programming

Inheriting from System.Object

Let's make our class explicitly inherit from object and then review what members all objects
have:

1. Modify your Person class to explicitly inherit from object.

2. Click inside the object keyword and press F12, or right-click on the object keyword
and choose Go to Definition.

You will see the Microsoft-defined System.0Object type and its members. This is something you
don't need to understand the details of yet, but notice that it has a method named ToString, as
shown in Figure 5.1:

® [[matadata] Objact.cs — Chapter5 (Workspace|
Amlll © [metadata] Objectcs X mn]
- #region Assembly petstandard, Version=2.8.9.8, Culturesneutral, PublicKeyToken=cc7b13ffcd2ddd51
I ! // netstandard.dll
3 #endregion
4 -
1 o 5 namespace System
5 I
T public class }_‘U‘L‘L'.
gy 8 i
At 9 public Object();
- 10
'_‘T 11 ~Object();
13 public static bool Equals{Object objA, Object objB);
14 public static bool ReferenceEquals{Object objA, Object objB);
15 public virtual bool Equals(Object obj);
16 public virtual int GetHashCode();
17 public Type GetTypel);
18 public virtual string ToString();
19 protected Object MemberwiseClone();
20 }
21 }
QGoA0 & WPaopledpp Ln7 Col 16 Spaces:2 C# SharpPad:5255 @ A
Figure 5.1: System.Object class definition
N . ep e . .
@ Good Practice: Assume other programmers know that if inheritance is not
= specified, the class will inherit from System.Object.

Storing data within fields

In this section, we will be defining a selection of fields in the class to store information about a
person.

Defining fields

Let's say that we have decided that a person is composed of a name and a date of birth. We
will encapsulate these two values inside a person, and the values will be visible outside it.

[184]

Chapter 05

Inside the Person class, write statements to declare two public fields for storing a person's name
and date of birth, as shown in the following code:

public class Person : object

{

public string Name;
public DateTime DateOfBirth;

}

You can use any type for a field, including arrays and collections such as lists and dictionaries.
These would be used if you needed to store multiple values in one named field. In this
example, a person only has one name and one date of birth.

Understanding access modifiers

Part of encapsulation is choosing how visible the members are.

Note that, as we did with the class, we explicitly applied the public keyword to these fields. If
we hadn't, then they would be implicitly private to the class, which means they are accessible
only inside the class.

There are four access modifier keywords, and two combinations of access modifier keywords
that you can apply to a class member, like a field or method, as shown in the following table:

Access Modifier Description

private Member is accessible inside the type only. This is the default.

internal Member is accessible inside the type and any type in the same assembly.

protected Member is accessible inside the type and any type that inherits from the type.

public Member is accessible everywhere.

internal Member is accessible inside the type, any type in the same assembly, and any
type that inherits from the type. Equivalent to a fictional access modifier named

protected internal_or_protected.

private Member is accessible inside the type and any type that inherits from the type
and is in the same assembly. Equivalent to a fictional access modifier named

protected internal_and_protected. This combination is only available with C# 7.2 or
later.

Good Practice: Explicitly apply one of the access modifiers to all type
| members, even if you want to use the implicit access modifier for members,
(- which is private. Additionally, fields should usually be private or
4 N\

protected, and you should then create public properties to get or set the
field values. This is because it controls access. You will do this later in the
chapter.

[185]

Building Your Own Types with Object-Oriented Programming

Setting and outputting field values

Now we will use those fields in your code:

1.

At the top of Program. cs, make sure the System namespace is imported. We need to do
this to use the DateTime type.

After instantiating bob, add statements to set his name and date of birth, and then
output those fields formatted nicely, as shown in the following code:

bob.Name = "Bob Smith";

bob.DateOfBirth = new DateTime(1965, 12, 22);

WriteLine(format: "{@} was born on {1:dddd, d MMMM yyyy}",
argod: bob.Name,
argl: bob.DateOfBirth);

We could have used string interpolation too, but for long strings it will wrap over
multiple lines, which can be harder to read in a printed book. In the code examples in
this book, remember that {0} is a placeholder for arge, and so on.

Run the code and view the result, as shown in the following output:

Bob Smith was born on Wednesday, 22 December 1965

Your output may look different based on your locale, that is, language and culture.

The format code for argl is made of several parts. dddd means the name of the day of
the week. d means the number of the day of the month. MMMM means the name of the
month. Lowercase m is used for minutes in time values. yyyy means the full number of
the year. yy would mean the two-digit year.

You can also initialize fields using a shorthand object initializer syntax using curly
braces. Let's see how.

Add statements underneath the existing code to create another new person named
Alice. Note the different format code for the date of birth when writing her to the
console, as shown in the following code:

Person alice = new()

{

Name = "Alice Jones",
DateOfBirth = new(1998, 3, 7)

1

WriteLine(format: "{©} was born on {1:dd MMM yy}",
argd: alice.Name,
argl: alice.DateOfBirth);

Run the code and view the result, as shown in the following output:

Alice Jones was born on 07 Mar 98

[186]

Chapter 05

Storing a value using an enum type

Sometimes, a value needs to be one of a limited set of options. For example, there are seven
ancient wonders of the world, and a person may have one favorite. At other times, a value
needs to be a combination of a limited set of options. For example, a person may have a bucket
list of ancient world wonders they want to visit. We are able to store this data by defining an
enum type.

An enum type is a very efficient way of storing one or more choices because, internally, it uses
integer values in combination with a lookup table of string descriptions:

1. Add a new file to the PacktLibrary project named WondersOfTheAncientWorld.cs.
2. Modify the WondersofTheAncientWorld. cs file, as shown in the following code:

namespace Packt.Shared

{
public enum WondersOfTheAncientWorld

{
GreatPyramidOfGiza,
HangingGardensOfBabylon,
StatueOfZeusAtOlympia,
TempleOfArtemisAtEphesus,
MausoleumAtHalicarnassus,
ColossusOfRhodes,
LighthouseOfAlexandria

L Good Practice: If you use are writing code in a .NET Interactive
‘@\' notebook, then the code cell containing the enum must be above the

g code cell defining the Person class.

3. Inthe Person class, add the following statement to your list of fields:

public WondersOfTheAncientWorld FavoriteAncientWonder;

4. InProgram.cs, add the following statements:

bob.FavoriteAncientWonder = WondersOfTheAncientWorld.
StatueOfZeusAtOlympia;

WriteLine(
format: "{@}'s favorite wonder is {1}. Its integer is {2}.",
argd: bob.Name,
argl: bob.FavoriteAncientWonder,
arg2: (int)bob.FavoriteAncientWonder);

[187]

Building Your Own Types with Object-Oriented Programming

5. Run the code and view the result, as shown in the following output:

Bob Smith's favorite wonder is StatueOfZeusAtOlympia. Its integer is 2.

The enum value is internally stored as an int for efficiency. The int values are automatically
assigned starting at 0, so the third world wonder in our enum has a value of 2. You can assign
int values that are not listed in the enum. They will output as the int value instead of a name
since a match will not be found.

Storing multiple values using an enum type

For the bucket list, we could create an array or collection of instances of the enum, and
collections will be explained later in this chapter, but there is a better way. We can combine
multiple choices into a single value using enum flags:

1. Modify the enum by decorating it with the [System.Flags] attribute, and explicitly set a
byte value for each wonder that represents different bit columns, as shown highlighted
in the following code:

namespace Packt.Shared

{
[System.Flags]
public enum WondersOfTheAncientWorld : byte

{
None = 0b_0000_0000,
GreatPyramidOfGiza = Ob_0000_0001,
HangingGardensOfBabylon = ©b_0000_0010,
StatueOfZeusAtOlympia = Ob_0000_0100,

TempleOfArtemisAtEphesus = 0b_0000_1000,
MausoleumAtHalicarnassus = 0b_0001_0000,
ColossusOfRhodes = 0b_0010_0000,
LighthouseOfAlexandria = Ob_0100_0000

}
}

We are assigning explicit values for each choice that would not overlap when looking
at the bits stored in memory. We should also decorate the enum type with the System.
Flags attribute so that when the value is returned it can automatically match with
multiple values as a comma-separated string instead of returning an int value.

Normally, an enum type uses an int variable internally, but since we don't need values
that big, we can reduce memory requirements by 75%, that is, 1 byte per value instead
of 4 bytes, by telling it to use a byte variable.

If we want to indicate that our bucket list includes the Hanging Gardens of Babylon and
the Mausoleum at Halicarnassus ancient world wonders, then we would want the 16 and
2 bits set to 1. In other words, we would store the value 18:

[188]

Chapter 05

64 32 16 8 4 2
0 0 1 0 0 1

2. Inthe Person class, add the following statement to your list of fields, as shown in the
following code:

public WondersOfTheAncientWorld BucketlList;

3. InProgram.cs, add statements to set the bucket list using the | operator (bitwise logical
OR) to combine the enum values. We could also set the value using the number 18 cast
into the enum type, as shown in the comment, but we shouldn't because that would
make the code harder to understand, as shown in the following code:

bob.BucketList =
WondersOfTheAncientWorld.HangingGardensOfBabylon
| WondersOfTheAncientWorld.MausoleumAtHalicarnassus;

WriteLine($"{bob.Name}'s bucket list is {bob.BucketList}");

4. Run the code and view the result, as shown in the following output:

Bob Smith's bucket list is HangingGardensOfBabylon,

MausoleumAtHalicarnassus

| Good Practice: Use the enum values to store combinations of discrete options.
\@/ Derive an enum type from byte if there are up to eight options, from ushort
2N if there are up to 16 options, from uint if there are up to 32 options, and from
- ulong if there are up to 64 options.

Storing multiple values using collections

Let's now add a field to store a person's children. This is an example of aggregation because
children are instances of a class that is related to the current person but are not part of the
person itself. We will use a generic List<T> collection type that can store an ordered collection
of any type. You will learn more about collections in Chapter 8, Working with Common .NET
Types. For now, just follow along;:

1. InPerson.cs, import the System.Collections.Generic namespace, as shown in the
following code:

using System.Collections.Generic;

2. Declare a new field in the Person class, as shown in the following code:

public List<Person> Children = new List<Person>();

[189]

Building Your Own Types with Object-Oriented Programming

List<Person> is read aloud as "list of Person," for example, "the type of the property named
Children is a list of Person instances." We explicitly changed the class library to target NET
Standard 2.0 (that uses the C# 7 compiler), so we cannot use target-typed new to initialize
the Children field. If we had left it targeting .NET 6.0, then we could use target-typed new, as
shown in the following code:

public List<Person> Children = new();

We must ensure the collection is initialized to a new instance of a list of Person before we can
add items to it, otherwise, the field will be null and it will throw runtime exceptions when we
try to use any of its members like Add.

Understanding generic collections

The angle brackets in the List<T> type is a feature of C# called generics that was introduced in
2005 with C# 2.0. It's a fancy term for making a collection strongly typed, that is, the compiler
knows specifically what type of object can be stored in the collection. Generics improve the
performance and correctness of your code.

Strongly typed has a different meaning to statically typed. The old System.Collection
types are statically typed to contain weakly typed System.Object items. The newer System.
Collection.Generic types are statically typed to contain strongly typed <T> instances.

Ironically, the term generics means we can use a more specific static type!

1. InProgram.cs, add statements to add two children for Bob and then show how many
children he has and what their names are, as shown in the following code:

bob.Children.Add(new Person { Name = "Alfred" });
bob.Children.Add(new() { Name = "Zoe" });

WritelLine(
$"{bob.Name} has {bob.Children.Count} children:");

for (int childIndex = ©; childIndex < bob.Children.Count; childIndex++)

{
WriteLine($" {bob.Children[childIndex].Name}");

}

We could also use a foreach statement to enumerate over the collection. As an extra
challenge, change the for statement to output the same information using foreach.

2. Run the code and view the result, as shown in the following output:

Bob Smith has 2 children:
Alfred

Zoe

[190]

Chapter 05

Making a field static

The fields that we have created so far have all been instance members, meaning that a different
value of each field exists for each instance of the class that is created. The alice and bob
variables have different Name values.

Sometimes, you want to define a field that only has one value that is shared across all instances.

These are called static members because fields are not the only members that can be static. Let's
see what can be achieved using static fields:

1. Inthe PacktLibrary project, add a new class file named BankAccount.cs.

2. Modify the class to give it three fields, two instance fields and one static field, as shown
in the following code:

namespace Packt.Shared

{

public class BankAccount
{
public string AccountName;
public decimal Balance;
public static decimal InterestRate;
}
}

Each instance of BankAccount will have its own AccountName and Balance values, but all
instances will share a single InterestRate value.

3. InProgram.cs, add statements to set the shared interest rate and then create two
instances of the BankAccount type, as shown in the following code:

BankAccount.InterestRate = 0.012M;

BankAccount jonesAccount = new();
jonesAccount.AccountName = "Mrs. Jones";
jonesAccount.Balance = 2400;

WriteLine(format: "{@} earned {1:C} interest.",
argd: jonesAccount.AccountName,
argl: jonesAccount.Balance * BankAccount.InterestRate);

BankAccount gerrierAccount = new();
gerrierAccount.AccountName = "Ms. Gerrier";
gerrierAccount.Balance = 98;

WriteLine(format: "{@} earned {1:C} interest.",
argd: gerrierAccount.AccountName,
argl: gerrierAccount.Balance * BankAccount.InterestRate);

[191]

Building Your Own Types with Object-Oriented Programming

:C is a format code that tells .NET to use the currency format for the numbers. In
Chapter 8, Working with Common .NET Types, you will learn how to control the culture
that determines the currency symbol. For now, it will use the default for your operating
system installation. I live in London, UK, hence my output shows British Pounds (£).

4. Run the code and view the additional output:

Mrs. Jones earned £28.80 interest.

Ms. Gerrier earned £1.18 interest.

\/‘/ Fields are not the only members that can be static. Constructors, methods,

properties, and other members can also be static.

Making a field constant

If the value of a field will never ever change, you can use the const keyword and assign a literal
value at compile time:

1. InPerson.cs, add the following code:

public const string Species = "Homo Sapien";

2. To get the value of a constant field, you must write the name of the class, not the name
of an instance of the class. In Program.cs, add a statement to write Bob's name and
species to the console, as shown in the following code:

WriteLine($"{bob.Name} is a {Person.Species}");

3. Run the code and view the result, as shown in the following output:

Bob Smith is a Homo Sapien

Examples of const fields in Microsoft types include System.Int32.MaxValue and
System.Math.PI because neither value will ever change, as you can see in Figure 5.2:

[192]

Chapter 05

[] (] [metadata] Math.cs — Chapter05 (Workspace)
© [metadatal Math.cs % i
1 #region Assembly System.Runtime, Version=5.0.8.0, Culturesncutral, PublicKeyToken=ba3f5f7f11d5@a3a |
2 // Systes.Runtime.dll E
3 #endregion =
5
6 namespace Syster
{
] £l
9 £/ Summary:
) ' Provides constants and static methods for trigonometric, logarithmic, and other
1 ' commen mathematical functions.
1z public static class Math
13 {
14 s
5 AF Summary:
B ' Represents the natural logarithmic base, specified by the constant, e.
17 public const double E = 2.7182818284599451;
18 '
19 Af Summary:
i i Represents the ratio of the circumference of a circle to its diameter, specified
21 H by the constant, m.
22 public const double PI = 3.1415926535897931; -
23 public const double Tau = 6.2831853871795862;

B3 PeopleApp Ln12,Col 23 Spaces: 2

Figure 5.2: Examples of constants

Good Practice: Constants are not always the best choice for two important
| reasons: the value must be known at compile time, and it must be expressible
\@’ as a literal string, Boolean, or number value. Every reference to the const
field is replaced with the literal value at compile time, which will, therefore,
not be reflected if the value changes in a future version and you do not
recompile any assemblies that reference it to get the new value.

Making a field read-only

Often a better choice for fields that should not change is to mark them as read-only:

1. InPerson.cs, add a statement to declare an instance read-only field to store a person's
home planet, as shown in the following code:

public readonly string HomePlanet = "Earth";
2. InProgram.cs, add a statement to write Bob's name and home planet to the console, as
shown in the following code:

WriteLine($"{bob.Name} was born on {bob.HomePlanet}");

3. Run the code and view the result, as shown in the following output:

Bob Smith was born on Earth

[193]

Building Your Own Types with Object-Oriented Programming

Good Practice: Use read-only fields over constant fields for two important
L reasons: the value can be calculated or loaded at runtime and can be
‘,@\‘ expressed using any executable statement. So, a read-only field can be set
£ using a constructor or a field assignment. Every reference to the field is a live

reference, so any future changes will be correctly reflected by the calling code.

You can also declare static readonly fields whose values will be shared across all instances of
the type.

Initializing fields with constructors

Fields often need to be initialized at runtime. You do this in a constructor that will be called
when you make an instance of the class using the new keyword. Constructors execute before
any fields are set by the code that is using the type.

1. InPerson.cs, add statements after the existing read-only HomePlanet field to define a
second read-only field and then set the Name and Instantiated fields in a constructor, as
shown highlighted in the following code:

public readonly string HomePlanet = "Earth";
public readonly DateTime Instantiated;

public Person()
{

Name = "“Unknown";
Instantiated = DateTime.Now;

}

2. InProgram.cs, add statements to instantiate a new person and then output its initial
field values, as shown in the following code:

Person blankPerson = new();

WriteLine(format:
"{0} of {1} was created at {2:hh:mm:ss} on a {2:dddd}.",
argd: blankPerson.Name,
argl: blankPerson.HomePlanet,
arg2: blankPerson.Instantiated);

3. Run the code and view the result, as shown in the following output:

Unknown of Earth was created at 11:58:12 on a Sunday

[194]

Chapter 05

Defining multiple constructors

You can have multiple constructors in a type. This is especially useful to encourage developers
to set initial values for fields:

1. InPerson.cs, add statements to define a second constructor that allows a developer
to set initial values for the person's name and home planet, as shown in the following
code:

public Person(string initialName, string homePlanet)

{
Name = initialName;
HomePlanet = homePlanet;
Instantiated = DateTime.Now;

}

2. InProgram.cs, add statements to create another person using the constructor with two
parameters, as shown in the following code:

Person gunny = new(initialName: "Gunny", homePlanet: "Mars");

WriteLine(format:
"{0} of {1} was created at {2:hh:mm:ss} on a {2:dddd}.",
argd: gunny.Name,
argl: gunny.HomePlanet,
arg2: gunny.Instantiated);

3. Run the code and view the result:

Gunny of Mars was created at 11:59:25 on a Sunday

Constructors are a special category of method. Let's look at methods in more detail.

Writing and calling methods

Methods are members of a type that execute a block of statements. They are functions that
belong to a type.

Returning values from methods

Methods can return a single value or return nothing:

* A method that performs some actions but does not return a value indicates this with the
void type before the name of the method.

* A method that performs some actions and returns a value indicates this with the type of
the return value before the name of the method.

[195]

Building Your Own Types with Object-Oriented Programming

For example, in the next task, you will create two methods:

* WriteToConsole: This will perform an action (writing some text to the console), but it
will return nothing from the method, indicated by the void keyword.

* GetOrigin: This will return a text value, indicated by the string keyword.

Let's write the code:

1. InPerson.cs, add statements to define the two methods that I described earlier, as
shown in the following code:

public void WriteToConsole()

{
WriteLine($"{Name} was born on a {DateOfBirth:dddd}.");
}
public string GetOrigin()
{
return $"{Name} was born on {HomePlanet}.";
}

2. InProgram.cs, add statements to call the two methods, as shown in the following code:

bob.WriteToConsole();
WriteLine(bob.GetOrigin());

3. Run the code and view the result, as shown in the following output:
Bob Smith was born on a Wednesday.
Bob Smith was born on Earth.

Combining multiple returned values using tuples

Each method can only return a single value that has a single type. That type could be a simple
type, such as string in the previous example, a complex type, such as Person, or a collection
type, such as List<Person>.

Imagine that we want to define a method named GetTheData that needs to return both a string
value and an int value. We could define a new class named TextAndNumber with a string field
and an int field, and return an instance of that complex type, as shown in the following code:

public class TextAndNumber

{
public string Text;

public int Number;

}

[196]

Chapter 05

public class LifeTheUniverseAndEverything

{
public TextAndNumber GetTheData()

{

return new TextAndNumber

{
Text = "What's the meaning of life?",

Number = 42
}s
}
b

But defining a class just to combine two values together is unnecessary, because in modern
versions of C# we can use tuples. Tuples are an efficient way to combine two or more values
into a single unit. I pronounce them as tuh-ples but I have heard other developers pronounce
them as too-ples. To-may-toe, to-mah-toe, po-tay-toe, po-tah-toe, I guess.

Tuples have been a part of some languages such as F# since their first version, but .NET only
added support for them with .NET 4.0 in 2010 using the System.Tuple type.

Language support for tuples

It was only with C# 7.0 in 2017 that C# added language syntax support for tuples using the
parentheses characters () and at the same time, .NET added a new System.ValueTuple type that
is more efficient in some common scenarios than the old .NET 4.0 System.Tuple type. The C#
tuple syntax uses the more efficient one.

Let's explore tuples:

1. InPerson.cs, add statements to define a method that returns a tuple that combines a
string and int, as shown in the following code:

public (string, int) GetFruit()

{
return ("Apples", 5);

}

2. InProgram.cs, add statements to call the GetFruit method and then output the tuple's
fields automatically named Iteml and Item2, as shown in the following code:

(string, int) fruit = bob.GetFruit();

WriteLine($"{fruit.Iteml}, {fruit.Item2} there are.");

3. Run the code and view the result, as shown in the following output:

Apples, 5 there are.

[197]

Building Your Own Types with Object-Oriented Programming

Naming the fields of a tuple

To access the fields of a tuple, the default names are Iteml, Item2, and so on.
You can explicitly specify the field names:

1. InPerson.cs, add statements to define a method that returns a tuple with named fields,
as shown in the following code:

public (string Name, int Number) GetNamedFruit()
{

return (Name: "Apples", Number: 5);

}

2. InProgram.cs, add statements to call the method and output the tuple's named fields,
as shown in the following code:

var fruitNamed = bob.GetNamedFruit();

WriteLine($"There are {fruitNamed.Number} {fruitNamed.Name}.");

3. Run the code and view the result, as shown in the following output:

There are 5 Apples.

Inferring tuple names

If you are constructing a tuple from another object, you can use a feature introduced in C# 7.1
called tuple name inference.

In Program. cs, create two tuples, made of a string and int value each, as shown in the
following code:

var thingl = ("Neville", 4);
WriteLine($"{thingl.Iteml} has {thingl.Item2} children.");

var thing2 = (bob.Name, bob.Children.Count);
WriteLine($"{thing2.Name} has {thing2.Count} children.");

In C# 7.0, both things would use the Iteml and Item2 naming schemes. In C# 7.1 and later,
thing2 can infer the names Name and Count.

Deconstructing tuples

You can also deconstruct tuples into separate variables. The deconstructing declaration has
the same syntax as named field tuples, but without a named variable for the tuple, as shown
in the following code:

[198]

Chapter 05

(string TheName, int TheNumber) tupleWithNamedFields = bob.GetNamedFruit();

(string name, int number) = GetNamedFruit();

This has the effect of splitting the tuple into its parts and assigning those parts to new variables.

1. InProgram.cs, add statements to deconstruct the tuple returned from the GetFruit
method, as shown in the following code:

(string fruitName, int fruitNumber) = bob.GetFruit();

WriteLine($"Deconstructed: {fruitName}, {fruitNumber}");

2. Run the code and view the result, as shown in the following output:

Deconstructed: Apples, 5

Deconstructing types

Tuples are not the only type that can be deconstructed. Any type can have special methods
named Deconstruct that break down the object into parts. Let's implement some for the Person

class:

1. InPerson.cs, add two Deconstruct methods with out parameters defined for the parts
we want to deconstruct into, as shown in the following code:

public void Deconstruct(out string name, out DateTime dob)
{

name = Name;

dob = DateOfBirth;

}

public void Deconstruct(out string name,

out DateTime dob, out WondersOfTheAncientWorld fav)
{

name = Name;

dob = DateOfBirth;

fav = FavoriteAncientWonder;

}

[199]

Building Your Own Types with Object-Oriented Programming

2. InProgram.cs, add statements to deconstruct bob, as shown in the following code:

var (namel, dobl) = bob;
WriteLine($"Deconstructed: {namel}, {dob1}");

var (name2, dob2, fav2) = bob;
WriteLine($"Deconstructed: {name2}, {dob2}, {fav2}");

3. Run the code and view the result, as shown in the following output:

Deconstructed: Bob Smith, 22/12/1965 00:00:00
Deconstructed: Bob Smith, 22/12/1965 ©0:00:00, StatueOfZeusAtOlympia

B

Defining and passing parameters to methods

Methods can have parameters passed to them to change their behavior. Parameters are defined
a bit like variable declarations but inside the parentheses of the method, as you saw earlier in
this chapter with constructors. Let's see more examples:

1. InPerson.cs, add statements to define two methods, the first without parameters and
the second with one parameter, as shown in the following code:

public string SayHello()

{
return $"{Name} says 'Hello!'";
}
public string SayHelloTo(string name)
{
return $"{Name} says 'Hello {name}!'";
}

2. InProgram.cs, add statements to call the two methods and write the return value to the
console, as shown in the following code:

WriteLine(bob.SayHello());
WriteLine(bob.SayHelloTo("Emily"));

3. Run the code and view the result:

Bob Smith says 'Hello!'
Bob Smith says 'Hello Emily!’

When typing a statement that calls a method, IntelliSense shows a tooltip with the name and
type of any parameters, and the return type of the method, as shown in Figure 5.3:

[200]

Chapter 05

[@ Program.cs — Chapter05 (Workspace)
@ EXPLORER C Programes X € Personcs m
~ OFEN EDITORS PeapleAn: € Programies > {} Peopleapp > %2 Peoptedpp. Program > @ Mainistringf] args)
* € Program.cs PeopleApp 139
C Per S 148 // Detining and passing parameters to methods
* Person.cs Packtl i
» CHAPTEROS {WORKSPACE) 142 Writel inelbob,SayHellol)) string Person.SayHelloTo(string name) ol
143 Wr'.:eL:.r-ctbob‘Sa-,qu.".kn'-’oll'Emﬂy"}}; =

> bin

olC i Peoplespp Ln 343, Cal 32 Spaces:2 UTF-B withBOM CRLF C# SharpPadi5256 @ A
pl

Figure 5.3: An IntelliSense tooltip for a method with no overloads

Overloading methods

Instead of having two different method names, we could give both methods the same name.
This is allowed because the methods each have a different signature.

A method signature is a list of parameter types that can be passed when calling the method.
Overloaded methods cannot differ only in the return type.

In Person.cs, change the name of the SayHelloTo method to SayHello.

In Program. cs, change the method call to use the SayHello method, and note that the
quick info for the method tells you that it has one additional overload, 1/2, as well as
2/2, as shown in Figure 5.4:

™ @ Program.cs — ChapterD5 (Workspace}
@ EXPLCRER C Program.cs X Cr Person.cs M
' OPEN EDITORS PaopleApp > © Programacs 3 () Paopleapp ram > @ Ma
159
x © Program.cs Peopledpp
e ar @ s 148 /¢ Defining and passing parameters to methods
© Person.cs Packibibra 141 ~ string Person.Saylellolstring_name)
» CHAPTEROS (WORKSPACE) 142 Wr re{bob, SayHello{ W

143 Wr
» bin 144
OO0AD & WPuopledpp Ln 143, Col 30 Speces: 2 UTF-8 wilh BOM CRLF C# SharpPad:5255 @ &

re{bob. SayHe L Lol Enily"));

Figure 5.4: An IntelliSense tooltip for an overloaded method

[
\@’ Good Practice: Use overloaded methods to simplify your class by making it

appear to have fewer methods.

Passing optional and named parameters

Another way to simplify methods is to make parameters optional. You make a parameter
optional by assigning a default value inside the method parameter list. Optional parameters
must always come last in the list of parameters.

[201]

Building Your Own Types with Object-Oriented Programming

We will now create a method with three optional parameters:

1. InPerson.cs, add statements to define the method, as shown in the following code:

public string OptionalParameters(
string command = "Run!",
double number = 0.0,
bool active = true)

return string.Format(
format: "command is {©}, number is {1}, active is {2}",
argd: command,
argl: number,
arg2: active);

}

2. InProgram.cs, add a statement to call the method and write its return value to the
console, as shown in the following code:

WriteLine(bob.OptionalParameters());

3. Watch IntelliSense appear as you type the code. You will see a tooltip, showing the
three optional parameters with their default values, as shown in Figure 5.5:

® @ Program.cs — Chapter05 (Workspace)
@ EXPLORER C Program.cs X Cr Person.cs JHE RS
¥ @ Programecs 3 [} PaopleApy 14 Peoplefpp. Frogran & Main(string|] a7gs

“~ DPEN EDITORS Paaplair

X € Program.cs Peopledpp

© Person.cs Packibibra 145 /4 Bassing optional parassters String Person.OptionalParameters(string command = "Run!®,
» CHAPTEROS (WORKSPACE) 146 double number = @, bool active = true)
3 i 147 Writel ine{bob. Opt tonalParametersi));

» bin 148

DOAD & WPuopledpp Ln 147 Col 4D Spaces: 2 UTF-8 wilh BOM CRLF C# ShapPad:5255 & &

Figure 5.5: IntelliSense showing optional parameters as you type code
4. Run the code and view the result, as shown in the following output:

command is Run!, number is @, active is True

5. InProgram.cs, add a statement to pass a string value for the command parameter and a
double value for the number parameter, as shown in the following code:

WriteLine(bob.OptionalParameters("Jump!", 98.5));

6. Run the code and see the result, as shown in the following output:

command is Jump!, number is 98.5, active is True

The default values for the command and number parameters have been replaced, but the default
for active is still true.

[202]

Chapter 05

Naming parameter values when calling methods

Optional parameters are often combined with naming parameters when you call the method,
because naming a parameter allows the values to be passed in a different order than how they
were declared.

1. InProgram.cs, add a statement to pass a string value for the command parameter and a
double value for the number parameter but using named parameters, so that the order
they are passed through can be swapped around, as shown in the following code:

WritelLine(bob.OptionalParameters(
number: 52.7, command: "Hide!"));

2. Run the code and view the result, as shown in the following output:

command is Hide!, number is 52.7, active is True

You can even use named parameters to skip over optional parameters.

3. InProgram.cs, add a statement to pass a string value for the command parameter using
positional order, skip the number parameter, and use the named active parameter, as
shown in the following code:

WriteLine(bob.OptionalParameters("Poke!", active: false));

4. Run the code and view the result, as shown in the following output:

command is Poke!, number is 0, active is False

Controlling how parameters are passed

When a parameter is passed into a method, it can be passed in one of three ways:

* By value (this is the default): Think of these as being in-only.
* By reference as a ref parameter: Think of these as being in-and-out.

* Asan out parameter: Think of these as being out-only.

Let's see some examples of passing parameters in and out:

1. InPerson.cs, add statements to define a method with three parameters, one in
parameter, one ref parameter, and one out parameter, as shown in the following

method:
public void PassingParameters(int x, ref int y, out int z)
{
z = 99;

[203]

Building Your Own Types with Object-Oriented Programming

X++;
y++5
Z++;

2. InProgram.cs, add statements to declare some int variables and pass them into the
method, as shown in the following code:

int a = 10;
int b = 20;
int ¢ = 30;

WriteLine($"Before: a = {a}, b = {b}, c = {c}");
bob.PassingParameters(a, ref b, out c);
WriteLine($"After: a = {a}, b = {b}, c = {c}");

3. Run the code and view the result, as shown in the following output:

Before:

After:

When passing a variable as a parameter by default, its current value gets
passed, not the variable itself. Therefore, x has a copy of the value of the a
variable. The a variable retains its original value of 10.

When passing a variable as a ref parameter, a reference to the variable gets
passed into the method. Therefore, y is a reference to b. The b variable gets
incremented when the y parameter gets incremented.

When passing a variable as an out parameter, a reference to the variable gets
passed into the method. Therefore, z is a reference to c. The value of the c
variable gets replaced by whatever code executes inside the method. We could
simplify the code in the Main method by not assigning the value 30 to the c
variable since it will always be replaced anyway.

Simplified out parameters

In C# 7.0 and later, we can simplify code that uses the out variables.

In Program. cs, add statements to declare some more variables including an out parameter
named f declared inline, as shown in the following code:

int d =
int e =

WriteLine($"Before: d = {d}, e = {e}, f doesn't exist yet!");

[204]

Chapter 05

bob.PassingParameters(d, ref e, out int f);
WriteLine($"After: d = {d}, e = {e}, f = {f}");

Understanding ref returns

In C# 7.0 or later, the ref keyword is not just for passing parameters into a method; it can

also be applied to the return value. This allows an external variable to reference an internal
variable and modify its value after the method call. This might be useful in advanced scenarios,
for example, passing around placeholders into big data structures, but it's beyond the scope of
this book.

Splitting classes using partial

When working on large projects with multiple team members, or when working with especially
large and complex class implementations, it is useful to be able to split the definition of a class
across multiple files. You do this using the partial keyword.

Imagine we want to add statements to the Person class that are automatically generated by a
tool like an object-relational mapper that reads schema information from a database. If the class
is defined as partial, then we can split the class into an autogenerated code file and a manually
edited code file.

Let's write some code that simulates this example:

1. InPerson.cs,add the partial keyword, as shown highlighted in the following code:

namespace Packt.Shared

{

public partial class Person

{

2. Inthe PacktLibrary project/folder, add a new class file named PersonAutoGen.cs.

3. Add statements to the new file, as shown in the following code:

namespace Packt.Shared

{

public partial class Person

{
}
}

The rest of the code we write for this chapter will be written in the PersonAutoGen. cs file.

[205]

Building Your Own Types with Object-Oriented Programming

Controlling access with properties and
indexers

Earlier, you created a method named GetOrigin that returned a string containing the name
and origin of the person. Languages such as Java do this a lot. C# has a better way: properties.

A property is simply a method (or a pair of methods) that acts and looks like a field when you
want to get or set a value, thereby simplifying the syntax.

Defining read-only properties

A readonly property only has a get implementation.

1. InPersonAutoGen.cs, in the Person class, add statements to define three properties:

1. The first property will perform the same role as the GetOrigin method using the
property syntax that works with all versions of C# (although, it uses the string
interpolation syntax from C# 6 and later).

2. The second property will return a greeting message using the lambda
expression body => syntax from C# 6 and later.

3. The third property will calculate the person's age.

Here's the code:

public string Origin

{
get

{

return $"{Name} was born on {HomePlanet}";

}
}

public string Greeting => $"{Name} says 'Hello!'";

public int Age => System.DateTime.Today.Year - DateOfBirth.Year;

Good Practice: This isn't the best way to calculate someone's age,
L but we aren't learning how to calculate an age from a date of birth.
',@\' If you need to do that properly, read the discussion at the following
=] link: https://stackoverflow.com/questions/9/how-do-i-

calculate-someones-age-in-c

[206]

https://stackoverflow.com/questions/9/how-do-i-calculate-someones-age-in-c
https://stackoverflow.com/questions/9/how-do-i-calculate-someones-age-in-c

Chapter 05

2. InProgram.cs, add the statements to get the properties, as shown in the following code:

Person sam = new()

{

Name = "Sam",
DateOfBirth = new(1972, 1, 27)

bg

WriteLine(sam.Origin);
WriteLine(sam.Greeting);
WriteLine(sam.Age);

3. Run the code and view the result, as shown in the following output:

Sam was born on Earth

Sam says ‘'Hello!’
49

The output shows 49 because I ran the console application on August 15, 2021 when Sam was
49 years old.

Defining settable properties

To create a settable property, you must use the older syntax and provide a pair of methods —
not just a get part, but also a set part:

1. InPersonAutoGen.cs, add statements to define a string property that has both a get
and set method (also known as a getter and setter), as shown in the following code:

public string FavoriteIceCream { get; set; }

Although you have not manually created a field to store the person's favorite ice cream,
it is there, automatically created by the compiler for you.

Sometimes, you need more control over what happens when a property is set. In this
scenario, you must use a more detailed syntax and manually create a private field to
store the value for the property.

2. InPersonAutoGen.cs, add statements to define a string field and string property that
has both a get and set, as shown in the following code:

private string favoritePrimaryColor;

public string FavoritePrimaryColor

{
get

{

return favoritePrimaryColor;

}

[207]

Building Your Own Types with Object-Oriented Programming

3.

set
{
switch (value.ToLower())
{
case "red":
case "green":
case "blue":
favoritePrimaryColor = value;
break;
default:
throw new System.ArgumentException(
$"{value} is not a primary color.
"Choose from: red, green, blue.");

+

| Good Practice: Avoid adding too much code to your getters and
\@’ setters. This could indicate a problem with your design. Consider
AR adding private methods that you then call in setters and getters to
- simplify your implementations.

In Program. cs, add statements to set Sam's favorite ice cream and color, and then write
them out, as shown in the following code:

sam.FavoriteIceCream = "Chocolate Fudge";
WriteLine($"Sam's favorite ice-cream flavor is {sam.FavoriteIceCream}.");
sam.FavoritePrimaryColor = "Red";

WriteLine($"Sam's favorite primary color is {sam.FavoritePrimaryColor}.");

Run the code and view the result, as shown in the following output:

Sam's favorite ice-cream flavor is Chocolate Fudge.

Sam's favorite primary color is Red.

If you try to set the color to any value other than red, green, or blue, then the code will
throw an exception. The calling code could then use a try statement to display the error
message.

Good Practice: Use properties instead of fields when you want to validate
L what value can be stored when you want to data bind in XAML, which we will
- /@\‘ cover in Chapter 19, Building Mobile and Desktop Apps Using .NET MAUI, and
g when you want to read and write to a field without using a method pair like

GetAge and SetAge.

[208]

Chapter 05

Requiring properties to be set during instantiation

C# 10 introduces the required modifier. If you use it on a property, the compiler will ensure
that you set the property to a value when you instantiate it, as shown in the following code:

public class Book

{

public required string Isbn { get; set; }
public string Title { get; set; }
}

If you attempt to instantiate a Book without setting the Isbn property you will see a compiler
error, as shown in the following code:

Book novel = new();

\/V The required keyword might not make it into the final release version of

NET 6 so treat this section as theoretical.

Defining indexers

Indexers allow the calling code to use the array syntax to access a property. For example, the
string type defines an indexer so that the calling code can access individual characters in the

string.
We will define an indexer to simplify access to the children of a person:

1. InPersonAutoGen.cs, add statements to define an indexer to get and set a child using
the index of the child, as shown in the following code:

public Person this[int index]
{

get

{

return Children[index];

}

set

{

Children[index] = value;

}
}

You can overload indexers so that different types can be used for their parameters. For
example, as well as passing an int value, you could also pass a string value.

[209]

Building Your Own Types with Object-Oriented Programming

2. InProgram.cs, add statements to add two children to Sam, and then access the first and
second child using the longer Children field and the shorter indexer syntax, as shown
in the following code:

sam.Children.Add(new() { Name
sam.Children.Add(new() { Name

"Charlie" });
"Ella" });

WriteLine($"Sam's first child is {sam.Children[@].Name}");
WriteLine($"Sam's second child is {sam.Children[1].Name}");

WriteLine($"Sam's first child is {sam[©@].Name}");
WriteLine($"Sam's second child is {sam[1].Name}");

3. Run the code and view the result, as shown in the following output:

Sam's first child is Charlie
Sam's second child is Ella

Sam's first child is Charlie
Sam's second child is Ella

Pattern matching with objects

In Chapter 3, Controlling Flow, Converting Types, and Handling Exceptions, you were introduced to
basic pattern matching. In this section, we will explore pattern matching in more detail.

Creating and referencing a .NET 6 class library

The enhanced pattern matching features are only available in modern .NET class libraries that
support C# 9 or later.

1. Use your preferred coding tool to add a new class library named PacktLibraryModern to
the workspace/solution named Chapteres.

2. In the PeopleApp project, add a reference to the PacktLibraryModern class library, as
shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net6.0</TargetFramework>
<Nullable>enable</Nullable>
<ImplicitUsings>enable</ImplicitUsings>
</PropertyGroup>

<ItemGroup>
<ProjectReference Include="../PacktLibrary/PacktLibrary.csproj" />

[210]

Chapter 05

<ProjectReference
Include="../PacktLibraryModern/PacktLibraryModern.csproj" />
</ItemGroup>
</Project>

3. Build the PeopleApp project.

Defining flight passengers

In this example, we will define some classes that represent various types of passengers on a
flight and then we will use a switch expression with pattern matching to determine the cost of
their flight.

1. Inthe PacktLibraryModern project/folder, rename the file Classi.cs to FlightPatterns.
cs.

2. InFlightPatterns.cs, add statements to define three types of passengers with different
properties, as shown in the following code:

namespace Packt.Shared;

public class BusinessClassPassenger

{

public override string ToString()

{

return $"Business Class";

}
¥

public class FirstClassPassenger

{
public int AirMiles { get; set; }

public override string ToString()

{

return $"First Class with {AirMiles:N@} air miles";

}
}

public class CoachClassPassenger

{
public double CarryOnKG { get; set; }

public override string ToString()

{
return $"Coach Class with {CarryOnKG:N2} KG carry on";

}
}

[211]

Building Your Own Types with Object-Oriented Programming

3. InProgram.cs, add statements to define an object array containing five passengers of
various types and property values, and then enumerate them, outputting the cost of
their flight, as shown in the following code:

object[] passengers = {

new FirstClassPassenger { AirMiles = 1_419 },
new FirstClassPassenger { AirMiles = 16_562 },
new BusinessClassPassenger(),
new CoachClassPassenger { CarryOnkKG = 25.7 },
new CoachClassPassenger { CarryOnkKG = 0 },

s

foreach (object passenger in passengers)

{
decimal flightCost = passenger switch
{

FirstClassPassenger p when p.AirMiles > 35000 => 1500M,
FirstClassPassenger p when p.AirMiles > 15000 => 1756M,

FirstClassPassenger _ => 2000M,
BusinessClassPassenger _ => 1000M,
CoachClassPassenger p when p.CarryOnkKG < 10.0 => 500M,
CoachClassPassenger _ => 650M,
=> 806M

bE

WriteLine($"Flight costs {flightCost:C} for {passenger}");
}

While reviewing the preceding code, note the following:

* To pattern match on the properties of an object, you must name a local variable
that can then be used in an expression like p.
* To pattern match on a type only, you can use _ to discard the local variable.

* The switch expression also uses _ to represent its default branch.

4. Run the code and view the result, as shown in the following output:

costs £2,000.00 for First Class with 1,419 air miles
costs £1,750.00 for First Class with 16,562 air miles
costs £1,000.00 for Business Class

costs £650.00 for Coach Class with 25.70 KG carry on
costs £500.00 for Coach Class with ©.00 KG carry on

Enhancements to pattern matching in C# 9 or later

The previous examples worked with C# 8. Now we will look at some enhancements in C# 9
and later. First, you no longer need to use the underscore to discard when doing type matching;:

[212]

Chapter 05

1. InProgram.cs, comment out the C# 8 syntax and add C# 9 and later syntax to modify
the branches for first-class passengers to use a nested switch expression and the new
support for conditionals like >, as shown in the following code:

decimal flightCost = passenger switch

{

FirstClassPassenger p => p.AirMiles switch
{

> 35000 => 1500M,

> 15000 => 1750M,

_ => 2000M
¥
BusinessClassPassenger => 1000M,
CoachClassPassenger p when p.CarryOnkKG < 10.0 => 500M,
CoachClassPassenger => 650M,
_ => 806M
}s

2. Run the code to view the results, and note they are the same as before.

You could also use the relational pattern in combination with the property pattern to avoid the
nested switch expression, as shown in the following code:

FirstClassPassenger { AirMiles: > 35000 } => 1500,
FirstClassPassenger { AirMiles: > 15000 } => 1750M,
FirstClassPassenger => 2000M,

Working with records

Before we dive into the new records language feature of C# 9 and later, let us see some other
related new features.

Init-only properties

You have used object initialization syntax to instantiate objects and set initial properties
throughout this chapter. Those properties can also be changed after instantiation.

Sometimes you want to treat properties like readonly fields so they can be set during
instantiation but not after. The new init keyword enables this. It can be used in place of the
set keyword:

[213]

Building Your Own Types with Object-Oriented Programming

1. Inthe PacktLibraryModern project/folder, add a new file named Records.cs.
2. InRecords.cs, define an immutable person class, as shown in the following code:

namespace Packt.Shared;

public class ImmutablePerson

{
public string? FirstName { get; init; }
public string? LastName { get; init; }
}

3. InProgram.cs, add statements to instantiate a new immutable person and then
try to change one of its properties, as shown in the following code:

ImmutablePerson jeff = new()

{

FirstName = "Jeff",
LastName = "Winger"

¥
jeff.FirstName = "Geoff";

4. Compile the console app and note the compile error, as shown in the following
output:

Program.cs(254,7): error CS8852: Init-only property or indexer
'ImmutablePerson.FirstName' can only be assigned in an object initializer,

or on 'this' or 'base' in an instance constructor or an 'init' accessor.
[/Users/markjprice/Code/Chapterd5/PeopleApp/PeopleApp.csproj]

5. Comment out the attempt to set the FirstName property after instantiation.

Understanding records

Init-only properties provide some immutability to C#. You can take the concept further by
using records. These are defined by using the record keyword instead of the class keyword.
That can make the whole object immutable, and it acts like a value when compared. We will
discuss equality and comparisons of classes, records, and value types in more detail in Chapter
6, Implementing Interfaces and Inheriting Classes.

Records should not have any state (properties and fields) that changes after instantiation.
Instead, the idea is that you create new records from existing ones with any changed state. This
is called non-destructive mutation. To do this, C# 9 introduced the with keyword:

[214]

Chapter 05

1. InRecords.cs,add arecord named ImmutableVehicle, as shown in the following code:

public record ImmutableVehicle

{
public int Wheels { get; init; }
public string? Color { get; init; }
public string? Brand { get; init; }

}

2. InProgram.cs, add statements to create a car and then a mutated copy of it, as
shown in the following code:

ImmutableVehicle car = new()

{

Brand = "Mazda MX-5 RF",
Color = "Soul Red Crystal Metallic",
Wheels = 4

s

ImmutableVehicle repaintedCar = car
with { Color = "Polymetal Grey Metallic" };

WriteLine($"Original car color was {car.Color}.");
WriteLine($"New car color is {repaintedCar.Color}.");

3. Run the code to view the results, and note the change to the car color in the
mutated copy, as shown in the following output:

Original car color was Soul Red Crystal Metallic.

New car color is Polymetal Grey Metallic.

Positional data members in records

The syntax for defining a record can be greatly simplified using positional data members.

Simplifying data members in records

Instead of using object initialization syntax with curly braces, sometimes you might prefer to
provide a constructor with positional parameters as you saw earlier in this chapter. You can
also combine this with a deconstructor for splitting the object into individual parts, as shown in

the following code:

public record ImmutableAnimal

{
public string Name { get; init; }
public string Species { get; init; }

[215]

Building Your Own Types with Object-Oriented Programming

public ImmutableAnimal(string name, string species)

{

Name = name;
Species = species;

}

public void Deconstruct(out string name, out string species)

{

name = Name;
species = Species;

The properties, constructor, and deconstructor can be generated for you:

1. InRecords.cs, add statements to define another record using simplified syntax known
as positional records, as shown in the following code:

public record ImmutableAnimal(string Name, string Species);

2. InProgram.cs, add statements to construct and deconstruct immutable animals,
as shown in the following code:

ImmutableAnimal oscar = new("Oscar", "Labrador");
var (who, what) = oscar;
WriteLine($"{who} is a {what}.");

3. Run the application and view the results, as shown in the following output:

Oscar is a Labrador.

\/‘/ You will see records again when we look at C# 10 support for creating struct

records in Chapter 6, Implementing Interfaces and Inheriting Classes.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore this chapter's topics with deeper research.

[216]

Chapter 05

Exercise 5.1 — Test your knowledge

Answer the following questions:

What are the six combinations of access modifier keywords and what do they do?

2. What is the difference between the static, const, and readonly keywords when
applied to a type member?

3. What does a constructor do?

Why should you apply the [Flags] attribute to an enum type when you want to
store combined values?

Why is the partial keyword useful?
What is a tuple?
What does the record keyword do?

What does overloading mean?

O X N U

What is the difference between a field and a property?

10. How do you make a method parameter optional?

Exercise 5.2 — Explore topics

Use the links on the following page to learn more detail about the topics covered in this
chapter:

https://github.com/markjprice/csl@dotnet6/blob/main/book-1inks.md#chapter-5---
building-your-own-types-with-object-oriented-programming

Summary

In this chapter, you learned about making your own types using OOP. You learned about
some of the different categories of members that a type can have, including fields to store
data and methods to perform actions, and you used OOP concepts, such as aggregation
and encapsulation. You saw examples of how to use modern C# features like relational and
property pattern matching enhancements, init-only properties, and records.

In the next chapter, you will take these concepts further by defining delegates and events,
implementing interfaces, and inheriting from existing classes.

[217]

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-5---building-your-own-types-with-object-oriented-programming
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-5---building-your-own-types-with-object-oriented-programming

06

Implementing Interfaces and
Inheriting Classes

This chapter is about deriving new types from existing ones using object-oriented
programming (OOP). You will learn about defining operators and local functions for
performing simple actions and delegates and events for exchanging messages between types.
You will implement interfaces for common functionality. You will learn about generics and the
difference between reference and value types. You will create a derived class to inherit from a
base class to reuse functionality, override an inherited type member, and use polymorphism.
Finally, you will learn how to create extension methods and how to cast between classes in an
inheritance hierarchy.

This chapter covers the following topics:

Setting up a class library and console application
More about methods

Raising and handling events

Making types safely reusable with generics
Implementing interfaces

Managing memory with reference and value types
Working with null values

Inheriting from classes

Casting within inheritance hierarchies

Inheriting and extending .NET types

Using an analyzer to write better code

[219]

Implementing Interfaces and Inheriting Classes

Setting up a class library and console
application

We will start by defining a workspace/solution with two projects like the one created in
Chapter 5, Building Your Own Types with Object-Oriented Programming. Even if you completed
all the exercises in that chapter, follow the instructions below because we will use C# 10
features in the class library, so it needs to target .NET 6.0 rather than .NET Standard 2.0:

Use your preferred coding tool to create a new workspace/solution named Chaptereé.
Add a class library project, as defined in the following list:

1. Project template: Class Library / classlib

2. Workspace/solution file and folder: Chaptere6

3. Project file and folder: PacktLibrary

3. Add a console app project, as defined in the following list:
1. Project template: Console Application / console
2. Workspace/solution file and folder: Chaptere6
3. Project file and folder: PeopleApp

In the PacktLibrary project, rename the file named Class1.cs to Person.cs.
5. Modify the Person.cs file contents, as shown in the following code:

using static System.Console;
namespace Packt.Shared;

public class Person : object

{

public string? Name;
public DateTime DateOfBirth;
public List<Person> Children = new();

public void WriteToConsole()
{
WriteLine($"{Name} was born on a {DateOfBirth:dddd}.");
}
}

6. Inthe PeopleApp project, add a project reference to PacktLibrary, as shown highlighted
in the following markup:

[220]

Chapter 06

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net6.0</TargetFramework>
<Nullable>enable</Nullable>
<ImplicitUsings>enable</ImplicitUsings>
</PropertyGroup>

<ItemGroup>
<ProjectReference
Include="..\PacktLibrary\PacktLibrary.csproj" />

</ItemGroup>

</Project>

7. Build the PeopleApp project and note the output indicating that both projects have been
built successfully.

More about methods

We might want two instances of Person to be able to procreate. We can implement this by
writing methods. Instance methods are actions that an object does to itself; static methods are

actions the type does.

Which you choose depends on what makes the most sense for the action.

Good Practice: Having both static and instance methods to perform similar
N actions often makes sense. For example, string has both a Compare static
‘/@\' method and a CompareTo instance method. This puts the choice of how to use
2 the functionality in the hands of the programmers using your type, giving

them more flexibility.

Implementing functionality using methods

Let's start by implementing some functionality by using both static and instance methods:

1. Add one instance method and one static method to the Person class that will allow two
Person objects to procreate, as shown in the following code:

public static Person Procreate(Person pl, Person p2)

{

[221]

Implementing Interfaces and Inheriting Classes

Person baby = new()

{

Name = $"Baby of {pl.Name} and {p2.Name}"

s

pl.Children.Add(baby);
p2.Children.Add(baby);

return baby;

public Person ProcreateWith(Person partner)

{

return Procreate(this, partner);

}

Note the following;:

* In the static method named Procreate, the Person objects to procreate are
passed as parameters named p1 and p2.

* A new Person class named baby is created with a name composed of a
combination of the two people who have procreated. This could be changed
later by setting the returned baby variable's Name property.

* The baby object is added to the Children collection of both parents and then
returned. Classes are reference types, meaning a reference to the baby object
stored in memory is added, not a clone of the baby object. You will learn the
difference between reference types and value types later in this chapter.

* In the instance method named ProcreateWith, the Person object to procreate
with is passed as a parameter named partner, and it, along with this, is passed
to the static Procreate method to reuse the method implementation. this is a
keyword that references the current instance of the class.

\ 7
/@\

Good Practice: A method that creates a new object, or modifies an
existing object, should return a reference to that object so that the
caller can access the results.

2. Inthe PeopleApp project, at the top of the Program.cs file, delete the comment and
import the namespace for our Person class and statically import the Console type, as
shown in the following code:

using Packt.Shared;
using static System.Console;

[222]

Chapter 06

3. InProgram.cs, create three people and have them procreate with each other, noting
that to add a double-quote character into a string, you must prefix it with a backslash
character like this, \", as shown in the following code:

Person harry = new() { Name = "Harry" };
Person mary = new() { Name = "Mary" };
Person jill = new() { Name = "Jill" };

Person babyl = mary.ProcreateWith(harry);

babyl.Name = "Gary";

Person baby2 = Person.Procreate(harry, jill);

WriteLine($"{harry.Name} has {harry.Children.Count} children.");
WriteLine($"{mary.Name} has {mary.Children.Count} children.");
WriteLine($"{jill.Name} has {jill.Children.Count} children.");
WriteLine(

format: "{0}'s first child is named \"{1}\".",

argd: harry.Name,

argl: harry.Children[©].Name);

4. Run the code and view the result, as shown in the following output:

Harry has 2 children.
Mary has 1 children.

Jill has 1 children.
Harry's first child is named "Gary".

Implementing functionality using operators

The System.String class has a static method named Concat that concatenates two string
values and returns the result, as shown in the following code:

string s1 = "Hello ";
string s2 = "World!";

string s3 = string.Concat(sl, s2);
WriteLine(s3);

Calling a method like Concat works, but it might be more natural for a programmer to use the +
symbol operator to "add" two string values together, as shown in the following code:

string s3 = sl + s2;

A well-known biblical phrase is Go forth and multiply, meaning to procreate. Let's write code so
that the * (multiply) symbol will allow two Person objects to procreate.

[223]

Implementing Interfaces and Inheriting Classes

We do this by defining a static operator for the * symbol. The syntax is rather like a method,
because in effect, an operator is a method, but uses a symbol instead of a method name, which
makes the syntax more concise.

1. InPerson.cs, create a static operator for the * symbol, as shown in the following code:

public static Person operator *(Person pl, Person p2)

{

return Person.Procreate(pl, p2);

}

Good Practice: Unlike methods, operators do not appear in
IntelliSense lists for a type. For every operator that you define, make a
method as well, because it may not be obvious to a programmer that
L the operator is available. The implementation of the operator can then
B\Y call the method, reusing the code you have written. A second reason
g for providing a method is that operators are not supported by every
language compiler; for example, although arithmetic operators like
* are supported by Visual Basic and F#, there is no requirement that
other languages support all operators supported by C#.

2. InProgram.cs, after calling the Procreate method and before the statements that write
to the console, use the * operator to make another baby, as shown highlighted in the
following code:

Person baby2 = Person.Procreate(harry, jill);

Person baby3 = harry * mary;

3. Run the code and view the result, as shown in the following output:

Harry has 3 children.
Mary has 2 children.

Jill has 1 children.
Harry's first child is named "Gary".

Implementing functionality using local functions

A language feature introduced in C# 7.0 is the ability to define a local function.

Local functions are the method equivalent of local variables. In other words, they are methods
that are only accessible from within the containing method in which they have been defined. In
other languages, they are sometimes called nested or inner functions.

[224]

Chapter 06

Local functions can be defined anywhere inside a method: the top, the bottom, or even
somewhere in the middle!

We will use a local function to implement a factorial calculation:

1. InPerson.cs, add statements to define a Factorial function that uses a local function
inside itself to calculate the result, as shown in the following code:

public static int Factorial(int number)

{
if (number < 9)
{
throw new ArgumentException(
$"{nameof(number)} cannot be less than zero.");
}

return localFactorial(number);

int localFactorial(int localNumber)
{
if (localNumber < 1) return 1;
return localNumber * localFactorial(localNumber - 1);
}
b

2. InProgram.cs, add a statement to call the Factorial function and write the return value
to the console, as shown in the following code:

WriteLine($"5! is {Person.Factorial(5)}");

3. Run the code and view the result, as shown in the following output:

5! is 120

Raising and handling events

Methods are often described as actions that an object can perform, either on itself or on related objects.
For example, List<T> can add an item to itself or clear itself, and File can create or delete a file
in the filesystem.

Events are often described as actions that happen to an object. For example, in a user
interface, Button has a Click event, a click being something that happens to a button, and
FileSystemWatcher listens to the filesystem for change notifications and raises events like
Created and Deleted that are triggered when a directory or file changes.

Another way of thinking of events is that they provide a way of exchanging messages between
two objects.

[225]

Implementing Interfaces and Inheriting Classes

Events are built on delegates, so let's start by having a look at what delegates are and how they
work.

Calling methods using delegates

You have already seen the most common way to call or execute a method: use the . operator
to access the method using its name. For example, Console.WriteLine tells the Console type to
access its WriteLine method.

The other way to call or execute a method is to use a delegate. If you have used languages that
support function pointers, then think of a delegate as being a type-safe method pointer.

In other words, a delegate contains the memory address of a method that matches the same
signature as the delegate so that it can be called safely with the correct parameter types.

For example, imagine there is a method in the Person class that must have a string type passed
as its only parameter, and it returns an int type, as shown in the following code:

public int MethodIWantToCall(string input)
{

return input.Length;

}
I can call this method on an instance of Person named p1 like this:
int answer = pl.MethodIWantToCall("Frog");

Alternatively, I can define a delegate with a matching signature to call the method indirectly.
Note that the names of the parameters do not have to match. Only the types of parameters and
return values must match, as shown in the following code:

delegate int DelegateWithMatchingSignature(string s);

Now, I can create an instance of the delegate, point it at the method, and finally, call the
delegate (which calls the method), as shown in the following code:

DelegateWithMatchingSignature d = new(pl.MethodIWantToCall);

int answer2 = d("Frog");

You are probably thinking, "What's the point of that?" Well, it provides flexibility.

For example, we could use delegates to create a queue of methods that need to be called in
order. Queuing actions that need to be performed is common in services to provide improved
scalability.

[226]

Chapter 06

Another example is to allow multiple actions to perform in parallel. Delegates have built-

in support for asynchronous operations that run on a different thread, and that can provide
improved responsiveness. You will learn how to do this in Chapter 12, Improving Performance
and Scalability Using Multitasking.

The most important example is that delegates allow us to implement events for sending
messages between different objects that do not need to know about each other. Events are an
example of loose coupling between components because the components do not need to know
about each other, they just need to know the event signature.

Delegates and events are two of the most confusing features of C# and can take a few attempts
to understand, so don't worry if you feel lost!

Defining and handling delegates

Microsoft has two predefined delegates for use as events. Their signatures are simple, yet
flexible, as shown in the following code:

public delegate void EventHandler(
object? sender, EventArgs e);

public delegate void EventHandler<TEventArgs>(
object? sender, TEventArgs e);

|
\@’ Good Practice: When you want to define an event in your own types, you

should use one of these two predefined delegates.

Let's explore delegates and events:

1. Add statements to the Person class and note the following points, as shown in the
following code:

* It defines an EventHandler delegate field named Shout.
e It defines an int field to store AngerlLevel.
¢ [t defines a method named Poke.

* Each time a person is poked, their AngerLevel increments. Once their
AngerLevel reaches three, they raise the Shout event, but only if there is at least
one event delegate pointing at a method defined somewhere else in the code;
that is, it is not null:

public EventHandler? Shout;

[227]

Implementing Interfaces and Inheriting Classes

public int AngerLevel;

public void Poke()
{

AngerLevel++;

if (AngerLevel >= 3)

{
if (Shout != null)
{
Shout(this, EventArgs.Empty);
b
}

}

Checking whether an object is not null before calling one of its methods is very
common. C# 6.0 and later allows null checks to be simplified inline using a ? symbol
before the . operator, as shown in the following code:

Shout?.Invoke(this, EventArgs.Empty);

2. At the bottom of Program.cs, add a method with a matching signature that gets a
reference to the Person object from the sender parameter and outputs some information
about them, as shown in the following code:

static void Harry_Shout(object? sender, EventArgs e)
{

if (sender is null) return;

Person p = (Person)sender;

WriteLine($"{p.Name} is this angry: {p.AngerLevel}.");
¥

Microsoft's convention for method names that handle events is ObjectName_EventName.

3. InProgram.cs, add a statement to assign the method to the delegate field, as shown in
the following code:

harry.Shout = Harry_Shout;

4. Add statements to call the Poke method four times, after assigning the method to the
Shout event, as shown highlighted in the following code:

harry.Shout = Harry_Shout;
harry.Poke();
harry.Poke();
harry.Poke();
harry.Poke();

[228]

Chapter 06

5. Run the code and view the result, and note that Harry says nothing the first two times
he is poked, and only gets angry enough to shout once he's been poked at least three
times, as shown in the following output:

Harry is this angry: 3.
Harry is this angry: 4.

Defining and handling events

You've now seen how delegates implement the most important functionality of events: the
ability to define a signature for a method that can be implemented by a completely different
piece of code, and then call that method and any others that are hooked up to the delegate field.

But what about events? There is less to them than you might think.

When assigning a method to a delegate field, you should not use the simple assignment
operator as we did in the preceding example.

Delegates are multicast, meaning that you can assign multiple delegates to a single delegate
field. Instead of the = assignment, we could have used the += operator so we could add more
methods to the same delegate field. When the delegate is called, all the assigned methods are
called, although you have no control over the order in which they are called.

If the Shout delegate field was already referencing one or more methods, by assigning a
method, it would replace all the others. With delegates that are used for events, we usually
want to make sure that a programmer only ever uses either the += operator or the -= operator to
assign and remove methods:

1. To enforce this, in Person.cs, add the event keyword to the delegate field declaration,
as shown highlighted in the following code:

public event EventHandler? Shout;

2. Build the PeopleApp project and note the compiler error message, as shown in the
following output:

Program.cs(41,13): error CS0079: The event 'Person.Shout' can only appear

on the left hand side of += or -=

This is (almost) all that the event keyword does! If you will never have more than one
method assigned to a delegate field, then technically you do not need "events," but it is
still good practice to indicate your meaning and that you expect a delegate field to be
used as an event.

3. Modify the method assignment to use +=, as shown in the following code:

harry.Shout += Harry_Shout;

4. Run the code and note that it has the same behavior as before.

[229]

Implementing Interfaces and Inheriting Classes

Making types safely reusable with generics

In 2005, with C# 2.0 and .NET Framework 2.0, Microsoft introduced a feature named generics,
which enables your types to be more safely reusable and more efficient. It does this by allowing
a programmer to pass types as parameters, similar to how you can pass objects as parameters.

Working with non-generic types

First, let's look at an example of working with a non-generic type so that you can understand
the problem that generics are designed to solve, such as weakly typed parameters and values,
and performance problems caused by using System.0Object.

System.Collections.Hashtable can be used to store multiple values each with a unique key
that can later be used to quickly look up its value. Both the key and value can be any object
because they are declared as System.0Object. Although this provides flexibility when storing
value types like integers, it is slow, and bugs are easier to introduce because no type checks are
made when adding items.

Let's write some code:

1. InProgram.cs, create an instance of the non-generic collection, System.Collections.
Hashtable, and then add four items to it, as shown in the following code:

System.Collections.Hashtable lookupObject = new();

lookupObject.Add(key: 1, value: "Alpha");
lookupObject.Add(key: 2, value: "Beta");
lookupObject.Add(key: 3, value: "Gamma");
lookupObject.Add(key: harry, value: "Delta");

2. Add statements to define a key with the value of 2 and use it to look up its value in the
hash table, as shown in the following code:
int key = 2;
WriteLine(format: "Key {0} has value: {1}",
argo: key,
argl: lookupObject[key]);

3. Add statements to use the harry object to look up its value, as shown in the following
code:

WriteLine(format: "Key {0} has value: {1}",
argd: harry,
argl: lookupObject[harry]);

[230]

Chapter 06

4. Run the code and note that it works, as shown in the following output:

Key 2 has value: Beta

Key Packt.Shared.Person has value: Delta

Although the code works, there is potential for mistakes because literally any type can be used
for the key or value. If another developer used your lookup object and expected all the items

to be a certain type, they might cast them to that type and get exceptions because some values
might be a different type. A lookup object with lots of items would also give poor performance.

\ ! 7/
'@\' Good Practice: Avoid types in the System.Collections namespace.

/7

Working with generic types

System.Collections.Generic.Dictionary<TKey, TValue> can be used to store multiple values
each with a unique key that can later be used to quickly look up its value. Both the key and
value can be any object, but you must tell the compiler what the types of the key and value
will be when you first instantiate the collection. You do this by specifying types for the generic
parameters in angle brackets <>, TKey, and Tvalue.

| Good Practice: When a generic type has one definable type, it should be
\@’ named T, for example, List<T>, where T is the type stored in the list. When a
- generic type has multiple definable types, they should use T as a name prefix
- and have a sensible name, for example, Dictionary<TKey, TValue>.

This provides flexibility, it is faster, and bugs are easier to avoid because type checks are made
when adding items.

Let's write some code to solve the problem by using generics:

1. InProgram.cs, create an instance of the generic lookup collection Dictionary<TKey,
Tvalue> and then add four items to it, as shown in the following code:

Dictionary<int, string> lookupIntString = new();

lookupIntString.Add(key: 1, value: "Alpha");
lookupIntString.Add(key: 2, value: "Beta");
lookupIntString.Add(key: 3, value: "Gamma");
lookupIntString.Add(key: harry, value: "Delta");

2. Note the compile error when using harry as a key, as shown in the following output:

/Users/markjprice/Code/Chaptero6/PeopleApp/Program.cs(98,32): error
CS1503: Argument 1: cannot convert from 'Packt.Shared.Person' to 'int' [/

Users/markjprice/Code/Chaptere6/PeopleApp/PeopleApp.csproj]

[231]

Implementing Interfaces and Inheriting Classes

Replace harry with 4.

Add statements to set the key to 3 and use it to look up its value in the dictionary, as
shown in the following code:
key = 3;
WriteLine(format: "Key {@} has value: {1}",
argo: key,
argl: lookupIntStringl[key]);

5. Run the code and note that it works, as shown in the following output:

Key 3 has value: Gamma

Implementing interfaces

Interfaces are a way of connecting different types to make new things. Think of them like the
studs on top of LEGO™ bricks, which allow them to "stick" together, or electrical standards for
plugs and sockets.

If a type implements an interface, then it is making a promise to the rest of .NET that it
supports specific functionality. This is why they are sometimes described as being contracts.

Common interfaces

Here are some common interfaces that your types might need to implement:

Interface Method(s) Description
IComparable CompareTo(other) This defines a comparison method that a type
implements to order or sort its instances.
IComparer Compare(first, This defines a comparison method that a secondary
second) type implements to order or sort instances of a
primary type.
IDisposable Dispose() This defines a disposal method to release unmanaged

resources more efficiently than waiting for a finalizer
(see the Releasing unmanaged resources section later in
this chapter for more details.

IFormattable ToString(format, This defines a culture-aware method to format the
culture) value of an object into a string representation.

IFormatter Serialize(stream, This defines methods to convert an object to and
object) from a stream of bytes for storage or transfer.
Deserialize(stream)

IFormatProvider | GetFormat(type) This defines a method to format inputs based on a

language and region.

[232]

Chapter 06

Comparing objects when sorting

One of the most common interfaces that you will want to implement is IComparable. It has one
method named CompareTo. It has two variations, one that works with a nullable object type
and one that works with a nullable generic type T, as shown in the following code:

namespace System

{
public interface IComparable
{
int CompareTo(object? obj);
}
public interface IComparable<in T>
{
int CompareTo(T? other);
}
}

For example, the string type implements IComparable by returning -1 if the string is less than
the string being compared to or 1 if it is greater. The int type implements IComparable by
returning -1 if the int is less than the int being compared to or 1 if it is greater.

If a type implements one of the IComparable interfaces, then arrays and collections can sort it.

Before we implement the IComparable interface and its CompareTo method for the Person class,
let's see what happens when we try to sort an array of Person instances:

1. InProgram.cs, add statements that create an array of Person instances and write the
items to the console, and then attempt to sort the array and write the items to the
console again, as shown in the following code:

Person[] people =

{
new() { Name = "Simon" },
new() { Name = "Jenny" },
new() { Name = "Adam" },
new() { Name "Richard" }

};

WriteLine("Initial list of people:");
foreach (Person p in people)
{

WriteLine($" {p.Name}");

}

WriteLine("Use Person's IComparable implementation to sort:");
Array.Sort(people);

[233]

Implementing Interfaces and Inheriting Classes

foreach (Person p in people)

{
WriteLine($" {p.Name}");

}

2. Run the code and an exception will be thrown. As the message explains, to fix the
problem, our type must implement IComparable, as shown in the following output:

Unhandled Exception: System.InvalidOperationException: Failed to compare
two elements in the array. ---> System.ArgumentException: At least one

object must implement IComparable.

3. InPerson.cs, after inheriting from object, add a comma and enter
IComparable<Person>, as shown in the following code:

public class Person : object, IComparable<Person>

Your code editor will draw a red squiggle under the new code to warn you that you
have not yet implemented the method you have promised to. Your code editor can
write the skeleton implementation for you if you click on the light bulb and choose the
Implement interface option.

4. Scroll down to the bottom of the Person class to find the method that was written for
you and delete the statement that throws the NotImplementedException error, as shown
highlighted in the following code:

public int CompareTo(Person? other)

{

throw new NotImplementedException();

}

5. Add a statement to call the CompareTo method of the Name field, which uses the string
type's implementation of CompareTo and return the result, as shown highlighted in the
following code:

public int CompareTo(Person? other)
{
if (Name is null) return 9;
return Name.CompareTo(other?.Name);

}

We have chosen to compare two Person instances by comparing their Name fields.
Person instances will, therefore, be sorted alphabetically by their name. For simplicity, I
have not added null checks throughout these examples.

6. Run the code and note that this time it works as it should, as shown in the following
output:

Initial list of people:
Simon

Jenny

[234]

Chapter 06

Adam
Richard

Use Person's IComparable implementation to sort:
Adam

Jenny
Richard
Simon

|
\@’ Good Practice: If anyone will want to sort an array or collection of instances of

your type, then implement the IComparable interface.

Comparing objects using a separate class

Sometimes, you won't have access to the source code for a type, and it might not implement the
IComparable interface. Luckily, there is another way to sort instances of a type. You can create a
separate type that implements a slightly different interface, named IComparer:

1. Inthe PacktLibrary project, add a new class file named PersonComparer.cs containing
a class that implements the IComparer interface that will compare two people, that is,
two Person instances. Implement it by comparing the length of their Name field, or if the
names are the same length, then by comparing the names alphabetically, as shown in
the following code

namespace Packt.Shared;

public class PersonComparer : IComparer<Person>

{
public int Compare(Person? x, Person? y)
{
if (x is null || y is null)
{
return 0;
}

int result = x.Name.Length.CompareTo(y.Name.Length);

if (result == 0)
{

return x.Name.CompareTo(y.Name);

[235]

Implementing Interfaces and Inheriting Classes

else

{

return result;
¥
¥
b

2. InProgram.cs, add statements to sort the array using this alternative implementation,
as shown in the following code:
WriteLine("Use PersonComparer's IComparer implementation to sort:");
Array.Sort(people, new PersonComparer());
foreach (Person p in people)
{
WriteLine($" {p.Name}");
}

3. Run the code and view the result, as shown in the following output:

Use PersonComparer's IComparer implementation to sort:
Adam
Jenny

Simon
Richard

This time, when we sort the people array, we explicitly ask the sorting algorithm to use the
PersonComparer type instead, so that the people are sorted with the shortest names first, like
Adam, and the longest names last, like Richard; and when the lengths of two or more names
are equal, to sort them alphabetically, like Jenny and Simon.

Implicit and explicit interface implementations

Interfaces can be implemented implicitly and explicitly. Implicit implementations are simpler
and more common. Explicit implementations are only necessary if a type must have multiple
methods with the same name and signature.

For example, both IGamePlayer and IKeyHolder might have a method called Lose with the same
parameters because both a game and a key can be lost. In a type that must implement both
interfaces, only one implementation of Lose can be the implicit method. If both interfaces can
share the same implementation, that works, but if not then the other Lose method will have to
be implemented differently and called explicitly, as shown in the following code:

public interface IGamePlayer

{

void Lose();

}

[236]

Chapter 06

public interface IKeyHolder
{

void Lose();

}

public class Person : IGamePlayer, IKeyHolder

{

public void Lose()

{

void IGamePlayer.Lose()

{

Person p = new();
p.Lose();

((IGamePlayer)p).Lose();

IGamePlayer player = p as IGamePlayer;
player.Lose();

Defining interfaces with default implementations

A language feature introduced in C# 8.0 is default implementations for an interface. Let's see it
in action:

In the PacktLibrary project, add a new file named IPlayable.cs.
Modify the statements to define a public IPlayable interface with two methods to Play
and Pause, as shown in the following code:

namespace Packt.Shared;

public interface IPlayable

{
void Play();

void Pause();

}

[237]

Implementing Interfaces and Inheriting Classes

3. Inthe PacktLibrary project, add a new class file named DvdPlayer.cs.

4. Modify the statements in the file to implement the IPlayable interface, as shown in the
following code:

using static System.Console;
namespace Packt.Shared;

public class DvdPlayer : IPlayable

{
public void Pause()
{
WriteLine("DVD player is pausing.");
}
public void Play()
{
WriteLine("DVD player is playing.");
}

}

This is useful, but what if we decide to add a third method named Stop? Before C# 8.0,
this would be impossible once at least one type implements the original interface. One
of the main points of an interface is that it is a fixed contract.

C# 8.0 allows an interface to add new members after release as long as they have a
default implementation. C# purists do not like the idea, but for practical reasons, such
as avoiding breaking changes or having to define a whole new interface, it is useful,
and other languages such as Java and Swift enable similar techniques.

Support for default interface implementations requires some fundamental changes to
the underlying platform, so they are only supported with C# if the target framework is
.NET 5.0 or later, .NET Core 3.0 or later, or .NET Standard 2.1. They are therefore not
supported by .NET Framework.

5. Modify the IPlayable interface to add a Stop method with a default implementation, as
shown highlighted in the following code:

using static System.Console;
namespace Packt.Shared;

public interface IPlayable

{
void Play();
void Pause();

void Stop()
{

[238]

Chapter 06

WriteLine("Default implementation of Stop.");

}
}

6. Build the PeopleApp project and note that the projects compile successfully despite the
DvdPlayer class not implementing Stop. In the future, we could override the default
implementation of Stop by implementing it in the DvdPlayer class.

Managing memory with reference and value
types

I have mentioned reference types a couple of times. Let's look at them in more detail.

There are two categories of memory: stack memory and heap memory. With modern operating
systems, the stack and heap can be anywhere in physical or virtual memory.

Stack memory is faster to work with (because it is managed directly by the CPU and because
it uses a last-in, first-out mechanism, it is more likely to have the data in its L1 or L2 cache) but
limited in size, while heap memory is slower but much more plentiful.

For example, in a macOS terminal, I can enter the command ulimit -a to discover that the
stack size is limited to 8,192 KB and that other memory is "unlimited." This limited amount of
stack memory is why it is so easy to fill it up and get a "stack overflow."

Defining reference and value types

There are three C# keywords that you can use to define object types: class, record, and struct.
All can have the same members, such as fields and methods. One difference between them is
how memory is allocated.

When you define a type using record or class, you are defining a reference type. This means
that the memory for the object itself is allocated on the heap, and only the memory address of
the object (and a little overhead) is stored on the stack.

When you define a type using record struct or struct, you are defining a value type. This
means that the memory for the object itself is allocated on the stack.

If a struct uses field types that are not of the struct type, then those fields will be stored on
the heap, meaning the data for that object is stored in both the stack and the heap!

These are the most common struct types:
e Number System types: byte, sbyte, short, ushort, int, uint, long, ulong, float, double,
and decimal
* Other System types: char, DateTime, and bool
* System.Drawing types: Color, Point, and Rectangle

[239]

Implementing Interfaces and Inheriting Classes

Almost all the other types are class types, including string.

Apart from the difference in terms of where in memory the data for a type is stored, the other
major difference is that you cannot inherit from a struct.

How reference and value types are stored in
memory

Imagine that you have a console app that declares some variables, as shown in the following
code:

int numberl = 49;
long number2 = 12;
System.Drawing.Point location = new(x: 4, y: 5);
Person kevin = new() { Name = "Kevin",

DateOfBirth = new(year: 1988, month: 9, day: 23) };
Person sally;

Let's review what memory is allocated on the stack and heap when these statements execute, as
shown in Figure 6.1 and as described in the following list:

* The number1 variable is a value type (also known as struct) so it is allocated on the
stack and it uses 4 bytes of memory since it is a 32-bit integer. Its value, 49, is stored
directly in the variable.

* The number2 variable is also a value type so it is also allocated on the stack, and it uses 8
bytes since it is a 64-bit integer.

* The location variable is also a value type so it is allocated on the stack and it uses 8
bytes since it is made up of two 32-bit integers, x and y.

* The kevin variable is a reference type (also known as class) so 8 bytes for a 64-bit
memory address (assuming a 64-bit operating system) is allocated on the stack and
enough bytes on the heap to store an instance of a Person.

* The sally variable is a reference type so 8 bytes for a 64-bit memory address is
allocated on the stack. It is currently null, meaning no memory has yet been allocated
for it on the heap.

[240]

Chapter 06

S T e e ko e
i
Stack (8,192 KB) : Heap (GBs)
1
i
1
I
1
I
1
:
Reference to Person : PelSon

-8 bytes - null 'l o : >
: I Reference to Name I
1
i

Reference to Person
- 8 bytes - address on heap

| - 8 bytes - address on heap l

‘ DateTime DateOfBirth

!

Point - 8 bytes - (3, 5)

Int64 - 8 bytes - 12

| Int32 -4 bytes - 49 I

o

f
]
1
1
]
I
]
i
1
I
I
1
1
[
1
i

! 1 string-—"Kevin" '
]
1
I
1
1
1
1
]
I
1
1
1
1
I
I
1
1

P L T T T p— P

-

———————— T g g -

Figure 6.1: How value and reference types are allocated in the stack and heap

All the allocated memory for a reference type is stored on the heap. If a value type such as
DateTime is used for a field of a reference type like Person, then the DateTime value is stored on
the heap.

If a value type has a field that is a reference type, then that part of the value type is stored on
the heap. Point is a value type that consists of two fields, both of which are themselves value
types, so the entire object can be allocated on the stack. If the Point value type had a field that
was a reference type, like string, then the string bytes would be stored on the heap.

Equality of types

It is common to compare two variables using the == and != operators. The behavior of these
two operators is different for reference types and value types.

When you check the equality of two value type variables, .NET literally compares the values of
those two variables on the stack and returns true if they are equal, as shown in the following
code:

int a = 3;
int b = 3;
WriteLine($"a == b: {(a == b)}");

[241]

Implementing Interfaces and Inheriting Classes

When you check the equality of two reference type variables, NET compares the memory
addresses of those two variables and returns true if they are equal, as shown in the following
code:

Person a = new() { Name = "Kevin" };
Person b = new() { Name = "Kevin" };
WriteLine($"a == b: {(a == b)}");

This is because they are not the same object. If both variables literally point to the same object
on the heap, then they would be equal, as shown in the following code:

Person a = new() { Name = "Kevin" };
Person b = a;
WriteLine($"a == b: {(a == b)}");

The one exception to this behavior is the string type. It is a reference type, but the equality
operators have been overridden to make them behave as if they were value types, as shown in
the following code:

string a = "Kevin";
string b = "Kevin";
WriteLine($"a == b: {(a == b)}");

You can do something similar with your classes to make the equality operators return true
even if they are not the same object (same memory address on the heap) but instead if their
fields have the same values, but that is beyond the scope of this book. Alternatively, use a
record class because one of their benefits is that they implement this behavior for you.

Defining struct types

Let's explore defining your own value types:

1. Inthe PacktLibrary project, add a file named DisplacementVector.cs.
2. Modify the file, as shown in the following code, and note the following:
* The type is declared using struct instead of class.
e It has two int fields, named X and Y.
* It has a constructor for setting initial values for X and Y.

* It has an operator for adding two instances together that returns a new instance
of the type with X added to X, and Y added to V.

namespace Packt.Shared;

public struct DisplacementVector

{
public int X;

[242]

Chapter 06

public int Y;

public DisplacementVector(int initialX, int initialy)

{
X

Y

initialX;
initialy;

public static DisplacementVector operator +(
DisplacementVector vectorl,
DisplacementVector vector2)
{
return new(
vectorl.X + vector2.X,
vectorl.Y + vector2.Y);
}
b

3. InProgram.cs, add statements to create two new instances of DisplacementVector, add
them together, and output the result, as shown in the following code:

DisplacementVector dvl = new(3, 5);
DisplacementVector dv2 = new(-2, 7);
DisplacementVector dv3 = dvl + dv2;

WriteLine($" ({dv1.X}, {dvi.Y}) + ({dv2.X}, {dv2.Y}) = ({dv3.X},
{dv3.Y})");

4. Run the code and view the result, as shown in the following output:

(3) 5) + ('2: 7) = (1: 12)

Good Practice: If the total bytes used by all the fields in your type is 16 bytes
L or less, your type only uses value types for its fields, and you will never want
‘@‘ to derive from your type, then Microsoft recommends that you use struct. If
your type uses more than 16 bytes of stack memory, if it uses reference types
for its fields, or if you might want to inherit from it, then use class.

4 AY

Working with record struct types

C# 10 introduced the ability to use the record keyword with struct types as well as with class
types.

We could define the DisplacementVector type, as shown in the following code:

public record struct DisplacementVector(int X, int Y);

[243]

Implementing Interfaces and Inheriting Classes

With this change, Microsoft recommends explicitly specifying class if you want to define a
record class even though the class keyword is optional, as shown in the following code:

public record class ImmutableAnimal(string Name);

Releasing unmanaged resources

In the previous chapter, we saw that constructors can be used to initialize fields and that a type
may have multiple constructors. Imagine that a constructor allocates an unmanaged resource;
that is, anything that is not controlled by .NET, such as a file or mutex under the control of the
operating system. The unmanaged resource must be manually released because .NET cannot
do it for us using its automatic garbage collection feature.

Garbage collection is an advanced topic, so for this topic, I will show some code examples, but
you do not need to write the code yourself.

Each type can have a single finalizer that will be called by the .NET runtime when the
resources need to be released. A finalizer has the same name as a constructor; that is, the type
name, but it is prefixed with a tilde, ~.

Do not confuse a finalizer (also known as a destructor) with a Deconstruct method. A
destructor releases resources; that is, it destroys an object in memory. A Deconstruct method
returns an object split up into its constituent parts and uses the C# deconstruction syntax, for
example, when working with tuples:

public class Animal

{
public Animal()

{

~Animal()
{

}
}

The preceding code example is the minimum you should do when working with unmanaged
resources. But the problem with only providing a finalizer is that the .NET garbage collector
requires two garbage collections to completely release the allocated resources for this type.

Though optional, it is recommended to also provide a method to allow a developer who uses
your type to explicitly release resources so that the garbage collector can release managed parts
of an unmanaged resource, such as a file, immediately and deterministically, and then release
the managed memory part of the object in a single garbage collection instead of two rounds of
garbage collection.

[244]

Chapter 06

There is a standard mechanism for doing this by implementing the IDisposable interface, as
shown in the following example:

public class Animal : IDisposable

{
public Animal()

{

~Animal()
{

Dispose(false);

}

bool disposed = false;

public void Dispose()

{

Dispose(true);

GC.SuppressFinalize(this);
¥

protected virtual void Dispose(bool disposing)

{

if (disposed) return;

if (disposing)
{

}

disposed = true;
}
}

There are two Dispose methods, one public and one protected:

* The public void Dispose method will be called by a developer using your type. When
called, both unmanaged and managed resources need to be deallocated.

[245]

Implementing Interfaces and Inheriting Classes

* The protected virtual void Dispose method with a bool parameter is used internally
to implement the deallocation of resources. It needs to check the disposing parameter
and disposed field because if the finalizer thread has already run and it called the
~Animal method, then only unmanaged resources need to be deallocated.

The call to GC.SuppressFinalize(this) is what notifies the garbage collector that it no longer
needs to run the finalizer, and removes the need for a second garbage collection.

Ensuring that Dispose is called

When someone uses a type that implements IDisposable, they can ensure that the public
Dispose method is called with the using statement, as shown in the following code:

using (Animal a = new())

{
¥

The compiler converts your code into something like the following, which guarantees that even
if an exception occurs, the Dispose method will still be called:

Animal a = new();
try
{

}
finally

{
if (a != null) a.Dispose();
}

You will see practical examples of releasing unmanaged resources with IDisposable, using
statements, and try...finally blocks in Chapter 9, Working with Files, Streams, and Serialization.

Working with null values

You have seen how to store primitive values like numbers in struct variables. But what if a
variable does not yet have a value? How can we indicate that? C# has the concept of a null
value, which can be used to indicate that a variable has not been set.

Making a value type nullable

By default, value types like int and DateTime must always have a value, hence their name.
Sometimes, for example, when reading values stored in a database that allows empty, missing, or
null values, it is convenient to allow a value type to be null. We call this a nullable value type.

[246]

Chapter 06

You can enable this by adding a question mark as a suffix to the type when declaring a variable.
Let's see an example:

1. Use your preferred coding tool to add a new Console Application to the Chaptere6
workspace/solution named NullHandling. This section requires a full application with
a project file, so you will not be able to use a .NET Interactive notebook.

2. In Visual Studio Code, select NullHandling as the active OmniSharp project. In Visual
Studio, set NullHandling as the startup project.

3. InProgram.cs, type statements to declare and assign values, including null, to int
variables, as shown in the following code:

int thisCannotBeNull = 4;
thisCannotBeNull = null;

int? thisCouldBeNull = null;
WriteLine(thisCouldBeNull);
WriteLine(thisCouldBeNull.GetValueOrDefault());

thisCouldBeNull = 7;
WriteLine(thisCouldBeNull);
WriteLine(thisCouldBeNull.GetValueOrDefault());

4. Comment out the statement that gives a compile error.

5. Run the code and view the result, as shown in the following output:

0

V
7

The first line is blank because it is outputting the null value!

Understanding nullable reference types

The use of the null value is so common, in so many languages, that many experienced
programmers never question the need for its existence. But there are many scenarios where we
could write better, simpler code if a variable is not allowed to have a null value.

The most significant change to the language in C# 8 was the introduction of nullable and non-
nullable reference types. "But wait!", you are probably thinking, "Reference types are already
nullable!"

And you would be right, but in C# 8 and later, reference types can be configured to no longer
allow the null value by setting a file- or project-level option to enable this useful new feature.
Since this is a big change for C#, Microsoft decided to make the feature opt-in.

[247]

Implementing Interfaces and Inheriting Classes

It will take multiple years for this new C# language feature to make an impact since thousands
of existing library packages and apps will expect the old behavior. Even Microsoft did not have
time to fully implement this new feature in all the main .NET packages until .NET 6.

During the transition, you can choose between several approaches for your own projects:

* Default: No changes are needed. Non-nullable reference types are not supported.

* Opt-in project, opt-out files: Enable the feature at the project level and, for any files that
need to remain compatible with old behavior, opt out. This is the approach Microsoft is
using internally while it updates its own packages to use this new feature.

* Opt-infiles: Only enable the feature for individual files.

Enabling nullable and non-nullable reference types

To enable the feature at the project level, add the following to your project file:

<PropertyGroup>

<Nullable>enable</Nullable>
</PropertyGroup>

This is now done by default in project templates that target .NET 6.0.
To disable the feature at the file level, add the following to the top of a code file:

#nullable disable

To enable the feature at the file level, add the following to the top of a code file:

#nullable enable

Declaring non-nullable variables and parameters

If you enable nullable reference types and you want a reference type to be assigned the null
value, then you will have to use the same syntax as making a value type nullable, that is,
adding a ? symbol after the type declaration.

So, how do nullable reference types work? Let's look at an example. When storing information
about an address, you might want to force a value for the street, city, and region, but the
building can be left blank, that is, null:

[248]

Chapter 06

1. InNullHandling.csproj, in Program.cs, at the bottom of the file, add statements to
declare an Address class with four fields, as shown in the following code:

class Address

{
public string? Building;
public string Street;
public string City;
public string Region;

}

2. After a few seconds, note the warnings about non-nullable fields, like Street not being
initialized, as shown in Figure 6.2:

L] Program.cs — Chapter02 (Waorkspace)

EXPLORER C Program.cs X {18 JEED
> OPEN EDITORS NullHsndiing > € Program.cs > {} NullHandling > 92 NullHandling Address
SN - CHAPTEROZ (WORKSPACE) 6 qlass Addrecs L]
> Basics T { i

> Variables '
B public string? Building; // can be null

> Arrays
=~ MullHandiing 9 public string Street; £/ must have a value
> wscode
¥ bin PROBLEMS i) OUTPUT DEBUG GONSOLE Filter. Egtoxt, . 83 & ~ X
7 obj w O Program.cs MulHandling (8
& NullHandling.csproj Non-nuilable field *Street’ s uninitialized. Consider declaring the field as nullable. [CSBEI8) [MullHa
> OUTLINE £ Non-nullsbie fie

& (CSBB1E) [NUlH

3 ILSPY DECOMPILED MEMBERS
Sohs A& mnulHanding 7.Col 3 Spaces:d UTF-8 withBOM CRLF: C# SharpPad:5255 @ &

Figure 6.2: Warning messages about non-nullable fields in the PROBLEMS window

3. Assign the empty string value to each of the three fields that are non-nullable, as
shown in the following code:

public string Street = string.Empty;
public string City = string.Empty;
public string Region = string.Empty;

4. InProgram.cs, at the top of the file, statically import Console and then add statements
to instantiate an Address and set its properties, as shown in the following code:

Address address = new();
address.Building = null;
address.Street = null;
address.City = "London";
address.Region = null;

[249]

Implementing Interfaces and Inheriting Classes

5. Note the warnings, as shown in Figure 6.3:

@ Program.cs — Chapter02 (Waorkspace)

ERREESER © Program.cs X i
2 DPEN EDITORS NullHsndling > € Program.cs > {} NullHandling > 12 NullHandling. Program > & Main(string[] srgs)
(@ - CHAPTEROZ (WORKSPACE) 28

e 29 var address = new Address{};
30 address.Building = null;
2 Nanabies 31 address.Street = pull;
> Arrays 32 address.City = “London";
~ NullHandiing 33 address.Region = pull; =

¥ wstode

¥ hin

> obf

& NullHandling.osproj

OUTLINE

2 ILSPY DECOMPILED MEMBERS
Goh: & WmuulHanding 37, CRLF: C# SharpPad:5255

Figure 6.3: Warning message about assigning null to a non-nullable field

So, this is why the new language feature is named nullable reference types. Starting with C#
8.0, unadorned reference types can become non-nullable, and the same syntax is used to make a
reference type nullable as is used for value types.

Checking for null

Checking whether a nullable reference type or nullable value type variable currently contains
null is important because if you do not, a Nul1ReferenceException can be thrown, which
results in an error. You should check for a null value before using a nullable variable, as shown
in the following code:

if (thisCouldBeNull != null)
{

int length = thisCouldBeNull.Length;

}

C# 7 introduced is combined with the ! (not) operator as an alternative to !=, as shown in the
following code:

if (!(thisCouldBeNull is null))
{

C# 9 introduced is not as an even clearer alternative, as shown in the following code:

if (thisCouldBeNull is not null)
{

If you are trying to use a member of a variable that might be null, use the null-conditional
operator ?., as shown in the following code:

[250]

Chapter 06

string authorName = null;

int x = authorName.Length;

int? y = authorName?.Length;

Sometimes you want to either assign a variable to a result or use an alternative value, such as
3, if the variable is null. You do this using the null-coalescing operator, ??, as shown in the
following code:

int result = authorName?.Length ?? 3;
Console.WriteLine(result);

L Good Practice: Even if you enable nullable reference types, you
‘@\‘ should still check non-nullable parameters for null and throw an

7
=] ArgumentNullException.

Checking for null in method parameters

When defining methods with parameters, it is good practice to check for null values.

In earlier versions of C#, you would have to write if statements to check for null parameter
values and then throw an ArgumentNullException for any parameter that is null, as shown in
the following code:

public void Hire(Person manager, Person employee)

{ if (manager == null)
{ throw new ArgumentNullException(nameof(manager));
if (employee == null)
{ throw new ArgumentNullException(nameof(employee));
}

} ce

C# 11 might introduce a new !! suffix that does this for you, as shown in the following code:

public void Hire(Person manager!!, Person employee!!)

{
}

[251]

Implementing Interfaces and Inheriting Classes

The if statement and throwing of the exception are done for you.

Inheriting from classes

The Person type we created earlier derived (inherited) from object, the alias for System.0Object.
Now, we will create a subclass that inherits from Person:

1. Inthe PacktLibrary project, add a new class file named Employee.cs.

2. Modify its contents to define a class named Employee that derives from Person, as
shown in the following code:

using System;
namespace Packt.Shared;

public class Employee : Person

{
}

3. InProgram.cs, add statements to create an instance of the Employee class, as shown in
the following code:

Employee john = new()
{

Name = "John Jones",
DateOfBirth = new(year: 1990, month: 7, day: 28)
s

john.WriteToConsole();

4. Run the code and view the result, as shown in the following output:

John Jones was born on a Saturday.

Note that the Employee class has inherited all the members of Person.

Extending classes to add functionality

Now, we will add some employee-specific members to extend the class.

1. InEmployee.cs, add statements to define two properties for an employee code and the
date they were hired, as shown in the following code:
public string? EmployeeCode { get; set; }
public DateTime HireDate { get; set; }

[252]

Chapter 06

2. InProgram.cs, add statements to set John's employee code and hire date, as shown in
the following code:

john.EmployeeCode = "JJ001";
john.HireDate = new(year: 2014, month: 11, day: 23);
WriteLine($"{john.Name} was hired on {john.HireDate:dd/MM/yy}");

3. Run the code and view the result, as shown in the following output:

John Jones was hired on 23/11/14

Hiding members

So far, the WriteToConsole method is inherited from Person, and it only outputs the employee's
name and date of birth. We might want to change what this method does for an employee:

1. In Employee.cs, add statements to redefine the WriteToConsole method, as shown
highlighted in the following code:

using static System.Console;
namespace Packt.Shared;
public class Employee : Person
{
public string? EmployeeCode { get; set; }

public DateTime HireDate { get; set; }

public void WriteToConsole()

{
WriteLine(format:
"{e} was born on {1:dd/MM/yy} and hired on {2:dd/MM/yy}",
argo: Name,
argl: DateOfBirth,
arg2: HireDate);
}

}
2. Run the code and view the result, as shown in the following output:

John Jones was born on 28/07/90 and hired on 01/01/01

John Jones was hired on 23/11/14

[253]

Implementing Interfaces and Inheriting Classes

Your coding tool warns you that your method now hides the method from Person by drawing
a squiggle under the method name, the PROBLEMS/ Error List window includes more details,
and the compiler will output the warning when you build and run the console application, as
shown in Figure 6.4:

[-] (] Empioyee.cs — Chapter06 (Workspace)
@ EXPLORER € Employeecs X m
~ OPEM EDITORS Pac ary > € Emp » {} Packt ») WriteToCe {
|)' ¥ € Employes.cs Pack N arot < e - : =
/ < CHAPTEROE (WORKSPACE) _;2 public veid WriteToConsolel)
} <l i { void Employee.WriteToConsole()
19 % ol 14 Writebane(-
[} B . 15 “{g} was 'Employee.WriteToConsolel)' hides inherited member
] lacar ntVec! o i " 5 5 1AL "
C* DisplacementVector.cs 16 arg®: Na 'Person.WriteToConsole{)"'. Use the néw keyword if hiding was intended.
C: DydPlayercs 17 argl: Da {cse1e8) [PacktLibrary]
C: Employeecs 1 18 arg2: Hi peek Problem Mo quick tixes avallable
0 C: GerericThing.cs 19 *
: © IPlayabic.cs PROBLEMS @) OUTPUT DEBUG CONSOLE TERMINAL Filter Egotest, ' {3 @ &~ X
Cr LadyGaga.cs
v O Employee.cs Fackt] 1
7 OUTLINE
‘Employee WriteToConsaole()® hides inherited member 'Person WriteToConsolel). Use the new keyword it hidin
» ILSPY DECOMPILED MEMBERS

D041 & WPackilibrary

Figure 6.4: Hidden method warning

As the warning describes, you can hide this message by applying the new keyword to the
method, to indicate that you are deliberately replacing the old method, as shown highlighted
in the following code:

public new void WriteToConsole()

Overriding members

Rather than hiding a method, it is usually better to override it. You can only override if the
base class chooses to allow overriding, by applying the virtual keyword to any methods that
should allow overriding.

Let's see an example:

1. InProgram.cs, add a statement to write the value of the john variable to the console
using its string representation, as shown in the following code:

WriteLine(john.ToString());

2. Run the code and note that the ToString method is inherited from System.0Object, so
the implementation returns the namespace and type name, as shown in the following

output:

Packt.Shared.Employee

3. InPerson.cs, override this behavior by adding a ToString method to output the name
of the person as well as the type name, as shown in the following code:

public override string ToString()

{

[254]

Chapter 06

return $"{Name} is a {base.ToString()}";
}

The base keyword allows a subclass to access members of its superclass; that is, the
base class that it inherits or derives from.

4. Run the code and view the result. Now, when the ToString method is called, it outputs
the person's name, as well as returning the base class's implementation of ToString, as
shown in the following output:

John Jones is a Packt.Shared.Employee

Good Practice: Many real-world APIs, for example, Microsoft's Entity
N Framework Core, Castle's DynamicProxy, and Episerver's content models,
‘/@\' require the properties that you define in your classes to be marked as virtual
2 so that they can be overridden. Carefully decide which of your method and

property members should be marked as virtual.

Inheriting from abstract classes

Earlier in this chapter, you learned about interfaces that can define a set of members that a type
must have to meet a basic level of functionality. These are very useful, but their main limitation
is that until C# 8 they could not provide any implementation of their own.

This is a particular problem if you still need to create class libraries that will work with .NET
Framework and other platforms that do not support .NET Standard 2.1.

In those earlier platforms, you could use abstract classes as a sort of halfway house between a
pure interface and a fully implemented class.

When a class is marked as abstract, this means that it cannot be instantiated because you
are indicating that the class is not complete. It needs more implementation before it can be
instantiated.

For example, the System.IO.Stream class is abstract because it implements common
functionality that all streams would need but is not complete, so you cannot instantiate it using
new Stream().

Let's compare the two types of interface and two types of class, as shown in the following code:

public interface INoImplementation

{
void Alpha();

}

public interface ISomeImplementation

{
void Alpha();

[255]

Implementing Interfaces and Inheriting Classes

void Beta()

{

}
¥

public abstract class PartiallyImplemented
{

public abstract void Gamma();

public virtual void Delta()

{

}
¥

public class FullyImplemented : PartiallyImplemented, ISomeImplementation

{
public void Alpha()

{
}

public override void Gamma()

{

}
¥

FullyImplemented a = new();

PartiallyImplemented b = new();
ISomeImplementation c = new();
INoImplementation d = new();

Preventing inheritance and overriding

You can prevent another developer from inheriting from your class by applying the sealed
keyword to its definition. No one can inherit from Scrooge McDuck, as shown in the following
code:

public sealed class ScroogeMcDuck

{
¥

[256]

Chapter 06

An example of sealed in .NET is the string class. Microsoft has implemented some extreme
optimizations inside the string class that could be negatively affected by your inheritance, so
Microsoft prevents that.

You can prevent someone from further overriding a virtual method in your class by applying
the sealed keyword to the method. No one can change the way Lady Gaga sings, as shown in
the following code:

using static System.Console;
namespace Packt.Shared;

public class Singer

{
public virtual void Sing()
{
WriteLine("Singing...");
}
}
public class LadyGaga : Singer
{
public sealed override void Sing()
{
WriteLine("Singing with style...");
}

}

You can only seal an overridden method.

Understanding polymorphism

You have now seen two ways to change the behavior of an inherited method. We can hide it
using the new keyword (known as non-polymorphic inheritance), or we can override it (known
as polymorphic inheritance).

Both ways can access members of the base or superclass by using the base keyword, so what is
the difference?

It all depends on the type of variable holding a reference to the object. For example, a variable
of the Person type can hold a reference to a Person class, or any type that derives from Person.

[257]

Implementing Interfaces and Inheriting Classes

Let's see how this could affect your code:

1. InEmployee.cs, add statements to override the ToString method so it writes the
employee's name and code to the console, as shown in the following code:

public override string ToString()

{

return $"{Name}'s code is {EmployeeCode}";

}

2. InProgram.cs, write statements to create a new employee named Alice, store it in a
variable of type Person, and call both variables' WriteToConsole and ToString methods,
as shown in the following code:

Employee aliceInEmployee = new()
{ Name = "Alice", EmployeeCode = "AA123" };

Person aliceInPerson = aliceInEmployee;
aliceInEmployee.WriteToConsole();
aliceInPerson.WriteToConsole();
WriteLine(aliceInEmployee.ToString());
WriteLine(aliceInPerson.ToString());

3. Run the code and view the result, as shown in the following output:

Alice was born on 01/01/01 and hired on 01/01/01
Alice was born on a Monday

Alice's code is AA123
Alice's code is AA123

When a method is hidden with new, the compiler is not smart enough to know that the object is
an Employee, so it calls the WriteToConsole method in Person.

When a method is overridden with virtual and override, the compiler is smart enough to
know that although the variable is declared as a Person class, the object itself is an Employee
class and, therefore, the Employee implementation of ToString is called.

The member modifiers and the effect they have are summarized in the following table:

Variable type Member modifier Method executed In class
Person WriteToConsole Person
Employee new WriteToConsole Employee
Person virtual ToString Employee
Employee override ToString Employee

In my opinion, polymorphism is academic to most programmers. If you get the concept, that's
cool; but, if not, I suggest that you don't worry about it. Some people like to make others feel
inferior by saying understanding polymorphism is important for all C# programmers to learn,
but IMHO it's not.

[258]

Chapter 06

You can have a successful career with C# and never need to be able to explain polymorphism,
just as a racing car driver doesn't need to be able to explain the engineering behind fuel
injection.

|
\@' Good Practice: You should use virtual and override rather than new to

change the implementation of an inherited method whenever possible.

Casting within inheritance hierarchies

Casting between types is subtly different from converting between types. Casting is between
similar types, like between a 16-bit integer and a 32-bit integer, or between a superclass and one
of its subclasses. Converting is between dissimilar types, such as between text and a number.

Implicit casting
In the previous example, you saw how an instance of a derived type can be stored in a variable
of its base type (or its base's base type, and so on). When we do this, it is called implicit casting.

Explicit casting
Going the other way is an explicit cast, and you must use parentheses around the type you

want to cast into as a prefix to do it:

1. InProgram.cs, add a statement to assign the aliceInPerson variable to a new Employee
variable, as shown in the following code:

Employee explicitAlice = aliceInPerson;

2. Your coding tool displays a red squiggle and a compile error, as shown in Figure 6.5:

[] Program.cs — ChapterD6 (Workspace)

C Programcs X 18]

&

agram.cs’> ()} PaopleAph > %4 PaopleApp.Progra

n aliceInPerson = alicelnEmployee;

 DPEN EDITORS P hpp 5O B

X € Program.cs PeopleApp 1 141
* CHAPTEROE (WORKSPACE)

143 aliceInEmployee. WriteToConsolel);

144
145 aliceInPerson.WriteTofonsole();
46
WriteLine{aliceInEm Person alicelnPerson

Cannot isplicitly convert type 'Packt.Shared.Person' to
'Packt.Shared.Employee'. An explicit conversion exists (are you
missing a cast?) (CS0266) [PeopleApp]

149 WriteLine{aliceInPe

51 /4 Ewplicit casting
152 Peek Froblem No quick fixes avaitable

> OUTLINE
» ILSPY DECOMPILED MEMBERS
D140 & WPeopetnp Ln 134, Sol 1

Eaployes explicitAlice = alicelnPerson;

SharpPad:5256 @ A

Spaces: 2 UTF-8 with BOM CRLF C#

Figure 6.5: A missing explicit cast compile error

3. Change the statement to prefix the assigned variable named with a cast to the Employee
type, as shown in the following code:

Employee explicitAlice = (Employee)aliceInPerson;

[259]

Implementing Interfaces and Inheriting Classes

Avoiding casting exceptions

The compiler is now happy; but, because aliceInPerson might be a different derived type, like
Student instead of Employee, we need to be careful. In a real application with more complex
code, the current value of this variable could have been set to a Student instance, and then this
statement would throw an InvalidCastException error.

We can handle this by writing a try statement, but there is a better way. We can check the type
of an object using the is keyword:

1. Wrap the explicit cast statement in an if statement, as shown highlighted in the
following code:

if (aliceInPerson is Employee)

{
WriteLine($"{nameof(aliceInPerson)} IS an Employee");
Employee explicitAlice = (Employee)aliceInPerson;

}

2. Run the code and view the result, as shown in the following output:

aliceInPerson IS an Employee

You can simplify the code further using a declaration pattern and this will avoid
needing to perform an explicit cast, as shown in the following code:

if (aliceInPerson is Employee explicitAlice)

{

WriteLine($"{nameof(aliceInPerson)} IS an Employee");

}

Alternatively, you can use the as keyword to cast. Instead of throwing an exception, the
as keyword returns null if the type cannot be cast.

3. InMain, add the statements to cast Alice using the as keyword and then check whether
the return value is not null, as shown in the following code:

Employee? aliceAsEmployee = aliceInPerson as Employee;

if (aliceAsEmployee != null)
{

WriteLine($"{nameof(aliceInPerson)} AS an Employee");

}

Since accessing a member of a null variable will throw a NullReferenceException error,
you should always check for null before using the result.

[260]

Chapter 06

4. Run the code and view the result, as shown in the following output:

aliceInPerson AS an Employee

What if you want to execute a block of statements when Alice is not an employee?

In the past, you would have had to use the ! (not) operator, as shown in the following code:

if (!(aliceInPerson is Employee))

With C# 9 and later, you can use the not keyword, as shown in the following code:

if (aliceInPerson is not Employee)

N2 Good Practice: Use the is and as keywords to avoid throwing exceptions
- ,@\' when casting between derived types. If you don't do this, you must write try-
E catch statements for InvalidCastException.

Inheriting and extending .NET types

.NET has prebuilt class libraries containing hundreds of thousands of types. Rather than
creating your own completely new types, you can often get a head start by deriving from one
of Microsoft's types to inherit some or all of its behavior and then overriding or extending it.

Inheriting exceptions

As an example of inheritance, we will derive a new type of exception:

1. Inthe PacktLibrary project, add a new class file named PersonException.cs.

2. Modify the contents of the file to define a class named PersonException with three
constructors, as shown in the following code:

namespace Packt.Shared;

public class PersonException : Exception

{
public PersonException() : base() { }
public PersonkException(string message) : base(message) { }
public PersonException(string message, Exception innerException)
: base(message, innerException) { }
}

[261]

Implementing Interfaces and Inheriting Classes

4.

5.

Unlike ordinary methods, constructors are not inherited, so we must explicitly declare
and explicitly call the base constructor implementations in System.Exception to make
them available to programmers who might want to use those constructors with our
custom exception.

In Person.cs, add statements to define a method that throws an exception if a date/
time parameter is earlier than a person's date of birth, as shown in the following code:

public void TimeTravel(DateTime when)

{
if (when <= DateOfBirth)

{
throw new PersonException("If you travel back in time to a date
earlier than your own birth, then the universe will explode!");

}

else

{
WriteLine($"Welcome to {when:yyyy}!");

}
}

In Program. cs, add statements to test what happens when employee John Jones tries to
time travel too far back, as shown in the following code:

try

{
john.TimeTravel(when: new(1999, 12, 31));

john.TimeTravel(when: new(1950, 12, 25));
}

catch (PersonException ex)

{

WriteLine(ex.Message);

}

Run the code and view the result, as shown in the following output:

Welcome to 1999!

If you travel back in time to a date earlier than your own birth, then the
universe will explode!

!
\@l_ Good Practice: When defining your own exceptions, give them the same three

2 constructors that explicitly call the built-in ones.

[262]

Chapter 06

Extending types when you can't inherit

Earlier, we saw how the sealed modifier can be used to prevent inheritance.

Microsoft has applied the sealed keyword to the System.String class so that no one can inherit
and potentially break the behavior of strings.

Can we still add new methods to strings? Yes, if we use a language feature named extension
methods, which was introduced with C# 3.0.

Using static methods to reuse functionality

Since the first version of C#, we've been able to create static methods to reuse functionality,
such as the ability to validate that a string contains an email address. The implementation will
use a regular expression that you will learn more about in Chapter 8, Working with Common .NET
Types.

Let's write some code:

1. Inthe PacktLibrary project, add a new class named StringExtensions, as shown in the
following code, and note the following;:

* The class imports a namespace for handling regular expressions.

* The IsvalidEmail method is static and it uses the Regex type to check for
matches against a simple email pattern that looks for valid characters before
and after the @ symbol.

using System.Text.RegularExpressions;
namespace Packt.Shared;

public class StringExtensions

{
public static bool IsValidEmail(string input)
{
return Regex.IsMatch(input,
@"[a-zA-Z0-9\.-_]+@[a-zA-Z0-9\.-_]+");
}
}

2. InProgram.cs, add statements to validate two examples of email addresses, as shown in
the following code:

string emaill = "pamela@test.com";
string email2 = "ian&test.com";

[263]

Implementing Interfaces and Inheriting Classes

WriteLine("{@} is a valid e-mail address: {1}",
argd: emaill,
argl: StringExtensions.IsValidEmail(emaill));

WriteLine("{0} is a valid e-mail address: {1}",
argd: email2,
argl: StringExtensions.IsValidEmail(email2));

3. Run the code and view the result, as shown in the following output:

pamela@test.com is a valid e-mail address: True

ian&test.com is a valid e-mail address: False

This works, but extension methods can reduce the amount of code we must type and simplify
the usage of this function.

Using extension methods to reuse functionality

It is easy to make static methods into extension methods:

1. InStringExtensions.cs, add the static modifier before the class, and add the this
modifier before the string type, as highlighted in the following code:

public static class StringExtensions
{
public static bool IsValidEmail(this string input)

{

These two changes tell the compiler that it should treat the method as one that extends
the string type.

2. InProgram.cs, add statements to use the extension method for string values that need
to be checked for valid email addresses, as shown in the following code:

WriteLine("{@} is a valid e-mail address: {1}",
argd: emaill,
argl: emaill.IsValidEmail());

WriteLine("{@} is a valid e-mail address: {1}",
argd: email2,
argl: email2.IsValidEmail());

Note the subtle simplification in the syntax for calling the IsvalidEmail method. The
older, longer syntax still works too.

3. The IsvalidEmail extension method now appears to be a method just like all the actual
instance methods of the string type, such as IsNormalized and Insert, as shownin
Figure 6.6:

[264]

Chapter 06

[] Program.cs — ChapterD6 (Workspace)
Cr Pragram.cs X {85 e
+ DPEN EDITORS PeopleApp ¥ © Programacs » {} Paoplehgp
X € Program.cs PeopleApp

196 WriteLine{
“+ CHAPTEROG (WORKSPACE) 37

“{8} is a valid e-mail address: {1}",

98 a H if
> yscode ro@: emaill,

199 argl: emaill.Is
ze0
201 WriteLine(60 IsNormatized
& PeopleApp.cspro) 202 "{#} is a valid @ IsValidEmail boot IsVaiidEmaill)
¢ Program es 2 203 argl: email2, @ Insert
204 argl: email2.Is;
» OUTLINE iy

-l -
> ILSPY DECOMPILED MEMBERS \e T g
@2A0 & WPeoplednp

Ln 204, Col 24 - Spaces: 2 UTFE-BwithBOM CRLE C# SharpPad:5255

Figure 6.6: Extension methods appear in IntelliSense alongside instance methods

4. Run the code and view the result, which will be the same as before.

Good Practice: Extension methods cannot replace or override existing instance
N methods. You cannot, for example, redefine the Insert method. The extension
‘/@\' method will appear as an overload in IntelliSense, but an instance method
= will be called in preference to an extension method with the same name and
signature.

Although extension methods might not seem to give a big benefit, in Chapter 11, Querying

and Manipulating Data Using LINQ, you will see some extremely powerful uses of extension
methods.

Using an analyzer to write better code

.NET analyzers find potential issues and suggest fixes for them. StyleCop is a commonly used
analyzer for helping you write better C# code.

Let's see it in action, advising how to improve the code in the project template for a console

app when targeting .NET 5.0 so that the console app already has a Program class with a Main
method:

1. Use your preferred code editor to add a console app project, as defined in the following
list:

1. Project template: Console Application / console -f net5.0
2. Workspace/solution file and folder: Chaptere6
3. Project file and folder: CodeAnalyzing

4. Target framework: .NET 5.0 (Current)

2. Inthe CodeAnalyzing project, add a package reference for StyleCop.Analyzers.
3. Add aJSON file to your project named stylecop.json for controlling StyleCop settings.

[265]

Implementing Interfaces and Inheriting Classes

4. Modity its contents, as shown in the following markup:

{

"$schema": "https://raw.githubusercontent.com/DotNetAnalyzers/
StyleCopAnalyzers/master/StyleCop.Analyzers/StyleCop.Analyzers/Settings/
stylecop.schema.json",

"settings": {

}

\/V The $schema entry enables IntelliSense while editing the stylecop.

json file in your code editor.

5. Edit the project file, change the target framework to net6.0, add entries to
configure the file named stylecop.json to not be included in published deployments,
and to enable it as an additional file for processing during development, as shown
highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net6.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<None Remove="stylecop.json" />
</ItemGroup>

<ItemGroup>
<AdditionalFiles Include="stylecop.json" />
</ItemGroup>

<ItemGroup>
<PackageReference Include="StyleCop.Analyzers" Version="1.2.0-*">
<PrivateAssets>all</PrivateAssets>

<IncludeAssets>runtime; build; native; contentfiles; analyzers</
IncludeAssets>

</PackageReference>
</ItemGroup>

</Project>

[266]

Chapter 06

6. Build your project.

7. You will see warnings for everything it thinks is wrong, as shown in Figure 6.7:

Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help Search (Cul+d o Chapterls = x

(]
Fiat = &% = | Debug =~ AnyCPU ~ ' Packtlibrary = W Packtlibrary = | Live Share &
- 8

- { % Codesnalyzing Program = | B Mainfstring!] args -l

kising System;

sasopdxy uganies

Sinasespace CodeAnalyzing
L
5 class Progran
{

Malnistringl] args) o
SA1400: Element 'Main should declare an aceess modifier

= |63 0Emor Show potential fixes (AltsEnter or Clrls) elliSense - Search Error List
Descripticn Project Fila Line ' Suppression State
Active
Active
Active

301 XML comment analysis is disabled due to project configuration CodeAnalyzing ciC 1

Using directive should appear within 2 namespace declaration CodeAnalyzing Program.cs 1

The file header is missing or not located at the top of the file. Codeinalyzing Pregram.cs 1
Elements should be documented CodeAnalyzing Pregram.cs 5 Active

5

4

Active
Active

- & SA1400 Element ‘Program’ should declare an access medifier Codednalyzing Pregram.cs
SAT400 Element ‘Main' should declare an access mod fer Codednalyzing Brogram.cs

Source Contrel = M

Figure 6.7: StyleCop code analyzer warnings

8. For example, it wants using directives to be put within the namespace declaration, as
shown in the following output:

C:\Code\Chaptero6\CodeAnalyzing\Program.cs(1,1): warning SA1200: Using

directive should appear within a namespace declaration [C:\Code\Chaptero6\
CodeAnalyzing\CodeAnalyzing.csproj]

Suppressing warnings

To suppress a warning, you have several options, including adding code and setting
configuration.

To suppress using an attribute, as shown in the following code:

[assembly:SuppressMessage("StyleCop.CSharp.OrderingRules"”, "SA1200:UsingDirectiv
esMustBePlacedWithinNamespace", Justification = "Reviewed.")]

To suppress using a directive, as shown in the following code:

#pragma warning disable SA1200 // UsingDirectivesMustBePlacedWithinNamespace
using System;
#pragma warning restore SA1200 // UsingDirectivesMustBePlacedWithinNamespace

[267]

Implementing Interfaces and Inheriting Classes

Let's suppress the warning by modifying the stylecop.json file:

1. Instylecop.json, add a configuration option to set using statements to be allowable
outside a namespace, as shown highlighted in the following markup:

{

"$schema": "https://raw.githubusercontent.com/DotNetAnalyzers/
StyleCopAnalyzers/master/StyleCop.Analyzers/StyleCop.Analyzers/Settings/
stylecop.schema.json",

"settings": {

"orderingRules": {
"usingDirectivesPlacement": "outsideNamespace"
}
}
}

Build the project and note that warning SA1200 has disappeared.

3. Instylecop.json, set the using directives placement to preserve, which allows
using statements both inside and outside a namespace, as shown in the following
markup:

"orderingRules": {
"usingDirectivesPlacement": "preserve"

}

Fixing the code

Now, let's fix all the other warnings:

1. InCodeAnalyzing.csproj, add an element to automatically generate an XML file for
documentation, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net6.0</TargetFramework>
<GenerateDocumentationFile>true</GenerateDocumentationFile>
</PropertyGroup>

2. Instylecop.json, add a configuration option to provide values for
documentation for the company name and copyright text, as shown highlighted in the
following markup:

{
"$schema™: "https://raw.githubusercontent.com/DotNetAnalyzers/

StyleCopAnalyzers/master/StyleCop.Analyzers/StyleCop.Analyzers/Settings/
stylecop.schema.json",

"settings": {

[268]

Chapter 06

"orderingRules": {
"usingDirectivesPlacement": "preserve"
})
"documentationRules": {
"companyName": "Packt",
"copyrightText": "Copyright (c) Packt. All rights reserved."
}
¥
}

In Program. cs, add comments for a file header with company and copyright

text, move the using System; declaration inside the namespace, and set explicit access
modifiers and XML comments for the class and method, as shown in the following
code:

// <copyright file="Program.cs" company="Packt">
// Copyright (c) Packt. ALL rights reserved.
// </copyright>

namespace CodeAnalyzing

{

using System;

/// <summary>

/// The main class for this console app.

/// </summary>

public class Program

{
/// <summary>
/// The main entry point for this console app.
/// </summary>

/// <param name="args">A string array of arguments passed to the
console app.</param>

public static void Main(string[] args)
{
Console.WritelLine("Hello World!");
}
}
}

Build the project.

Expand the bin/Debug/net6.0 folder and note the autogenerated file named
CodeAnalyzing.xml, as shown in the following markup:

<?xml version="1.0"?>
<doc>
<assembly>

[269]

Implementing Interfaces and Inheriting Classes

<name>CodeAnalyzing</name>
</assembly>
<members>
<member name="T:CodeAnalyzing.Program">
<summary>
The main class for this console app.
</summary>
</member>
<member name="M:CodeAnalyzing.Program.Main(System.String[])">
<summary>
The main entry point for this console app.
</summary>
<param name="args">A string array of arguments passed to the
console app.</param>
</member>
</members>
</doc>

Understanding common StyleCop recommendations

Inside a code file, you should order the contents, as shown in the following list:

External alias directives
Using directives
Namespaces

Delegates

Enums

Interfaces

NSO

Structs
8. Classes

Within a class, record, struct, or interface, you should order the contents, as shown in the
following list:

Fields

Constructors
Destructors (finalizers)
Delegates

Events

Enums

Interfaces

Properties

00N Ul W N e

. Indexers
10. Methods

[270]

Chapter 06

11. Structs

12. Nested classes and records

L Good Practice: You can learn about all the StyleCop rules at the following
‘@\‘ link: https://github.com/DotNetAnalyzers/StyleCopAnalyzers/blob/

4

= master/DOCUMENTATION.md.

Practicing and exploring

Test your knowledge and understanding by answering some questions. Get some hands-on
practice and explore this chapter's topics with more in-depth research.

Exercise 6.1 — Test your knowledge

Answer the following questions:

1.

7.
8.
9.

What is a delegate?
What is an event?

How are a base class and a derived class related, and how can the derived class access
the base class?

What is the difference between is and as operators?

Which keyword is used to prevent a class from being derived from or a method from
being further overridden?

Which keyword is used to prevent a class from being instantiated with the new
keyword?

Which keyword is used to allow a member to be overridden?
What's the difference between a destructor and a deconstruct method?
What are the signatures of the constructors that all exceptions should have?

10. What is an extension method, and how do you define one?

Exercise 6.2 — Practice creating an inheritance
hierarchy

Explore inheritance hierarchies by following these steps:

1.

2.

Add a new console application named Exercise®2 to your Chaptere6 solution/
workspace.

Create a class named Shape with properties named Height, Width, and Area.

[271]

https://github.com/DotNetAnalyzers/StyleCopAnalyzers/blob/master/DOCUMENTATION.md
https://github.com/DotNetAnalyzers/StyleCopAnalyzers/blob/master/DOCUMENTATION.md

Implementing Interfaces and Inheriting Classes

3. Add three classes that derive from it—Rectangle, Square, and Circle —with any
additional members you feel are appropriate and that override and implement the Area
property correctly.

4. InMain, add statements to create one instance of each shape, as shown in the following
code:

Rectangle r = new(height: 3, width: 4.5);
WriteLine($"Rectangle H: {r.Height}, W: {r.wWidth}, Area: {r.Area}");

Square s = new(5);
WriteLine($"Square H: {s.Height}, W: {s.Width}, Area: {s.Area}");

Circle c¢ = new(radius: 2.5);
WriteLine($"Circle H: {c.Height}, W: {c.Width}, Area: {c.Area}");

5. Run the console application and ensure that the result looks like the following output:

Rectangle H: 3, W: 4.5, Area: 13.5
Square H: 5, W: 5, Area: 25

Circle H: 5, W: 5, Area: 19.6349540849362

Exercise 6.3 — Explore topics

Use the links on the following page to learn more about the topics covered in this chapter:

https://github.com/markjprice/csl@dotnet6/blob/main/book-1inks.md#chapter-6---
implementing-interfaces-and-inheriting-classes

Summary

In this chapter, you learned about local functions and operators, delegates and events,
implementing interfaces, generics, and deriving types using inheritance and OOP. You
also learned about base and derived classes, and how to override a type member, use
polymorphism, and cast between types.

In the next chapter, you will learn how .NET is packaged and deployed, and, in subsequent
chapters, the types that it provides you with to implement common functionality such as file
handling, database access, encryption, and multitasking.

[272]

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-6---implementing-interfaces-and-inheriting-classes
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-6---implementing-interfaces-and-inheriting-classes

07

Packaging and Distributing

NET Types

This chapter is about how C# keywords are related to .NET types, and about the relationship
between namespaces and assemblies. You'll also become familiar with how to package

and publish your .NET apps and libraries for cross-platform use, how to use legacy .NET
Framework libraries in .NET libraries, and the possibility of porting legacy .NET Framework
code bases to modern .NET.

This chapter covers the following topics:

The road to .NET 6

Understanding .NET components

Publishing your applications for deployment
Decompiling .NET assemblies

Packaging your libraries for NuGet distribution
Porting from .NET Framework to modern .NET

Working with preview features

The road to .NET 6

This part of the book is about the functionality in the Base Class Library (BCL) APIs provided
by .NET and how to reuse functionality across all the different NET platforms using .NET
Standard.

First, we will review the route to this point and why it is important to understand the past.

[273]

Packaging and Distributing NET Types

.NET Core 2.0 and later's support for a minimum of .NET Standard 2.0 is important because it
provides many of the APIs that were missing from the first version of .NET Core. The 15 years'
worth of libraries and applications that .NET Framework developers had available to them
that are relevant for modern development have now been migrated to .NET and can run cross-
platform on macOS and Linux variants, as well as on Windows.

NET Standard 2.1 added about 3,000 new APIs. Some of those APIs need runtime changes
that would break backward compatibility, so .NET Framework 4.8 only implements .NET
Standard 2.0. .NET Core 3.0, Xamarin, Mono, and Unity implement .NET Standard 2.1.

.NET 6 removes the need for .NET Standard if all your projects can use .NET 6. Since you
might still need to create class libraries for legacy .NET Framework projects or legacy Xamarin
mobile apps, there is still a need to create .NET Standard 2.0 and 2.1 class libraries. In March
2021, I surveyed professional developers, and half still needed to create NET Standard 2.0
compliant class libraries.

Now that .NET 6 has been released with preview support for mobile and desktop apps built
using .NET MAUI, the need for .NET Standard has been further reduced.

To summarize the progress that NET has made over the past five years, I have compared the
major .NET Core and modern .NET versions with the equivalent .NET Framework versions
in the following list:

* .NET Core 1.x: much smaller API compared to .NET Framework 4.6.1, which was the
current version in March 2016.

* .NET Core 2.x: reached API parity with .NET Framework 4.7.1 for modern APIs
because they both implement .NET Standard 2.0.

* .NET Core 3.x: larger API compared to .NET Framework for modern APIs because.
NET Framework 4.8 does not implement .NET Standard 2.1.

* .NET 5: even larger API compared to .NET Framework 4.8 for modern APIs, with
much-improved performance.

* .NET 6: final unification with the support for mobile apps in .NET MAUI, expected by
May 2022.

.NET Core 1.0

NET Core 1.0 was released in June 2016 and focused on implementing an API suitable for
building modern cross-platform apps, including web and cloud applications and services for
Linux using ASP.NET Core.

.NET Core 1.1

NET Core 1.1 was released in November 2016 and focused on fixing bugs, increasing the
number of Linux distributions supported, supporting .NET Standard 1.6, and improving
performance, especially with ASP.NET Core for web apps and services.

[274]

Chapter 07

.NET Core 2.0

.NET Core 2.0 was released in August 2017 and focused on implementing .NET Standard 2.0,
the ability to reference NET Framework libraries, and more performance improvements.

The third edition of this book was published in November 2017, so it covered up to .NET Core
2.0 and .NET Core for Universal Windows Platform (UWP) apps.

.NET Core 2.1

NET Core 2.1 was released in May 2018 and focused on an extendable tooling system,
adding new types like Span<T>, new APIs for cryptography and compression, a Windows
Compeatibility Pack with an additional 20,000 APIs to help port old Windows applications,
Entity Framework Core value conversions, LINQ GroupBy conversions, data seeding,
query types, and even more performance improvements, including the topics listed in the
following table:

Feature Chapter Topic

Spans 8 Working with spans, indexes, and ranges
Brotli compression 9 Compressing with the Brotli algorithm
Cryptography 20 What's new in cryptography?

EF Core Lazy loading 10 Enabling lazy loading

EF Core Data seeding 10 Understanding data seeding

.NET Core 2.2

.NET Core 2.2 was released in December 2018 and focused on diagnostic improvements for the
runtime, optional tiered compilation, and adding new features to ASP.NET Core and Entity
Framework Core like spatial data support using types from the NetTopologySuite (NTS)
library, query tags, and collections of owned entities.

.NET Core 3.0

.NET Core 3.0 was released in September 2019 and focused on adding support for building
Windows desktop applications using Windows Forms (2001), Windows Presentation
Foundation (WPF; 2006), and Entity Framework 6.3, side-by-side and app-local deployments,
a fast JSON reader, serial port access and other pinout access for Internet of Things (IoT)
solutions, and tiered compilation by default, including the topics listed in the following table:

Feature Chapter Topic

Embedding .NET in-app | 7 Publishing your applications for deployment
Index and Range 8 Working with spans, indexes, and ranges
System.Text.Json 9 High-performance JSON processing

Async streams 12 Working with async streams

[275]

Packaging and Distributing NET Types

The fourth edition of this book was published in October 2019, so it covered some of the new
APIs added in later versions up to .NET Core 3.0.

.NET Core 3.1

.NET Core 3.1 was released in December 2019 and focused on bug fixes and refinements so that
it could be a Long Term Support (LTS) release, not losing support until December 2022.

.NET 5.0

NET 5.0 was released in November 2020 and focused on unifying the various .NET platforms
except mobile, refining the platform, and improving performance, including the topics listed in

the following table:
Feature Chapter Topic
Half type 8 Working with numbers
Regular expression performance 8 Regular expression performance
improvements improvements
System.Text.Json improvements 9 High-performance JSON processing
EF Core generated SQL 10 Getting the generated SQL
EF Core Filtered Include 10 Filtering included entities
EF Core Scaffold-DbContext now 10 Scaffolding models using an existing database

singularizes using Humanizer

.NET 6.0

NET 6.0 was released in November 2021 and focused on unifying with the mobile platform,
adding more features to EF Core for data management, and improving performance, including
the topics listed in the following table:

Feature Chapter Topic

Check .NET SDK status 7 Checking your .NET SDKs for updates

Support for Apple Silicon 7 Creating a console application to publish

Link trim mode as default 7 Reducing the size of apps using app trimming

DateOnly and TimeOnly 8 Specifying date and time values

EnsureCapacity for List<T> 8 Improving performance by ensuring the capacity of a
collection

EF Core configure conventions 10 Configuring preconvention models

New LINQ methods 11 Building LINQ expressions with the Enumerable class

[276]

Chapter 07

Improving performance from .NET Core 2.0 to .NET 5

Microsoft has made significant improvements to performance in the past few years. You can
read a detailed blog post at the following link: https://devblogs.microsoft.com/dotnet/
performance-improvements-in-net-5/.

Checking your .NET SDKs for updates

With .NET 6, Microsoft added a command to check the versions of NET SDKs and runtimes
that you have installed and warn you if any need updating. For example, you enter the
following command:

dotnet sdk check

You will then see results, including the status of available updates, as shown in the following
partial output:

.NET SDKs:
Version Status

Up to date.
Patch 5.0.206 is available.

Understanding .NET components

.NET is made up of several pieces, which are shown in the following list:

* Language compilers: These turn your source code written with languages such as C#,
F#, and Visual Basic into intermediate language (IL) code stored in assemblies. With
C# 6.0 and later, Microsoft switched to an open-source rewritten compiler known as
Roslyn that is also used by Visual Basic.

* Common Language Runtime (CoreCLR): This runtime loads assemblies, compiles
the IL code stored in them into native code instructions for your computer's CPU, and
executes the code within an environment that manages resources such as threads and
memory.

* Base Class Libraries (BCL or CoreFX): These are prebuilt assemblies of types packaged
and distributed using NuGet for performing common tasks when building applications.
You can use them to quickly build anything you want, rather like combining LEGO™
pieces. NET Core 2.0 implemented .NET Standard 2.0, which is a superset of all
previous versions of .NET Standard, and lifted .NET Core up to parity with .NET
Framework and Xamarin. .NET Core 3.0 implemented .NET Standard 2.1, which added
new capabilities and enables performance improvements beyond those available in
NET Framework. .NET 6 implements a unified BCL across all types of apps, including
mobile.

[277]

https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/

Packaging and Distributing NET Types

Understanding assemblies, NuGet packages, and
namespaces

An assembly is where a type is stored in the filesystem. Assemblies are a mechanism for
deploying code. For example, the System.Data.d11 assembly contains types for managing
data. To use types in other assemblies, they must be referenced. Assemblies can be static (pre-
created) or dynamic (generated at runtime). Dynamic assemblies are an advanced feature that
we will not cover in this book. Assemblies can be compiled into a single file as a DLL (class
library) or an EXE (console app).

Assemblies are distributed as NuGet packages, which are files downloadable from public
online feeds and can contain multiple assemblies and other resources. You will also hear
about project SDKs, workloads, and platforms, which are combinations of NuGet packages.

Microsoft's NuGet feed is found here: https://www.nuget.org/.

What is a namespace?

A namespace is the address of a type. Namespaces are a mechanism to uniquely identify a type
by requiring a full address rather than just a short name. In the real world, Bob of 34 Sycamore
Street is different from Bob of 12 Willow Drive.

In .NET, the IActionFilter interface of the System.Web.Mvc namespace is different from the
IActionFilter interface of the System.Web.Http.Filters namespace.

Understanding dependent assemblies

If an assembly is compiled as a class library and provides types for other assemblies to use,
then it has the file extension .d11 (dynamic link library), and it cannot be executed standalone.

Likewise, if an assembly is compiled as an application, then it has the file extension .exe
(executable) and can be executed standalone. Before .INET Core 3.0, console apps were
compiled to .d11 files and had to be executed by the dotnet run command or a host executable.

Any assembly can reference one or more class library assemblies as dependencies, but you
cannot have circular references. So, assembly B cannot reference assembly A if assembly A
already references assembly B. The compiler will warn you if you attempt to add a dependency
reference that would cause a circular reference. Circular references are often a warning sign

of poor code design. If you are sure that you need a circular reference, then use an interface

to solve it.

Understanding the Microsoft .NET project SDKs

By default, console applications have a dependency reference on the Microsoft .NET project
SDK. This platform contains thousands of types in NuGet packages that almost all applications
would need, such as the System.Int32 and System.String types.

[278]

https://www.nuget.org/

Chapter 07

When using .NET, you reference the dependency assemblies, NuGet packages, and platforms
that your application needs in a project file.

Let's explore the relationship between assemblies and namespaces:

1. Use your preferred code editor to create a new solution/workspace named Chaptere7.
2. Add a console app project, as defined in the following list:

1. Project template: Console Application / console

2. Workspace/solution file and folder: Chaptere7

3. Project file and folder: AssembliesAndNamespaces

3. Open AssembliesAndNamespaces.csproj and note that it is a typical project file for a
.NET 6 application, as shown in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net6.0</TargetFramework>
<Nullable>enable</Nullable>
<ImplicitUsings>enable</ImplicitUsings>
</PropertyGroup>

</Project>

Understanding namespaces and types in
assemblies

Many common .NET types are in the System.Runtime.d11 assembly. There is not always a
one-to-one mapping between assemblies and namespaces. A single assembly can contain many
namespaces and a namespace can be defined in many assemblies. You can see the relationship
between some assemblies and the namespaces that they supply types for, as shown in the
following table:

Assembly Example namespaces Example types
System.Runtime.dll System, System.Collections, Int32, String,
System.Collections.Generic IEnumerable<T>
System.Console.dll System Console
System.Threading.dll System.Threading Interlocked, Monitor,
Mutex
System.Xml.XDocument.dll System.Xml.Ling XDocument, XElement, XNode

[279]

Packaging and Distributing NET Types

Understanding NuGet packages

.NET is split into a set of packages, distributed using a Microsoft-supported package
management technology named NuGet. Each of these packages represents a single assembly
of the same name. For example, the System.Collections package contains the System.
Collections.dll assembly.

The following are the benefits of packages:

* Packages can be easily distributed on public feeds.

* Packages can be reused.

* Packages can ship on their own schedule.

* Packages can be tested independently of other packages.

* Packages can support different OSes and CPUs by including multiple versions of the
same assembly built for different OSes and CPUs.

* Packages can have dependencies specific to only one library.

* Apps are smaller because unreferenced packages aren't part of the distribution. The
following table lists some of the more important packages and their important types:

Package Important types

System.Runtime Object, String, Int32, Array
System.Collections List<T>, Dictionary<TKey, TValue>
System.Net.Http HttpClient, HttpResponseMessage
System.IO.FileSystem File, Directory

System.Reflection Assembly, TypeInfo, MethodInfo

Understanding frameworks

There is a two-way relationship between frameworks and packages. Packages define the APIs,
while frameworks group packages. A framework without any packages would not define any
APIs.

.NET packages each support a set of frameworks. For example, the System.I0.FileSystem
package version 4.3.0 supports the following frameworks:

e NET Standard, version 1.3 or later.

e NET Framework, version 4.6 or later.

* Six Mono and Xamarin platforms (for example, Xamarin.iOS 1.0).

!
\@'_ More Information: You can read the details at the following link: https://

www.nuget.org/packages/System.I0.FileSystem/.

4

[280]

https://www.nuget.org/packages/System.IO.FileSystem/
https://www.nuget.org/packages/System.IO.FileSystem/

Chapter 07

Importing a namespace to use a type

Let's explore how namespaces are related to assemblies and types:

1. Inthe AssembliesAndNamespaces project, in Program.cs, enter the following code:

XDocument doc = new();

2. Build the project and note the compiler error message, as shown in the following
output:

The type or namespace name 'XDocument' could not be found (are you missing

a using directive or an assembly reference?)

The XDocument type is not recognized because we have not told the compiler what the
namespace of the type is. Although this project already has a reference to the assembly
that contains the type, we also need to either prefix the type name with its namespace
or import the namespace.

3. Click inside the XDocument class name. Your code editor displays a light bulb, showing
that it recognizes the type and can automatically fix the problem for you.

4. Click the light bulb, and select using System.Xml.Ling; from the menu.
This will import the namespace by adding a using statement to the top of the file. Once a
namespace is imported at the top of a code file, then all the types within the namespace are

available for use in that code file by just typing their name without the type name needing to be
fully qualified by prefixing it with its namespace.

Sometimes I like to add a comment with a type name after importing a namespace to remind
me why I need to import that namespace, as shown in the following code:

using System.Xml.Ling;

Relating C# keywords to .NET types

One of the common questions I get from new C# programmers is, "What is the difference
between string with a lowercase s and String with an uppercase S?"

The short answer is easy: none. The long answer is that all C# type keywords like string or int
are aliases for a .NET type in a class library assembly.

When you use the string keyword, the compiler recognizes it as a System.String type. When
you use the int type, the compiler recognizes it as a System. Int32 type.

Let's see this in action with some code:

1. InProgram.cs, declare two variables to hold string values, one using lowercase string
and one using uppercase String, as shown in the following code:
string s1 = "Hello";
String s2 = "World";

[281]

Packaging and Distributing NET Types

WriteLine($"{s1} {s2}");

2. Run the code, and note that at the moment, they both work equally well, and literally
mean the same thing.

3. InAssembliesAndNamespaces.csproj, add entries to prevent the System namespace from
being globally imported, as shown in the following markup:
<ItemGroup>
<Using Remove="System" />
</ItemGroup>

In Program. cs note the compiler error message, as shown in the following output:

The type or namespace name 'String' could not be found (are you missing a

using directive or an assembly reference?)

5. At the top of Program. cs, import the System namespace with a using statement that will
fix the error, as shown in the following code:

using System;

N\ /
/@\

Good Practice: When you have a choice, use the C# keyword instead of the
actual type because the keywords do not need the namespace imported.

Mapping C# aliases to .NET types

The following table shows the 18 C# type keywords along with their actual .NET types:

Keyword .NET type Keyword .NET type

string System.String char System.Char

sbyte System.SByte byte System.Byte

short System.Intl6 ushort System.UIntl6

int System.Int32 uint System.UInt32

long System.Int64 ulong System.UInt64

nint System.IntPtr nuint System.UIntPtr

float System.Single double System.Double

decimal System.Decimal bool System.Boolean

object System.Object dynamic System.Dynamic.DynamicObject

Other .NET programming language compilers can do the same thing. For example, the Visual
Basic .NET language has a type named Integer that is its alias for System.Int32.

[282]

Chapter 07

Understanding native-sized integers

C# 9 introduced nint and nuint keyword alias for native-sized integers, meaning that the
storage size for the integer value is platform specific. They store a 32-bit integer in a 32-bit
process and sizeof() returns 4 bytes; they store a 64-bit integer in a 64-bit process and sizeof()
returns 8 bytes. The aliases represent pointers to the integer value in memory, which is why
their NET names are IntPtr and UIntPtr. The actual storage type will be either System.Int32
or System.Int64 depending on the process.

In a 64-bit process, the following code:

WriteLine($"int.MaxValue = {int.MaxValue:N@}");
WriteLine($"nint.MaxValue = {nint.MaxValue:N@}");

produces this output:

int.MaxValue = 2,147,483,647

nint.MaxValue = 9,223,372,036,854,775,807

Revealing the location of a type

Code editors provide built-in documentation for .NET types. Let's explore:

1. Right-click inside XDocument and choose Go to Definition.

2. Navigate to the top of the code file and note the assembly filename is System.Xml.
XDocument.d1l, but the class is in the System.Xml.Ling namespace, as shown in Figure 7.1:

o Fle Edit View Git Poject Buld Debug Test Analyre Tools Extensions Window Help Search (Culed) o Chapterd7 = m| %

e B2 M9 -] Debig - AnyCPU - b AssembliesAndNamespaces = | Fa [e 8 M %92 B Uveshre 2

XDocument [from metadata] § = 3 G- INEEN ar -3 x
- | s B -
TR aBle-s 09| F-]

arch Solution Explorer (Ctri+ P

ystemXmi Ling XDocument
fersion=t.8.8.8, Culturesneut

4 e
2] Selution ‘ChapterdT (1 of 1 praject)
4 [0 AssembliesAndNamespaces
#using |, .. b &P Dependencies
19 ¥ o Programacs
Sinamespace System.Xml.Ling

{

1z |---jpublic class ¥Document : XContainer

‘.
L=

L3 Che25 Cok28. SPC CRLF

17

Ln:

Figure 7.1: Assembly and namespace that contains the XDocument type

3. Close the XDocument [from metadata] tab.
Right-click inside string or String and choose Go to Definition.
5. Navigate to the top of the code file and note the assembly filename is System.Runtime.

d11 but the class is in the System namespace.

Actually, your code editor is technically lying to you. If you remember when we wrote code in
Chapter 2, Speaking C#, when we revealed the extent of the C# vocabulary, we discovered that
the System.Runtime.d11 assembly contains zero types.

[283]

Packaging and Distributing NET Types

What it does contain are type-forwarders. These are special types that appear to exist in an
assembly but actually are implemented elsewhere. In this case, they are implemented deep
inside the .NET runtime using highly optimized code.

Sharing code with legacy platforms using .NET
Standard

Before .NET Standard, there were Portable Class Libraries (PCLs). With PCLs, you could
create a library of code and explicitly specify which platforms you want the library to support,
such as Xamarin, Silverlight, and Windows 8. Your library could then use the intersection of
APIs that are supported by the specified platforms.

Microsoft realized that this is unsustainable, so they created .NET Standard —a single API that
all future .NET platforms would support. There are older versions of .NET Standard, but .NET
Standard 2.0 was an attempt to unify all important recent .NET platforms. .NET Standard 2.1
was released in late 2019 but only .NET Core 3.0 and that year's version of Xamarin support
its new features. For the rest of this book, I will use the term .NET Standard to mean .NET
Standard 2.0.

NET Standard is similar to HTML5 in that they are both standards that a platform should
support. Just as Google's Chrome browser and Microsoft's Edge browser implement the
HTMLS5 standard, .NET Core, .NET Framework, and Xamarin all implement .NET Standard. If
you want to create a library of types that will work across variants of legacy .NET, you can do
so most easily with .NET Standard.

Good Practice: Since many of the API additions in .NET Standard 2.1 required
runtime changes, and .NET Framework is Microsoft's legacy platform that
L needs to remain as unchanging as possible, NET Framework 4.8 remained on
‘@\‘ .NET Standard 2.0 rather than implementing .NET Standard 2.1. If you need to
= support .NET Framework customers, then you should create class libraries on
.NET Standard 2.0 even though it is not the latest and does not support all the
recent language and BCL new features.

7/

Your choice of which .NET Standard version to target comes down to a balance between
maximizing platform support and available functionality. A lower version supports more
platforms but has a smaller set of APIs. A higher version supports fewer platforms but has a
larger set of APIs. Generally, you should choose the lowest version that supports all the APIs
that you need.

Understanding defaults for class libraries with
different SDKs

When using the dotnet SDK tool to create a class library it might be useful to know which
target framework will be used by default, as shown in the following table:

[284]

Chapter 07

SDK Default target framework for new class libraries
.NET Core 3.1 netstandard2.0

NET 5 net5.0

NET 6 net6.0

Of course, just because a class library targets a specific version of .NET by default does not
mean you cannot change it after creating a class library project using the default template.

You can manually set the target framework to a value that supports the projects that need to
reference that library, as shown in the following table:

Class library target Can be used by projects that target
framework
netstandard2.0 NET Framework 4.6.1 or later, NET Core 2.0 or later, NET 5.0 or later, Mono
5.4 or later, Xamarin.Android 8.0 or later, Xamarin.iOS 10.14 or later
netstandard2.1 NET Core 3.0 or later, .NET 5.0 or later, Mono 6.4 or later, Xamarin.Android
10.0 or later, Xamarin.iOS 12.16 or later
net5.0 .NET 5.0 or later
net6.0 .NET 6.0 or later
N Good Practice: Always check the target framework of a class library and
‘@‘ then manually change it to something more appropriate if necessary. Make a
4 AY y g g y
= conscious decision about what it should be rather than accept the default.

Creating a .NET Standard 2.0 class library

We will create a class library using .NET Standard 2.0 so that it can be used across all important
NET legacy platforms and cross-platform on Windows, macOS, and Linux operating systems,
while also having access to a wide set of NET APIs:

1.

Use your preferred code editor to add a new class library named SharedLibrary to the
Chaptere7 solution/workspace.

If you use Visual Studio 2022, when prompted for the Target Framework, select NET
Standard 2.0, and then set the startup project for the solution to the current selection.

If you use Visual Studio Code, include a switch to target .NET Standard 2.0, as shown
in the following command:

dotnet new classlib -f netstandard2.0

If you use Visual Studio Code, select SharedLibrary as the active OmniSharp project.

[285]

Packaging and Distributing NET Types

Good Practice: If you need to create types that use new features in .NET 6.0,
L as well as types that only use .NET Standard 2.0 features, then you can create
‘,@\‘ two separate class libraries: one targeting .NET Standard 2.0 and one targeting

£ .NET 6.0. You will see this in action in Chapter 10, Working with Data Using
Entity Framework Core.

An alternative to manually creating two class libraries is to create one that supports multi-
targeting. If you would like me to add a section about multi-targeting to the next edition, please
let me know. You can read about multi-targeting here: https://docs.microsoft.com/en-us/
dotnet/standard/library-guidance/cross-platform-targeting#multi-targeting.

Controlling the .NET SDK

By default, executing dotnet commands uses the most recent installed .NET SDK. There may be
times when you want to control which SDK is used.

For example, one reader of the fourth edition wanted their experience to match the book steps
that use the NET Core 3.1 SDK. But they had installed the .NET 5.0 SDK as well and that was
being used by default. As described in the previous section, the behavior when creating new
class libraries changed to target .NET 5.0 instead of .NET Standard 2.0, and that confused the
reader.

You can control the .NET SDK used by default by using a global. json file. The dotnet
command searches the current folder and ancestor folders for a global. json file.

Create a subdirectory/folder in the Chaptere7 folder named ControlSDK.

2. On Windows, start Command Prompt or Windows Terminal. On macOS, start
Terminal. If you are using Visual Studio Code, then you can use the integrated
terminal.

3. Inthe ControlspK folder, at the command prompt or terminal, enter a command to
create a global. json file that forces the use of the latest NET Core 3.1 SDK, as shown in
the following command:

dotnet new globaljson --sdk-version 3.1.412

4. Open the global.json file and review its contents, as shown in the following markup:
{
"sdk": {
"version": "3.1.412"

You can discover the version numbers of the latest NET SDKs in
the table at the following link: https://dotnet.microsoft.com/
download/visual-studio-sdks

@\

[286]

https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/cross-platform-targeting#multi-targeting
https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/cross-platform-targeting#multi-targeting
https://dotnet.microsoft.com/download/visual-studio-sdks
https://dotnet.microsoft.com/download/visual-studio-sdks

Chapter 07

5. In the ControlspK folder, at the command prompt or terminal, enter a command to
create a class library project, as shown in the following command:

dotnet new classlib

6. If you do not have the .NET Core 3.1 SDK installed then you will see an error, as shown
in the following output:

Could not execute because the application was not found or a compatible

.NET SDK is not installed.

7. If you do have the .NET Core 3.1 SDK installed, then a class library project will be
created that targets .NET Standard 2.0 by default.

You do not need to complete the above steps, but if you want to try and do not already have
.NET Core 3.1 SDK installed then you can install it from the following link:

https://dotnet.microsoft.com/download/dotnet/3.1

Publishing your code for deployment

If you write a novel and you want other people to read it, you must publish it.

Most developers write code for other developers to use in their own code, or for users to run
as an app. To do so, you must publish your code as packaged class libraries or executable
applications.

There are three ways to publish and deploy a .NET application. They are:

1. Framework-dependent deployment (FDD).
2. Framework-dependent executables (FDEs).

3. Self-contained.

If you choose to deploy your application and its package dependencies, but not .NET itself,
then you rely on .NET already being on the target computer. This works well for web
applications deployed to a server because .NET and lots of other web applications are likely
already on the server.

Framework-dependent deployment (FDD) means you deploy a DLL that must be executed by
the dotnet command-line tool. Framework-dependent executables (FDE) means you deploy
an EXE that can be run directly from the command line. Both require .NET to be already
installed on the system.

Sometimes, you want to be able to give someone a USB stick containing your application and
know that it can execute on their computer. You want to perform a self-contained deployment.
While the size of the deployment files will be larger, you'll know that it will work.

[287]

https://dotnet.microsoft.com/download/dotnet/3.1

Packaging and Distributing NET Types

Creating a console application to publish

Let's explore how to publish a console application:

1.

Use your preferred code editor to add a new console app named DotNetEverywhere to
the Chaptere7 solution/workspace.

In Visual Studio Code, select DotNetEverywhere as the active OmniSharp project. When
you see the pop-up warning message saying that required assets are missing, click Yes
to add them.

In Program. cs, delete the comment and statically import the Console class.

In Program. cs, add a statement to output a message saying the console app can run
everywhere and some information about the operating system, as shown in the
following code:

WriteLine("I can run everywhere!");
WriteLine($"0S Version is {Environment.0SVersion}.");

if (OperatingSystem.IsMacOS())

{
WriteLine("I am mac0S.");
}
else if (OperatingSystem.IsWindowsVersionAtLeast(major: 10))
{
WriteLine("I am Windows 10 or 11.");
}
else
{
WriteLine("I am some other mysterious 0S.");
}

WriteLine("Press ENTER to stop me.");
ReadlLine();

5. Open DotNetEverywhere.csproj and add the runtime identifiers to target three

operating systems inside the <PropertyGroup> element, as shown highlighted in the
following markup:

[288]

Chapter 07

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net6.0</TargetFramework>
<Nullable>enable</Nullable>
<ImplicitUsings>enable</ImplicitUsings>
<RuntimeIdentifiers>

winl0-x64;0sXx-x64;0sx.11.0-arm64;1linux-x64;linux-armé4

</RuntimeIdentifiers>

</PropertyGroup>

</Project>

* The win1e-x64 RID value means Windows 10 or Windows Server 2016 64-bit.
You could also use the win1e-arm64 RID value to deploy to a Microsoft Surface
Pro X.

* The osx-x64 RID value means macOS Sierra 10.12 or later. You can also specify
version-specific RID values like osx.10.15-x64 (Catalina), osx.11.0-x64 (Big
Sur on Intel), or osx.11.8-armé4 (Big Sur on Apple Silicon).

* The 1inux-x64 RID value means most desktop distributions of Linux like
Ubuntu, CentOS, Debian, or Fedora. Use 1inux-arm for Raspbian or Raspberry
Pi OS 32-bit. Use 1inux-armé64 for a Raspberry Pi running Ubuntu 64-bit.

Understanding dotnet commands

When you install the .NET SDK, it includes a command-line interface (CLI) named dotnet.

Creating new projects

The .NET CLI has commands that work on the current folder to create a new project using
templates:

1. On Windows, start Command Prompt or Windows Terminal. On macOS, start
Terminal. If you are using Visual Studio Code, then you can use the integrated
terminal.

[289]

Packaging and Distributing NET Types

2. Enter the dotnet new --list or dotnet new -1 command to list your currently installed

templates, as shown in Figure 7.2:

EY Windows PowerShell

Y
Custom Control Library
WPF User Control Library
Windows Forms App
¥s Forms
ows Forms C

NUnit 3 Te

NUnit 3 Test Pro

xUnit Test Projec
Component

JebAssembly App
Core Empty

arkj= dotnet
Short Name

wpflib
wpfcustomcontrollib
wpfusercontrollib
winform
scontrollib
1slib

nunit

xunit
razorcomponent
page
viewimports
viewstart
blazorserver
blazorwasm
web

eb App (Model-View-Controller) mvc

s and Redux

Razor Class Library
ASP.NET Core Web API

NuGet CﬁnFig
Dotnet 1 tool manifest file
W Config
olution File
Protocol Buffer File

webapp
an ar

reactredux
rclasslib

tool-manifest
webconfig

sln

prote

Language

[c#],F#
[c#], F#
[c#],ve
[c#],vB
[c#],ve
[c#],vB
[c#],ve
[ci#],ve
[c#],ve
[c#l,F#
[c#],F#

Common/Console
Common/Library
Common /WPF
Common /WPF
Common /WPF
Common /WPF
Common/WinForms
Common/WinForms
Common/WinForms

Web/Blazor/
Web/Empty

zor/Library
Web/WebAPI

Config
Config
Solution
Web/gRPC

Figure 7.2: A list of installed dotnet new project templates

&

Most dotnet command-line switches have a long and a short version. For
example, --1ist or -1. The short ones are quicker to type but more likely to
be misinterpreted by you or other humans. Sometimes more typing is clearer.

Getting information about .NET and its environment

It is useful to see what .NET SDKSs and runtimes are currently installed, alongside information
about the operating system, as shown in the following command:

dotnet --info

[290]

Chapter 07

Note the results, as shown in the following partial output:

.NET SDK (reflecting any global.json):
Version: 6.0.100
Commit: 22d70b47bc

Runtime Environment:

0S Name: Windows

0S Version: 10.0.19043

0S Platform: Windows

RID: winl@-x64

Base Path: C:\Program Files\dotnet\sdk\6.0.100\

Host (useful for support):

Version: 6.0.0
Commit: 91ba01788d

.NET SDKs installed:
3.1.412 [C:\Program Files\dotnet\sdk]
5.0.400 [C:\Program Files\dotnet\sdk]
6.0.100 [C:\Program Files\dotnet\sdk]

.NET runtimes installed:
Microsoft.AspNetCore.All 2.1.29 [...\dotnet\shared\Microsoft.AspNetCore.All]

Managing projects

The .NET CLI has the following commands that work on the pr